The University of Southampton
University of Southampton Institutional Repository

Eddy mixing of potential vorticity versus thickness in an isopycnic ocean model

Eddy mixing of potential vorticity versus thickness in an isopycnic ocean model
Eddy mixing of potential vorticity versus thickness in an isopycnic ocean model
Parameterizations of the eddy-induced velocity that advects tracers in addition to the Eulerian mean flow are traditionally expressed as a downgradient Fickian diffusion of either isopycnal layer thickness or large-scale potential vorticity (PV). There is an ongoing debate on which of the two closures is better and how the spatial dependence of the eddy diffusivity should look like. To increase the physical reasoning on which these closures are based, the authors present a systematic assessment of eddy fluxes of thickness and PV and their relation to mean-flow gradients in an isopycnic eddy-resolving model of an idealized double-gyre circulation in a flat bottom, closed basin. The simulated flow features strong nonlinearities, such as tight inertial recirculations, a meandering midlatitude jet, pools of homogenized PV, and regions of weak flow where ?/h dominates the PV gradient. It is found that the zonally averaged eddy flux of thickness scales better with the zonally averaged meridional thickness gradient than the eddy flux of PV with the PV gradient. The reason for this is that the two-scale approximation, which is often invoked to derive a balance between the downgradient eddy flux of PV and enstrophy dissipation, does not hold. It is obscured by advection of perturbation enstrophy, which is multisigned and weakly related to mean-flow gradients. On the other hand, forcing by vertical motions, which enters the balance between the downgradient eddy flux of thickness and dissipation in most cases, acts to dissipate thickness variance. It is dominated by the conversion from potential to kinetic energy and the subsequent downgradient transport of thickness. Also, advection of perturbation thickness variance tends to be more single-signed than advection of perturbation enstrophy, forcing the eddy flux of thickness to be more often down the mean gradient. As a result, in the present configuration a downgradient diffusive closure for thickness seems more appropriate to simulate the divergent eddy fluxes than a downgradient diffusive closure for PV, especially in dynamically active regions where the eddy fluxes are large and in regions of nearly uniform PV.
0022-3670
481-505
Drijfhout, Sybren S.
a5c76079-179b-490c-93fe-fc0391aacf13
Hazeleger, Wilco
21d5b030-1127-424f-b22b-0a470dcb5b32
Drijfhout, Sybren S.
a5c76079-179b-490c-93fe-fc0391aacf13
Hazeleger, Wilco
21d5b030-1127-424f-b22b-0a470dcb5b32

Drijfhout, Sybren S. and Hazeleger, Wilco (2001) Eddy mixing of potential vorticity versus thickness in an isopycnic ocean model. Journal of Physical Oceanography, 31 (2), 481-505. (doi:10.1175/1520-0485(2001)031<0481:EMOPVV>2.0.CO;2).

Record type: Article

Abstract

Parameterizations of the eddy-induced velocity that advects tracers in addition to the Eulerian mean flow are traditionally expressed as a downgradient Fickian diffusion of either isopycnal layer thickness or large-scale potential vorticity (PV). There is an ongoing debate on which of the two closures is better and how the spatial dependence of the eddy diffusivity should look like. To increase the physical reasoning on which these closures are based, the authors present a systematic assessment of eddy fluxes of thickness and PV and their relation to mean-flow gradients in an isopycnic eddy-resolving model of an idealized double-gyre circulation in a flat bottom, closed basin. The simulated flow features strong nonlinearities, such as tight inertial recirculations, a meandering midlatitude jet, pools of homogenized PV, and regions of weak flow where ?/h dominates the PV gradient. It is found that the zonally averaged eddy flux of thickness scales better with the zonally averaged meridional thickness gradient than the eddy flux of PV with the PV gradient. The reason for this is that the two-scale approximation, which is often invoked to derive a balance between the downgradient eddy flux of PV and enstrophy dissipation, does not hold. It is obscured by advection of perturbation enstrophy, which is multisigned and weakly related to mean-flow gradients. On the other hand, forcing by vertical motions, which enters the balance between the downgradient eddy flux of thickness and dissipation in most cases, acts to dissipate thickness variance. It is dominated by the conversion from potential to kinetic energy and the subsequent downgradient transport of thickness. Also, advection of perturbation thickness variance tends to be more single-signed than advection of perturbation enstrophy, forcing the eddy flux of thickness to be more often down the mean gradient. As a result, in the present configuration a downgradient diffusive closure for thickness seems more appropriate to simulate the divergent eddy fluxes than a downgradient diffusive closure for PV, especially in dynamically active regions where the eddy fluxes are large and in regions of nearly uniform PV.

This record has no associated files available for download.

More information

Published date: February 2001
Organisations: Ocean and Earth Science

Identifiers

Local EPrints ID: 349188
URI: http://eprints.soton.ac.uk/id/eprint/349188
ISSN: 0022-3670
PURE UUID: c8b62d27-04f7-4a90-8add-8be246ed3a98
ORCID for Sybren S. Drijfhout: ORCID iD orcid.org/0000-0001-5325-7350

Catalogue record

Date deposited: 26 Feb 2013 11:53
Last modified: 15 Mar 2024 03:44

Export record

Altmetrics

Contributors

Author: Wilco Hazeleger

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×