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We investigate extraordinary magnetoresistance (EMR) of inhomogeneous graphene-metal hybrids

using finite element modelling. Inhomogeneous graphene is a binary system made of electron and

hole puddles. Two geometries of the embedded metallic structure were considered: circular and

fishbone geometries. We found that the breaking of graphene into charge puddles weakens the

magnetoresistance of the hybrid system compared to a homogeneous graphene-metal system. For a

fixed value of the magnetic field, the magnetoresistance increases with decreasing area fraction

occupied by electrons puddles. Fishbone geometry showed an enhanced magnetoresistance

compared to circular geometry. The EMR is also investigated as a function of the contact resistance

for the fishbone geometry where it was found that a minimal contact resistance is essential to

obtain enhanced EMR in graphene-metal hybrid devices. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4793647]

I. INTRODUCTION

Graphene has recently attracted a huge amount of inter-

est, thanks to its remarkable electrical and mechanical attrib-

utes. Graphene is a two-dimensional material where carbon

atoms are arranged in a honeycomb structure. This atomic

arrangement gives graphene its specific band structure where

the energy dispersion is linear near K and K0 in the

Brillouin’s zone, i.e., E ¼ �hvFjkj, where vF ’ 106 m s�1. At

T¼ 0, the Fermi level of graphene EF separates the valence

and the conduction bands exactly at the Dirac point. The

density of states in the vicinity of the Dirac point is linear in

energy, giving electrons in graphene their massless character

of Dirac fermions.

A remarkable feature of graphene is that it shows a mini-

mum value of the conductivity rmin in the order of few

e2=h.1–3 Work related to the occurrence of rmin was carried

out by several authors stating it is either due to rippling in gra-

phene4,5 or due to short range disorder.6,7 In fact, it is widely

acceptable that the decomposition of graphene into electrons

and holes puddles near the neutrality point is caused by fluc-

tuations of the potential originating from charge impurities

residing in the underlying substrate. A self-consistent theory

of graphene transport at low densities was developed by

Adam et al.,8 where the graphene puddle density is derived

from the potential and density fluctuations caused by the

charged impurities. The presence of electrons and holes pud-

dles in graphene was first experimentally demonstrated by

Martin et al.9 using a single electron transistor. Chen et al.10

carried out experimental observations stating that rmin is not

governed by the physics of the Dirac point singularity, but by

carrier-density inhomogeneity induced by the potential of

charged impurities. In other related work, Cho and Fuhrer3

investigated the magnetic field-dependent longitudinal and

Hall resistivities qxx and qxy, near the neutrality point. They

found that at charge densities near rmin; qxx is strongly

enhanced whilst qxy vanished, meaning that electrons and

holes contribute equally to the current in an inhomogeneous

graphene sheet. Their observations are inconsistent with the

standard two-fluid model11 but consistent with the prediction

for inhomogeneously distributed electron and hole regions of

equal mobility.

It is well known that the inclusion of metallic embedded

structures in narrow gap, high mobility thin film semiconduc-

tors allows a significant enhancement of the magnetoresist-

ance.12–14 It is therefore natural to consider graphene for this

type of magnetic sensors. In addition, as graphene is easily

gated, it allows device sensitivity tuning and compensation

for the variability of device properties during the fabrication

process.15,16 This type of devices made of graphene/Au

hybrids were recently experimentally demonstrated.15,17

The purpose of this work is to investigate the extraordi-

nary magnetoresistance (EMR) in inhomogeneous graphene

with embedded metallic inclusions. We show quantitatively

using finite element modelling (FEM) that the presence of

n-type and p-type puddles imply significant change in magne-

toresistance properties of graphene-metal hybrid systems. The

effect of graphene-metal contact resistance is also considered.

II. EFFECTIVE CONDUCTIVITY IN INHOMOGENEOUS
GRAPHENE

Here, we will use the effective-medium approximation

(EMA) model18 for the magnetoresistance and Hall coeffi-

cients of graphene subjected to a perpendicular magnetic field

B¼Bz, where z is the unit vector in the z-direction. The gra-

phene sheet is considered as a binary system made of n-type

and p-type puddles with area fraction fn and fp ¼ 1� fn,

respectively. In addition, the area of puddles is much larger

than the carrier mean free path so that it can be described by

its own magnetoconductivity tensor rn for n-type puddlesa)Electronic mail: zm@ecs.soton.ac.uk.
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and rp for p-type puddles.18 In the presence of a magnetic

field, the conductivity tensors are given by

rn ¼ rn0
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(1)

Here, rn0 and rp0 are the zero-magnetic field conductivities of

n-type and p-type puddles, respectively; sn and sp are the elec-

trons and holes relaxation times, respectively; whilst xcn; xcp

are cyclotron frequencies. The zero-field conductivities

are given by:19 rn0 ¼ ð2e2=hÞvFsn
ffiffiffiffiffiffi
p n
p

and rp0 ¼ ð2e2=hÞ
vFsp

ffiffiffiffiffiffi
p p
p

, where n and p are the carrier concentrations of

electrons and holes, respectively. The cyclotron frequency is

given by xci ¼ vFeB=ð�h
ffiffiffiffiffi
p i
p
Þ, i¼ n, p. If we consider that the

scattering process is mainly due to impurities Coulomb poten-

tial, then the relaxation times scale as the square root of the

carriers density, i.e., sn;p /
ffiffiffiffiffiffiffi
n; p
p

.8 In this case, we can set

xnsn � lnB and xpsp � lpB, which are independent of car-

rier density. The graphene sheet composed of electrons and

holes puddles can be regarded as an effective medium with a

conductivity tensor re. The conductivity tensor can be calcu-

lated using the EMA.18,20 This approximation assumes elec-

trons and holes puddles as having a compact structure and

approximately circular geometry. The expression of the effec-

tive conductivity within the EMA is obtained by solving the

equation,

X
i

fidriðI � CdrÞ�1 ¼ 0; i ¼ n; p; (2)

where dri ¼ ri � re, I is the 2� 2 identity matrix and for a

planar geometry C ¼ �I=2rxx. Expanding Eq. (2) leads to a

couple of nonlinear equations in re;xx and re;xy, which are the

component of the effective conductivity tensor. The other two

components are given by re;yy ¼ re;xx and re;yx ¼ �re;xy. The

components of the effective conductivity tensor are obtained

by numerically solving Eq. (2) and subsequently injecting the

obtained values into the FEM model. For our simulations, we

assume that n¼ p and that the relaxation times are the same

for electrons and holes, i.e., sn ¼ sp, which are independent of

the carrier density. In this case, ln¼lp¼l so that xc;n;p¼lB
in Eq. (1) and r0n¼r0p.

Figures 1 and 2 show rxx and rxy, respectively, as func-

tion of the area fraction of n-type puddles fn for different val-

ues of the magnetic field and for a mobility value of

l ¼ 2:3 T�1. For these calculations, we set r0 ¼ 8e2=h.

For a fixed magnetic field, re;xx reaches a maximum at

an area fraction of fn ¼ 1=2. At this value, the component

re;xy vanishes.

Figures 3 and 4 show re;xx and re;xy as a function of the

applied magnetic field B for different values of the electron

puddles area fraction. The effective longitudinal conductivity

decays as the magnitude of magnetic field is increased. The

Hall conductivity vanishes for f¼ 1/2 and saturates at high

magnetic field for f 6¼ 1=2.

III. FINITE ELEMENT CALCULATIONS

The FEM analysis is a powerful and predictive tool

allowing the simulation of the magnetoresistance of hybrid

graphene-metal EMR devices. Previous FEM calculations

were performed on thin semiconducting films with metallic

inclusions, showing that the MR effect strongly depend on

the position, the size of voltage ports,21 and the contact re-

sistance between the semiconductor and the metal.22 In the

present work, the metal is modelled as a 2D film with the

conductivity given by r2D ¼ rB � tm, where tm is the thick-

ness of the film and rB is the bulk conductivity. Typical val-

ues of tm used in graphene metal contacts are few tens of

FIG. 1. Plot of the calculated re;xx as a function of the area fraction fn for dif-

ferent values of the magnetic field, i.e., B¼ 0.5 T, 1 T, 1.5 T, and 2 T.

FIG. 2. Plot of the calculated re;xy as a function of the area fraction fn for dif-

ferent values of the magnetic field, i.e., B¼ 0.5 T, 1 T, 1.5 T, and 2 T.
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nanometres. We choose gold as a metal inclusion for our

simulations. For an arbitrary geometry, the following equa-

tions are solved in two dimensions:

rJ ¼ Qs;

J ¼ reE;

E ¼ �rV;

(3)

where J is the current density, Qs is the current source, and

re is the graphene effective conductivity tensor. E and V are

the electric field and the voltage, respectively. The boundary

condition for Eqs. (3) satisfies the insulation condition—

n�J¼ 0, where n is the normal vector on the boundary. The

effective conductivity re is introduced as a parameter after

solving Eq. (2) for a given value of the magnetic field and

the area fraction of electron (holes) puddles fn(fp). The mag-

netoresistance is defined as

DR

R
¼ RðBÞ � Rð0Þ

Rð0Þ ; (4)

where R(B) and R(0) are the resistances between voltage

electrodes at fixed and zero magnetic field, respectively.

The metal conductivity tensor has the same form as 1

but with the components given by rm;xx ¼ rm;0=ð1þ l2
mB2Þ

¼ rm;yy and rm;xy ¼ rm;0lmB=ð1þ l2
mB2Þ ¼ �rm;xy, where

rm;0 ¼ r2D and lm are the metal conductivity and the mobil-

ity, respectively.

Here, we will consider two geometries: the circular and

the fishbone geometries, using van der Pauw configuration.

Surely, other geometries can be considered but these two

geometries are chosen for simplicity. The objective here is to

show that different geometries produce different magnetore-

sistance response. FEM simulations are carried out using

Comsol Multiphysics23 with fixed position of the ports and

with consideration to contact resistance between graphene

and the metal.

IV. RESULTS AND DISCUSSION

The MR not only depends on physical properties of the

materials used to build the device, but is strongly dependent

on the geometry of the embedded metallic structures on

the semiconductor matrice.12,24 Hewett and Kusmartsev24

showed that branched geometry led to an enhancement of

several orders of magnitudes of the MR compared to the cir-

cular geometry for InSb/Au hybrid structure.12 The MR also

depends on the fill factor a which is, for a circular geometry,

defined as the ratio a ¼ rm=rG, where rm is the radius of the

metal inclusion and rG is the radius of the semiconductor

film. Owing to the high graphene mobility, large values of

the MR are expected in comparison to other high mobility

semiconductors such InSb or InAs. Although 2D electron

gas can achieve very high mobilities, graphene offers the

advantage of being cheap to produce and simple to process.

The MR is expected to be even higher for suspended gra-

phene which shows very high mobility values approaching

200 000 V/cm2 s.25

A. Circular geometry

The circular geometry consists of a circular metal em-

bedded inside a graphene circular sheet of radius rG ¼ 2 lm,

the current I is injected at one point and retrieved at another

opposite point (�I). The voltage difference DV is measured

between two opposite probe points as shown in the inset of

Figure 5.

The MR effect is akin to classical Hall effect. At zero

magnetic field, most of the current flows through the low

resistive metallic disc, making the structure short circuited.

When applying a magnetic field, the current is forced to flow

away from the metallic structure (by the Lorentz force) as

the current density acquires a Hall angle with the induced

electric field. The current flows in high resistivity region

which results in the MR effect. At larger magnetic field, the

Hall angle increases (approaching 90�) which forces the cur-

rent to flow along the edge of the graphene disc resulting in

an increase of the length of the current path, and hence
FIG. 4. Calculated re;xy as a function of the magnetic field for different val-

ues of the area fraction fn ¼ 0:4, 0.5, and 0.7.

FIG. 3. Calculated re;xx as a function of the magnetic field for different val-

ues of the area fraction fn ¼ 0:4, 0.5, and 0.7.
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inducing an enhanced MR. At a fixed magnetic field, chang-

ing the dominant puddles landscape from holes to electrons

(fp ! 1� fp), results in the current density lines shifting

from the right to the left within the structure in a symmetrical

manner.

To show the difference between a homogenous graphene

made of a single charge carrier type (either p or n) and non-

homogeneous graphene made of electron and hole puddles,

we perform FEM simulation for both types. The result is dis-

played in Figure 5 showing DR=R as a function of the mag-

netic field for homogeneous and non-homogeneous graphene,

and for different values of the fill factor. This simulation

shows that the presence of electrons and hole puddles weak-

ens the magnetoresistance up to a certain value of the

magnetic field above which the MR saturates for both homo-

geneous and non-homogeneous graphene. This saturation is

interpreted as follows: as the magnetic field is increased, the

current starts to avoid the metal shunt and flows more towards

the edges due to the increase of Hall angle. At higher mag-

netic fields, no current is flowing through the metal shunt

(Hall angle approaching 90�) and most of the current flows at

the edge of the structure. The transport is limited only by the

edges regardless of the value of the magnetic field; therefore,

the magnetoresistance saturates.

Figure 6 shows DR=R as a function of the magnetic field

for different values of the area fraction of electron puddles.

These results were obtained for a metal disc of radius

r ¼ 1:6 lm. Note that as the problem is symmetrical, the

results corresponding to fn and 1� fn are identical; hence, we

have only considered values of fn � 1=2. For this particular

geometry and for the range of the magnetic field considered,

the MR increases with decreasing electron puddles area

fraction. To understand this behavior, we calculate the Hall

coefficient RH for the van der Pauw geometry considered,

which is shown in the inset of Figure 6 for B¼ 0.5 T. The

Hall coefficient decreases with fn leading to more charge car-

riers going through the metal inclusion, which results in a

decrease of the MR.

In Figure 7, the simulated MR versus the area fraction fn
is shown, for a magnetic field value of B¼ 3 T. The MR is

increasing with increasing fill factor for all fn values. For a

fixed value of a, the MR produces a maximum at fn ¼ 0:58

and a minimum at fn ¼ 0:5 independent of the fill factor. The

FIG. 5. Plot of the magnetoresistance versus magnetic field for homogenous

and non-homogenous graphene, for three values of the fill factor a ¼ 0:5,

0.65, and 0.8. For non-homogeneous graphene, the value of fn ¼ 0:4 was

used. The structure is shown on the inset where a circular gold shunt is em-

bedded in a circular sheet of graphene. Simulations were performed using a

Van der Pauw geometry as indicated.

FIG. 6. Magnetoresistance as a function of the applied magnetic field B, of a

shunted graphene structure, for three values of the area fraction of electron

puddles. The inset shows the Hall coefficient as a function of the puddles

area fraction for B¼ 0.5 T.

FIG. 7. Dependence of the magnetoresistance on the area fraction fn for a

shunted circular graphene structure, for several values of the fill factor and

at a magnetic field value of B¼ 5 T.
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minimum of the MR is attained at fn ¼ 0:5 because the value

of the re;xy vanishes whilst re;xx reaches its maximum. This

makes the structure short, where a large portion of the cur-

rent flows through the metallic disc as if there were no mag-

netic field.

B. Fishbone geometry

The fishbone geometry is shown in the inset of Figure 8.

The same figure shows the MR as function of the magnetic

field for different values of fn: 0.15, 0.25, 0.35, and 0.45. We

can clearly see for this geometry that the MR is strongly de-

pendent on the area fraction of electron and hole puddles.

The magnitude of the MR is larger by several orders of

magnitude in comparison with the disc geometry. At large

magnetic fields, the MR saturates and becomes weakly de-

pendent on fn as the charge carriers are pushed towards the

edges of the structure. For this geometry, the current distri-

bution within the structure in the presence of a magnetic

field is more complex compared to the disc structure, but the

same mechanism prevails: at zero magnetic field, most of

the current flows through the metallic structure whilst at fi-

nite B, the current is pushed away from it, going through a

more resistive path. The strong dependence of the MR of the

area fraction fn is explained by the fact that the Hall coeffi-

cient, for the Van der Pauw geometry considered, decreases

with fn (inset of Figure 6). This leads to more charge carriers

going through the metal inclusion, which results in a

decrease of the MR. It is worth mentioning that there are

several geometrical configurations (not shown here), which

also result in a very high MR.

So far, we have only considered the situation when n¼ p.

If we assume that the Coulomb scattering is the dominating

scattering process, then the zero field conductivities r0;n and

r0;p are linear in n and p, and if n 6¼ p, these two conductiv-

ities are different. In this case, we solve Eq. (2) and perform

FEM analysis on the fishbone geometry. In Figure 9, the MR

versus the magnetic field is shown for different values of the

ratio n/p. It is clear that the MR increases with the ratio n/p.

This is resulting from an increase in the Hall resistivity as the

ratio n/p is increased as shown in the inset of Figure 9.

V. EFFECT OF CONTACT RESISTANCE

It is well known that the contact resistance can have a

significant impact on the performance of graphene based

devices.26,27 It is expected that this will also be true for

graphene-metal hybrid sensors. In our simulation, we model

the contact resistance by inserting a thin layer of width d,

between the fishbone metal shunt and the graphene layer.

This contact layer has a magnetic field-independent conduc-

tivity tensor given by

rc ¼
rc;xx 0

0 rc;yy

� �
; (5)

where rc;xx ¼ rc;yy ¼ rc are independent of the magnetic

field. We choose d ¼ 10 nm and choose the mesh in the con-

tact sheet to be extremely fine in order ensure numerical ac-

curacy. In Figure 10, we show the MR versus the magnetic

field for several values of rc ð1=XÞ and for fn ¼ 0:2. We see

that for the fishbone geometry, the MR is strongly dependent

on the contact resistance even at large magnetic fields. In the

disc geometry, the effect of contact resistance weakens at

large magnetic field as the current lines are pushed towards

the edge, away from the contact sheet. For the fishbone struc-

ture, the strong dependence of the MR at large magnetic

fields is explained by the fact that the arms of the structure

are very close to the edges of the graphene circular sheet;

hence, a large portion of the current still crosses the contact

sheet. As the contact conductivity increases and becomes

closer to the metal sheet conductivity, the MR becomes

weakly dependent on rc; in this particular case, this is hap-

pening for rc 	 0:01 X�1. For practical applications, it is

therefore of paramount importance for EMR devices that the

contact resistance is minimized.

FIG. 8. Dependence of the magnetoresistance on the magnetic field for sev-

eral values of the area fraction of electron puddles, i.e., 0.15, 0.25, 0.35, and

0.45. The inset shows the metallic fishbone structure embedded in a circular

graphene sheet, used in the simulation.

FIG. 9. Dependence of the magnetoresistance on the magnetic field for sev-

eral values of the ratio n/p, i.e., 1, 1.2, 1.4, 1.6, and 2. The inset shows the

Hall resistivity for the same values of n/p.
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VI. CONCLUSION

In conclusion, we have applied FEM simulations to

investigate the MR on graphene/metal hybrid systems for

both homogeneous graphene and non-homogeneous graphene

which is made of electron and hole puddles. We considered

two geometries: a circular metallic disc and a fishbone

metallic structure. It is found that the MR is weaker for non-

homogeneous graphene compared with homogenous gra-

phene. It is also found that the MR is strongly dependent on

the area fraction of electron and hole puddles. The fishbone

geometry shows an enhanced MR in comparison to the circu-

lar geometry and exceeds it by several orders of magnitudes.

Contact resistance was investigated and it was shown that it

can be detrimental to the performance of EMR devices.
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