Fractional frequency reuse aided twin-layer femtocell networks: analysis, design and optimization
Fractional frequency reuse aided twin-layer femtocell networks: analysis, design and optimization
Femtocells constitute an economical solution conceived for improving the indoor coverage, which are capable of achieving a high network capacity. In order to guarantee a high Spectral Efficiency (SE), femtocells have to reuse the spectrum of macrocells. As a result, the performance of both the femtocells and macrocells may suffer owing to the near-far effects. In this paper, we study a twin-layer cellular networks, where the Macrocell Base Stations (MBSs) employing Fractional Frequency Reuse (FFR) host the Femtocell Base Stations (FBSs). This paper investigates the design, performance analysis and optimization problems of this FFR aided twin-layer network. We firstly assume that the femtocells opt for full spectrum access (FSA). The per-layer outage probability (OP) is derived and the network is optimized for maximizing the macrocell's throughput. We found that the advantage of FFR eroded in dense femtocell-scenarios and the optimized network tends to become a Unity Frequency Reuse (UFR) aided system. We then propose a spectrum swapping access (SSA) strategy for protecting the macrocell's performance and for overcoming the typical near-far problem. Our analysis demonstrates that both the OP of femtocell users in the Cell Centre Region (CCR) and that of the macrocell users in the Cell Edge Region (CER) will be reduced by the proposed SSA. The optimized network using our SSA is more robust to the detrimental impact of femtocells
2074-2085
Jin, Fan
2494e7f1-0077-4ee7-a274-65cb7a8a5fbd
Zhang, Rong
3be8f78f-f079-4a3f-a151-76ecd5f378f4
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
May 2013
Jin, Fan
2494e7f1-0077-4ee7-a274-65cb7a8a5fbd
Zhang, Rong
3be8f78f-f079-4a3f-a151-76ecd5f378f4
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Jin, Fan, Zhang, Rong and Hanzo, Lajos
(2013)
Fractional frequency reuse aided twin-layer femtocell networks: analysis, design and optimization.
IEEE Transactions on Communications, 61 (5), .
(doi:10.1109/TCOMM.2013.022713.120340).
Abstract
Femtocells constitute an economical solution conceived for improving the indoor coverage, which are capable of achieving a high network capacity. In order to guarantee a high Spectral Efficiency (SE), femtocells have to reuse the spectrum of macrocells. As a result, the performance of both the femtocells and macrocells may suffer owing to the near-far effects. In this paper, we study a twin-layer cellular networks, where the Macrocell Base Stations (MBSs) employing Fractional Frequency Reuse (FFR) host the Femtocell Base Stations (FBSs). This paper investigates the design, performance analysis and optimization problems of this FFR aided twin-layer network. We firstly assume that the femtocells opt for full spectrum access (FSA). The per-layer outage probability (OP) is derived and the network is optimized for maximizing the macrocell's throughput. We found that the advantage of FFR eroded in dense femtocell-scenarios and the optimized network tends to become a Unity Frequency Reuse (UFR) aided system. We then propose a spectrum swapping access (SSA) strategy for protecting the macrocell's performance and for overcoming the typical near-far problem. Our analysis demonstrates that both the OP of femtocell users in the Cell Centre Region (CCR) and that of the macrocell users in the Cell Edge Region (CER) will be reduced by the proposed SSA. The optimized network using our SSA is more robust to the detrimental impact of femtocells
This record has no associated files available for download.
More information
Published date: May 2013
Organisations:
Southampton Wireless Group
Identifiers
Local EPrints ID: 349393
URI: http://eprints.soton.ac.uk/id/eprint/349393
PURE UUID: d871838d-d79a-4426-93e0-705703f4eac4
Catalogue record
Date deposited: 04 Mar 2013 10:59
Last modified: 18 Mar 2024 02:35
Export record
Altmetrics
Contributors
Author:
Fan Jin
Author:
Rong Zhang
Author:
Lajos Hanzo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics