The University of Southampton
University of Southampton Institutional Repository

RRS James Cook Cruise 77, 02 -28 Sep 2012. Investigating carbon capture and storage at the Sleipner Field

RRS James Cook Cruise 77, 02 -28 Sep 2012. Investigating carbon capture and storage at the Sleipner Field
RRS James Cook Cruise 77, 02 -28 Sep 2012. Investigating carbon capture and storage at the Sleipner Field
The NOC lead cruise, JC077 represents the main cruise activity as part of the UK’s input to the EC funded ECO2 project. The project aims to develop a “Best environmental practice” for the carbon capture and storage (CCS) industry. CCS has been proposed as a means of mitigating climate change by storing CO2 in geological reservoirs. The UK has identified sub-seabed storage as the most likely CCS process to be used. Other countries such as the US and Germany are pursuing land based CCS geological storage. Two types of reservoirs have been identified, saline aquifers such as Slepiner or depleted hydrocarbon reservoirs (oil and gas fields). The storage process require a monitoring strategy to ensure that any storage site is effectively monitored to ensure no leakage, or if there is leakage, to detect and monitor the effect of that leakage on the marine environment.

The Sleipner site in the Norwegian sector of the North Sea is one of the longest operated CCS sites in Europe. It uses CO2 that has been separated from the natural gas from the Sleipner West Field and injects it into a saline aquifer in a permeable sand body called the Utsira sand. The aquifer is capped by a seal of shale and is thought to be impermeable. The depth of the aquifer is 900 m below the seafloor with 80m of water. This storage site has been in operation since 1996 and contains more than 14 million m3 of CO2 with more being continually added. The site has been monitored mainly though the use of seismic on regular intervals to produce “4D” maps of the distribution of the CO2 though the reservoir. These models show a migration of the plume of CO2 to the north west.

JC077 takes a multidisciplinary approach to assess the Sleipner area for signs of leakage from the existing CCS reservoir. We will use a combination of AUV technology with a suite of sensors to determine if leakage is already occurring from the Sleipner field and if so to examine the effects of such leakage. The use of the AUV Autosub allows us to survey areas of the seabed at a resolution that is simply not possible by other means over a comparable time frame. The newly developed pH, pCO2 and Eh sensors attached to Autosub allow us to detect sites of leakage if it is occurring. Chirp and sidescan sonar mounted on Autosub would also allow the identification of sub-seabed and seabed features of interest. In conjunction with this we will use ship based multibeam and EK60 to look for leakage sites, and use water and sediment sampling systems to examine the state of the environment at present, and examine any areas of leakage detected.
15
National Oceanography Centre
Connelly, D.P.
d49131bb-af38-4768-9953-7ae0b43e33c8
et al,
867c20e9-3220-49c5-b89e-aac82d31ba5e
Connelly, D.P.
d49131bb-af38-4768-9953-7ae0b43e33c8
et al,
867c20e9-3220-49c5-b89e-aac82d31ba5e

Connelly, D.P. and et al, (2013) RRS James Cook Cruise 77, 02 -28 Sep 2012. Investigating carbon capture and storage at the Sleipner Field (National Oceanography Centre Cruise Report, 15) Southampton, GB. National Oceanography Centre 66pp.

Record type: Monograph (Project Report)

Abstract

The NOC lead cruise, JC077 represents the main cruise activity as part of the UK’s input to the EC funded ECO2 project. The project aims to develop a “Best environmental practice” for the carbon capture and storage (CCS) industry. CCS has been proposed as a means of mitigating climate change by storing CO2 in geological reservoirs. The UK has identified sub-seabed storage as the most likely CCS process to be used. Other countries such as the US and Germany are pursuing land based CCS geological storage. Two types of reservoirs have been identified, saline aquifers such as Slepiner or depleted hydrocarbon reservoirs (oil and gas fields). The storage process require a monitoring strategy to ensure that any storage site is effectively monitored to ensure no leakage, or if there is leakage, to detect and monitor the effect of that leakage on the marine environment.

The Sleipner site in the Norwegian sector of the North Sea is one of the longest operated CCS sites in Europe. It uses CO2 that has been separated from the natural gas from the Sleipner West Field and injects it into a saline aquifer in a permeable sand body called the Utsira sand. The aquifer is capped by a seal of shale and is thought to be impermeable. The depth of the aquifer is 900 m below the seafloor with 80m of water. This storage site has been in operation since 1996 and contains more than 14 million m3 of CO2 with more being continually added. The site has been monitored mainly though the use of seismic on regular intervals to produce “4D” maps of the distribution of the CO2 though the reservoir. These models show a migration of the plume of CO2 to the north west.

JC077 takes a multidisciplinary approach to assess the Sleipner area for signs of leakage from the existing CCS reservoir. We will use a combination of AUV technology with a suite of sensors to determine if leakage is already occurring from the Sleipner field and if so to examine the effects of such leakage. The use of the AUV Autosub allows us to survey areas of the seabed at a resolution that is simply not possible by other means over a comparable time frame. The newly developed pH, pCO2 and Eh sensors attached to Autosub allow us to detect sites of leakage if it is occurring. Chirp and sidescan sonar mounted on Autosub would also allow the identification of sub-seabed and seabed features of interest. In conjunction with this we will use ship based multibeam and EK60 to look for leakage sites, and use water and sediment sampling systems to examine the state of the environment at present, and examine any areas of leakage detected.

Text
NOC_CR_15.pdf - Other
Download (18MB)

More information

Published date: February 2013
Organisations: Marine Geoscience

Identifiers

Local EPrints ID: 349275
URI: http://eprints.soton.ac.uk/id/eprint/349275
PURE UUID: c48077c6-8120-4453-a0a6-13fcbab86b35

Catalogue record

Date deposited: 27 Feb 2013 11:43
Last modified: 09 Apr 2024 16:33

Export record

Contributors

Author: D.P. Connelly
Author: et al

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×