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Abstract

The accurate prediction of protein-drug binding affinities is a major aim of com-

putational drug optimisation and development. A quantitative measure of binding

affinity is provided by the free energy of binding, and such calculations typically

require extensive configurational sampling of entities such as proteins with thou-

sands of atoms. Current binding free energy methods use force fields to perform

the configurational sampling and to compute interaction energies. Due to the em-

pirical nature of force fields and the neglect of electrons, electron polarisation and

charge transfer are not accounted for explicitly. This can limit the accuracy with

which interactions are calculated and consequently the free energies obtained. Ide-

ally ab initio quantum chemistry approaches should be used as these explicitly

include the electrons. However, conventional ab initio approaches are not suitable

due to their prohibitively high computational cost and unfavourable scaling.

In this thesis we use large-scale ab initio quantum chemistry calculations within

the Density Functional Theory (DFT) method to address the above mentioned

limitations of force fields. To obtain quantitative results with ab initio approaches



it is important to converge the calculations with the size of the basis set. For this

reason we have used the ONETEP program, which is capable of linear-scaling DFT

with near-complete basis set accuracy.

A well known binding free energy approach is the Molecular Mechanics Poisson-

Boltzmann Surface Area (MM-PBSA), which obtains free energies from evalua-

tion of the energy of configurations in an implicit solvent model. We present the

first application of a “QM-PBSA” approach to a protein-ligand system containing

over 2600 atoms. In this QM-PBSA approach the energies of the configurations

in vacuum are evaluated with ONETEP. The solvation energies were also obtained

with ONETEP using a minimal parameter implicit solvent model within the self-

consistent calculation.

Large-scale DFT calculations were also applied within a more theoretically rigor-

ous free energy approach which can, in principle, obtain the full entropic contri-

butions to free energy change. The method performs a mutation from a molecular

mechanical (MM) description to an quantum mechanical (QM) description of a

system. As a result a QM correction is added to the relative binding free energy

obtained from a thermodynamic integration calculation within the MM descrip-

tion. This approach was combined with an electrostatic embedding model within

ONETEP and used to calculate the hydration energies of small molecules.

As well as the computation of more accurate energies, large-scale DFT calcula-

tion compute the electron density of the entire system. Using electron density

analysis approaches, such as the Hirshfeld density analysis, in combination with

energy decomposition approaches, such as a second order perturbation estimate

of natural bond orbital interactions, both qualitative and quantitative understand-

ings can be gained into the contributions of particular chemical functional groups



that define protein-ligand interactions. These two approaches where applied to

study complexes of the Phosphodiesterase type 5 protein and used to rank ligand

binding affinities that agree well with then experimentally observed trends.
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Chapter 1

Introduction

Many illnesses are due to excessive expression of a protein. Drugs (ligands) are

designed to block the “active site” of these proteins, and inhibit their activity.

Protein-ligand binding was originally thought to follow a “lock and key” mecha-

nism first proposed by Emil Fischer in 1984 (shown in Figure 1.1), with the active

site of the protein being the “lock”, and the ligand being the “key”. Both were

believed to be in a fixed geometry and joined neatly without any geometric rear-

rangements necessary. Based on recent research, this idea has evolved, and now it

is believed that the binding of a ligand to a protein often requires dynamic changes

between different conformations. This can be by an induced-fit mechanism [8],

or through a selected-fit mechanism [9]. An induced-fit mechanism forces the

protein conformation to change as the ligand binds to the cavity. Whereas with

the selected-fit mechanism, the ligand selects and stabilises a complementary pro-

tein conformation from an equilibrium of low-energy and high-energy confor-

mations. These conformational changes can be documented by experimentally

determined structures of the protein in the unbound state, and with a ligand bound
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[10, 11].

Protein-ligand interactions can be typically classed as van der Waals (vdW), and

hydrogen bonding (H-bonding) and more general electrostatic interactions such

as dipole-dipole. For a protein/enzyme to function properly, the natural substrate

must bind strongly, and stay bound long enough to fulfill its function, but not so

strongly that it renders the protein/enzyme useless and unable to perform any fur-

ther processes. In contrast, a strong interaction that renders the protein useless

is necessary for a drug molecule to work. In addition, the protein-ligand interac-

tion must outcompete the natural protein-substrate interaction, thus inhibiting the

biological activity of the protein.

Figure 1.1: A schematic diagram of the lock and key mechanism of inhibitor
binding [1]

With the growing accuracy of experimentally determined 3D molecular structures,

refined to an atomic resolution, computational molecular modelling is expanding

its role in understanding structure/function relationships of biomolecules. There

are a variety of simulation techniques available which are based either on classical

molecular mechanics (MM), using atomistic [12] or coarse grained models [13],

or ab initio quantum mechanical calculations (QM) [14], or combinations thereof.

These methods allow us to study protein dynamics [15, 16, 17], and estimate

the interaction strengths and binding geometries (poses) of ligands [18, 19, 20].

2



Computational simulations can provide a useful tool for assessing a wide range

of potential pharmaceutical drugs whilst also limiting the need for expensive lab-

oratory tests. As well as being cheaper, the capability of computer simulations to

evaluate drugs that have not yet been synthesised can significantly speed up the

process.

The aim of using computational methods in drug design is to accurately calcu-

late the properties of a molecule, in particular the free energy. These explicitly

depend on the movement of electrons upon structural changes caused by ligand

binding, resulting in polarisation and charge transfer. The ideal computational

method would be a QM approach, which can describe all properties of the system

via the wavefunction. With QM we can explicitly account for electrons and there-

fore calculate all the electronic properties of a molecule. However, with the desire

for accurate and reliable QM calculations, two main problems prevent their ap-

plication in biological systems. Firstly, the system size, which may reach tens of

thousands of atoms, and secondly, the required sampling of configurational space.

QM calculations from first principles, using conventional Kohn-Sham Density

Functional Theory (DFT) [21], are limited to a few hundred atoms due to the scal-

ing of their computational cost with the number of atoms in the system. For this

reason, simulations on biomolecules are usually performed using classical MM.

MM approaches are based on empirical knowledge, and implicitly account for

the electronic charge on atoms by the addition of a partial charge. This limits

the transferability of MM approaches and introduces errors: the neglect of elec-

trons in force fields leads to the inability to properly describe polarisation or to

account for electron transfer. In some cases, a combination of both approaches

can be used in an attempt to take advantage of both. In these hybrid QM/MM ap-

proaches, small parts of the active site are simulated using QM, and embedded in

3
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a MM described system [22, 23]. In other cases semi-empirical QM methods are

used to describe the system [24]. In semi-empirical approaches, the single elec-

tron terms are explicitly accounted for, however, the two electron terms are treated

empirically. Values for these are taken from high level ab initio QM calculations

on small molecules in similar ways to entirely empirical MM approaches. Like

MM methods however, this also limits the transferability of the approach, whilst

still increasing the computational cost.

For the calculation of free energy, or reaction paths, dynamical movement of a

molecule (at room temperature) must be accounted for. As mentioned above, QM

methods are currently limited in system size, however simulation time scales also

present an issue. To simulate chemically interesting phenomena, often “long”

time scales are required (tens to hundreds of nano seconds or longer, especially

for chemical processes), wherein millions of molecular dynamics time steps are

needed to accurately describe such processes. QM calculations are generally 1000

times more computationally expensive than MM, and for simulations of the re-

quired time scale would take far too long. So, to simulate dynamical movement

of proteins, MM must still be used.

Hybrid QM/MM approaches are a step in the direction of multiscale methods for

increasing the use of QM methods, and semi-empirical approaches are allowing

faster and larger “QM” calculations. Another direction is the development of

linear-scaling DFT, which has the capability of performing calculations of a much

larger scale than conventional DFT approaches, and it can be applied to systems

containing several thousand atoms. Albeit, dynamic processes over long time

scales are still out of reach.

4
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1.1 Research aims

This research project was aimed at utilising large-scale quantum mechanics sim-

ulations to study protein-ligand interactions using the linear-scaling density func-

tional code ONETEP in combination with conformation sampling from MM meth-

ods.

The first method investigated in this thesis considered the prediction of protein-

ligand binding free energies using the Molecular Mechanics Poisson-Boltzmann

Surface Area (MM-PBSA) approach. This approach obtains the free energy of

binding as a sum of the differences in energies of the complex, receptor and lig-

and, and the differences in solvation energies, averaged over a structural ensemble

taken from a molecular dynamics simulation. Conventional methods use classical

force fields to evaluate the energies in vacuum, and the PBSA implicit solvent

model for the solvation energies. We have used the ONETEP program to evaluate

the energy of the classically derived conformations, and used a minimal implicit

solvation model to calculate the solvation energies. This “QM-PBSA” approach

was first tested, and validated, on a self assembling dimer, the “Tennis ball” dimer.

This system was chosen as it is considered an idealised model of a protein cavity.

This approach was then applied to a larger model protein-ligand binding system,

the T4 lysozyme double mutant L99A/M102Q.

The MM-PBSA approach is a mid-rigour theoretical free energy approach. We

also endeavoured to expand the use of our large-scale QM calculations to more

rigorous free energy approaches. With this in mind, we investigated applying a

QM correction to a thermodynamic integration method. In principle this approach

exactly includes all entropy change, whereas MM-PBSA does not. Thermody-

5
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namic integration uses a non-physical pathway to mutate a ligand (A), to another

ligand (B). This can be done since thermodynamic functions, such as free energy,

are a state property, and so is independent of the path taken to reach that point.

The relative free energy can hence be obtained via a thermodynamic cycle. To

do this, the mutation is performed for ligand bound to a protein (PA→PB), and

free in solution (A→B). This approach was extended by adding a QM correction

to the end points of the cycle. The classical and quantum descriptions are differ-

ent thermodynamic states. To calculate the free energy change from the classical

description of the system to a quantum description of the system single step per-

turbations were performed. Using this extended free energy cycle we computed

the relative hydration free energies of several small aromatic molecules.

The final branch of this project moved away from predicting binding free en-

ergies and investigated some of the additional information that can be obtained

from large-scale QM calculations. We used energy decomposition approaches,

and electron density analysis, to study the interactions of several very structurally

similar ligands bound to the Phosphodiesterase Type 5 protein. Natural bond or-

bitals were obtained from ONETEP, and second order perturbation estimates of

hydrogens bond strengths between the ligands and the protein were obtained. The

electron density was also partitioned via a Hirshfeld analysis to investigate elec-

tron redistribution on ligand binding. These approaches provide useful chemical

insight s into the interactions at the atomistic level. In combination with the com-

puted binding energies, dispersion interaction, and ligand desolvation energies,

qualitative predictions of relative ligand binding affinities can be made.

6
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Chapter 2

Computational Theories

This chapter will detail the computational theories used during this PhD. From

the different ways of describing the energy of a molecule and the prediction of

the available phase space of a molecule, to the different approaches of accounting

for solvent and various ways of estimating binding free energies of host-guest

systems.

2.1 Quantum Mechanics

Quantum physics is based on laws discovered in the early 20th century. Unlike

classical physics, laws that were developed pre-1900, which explain everyday

things in our mesoscopic world, quantum physics explains the microscopic.

At the beginning of the 20th century, De Broglie developed the idea of the dual

wave/particle nature of particles. In this theory, all particles that have momentum,

can also display wave-like properties described by a wave length (λ), and waves
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can have particle-like properties.

λ =
h

p
⇐⇒ p =

h

λ
. (2.1)

The de Broglie hypothesis motivated the discovery of the Schrödinger equation, a

fundamental principle which underpins all of chemistry.

The inability of classical physics to describe microscopic particles, such as elec-

trons, protons and neutrons, can be explained by Heisenberg’s uncertainty princi-

ple [25], which states that the more precise the position (x) of a particle is known,

the less precise its momentum will be (px),

∆x∆px =
h

4π
, (2.2)

where h is Planks constant.

In quantum mechanics (QM), the energy is a quantised property, this can be ob-

served when conducting electronic excitation experiments using electromagnetic

waves. From quantum theory we obtain the fundamental laws of chemistry, as

well as explanations for the properties of materials. QM can be used to study bi-

ological structures and mechanisms for understanding and clarifying their role in

several life processes, as well as studying nanostructures and materials.

2.1.1 The Schrödinger equation

In classical mechanics, variables can be directly linked to a physically measur-

able property (observables), such as momentum or position. This is not the case

for QM. Instead these observables are related by “operators” which provide the

10
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value of a physical property when they act upon a wavefunction. The postulates

of QM assert that microscopic systems are described by wavefunctions (φ) that

can completely characterise all physical properties of the system. There exist

quantum mechanical operators corresponding to each physical observable, which

when applied to the wavefunction, allow the prediction of the probability of find-

ing the system exhibiting a particular value (or range of values) for that observ-

able. The (non-relativistic) time independent Schrödinger equation [26] which

describes physical properties of the system is given by,

Ĥψ = Eψ, (2.3)

where ψ is the many-body wavefunction for the N particles in the system and

is a function of the particle coordinates. E is the total energy eigenvalue for the

system and Ĥ is the Hamiltonian (energy) operator, which combine the kinetic

energy operator (T̂ ) and the potential energy operator (V̂ ), for the system and

takes the form (for a molecular system),

Ĥ = T̂ + V̂ (2.4)

= T̂N{RI}+ T̂e{ri}+ V̂NN{RI}+ V̂Ne{RI, ri}+ V̂ee{ri} (2.5)

= − ~2

2mn

∑
∇2

RI
− ~2

2me

∑
∇2

ri
+

1

2

N∑
I=1

N∑
J 6=I

ZIZJe
2

4πε0RIJ

−1

2

n∑
i=1

N∑
I=1

ZIe
2

4πε0RIi

+
1

2

n∑
i=1

n∑
j 6=i

e2

4πε0rij

. (2.6)

The first two terms in Equation 2.5 are the kinetic energy operators for the nuclei

(N and RI) and the electrons (e and ri). The last three are the potential energy

11
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operators, where V̂nn is for nuclear-nuclear repulsion, V̂ne is for nuclear-electron

attraction, and V̂ee is for electron-electron repulsion. These are expanded in Equa-

tion 2.6. Where N is the number of atoms, n is the number of electrons, ZI is the

atomic charge of atom I, rij is the distance between electrons i and j, RIi is the

distance between nucleus I and electron i, and RIJ is the distance between nuclei

I and J. The above equation for the Hamiltonian takes into account all interactions

between particles in the system. Since there are 3N spatial degrees of freedom for

atomic positions, equation (2.3) is very complex and difficult, if not impossible

to solve analytically for all but the simplest (harmonic oscillator, hydrogen atom,

etc) systems.

2.1.2 Born––Oppenheimer approximation

An approximation that is central to quantum chemistry is the Born––Oppenheimer

approximation [27]. Electrons are much lighter than nuclei (the mass of a electron

is 9.109x10−31 kg [28] compared to the mass of a proton of 1.672x10−27 kg [28],

around 1/2000 of the mass) and hence move much faster. This means they can be

assumed to instantly re-arrange themselves to any nuclear movement. A simple

approximation then could be to separate the motion of the nuclei from the elec-

trons, and calculate the wavefunction of the electrons moving in a field of fixed

nuclei. Using this approximation, the Hamiltonian becomes the electronic Hamil-

tonian (the Hamiltonian describing the motion of N electrons in a potential field

of point charges).

Ĥelec = T̂e{ri}+ V̂Ne{RI, ri}+ V̂ee{ri}. (2.7)

12
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The kinetic energy of the nuclei can now be neglected and the nuclear-nuclear

repulsion is a constant. A constant that is added to an operator only adds to the

eigenvalues and has no effect on the eigenfunctions. The Schrödinger equation

using this approximations is then,

Ĥelecψelec = Eelecψelec. (2.8)

The eigenfunctions are now the electronic wavefunction which explicitly depends

on electronic coordinates, and parametrically on the nuclear coordinates, as does

the electronic energy. By parametric dependence we mean that, for different ar-

rangements of nuclear coordinates, the eigenfunction is a different function of

electronic coordinates.

2.1.3 Potential energy surfaces

The total energy of the system is the electronic energy plus the constant nuclear-

nuclear repulsion,

EPES = Eelec +
M∑

A=1

M∑
B>A

ZAZB

RAB

. (2.9)

By varying the nuclear coordinates and calculating the electronic energy, a poten-

tial energy surface (PES) can be obtained. EPES is also parametrically dependent

on the nuclear positions. This can be done to find equilibrium bond lengths and

stable geometry conformations (reactants and products) which are found at energy

minima. As well as transition states, which are found at saddle points (a maxi-

mum in one direction and a minimum in all other directions). Figure 2.1 shows

how the equilibrium bond length is located by moving two atoms further apart and

plotting EPES at each point. PES is also used for chemical reactions as shown in

13
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figure 2.2.

Figure 2.1: PES for a diatomic. Plots EPES as a function of internuclear separation
(the distance between nuclei). [2]

Figure 2.2: PES of a reaction [2].

14
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2.1.4 The variational principle

The variational principle provides an approximation of the ground-state energy,

which is the lowest eigenvalue given by the Hamiltonian for a system. It states

that any well-behaved, normalised, approximate trial function φ, that satisfies the

same boundary conditions as the wavefunction ψ, will give an expectation value

ε of the Hamiltonian which is greater or equal to the exact ground state ε0. This

can be expressed as,

ε =
〈
φ|Ĥ|φ

〉
≥ ε0. (2.10)

The convergence towards ε0 is achieved by varying the parameters of the nor-

malised function (φ) in order to minimise
〈
φ|Ĥ|φ

〉
[29].

2.1.5 Wavefunction approaches for approximating the Schrödinger

equation

The Hartree-Fock (HF) method is an approximate method for solving the molecu-

lar electronic Schrödinger equation (Equation 2.7). It breaks up the many-electron

problem into a series of single electron problems. The wavefunction in Hartree-

Fock theory is expressed as an anti-symerised product of n (number of electrons)

orthonormal spin orbitals (χ(x)), known as a Slater determinant. A spin orbital is

a product of a spatial orbital (ψ(r)) and a spin function (either α(s) or β(s)).

The single electron problem, with electron-electron interactions, is expressed us-
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ing the Fock operator,

f̂i = −1

2
∇̂2

i −
Nnuc∑
I=1

ZI

RiI

+ ν̂HF,i

= ĥi + ν̂HF,i, (2.11)

where ν̂HF,i is the average potential felt by electron i due to the other electrons.

This energy is expressed as a sum of Coulomb integrals,

Jij =

∫ ∫
χ∗i (x1)χ

∗
j(x2)r

−1
ij χi(x1)χj(x2)d(x1)d(x2), (2.12)

and exchange integrals,

Kij =

∫ ∫
χ∗i (x1)χ

∗
j(x2)r

−1
ij χj(x1)χi(x2)d(x1)d(x2). (2.13)

The exchange term appears because of asymmetric products in the wavefunction.

This arises from the Pauli exclusion principle that states that no two electrons can

have identical quantum numbers. This principle applies to all particles with a half

integer spin (fermions).

The Fock operator for a one-electron problem in terms of spatial orbitals can be

written as,

f̂i(ri) = ĥi +

N/2∑
j

(
2Ĵj(ri)− K̂j(ri)

)
, (2.14)

with the energy being,

E0 = 2

N/2∑
i

∫
ψ∗i (ri)ĥψi(ri)dri +

N/2∑
ij

(2Jij −Kij) . (2.15)
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This method provides a way of approximating the wavefunction, which is limited

to be Slater determinants, that minimises the energy, as in Equation 2.10.

Post HF methods

The difference between the exact HF energy and the exact ground state is known

as the correlation energy. Many approaches exist that try and improve the energy

obtained from HF. These methods improve the energy by attempting to including

some of this correlation energy [29]. Examples of such methods are coupled clus-

ter (CC), configuration interaction (CI), and Møller-Plesset perturbation theory

(MP2, MP4).

2.1.6 Density functional theory

Density functional theory (DFT) has gained much popularity during the last 20

years in quantum chemistry. Its popularity is owed to its ability to accurately and

reliably predict the ground-state properties of many molecular systems with only

a small number of well controlled approximations.

For an N -electron system, the single-particle electron density is the square of the

wavefunction integrated overN−1 electron coordinates multiplied by the number

of electrons,

n(r) = N

∫
|Ψ(r, r2, r3, · · · , rN)|2dr2dr3 · · · drN, (2.16)

which only depends on three coordinates, independent of the system size. In

contrast, wave function approaches depend on 3N coordinates. What this means is

17
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that as the complexity of a wavefunction increases with the number of electrons,

the electron density has a constant number of variables, three. This makes the

method very computationally appealing.

The basis of DFT, as given by Hohenberg and Kohn [30], also referred to as “pure”

DFT, is that the ground state electronic properties, including the energy, can be

completely described by the electron density.

DFT theorems

Hohenberg and Kohn proved that the external potential is determined by the den-

sity. Their theorems prove that the exact calculation of the ground state of an N-

electron system is possible by only using the electron density. Their formulation

can be applied on any stationary, nonrelativistic many-particle system in an exter-

nal potential νext(r) and determines all the properties of the ground state.

Hohenberg and Kohn first theorem

States that, “The external potential νext(r) is a unique functional of the density

n(r) (apart from a trivial additive constant).” [30]

Proof:

Assume there are two external potentials, ν̂1(r) and ν̂2(r) that both give rise to the

same ground-state density n(r). This will mean that there are two Hamiltonians

Ĥ1 and Ĥ2, with two different wavefunctions ψ1 and ψ2 but with the same ground

18
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state density. Using the variational principle,

E0
1 <

〈
ψ2|Ĥ1|ψ2

〉
=
〈
ψ2|Ĥ2|ψ2

〉
+
〈
ψ2|Ĥ1 − Ĥ2|ψ2

〉
= E0

2 +

∫
n(r) [ν1(r)− ν2(r)] dr (2.17)

E0
2 <

〈
ψ1|Ĥ2|ψ2

〉
=
〈
ψ1|Ĥ1|ψ1

〉
+
〈
ψ1|Ĥ2 − Ĥ1|ψ1

〉
= E0

1 +

∫
n(r) [ν2(r)− ν1(r)] dr, (2.18)

where E0
1 and E0

2 are the ground state energies for Ĥ1 and Ĥ2. Adding these

inequalities together gives E0
1 + E0

2 < E0
2 + E0

1 , which is a contradiction. This

result shows that the assumption that a ν2(r) exists is wrong, and hence νext(r)

is uniquely determined by n(r). The groundstate wavefunction is, therefore, a

functional of n(r), as is the kinetic energy operator T̂e and the electronic repulsion

energy operator V̂ee, since Ĥ is fixed by n(r). The Hohenberg-Kohn functional is

defined for these parts of the Hamiltonian by,

FHK [n] =
〈
ψ|T̂e + V̂ee|ψ

〉
. (2.19)

This functional is universal, however its explicit form is unknown. The total en-

ergy functional can now be expressed as,

E [n] =

∫
νext(r)n(r)dr + FHK [n(r)] . (2.20)

The Hohenberg and Kohn second theorem

States that, “The energy functional, E [n], has as its minimum the exact ground

state energy associated with νext(r) if the density is constrained to preserve the

number of particles (N [n] =
∫
n(r)dr = Nelec).” [30]
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Proof:

For any number of electrons, Nelec and external potential vext(r) the density func-

tional,

E(νext,N)[n] = FHK [n(r)] +

∫
νext(r)n(r)d3r, (2.21)

obtains its minimal value at the ground-state density. The minimal value ofE(νext,N)[n]

is then the ground state energy of this system.

This is true since the electronic energy functional of the density (Equation 2.21)

is, by definition, equal to the energy functional of the wavefunction,

εv [ψ] = 〈ψ|Vne|ψ〉+
〈
ψ|T̂e + V̂ee|ψ

〉
. (2.22)

Since εv [φ] is the ground state energy when ψ is the ground state for our Ne

system, then

εv [φ] ≥ E0, (2.23)

and hence,

E(νext,N)[n] ≥ E0. (2.24)

This theorem introduces the variational principle, allowing the density to be used

as the variable for minimising the energy. This allows the density to be used as

a basic variable in quantum chemistry calculations. It does however restrict the

theory to ground states only, since the inequality can only be proved for the ground

state.
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The electronic Hamiltonian, in atomic units, is

Ĥelec = −
N∑
i

1

2
∇2

i +
N∑
i

νi(r) +
N∑

i<j

1

rij

, (2.25)

where νi(r) is the external potential (νext).

As with wave mechanics approaches, the energy functional can be split into ki-

netic energy, T[n], electron-nucleus attraction, Ene[n] and the electron-electron

repulsion, Eee[n],

E[n] = Te[n] + Ene[n] + Eee[n] (2.26)

=

∫
n(r)νext(r)dr + 〈ψ|T̂e + V̂ee|ψ〉

=

∫
n(r)νext(r)dr + FHK [n]. (2.27)

To minimise the energy with respect to the density, with the constraint
∫
n(r)dr =

Nelec, we need to find,
δE[n]

δn(r)
− µ = 0, (2.28)

where µ = ν(r) + δF [n]
δn(r)

, is the Euler-Lagrange equation which can be solved for

the exact density. Eee[n] can be further divided into a Coulomb and exchange

part, J[n] and K[n], and a part for the electron correlation that has no explicit

form.

The Coulomb and electron-nucleus terms are both described by their classical
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representations,

Ene[n] =
∑

α

∫
Zan(r)

|Rα − r|
dr (2.29)

J [n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drr′. (2.30)

The problem lies with defining the kinetic energy of the electrons, the exchange

energy and the electron correlation energy. The first attempts to create function-

als for the kinetic energy, T[n], and exchange energy, K[n], considered a non-

interacting uniform electron gas.

Thomas-Fermi theory

In Thomas-Fermi theory the kinetic energy functional is expressed as,

TTF [n] = CF

∫
n

5
3 (r)dr, (2.31)

where,

CF =
3

10

(
3π2
) 2

3 . (2.32)

In Thomas-Fermi-Dirac model, the exchange energy is included and given by,

KD[n] = −Cx

∫
n

4
3 (r)dr, (2.33)

where,

Cx =
3

4

(
3

π

) 1
3

. (2.34)

This method is inaccurate (total energy errors of 15− 50%) due to the assumption

of a uniform electron gas. A serious flaw with this method is its inability to predict
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bonding in molecules. The error lies with the inadequate description of the kinetic

energy. An improvement to these methods is made by improving T[n] and K[n].

This can be done by making them dependent not just on the density, but also

it derivatives. Although this is an improvement, bonding is now allowed, it still

doesn’t yield results comparable to wave function methods, or produce chemically

useful results.

Kohn-Sham Theory

The Kohn-Sham (KS) [21] reformulation of DFT made it as successful in compu-

tational chemistry as it is today. They considered the kinetic energy for a system

of non-interacting electrons using molecular wavefunctions, whose expression is

known exactly.

The interacting electronic Hamiltonian is given by,

Ĥelec =

Nelec∑
i=1

−1

2
∇2

i +

Nelec∑
i=1

(
Nnuclei∑

A=1

−ZA

|ri −RA|

)
+

Nelec∑
i=1

Nelec∑
j=i+1

1

|ri − rj|
. (2.35)

The last term represents the electron-electron interactions which is a two-electron

operator. In a non-interacting system this term is replaced by a one-electron oper-

ator, V̂av, that describes the average effect of the interaction,

Ĥelec =

Nelec∑
i=1

−1

2
∇2

i +

Nelec∑
i=1

(
Nnuclei∑

A=1

−ZA

|ri −RA|

)
+

Nelec∑
i=1

V̂av(ri). (2.36)
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Ĥelec =

Nelec∑
i=1

−1

2
∇2

i +

Nelec∑
i=1

V̂ext(ri) +

Nelec∑
i=1

V̂av(ri)

=

Nelec∑
i=1

−1

2
∇2

i +

Nelec∑
i=1

{V̂ext(ri) + V̂av(ri)}

=

Nelec∑
i=1

−1

2
∇2

i +

Nelec∑
i=1

V̂eff (ri)

=

Nelec∑
i=1

{−1

2
∇2

i + V̂eff (ri)}

Ĥelec =

Nelec∑
i=1

ĥ(ri). (2.37)

The Hamiltonian is then expressed as a sum of one-electron operators as shown

in equation 2.37. In effect making it a Hamiltonian for a non-interacting sys-

tem of electrons, with eigenfunctions that are Slater determinants of one-electron

eigenfunctions (molecular orbitals) and eigenvalues that are a sum of one-electron

eigenvalues. This system of non-interacting electrons is constructed in such a way

that it has a ground state electron density which is the same as the real system

(where electrons do interact). Equation 2.8 can be written for each one-electron

Hamiltonian separately,

ĥ(r)ψα(r) = εαψα(r), (2.38)

where the eigenvalues are simply the energy of the non-interacting orbitals.

By using the system of non-interacting electrons, the kinetic energy for the real

system is thus split into two terms. A term for the non-interacting system that can

be solved exactly (2
∑Nelec/2

i=1 〈ψi|− 1
2
∇2

i |ψi〉), and a small correction term deriving

from the interacting nature of electrons. The energy functional can now be divided
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up as,

E[n] = Te[n] + Ene[n] + Eee[n] (2.39)

= Ts[n(r)] + Ene[n] + EH [n] + ∆T [n] + ∆Eee[n], (2.40)

where is Ts[n] the kinetic energy of the non-interacting system with the den-

sity n(r), Ene[n] is the electron-nucleus attraction, EH [n] is the Coulomb en-

ergy (or Hartree energy), ∆T [n] is the difference between the kinetic energy of

the interacting electrons and the non-interacting electrons, and ∆Eee[n] is the

non-classical corrections to the electron-electron repulsion. This equation can

be rewritten as,

E[n] = 2

Nelec/2∑
i=1

〈ψi| −
1

2
∇2

i |ψi〉+

∫
ν̂ext(r)n(r)dr + J [n] + Exc[n], (2.41)

where the last two terms in equation (2.40) have been combined in the termExc[n],

the exchange-correlation functional. If the exchange-correlation energy is exact,

then the exact density and electronic energy for the interacting system are ob-

tained.

2.1.7 Exchange-correlation functional

The exchange-correlation functional, Exc, accounts for the difference between

classical and quantum electron-electron repulsion, and the difference in kinetic

energy between the fictitious non-interacting system and the real interacting sys-

tem. If the exact exchange-correlation functional was known, KS DFT would

provide the exact total energy. This gives DFT the potential to provide the corre-
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lation energy, the computationally difficult part, at the computational cost similar

to uncorrelated techniques. The problem is that we do not have expressions for

the exchange-correlation functional.

It is common to separate the exchange-correlation functional into its two parts,

Exc [n] = Ex [n] + Ec [n] . (2.42)

The exchange and the correlation parts are then treated separately. There are many

different functionals available for the approximation of the exchange-correlation

energy, some of which will be discussed below.

Local Density Approximation

The local density approximation (LDA) is the simplest of the approximations used

for the exchange energy functional. It uses an expression derived from a uniform

electron gas (jellium). This can be considered as a large collection of N electrons

in a volume V. The electron density is a constant over the volume and is balanced

by a uniform positive background. This approach can be applied to a closed shell,

spin-unpolarised system, where the density has the same value (or varies only very

slightly) at every position. The exchange energy can be derived from the exact

Hartree Fock exchange energy by expressing the orbitals in terms of plane waves

and substituting in the density. The end result is an expression for the exchange

energy where the density is position dependent,

ELDA
x [n] = −3

4

(
3

π

) 1
3
∫
n

4
3 (r)dr. (2.43)
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There are many different correlation functionals that have been made to comple-

ment this exchange functional. Of those available, two commonly used are CAPZ

(Ceperley, Alder, Perdew and Zunger) [31] and VWN (Vosko, Wilk and Nusair)

[32].

LDA methods have been used on many systems that behave similarly to jellium,

such as bulk metallic systems, however they often proved disappointing when ap-

plied to molecular systems of chemical interest. LDA is surprisingly successful

in some case, mainly molecular geometries, but has a serious problem; it signifi-

cantly overbinds molecules. Due to this it is of limited use in chemistry.

Gradient correction methods or Generalised Gradient Approximations

Generalised Gradient Approximations (GGAs) have the form,

EXC =

∫
F (n,∇n)dr. (2.44)

The obvious step to correct for the simplicity of LDA would be to add information

about the density gradient. Doing this the exchange functional can be written

as,

EX [n] =

∫
n

4
3 (r)f(x(r))dr, (2.45)

where x(r) = ∇n(r)

n
4
3 (r)

, and is dimensionless. A simple gradient expansion leads to

a divergent exchange-correlation potential in finite systems, so Becke suggested

the form [33],

f = CX + β

(
x2

(1 + γx2)

)
, (2.46)
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which is also used in the PBE functional [34]. Becke made another functional

form in 1988,

f =
CX + βx2

(1 + 6βx arcsinhx)
, (2.47)

which is the B88X functional. This functional was largely responsible for the

increased interest in DFT in the 1990’s. These are just two of the many exchange

functionals that are currently available.

For the correlation functional, again there are many forms available. One of these

is the Lee-Yang-Parr (LYP) functional [35], and has the form,

EC =− a

∫
n

1 + dn−
1
3

dr− ab (2.48)∫
ωn2

[
CFn

8
3 + |∇n|2

(
5

12
− δ

7

12

)
− 11

24
|∇n|2

]
dr, (2.49)

where

ω =
exp(−cn− 1

3 )

1 + dn
1
3

n−
11
3 ,

and

δ = cn−
1
3 +

dn
1
3

1 + dn
1
3

.

This functional was derived from the helium atom and has no relation to a uniform

electron gas.

There are many GGA functionals available in the literature. These fall into two

categories;

1. Semiempirical (designed to fit experimental data) eg BLYP.

2. Purely theoretical (determined by satisfying exact conditions) eg PBE.
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Other functionals

There are two other types of functionals,

• Meta GGAs. These include higher order derivatives of the density, eg

EXC =

∫
F (n,∇n,∇2n)dr. (2.51)

The improved accuracy often comes at the expense of numerical instabilities

in the calculations.

• Hybrid functionals. These combine GGAs with a fraction of the exact ex-

change calculated using Kohn-Sham orbitals.

EXC =

∫
F (n,∇n)dr + ξEHF

X , (2.52)

with EHF
X being the exact ground state exchange energy. An example of a

hybrid functional would be B3LYP [36, 37] which has the general form,

EB3LY P
xc = (1− α0 − αx)E

LSDA
x +αEHF

x +αEB88
x +(1−αc)E

V WN
c +αcE

LY P
c .

(2.53)

ELSDA
x is an LSDA non-gradient-corrected exchange functional, EHF

x is

the KS orbital based HF exchange energy functional, EB88
x is the Becke88

exchange functional,EV WN
c is the Vosko, Wilk, Nusair correlation function,

which forms part of the accurate functional for the homogeneous electron

gas of the LDA and the LSDA, and ELY P
c is the LYP correlation functional.

The parameters α0, αx and αc are those that give the best fit of the calculated

energy to molecular energies.
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2.1.8 Basis sets

To obtain a numerical solution to the KS equations (and all other QM calcula-

tions), the eigenfunctions must be expanded in a set of known functions, a basis

set. This is not an approximation if the basis is complete (an infinite number of

functions). However, in practice the computational effort of conventional DFT

techniques scales with the third power of the number of basis functions, so a com-

promise is needed between computational time and accuracy. It is desirable to use

as few basis functions as possible to describe an unknown function. The more

accurately a single basis function is able to reproduce the unknown function, the

less basis functions are needed to achieve a given level of accuracy.

Slater-type orbitals

In early calculations Slater-type orbitals [38] (STOs) were often used as they have

a form similar to that of the atomic orbital of a hydrogen atom. At the nucleus

a cusp forms due to the singularity of the potential on the nucleus with charge

+Z, whilst far away from the atom an electron would “see” only a positive charge.

STOs display this exponential asymptotic behaviour and have the form,

χSTO(r) = P (r)e−ζrYlm(θ, φ). (2.54)

The long range behaviour is only correct for STOs if the smallest component is

less than
√

2Imin, where Imin is the lowest ionisation potential. However, very

often smaller values than this are required for accurate results. The major draw

back of STOs is that the two electron multi-centred integrals have to be computed

numerically. This makes them computationally inefficient, limiting their use to
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small systems only.

Gaussian-type orbitals

Gaussian-type orbitals [39] (GTOs) were introduced to simplify the multi-centre

integrals and allow an analytical solution. This is possible since the product of

two Gaussians centred on A and B, is a Gaussian centred at the mid point of the

two. GTOs have a the form,

χGTO(r) = P (r)e−αr2

Ylm(θ, φ). (2.55)

GTOs do not show the correct behaviour (cusp) at the nucleus or at long distances

that STOs have, decaying much more rapidly as they move away from the nucleus

than STOs. This qualitatively wrong behaviour was at first quite disappointing and

it was thought that STOs would be the ideal choice if the multi-centred integral

problem could be solved. This can be compensated for by the use of contracted

Gaussian functions, where a linear combination of GTOs are used to approximate

the correct form of the STOs [40]. Recent experience suggests that the Gaussian

shape is actually more realistic for a nucleus of finite extension.

Basis Set Superposition Error

When calculating binding energies (∆Ebind = EA+B − EA − EB) using atom-

centred basis functions (eg. STO or GTO basis sets), there is an increase in the

quality of the basis set describing the complex (A + B) due to the overlapping

of the basis sets from A and B. The result of a larger basis set in the complex

compared to the monomers, is to artificially increase the binding energy, since the
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additional variational freedom provided by the larger basis set reduces the energy

of the complex relative to the individual monomers. This error is referred to as

basis set superposition error (BSSE) [41]. BSSE is attributed to the use of an

incomplete basis set and increasing the number of atom-centred functions used

reduces this error. One method of accounting and correcting for BSSE is called

the counterpoise correction [41, 42]. In this approach, the energies of both A and

B are calculated in the presence of the basis set used in the complex (A+B).

Plane waves

Another basis set that is often used, which is very different to STOs and GTOs,

are plane waves [3] (PWs). PWs are solutions to the Schrödinger equation for a

particle in a periodic box. They have the form (for a box with length l),

Ψk(r) =
1

l
2
3

ei(kxx+kyy+kzz) =
1

V
1
2

eik·r. (2.56)

Very large numbers of plane wave basis functions are used (tens of thousands or

millions, depending on the simulation cell size) when performing DFT calcula-

tions, in contrast to the much smaller number of GTOs used in a typical calcu-

lation (hundreds or thousands). Plane waves are used more often for studying

solids due to their periodic nature. Plane waves exhibit a uniform coverage of

the simulation cell, having an advantage over atom-centred basis functions in that

they do not suffer from BSSE. However, when using plane waves to study sin-

gle molecules a supercell approach must be used. In this approach the simulation

cell must be large enough to isolate the molecule from its periodic image. The

additional “empty” space surrounding the molecule is very computationally ex-

pensive. Additionally, using plane waves also loses the connection with atomic
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orbitals resulting in a final set of molecular orbitals that can be difficult to chemi-

cally interpret.

It is common pratice to use another approximation when using plane waves. This

approximation is often referred to as the pseudopotential approximation and will

be discussed in more detail below.

2.1.9 Pseudopotentials

When heavy atoms are contained within the system, the number of basis functions

required can quickly become a very large number. These extra electrons however,

are mainly core electrons. They have no participation in chemical processes and

so can be represented by a minimal number of basis functions.

A proposed approximation replaced the core electrons with analytical functions to

represent the combined nuclear-electronic core to the remaining valence electrons.

These are called pseudopotentials [43]. A major advantage of these is that they

can be made to include the relativistic effects of the core electrons (relativistic

effects become important in very heavy elements where core electrons move at

speeds close to the speed of light).

When constructing pseudopotentials it is important to consider how many elec-

trons to include in the “core”. A large-core pseudopotential includes all but the

valence electrons, while a small-core pseudopotential only uses up to a shell be-

low. In heavier metals, polarisation of sub-valence shells can be chemically im-

portant and it is often worth the extra computational effort to explicitly include

these shells. Another important consideration is that the pseudopotential should

match the true potential outside of the “core” radius, this is also the case for the
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pseudowavefunction and true wavefunction (fig 2.3). To do this we impose that

the square amplitudes of the wavefunction and pseudowavefunction are identical

over the core region, satisfying the condition of “norm-conservation”.

The wavefunctions of the pseudopotential are slowly varying and so a much lower

kinetic cut-off energy is required for a plane wave basis set. Since only the wave-

functions for the valence electrons (the electrons that are chemically active) need

to be considered the efficiency of the calculation is increased even further. When

utilising pseudopotentials fewer electrons are considered, so the total energies

calculated are much reduced, however, calculated energy differences (binding en-

ergies) remain unchanged.

Figure 2.3: Schematic illustration of all-electron(solid lines) and pseudoelectron
(dashed lines) potentials and their corresponding wavefunctions [3].

2.1.10 Linear-Scaling Density Functional Theory

The computational cost of QM calculations often limits the feasibility of their

application to systems of biological interest, which often contain many hundreds

or thousands of atoms. Using conventional wavefunction approaches, the best
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scaling that can be obtained is to the fourth power, for the HF approach, due to

the calculation of the two electron integrals [44]. Many post-HF approaches have

much higher scaling, for example CCSD(T) scales to the seventh power.

The computational cost of conventional DFT approaches, detailed earlier, scales

with the third power of the number of atoms (number of basis functions). This

cubic scaling is due the the orthogonality requirement of the wavefunctions. It is

this computational cost that limits the size of a system that can be simulated to a

few hundred atoms.

Linear-scaling approaches with respect to system size, also referred to as O(N)

methods [45] are essential for the development of large scale ab initio calcula-

tions on systems containing thousands of atoms. Within DFT this is achieved by

reformulating the expression for the energy, the expectation value for the Hamil-

tonian, of the system in terms of the one particle density matrix. The one particle

density matrix is defined as,

ρ(r, r′) = 2

Nfunctions∑
i

fiψi(r)ψ
∗
i (r

′), (2.57)

where the density is the diagonal of the density matrix n(r) = n(r, r′). This al-

lows for a linear-scaling approach to be developed since the density matrix decays

exponentially [46] with |r − r′|, so n(r, r′) can be truncated for |r − r′| being

greater than a set threshold.

Using linear-scaling DFT approaches allows simulations of entire biomolecules

and large nanostructures, consisting of thousands of atoms to be performed.
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2.1.11 ONETEP

The ONETEP [47] program is a linear-scaling DFT code that has been developed

for use on parallel computers [48]. ONETEP combines linear-scaling with accu-

racy comparable to conventional cubic-scaling plane-wave methods, which pro-

vide an unbiased and systematically improvable approach to DFT calculations.

Its novel and highly efficient algorithms allow calculations on systems containing

tens of thousands of atoms [49], as the example shown in Figure 2.4.

Figure 2.4: ONETEP calculation on an increasing size of an amyloid fibril display-
ing the linear scaling ability of the code [4].

ONETEP is based on a reformulation of DFT in terms of the one-particle density

matrix. The density matrix in terms of Kohn-Sham orbitals is,

ρ(r, r′) =
∞∑

n=0

fnψn(r)ψ∗n(r′), (2.58)
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where fn is the occupancy and ψn(r) are the Kohn-Sham orbitals. In ONETEP the

density matrix is represented as,

ρ(r, r′) =
∑

α

∑
β

φα(r)Kαβφ∗β(r′), (2.59)

where φα(r) are localised non-orthogonal generalised Wannier functions [50]

(NGWFs) and Kαβ , which is called the density kernel, is the representation of

fn in the duals of these functions. Linear-scaling is achieved by truncation of the

density kernel according to,

Kαβ = 0,when rcut < |Rα −Rβ|, (2.60)

since it decays exponentially for materials with a band gap, and by enforcing

strict localisation of the NGWFs onto atomic regions as shown in Figure 2.5. In

ONETEP, as well as optimising the density kernel the NGWFs are also optimised,

subject to a localisation constraint. Optimising the NGWFs in situ allows for a

minimum number of NGWFs to be used whilst still achieving plane wave accu-

racy. The NGWFs (Figures 2.5 and 2.6) are expanded in a basis set of periodic

sinc (psinc) functions [51] (Figure 2.7), which are equivalent to a plane-wave ba-

sis as they are related by a unitary transformation. Using a plane wave basis set

allows the accuracy to be improved by changing a single parameter, equivalent to

the kinetic energy cut-off in conventional plane-wave DFT codes. The psinc basis

set provides a uniform description of space, meaning that ONETEP does not suffer

from basis set superposition error [52]. Unlike planewave basis sets, when using

a psinc basis set, the additional vacuum necessary in the super cell approach has

no additional computational cost.
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Figure 2.5: NGWFs centred on atoms within localisation spheres.

Figure 2.6: NGWF localisation spheres on a regular grid of points.

Figure 2.7: A psinc function.
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Dispersion in ONETEP

Common DFT functionals do not usually account for dispersion forces (London

forces). Dispersion forces are the attractive parts of van der Waals interactions. If

an exact exchange correlation functional was used these forces would be described

correctly, however, as the form of this is unknown, approximations to this are

made. In ONETEP an empirical correction is used to model the dispersion forces

[5] following the DFT+D approach of Grimmer et al [53]. This correction is in

the form of a damped London dispersion term, of the form,

Edisp = −
∑
ij,i6=j

fdamp(rij)
C6,ij

r6
ij

, (2.61)

and is added to the total energy equation,

E[n] = Ts[n] + Ene[n] + J [n] + Exc[n] + Edisp. (2.62)

Figure 2.8 shows the importance of accounting for dispersion for the example of

a π − π interaction between two benzene molecules.

This empirical correction was specifically parametrised for the PBE functional for

Carbon, Nitrogen, Oxygen, Sulphur and Hydrogen, against CCSD(T) and MP2

binding energies for 60 complexes. Although it was only optimised for the above

atoms it is implemented for all atoms used in biological systems.
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Figure 2.8: Inclusion of dispersion in ONETEP. On the left: the test system of
two benzene rings interacting through their π system. On the right: the energy
of the uncorrected and corrected DFT energy against a more accurate CCSD(T)
calculation. [5]
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2.2 Classical Molecular Mechanics

Even with linear-scaling QM approaches, QM remains too computationally de-

manding for many of the problems we wish to study. A much less computation-

ally demanding approach is to use classical (Newtonian) physics (MM), using

empirical force fields to study large systems.

Force field methods do not explicitly include electronic degrees of freedom and

calculate the energy as a function of nuclear coordinates only. This is possible due

to the Born-Oppenheimer approximation that allows the energy to be written as

a function of nuclear positions. These methods are used to perform calculations

on systems containing many tens of thousands of atoms and can give reasonably

accurate results. However they can not calculate properties that depend explic-

itly on the electronic distribution in a system. Within this method molecules are

modelled as atoms of varying size held together by bonds of varying stiffness, the

molecule is thus described as a ‘ball and spring’ model as shown in figure 2.9.

Figure 2.9: Ball and Spring model of a diatomic molecule depicting two atoms of
mass M1 and M2 connected by a “spring”.

Many different force fields exist, they can be tailored to a specific problem (pro-

tein residues, DNA) or general (ligands, non-standard residues). This is allowed
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due to a property intrinsic to chemistry called transferability. Transferability was

found to be evident in the 20th century from analysis of spectroscopic data of

hundreds of molecules. It was observed that molecules with similar bonds had

force constants and equilibrium bond lengths with similar values. For example,

all C-H bond lengths are around 1.09Å with similar vibrations (2900-3300 cm−1).

This holds true for other ’groups’, such as the C=O bond which is approximately

1.21Å with vibrational frequencies around 1700 cm−1. This gives a picture of

molecules being made up of structural units, “functional groups”, which behave

similarly in different molecules (this forms the basis of organic chemistry). This

allows parameters generated from a relatively small number of small molecules

to be used to study much larger molecules. Force fields consist of terms that de-

scribe intra-molecular forces, as well as interactions between non-bonded parts of

the system. Force fields are parametrised from experimental data and high level

QM calculations to obtain equilibrium bond lengths, angles, and dihedrals that are

found inside molecules. Energy penalties are associated with movement of these

structural parameters away from their equilibrium values.

One such functional form (commonly used for biological molecules) for the po-

tential energy is,

ν(rN) =
∑
bonds

ki

2
(li − li,0)

2 +
∑

angles

ki

2
(θi − θi,0)

2 +
∑

torsion

Vn

2
(1 + cos(nω − γ))

+
N∑

i=1

N∑
j=i+1

(
4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

+
qiqj

4πε0rij

)
. (2.63)

Each term in Equation 2.63 will be described in detail later in this section, but

briefly the terms are defined as: The first term on the right hand side is the inter-

actions between bonded atoms, modelled by a harmonic oscillator. The second
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Figure 2.10: Bonded and non-bonded interaction in a force field. Figure provided
by Dr Thomas Piggot.

term is over all angles A-B-C, where both A and C are bonded to B, and is also

modelled by a harmonic oscillator. The third term is for torsion angles, and the

last is the non-bonded terms. This is between atoms that are separated by 4 or

more bonds, or in a different molecule. The first part of the non-bonded term is

modelled in simple forcefields with a Lennard-Jones potential for describing van

de Waals interactions and the second term is a Coulomb potential for describing

the electrostatic interactions. A diagram of these bonded and non-bonded terms

can be seen in Figure 2.10.

Force fields are comprised of a function (such as Equation 2.63 ) and a set of

parameters for each atom type. There is no ‘correct’ form for a force field, as
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two force fields may have the same functional form but different parameters, or

may have different functional forms and still give results of comparable accuracy.

However, it would not be correct to swap parameters or mix parameters of one

model with another.

Force fields, such as Equation 2.63 , can not describe the dissociation of bonds.

The energy of a bond is well described by a Morse potential which can describe a

wide range of behaviours, including dissociation, and has the form,

ν(l) = De {1− exp [−a (l − l0)]}2 . (2.64)

Where De is the depth of the potential energy minimum, a = ω
√
µ/2De, where

µ is the reduced mass and ω is the frequency of the bond vibration, and l0 is the

equilibrium bond length. This potential is not usually used in force fields however.

Since there are 3 parameters for each bond it is not very computationally efficient.

Also, in biomolecules it is quite rare for bonds to deviate far from the equilibrium

bond length. For this reason a much simpler expression is usually used, utilising

a Hook’s law formula (harmonic potential) were the energy varies with the square

of the displacement from l0.

ν(l) =
k

2
(l − l0)

2. (2.65)

Force constants are often very large. For example, for a Csp3 - Csp3 bond, the force

constant will be around 300 kcal mol−1 Å−2. If the bond were to deviate from l0

by just 0.2Å the energy would change by 12 kcal mol−1.

A harmonic potential is also often used to describe deviation for angles. Since the

distortion of angles away from their equilibrium angle (θ0) requires considerably
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less energy than bond stretching, the force constants are considerably smaller,

usually around 0.01 kcal mol−1 deg−1.

A torsion angle, or dihedral angle, is associated with the ABCD linkage. It is

defined as the angle between the bonds AB and CD when they are projected into

the plane bisecting the BC bond. Most force fields express the torsion potential as

a cosine series expansion.

v(ω) =
N∑

n=0

Vn

2
[1 + cos (nω − γ)] . (2.66)

Where n is the number of minimum points in the function as the bond is rotated

through 360◦ (2π radians), the multiplicity γ is the phase factor and determines

where the angle passes through its minimum value. Vn is the barrier height and

is given in kcal mol−1, although this is really only a qualitative indication of the

relative barriers of rotation. For example Vn for an amide bond would be larger

than for a bond between two sp3 carbon atoms.

Non-bonded forces play a major role in molecular interactions, whether between

independent molecules or in determining the structure of a molecule. They do

not have a specific bonding relationship but are interactions through space. As

mentioned above, the 1-4 interactions are split into two terms, the van der Waals

interactions and the electrostatic interactions.

Electrostatic interactions between two molecules (A and B) are calculated as a

sum of interactions between pairs of point charges, using Coulomb’s law,

Velec =

NA∑
i=1

NB∑
j=1

qiqj
4πεorij

. (2.67)
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The point charges (qi and qj) are fractional charges, arranged onto atoms and de-

signed in such a ways as to reproduce the electrostatic properties of the molecules.

They are often referred to as partial atomic charges as they are restricted to nu-

clear centres. There have been many suggested methods on ways to calculate

the partial charges of a molecule. Since partial charges are a consequence of the

electronic distribution in a molecule, it would be reasonable to use quantum me-

chanics, such as DFT which explicitly calculates the electronic density, to obtain

the partial charges. However, the partial atomic charge is not an experimental ob-

servable and hence can not be easily and uniquely computed from the wavefunc-

tions. In force fields, the partial charges given to a molecule need to represent how

two molecules interact with each other. This has lead to schemes that reproduce

charges that are consistent with the electrostatic potential of a molecule.

The electrostatic potential at a point is the force acting on a positive unit of charge

placed at that point. It is an observable quantity that can be determined from the

wavefunction (density) using,

φ(r) = φnuc(r) + φelec(r) (2.68)

=
N∑

A=1

ZA

|r−RA

−
∫
dr′n(r)

|r′ − r
. (2.69)

To generate charge models for large systems, molecules are broken into fragments.

The atomic partial charges are obtained from quantum calculations on fragments

that will recreate the immediate local environment that the fragment would “see”

in the larger molecule. For the case of proteins, these fragments are chemically

well defined units - amino acids. More commonly, the fragments will be ’dipep-

tides’, which more accurately describes the environment that a single amino acid

would be found in.
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Van der Waals interactions are a sum of the attractive and repulsive forces that are

not due to electrostatic interactions. That attractive force is long range, whereas

the repulsive force is short range. The attractive force is due to dispersive forces,

as talked about in the ONETEP section. The repulsive forces are due to the Pauli

principle, that any two electrons are prohibited from having the same quantum

numbers. Because this repulsive force is between electrons with the same spin it is

also referred to as exchange force. The effect this has is to reduce electron density

between the nuclei as the nuclei approach each other. This reduced shielding

leads to repulsion of the two nuclei. In force fields a simple empirical function is

used that can quickly evaluate the large number of van der Waals interactions that

must be determined in most systems. The most commonly used function is the

Lennard-Jones 12-6 function,

v(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (2.70)

This potential contains only two parameters, the collision diameter σ and the well

depth ε. It has an attractive part which varies with r−6 and a repulsive part that

varies with r−12. The repulsive r−12 term has little theoretical justification. Quan-

tum mechanically this term is suggested to have an exponential form. The r−12

term best represents noble gas interaction but is too steep for hydrocarbons. Nev-

ertheless it is widely used since it can be rapidly calculated by squaring the r−6

term making its calculation in large systems much simpler.

Bond-stretching and angle-bending have much higher energy penalties associated

with deformations away form their equilibrium values, they are considered as

“hard” degrees of freedom, and these movements tend to be reasonably small.

Rotation of torsional angles on the other hand, are known to be fundamental in
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molecular structural properties. Most of the variation in structures and relative

energies are due to torsional and non-bonded interactions.

There are are a few software packages available that can be used for calculation

using forcefields. Such as Gromacs, CHARMM and AMBER. During this work

only the AMBER [54] package was used, and is briefly detailed below.

2.2.1 AMBER

AMBER10 is a collection of programs designed for carrying out MM and molec-

ular dynamics (MD) calculations. The name “amber” also refers to a number of

empirical force fields, however these are not specific to AMBER which can also

use a selection of other force fields. The AMBER10 package is capable of run-

ning many different types of calculations utilising molecular mechanics, such as

dynamics simulation, QM/MM hybrid simulations and various free energy ap-

proximation approaches, which will be discussed later in this chapter.

As stated earlier, force field parameters can be highly optimised for specific sys-

tems. For instance the ff99 force field [55] (and variants of it) has many different

atom types. For example, a carbon in a five membered ring will have a different

atom type to that in a 6 membered ring, and a carbon in a protonated histidine

would be different to that of an unprotonated histidine. More generic forcefields

would just term this an sp2 carbon, as in the amber-gaff force field. This tailoring

of the amber-ff99 forcefield to proteins obtains reasonably realistic trajectories

and interaction energies. Parameterising in this way however, limits the trans-

ferability of the force field. For ligands and non-standard residues, force fields

must be much more general. The general amber force field was designed for
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this reason and give comparable results for proteins as ff99. A draw back of this

generalised parameterisation, is that these force fields can suffer from inaccurate

results for more complicated systems, i.e. when they contain halides or transition

metals.

Both force fields mentioned above have the functional form,

E =
∑
bonds

kr(r − req)
2 +

∑
angles

kθ(θ − θeq)
2+

∑
dihedrals

νn

2
[1 + cos(nθ − γ)] +

∑
i<j

{
εi,j

[
r0ij

R12
ij

− r0ij

R6
ij

]
+

qiqj
4πε0rij

}
. (2.71)

Here, req and θeq are equilibration structural parameters, kr , kθ , vn are force con-

stants, n is multiplicity and γ is the phase angle for the torsional angle parameters.

The r0ij is the equilibrium distance and ε is the well depth, q is the charge on atom

i or j. These parameters characterise the nonbonded potentials. The differences

between these two force fields is the number of specifically parametrised atom

types (as mentioned above).

The partial charges in the amber-ff99 force field were calculated using Hatree-

Fock and a 6-31G* basis set, which is generally believed to give reasonable re-

sults. It is often possible to scale the results obtained using a smaller basis set or

lower level of theory, such as semi-empirical calculations, to obtain comparable

results. This approach is often used in combination with the gaff force field.

2.2.2 Some available force fields in AMBER

Force fields
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• ff99 [55]: Force field developed for proteins.

• ff99SB [12]: “Stoney Brook” modification to ff99. Backbone torsions fitted

to ab initio calculations to improve performance for protein.

• ff99bsc0 [56]: “Barcelona” modification to ff99SB. Further changes for

improved results with nucleic acids.

• ff03 [57]: A variant of ff99. Charges and main-chain torsion potentials have

been re-derived based on QM+continuum solvent calculations (for proteins

only).

• GLYCAM [58]: Force field for carbohydrates and lipids. Parametrised by

fitting to QM data for small molecules.

General force fields

• GAFF [59]: Generalised Amber Force Field: parametrised for use with

non-standard residues and small molecules.

• MMFF94 [60]: Merck Molecular Force Field: Created by Merck and parametrised

for use with small molecules.

Polarisable force fields

• ff02 [61]: A polarisable variant of ff99. The charges were determined at the

B3LYP/cc-pVTZ//HF/6-31G* level, and are more like “gas-phase” charges.

• ff02EP: Modification to ff02. Adds in off-centre charges to mimic electron

lone pairs in order to better describe the angular dependence of hydrogen

bonds.
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2.3 Molecular dynamics

When studying molecular properties it is desirable to sample the configurational

space available to the molecule. A phase point (point in phase space) can be de-

fined by the momentum and position of all the particles in the molecule. This

means that any phase point can be used to determine the location of the “next”

phase point in the trajectory. Since the trajectory is a continuous curve of phase

points, the starting geometry can completely determine the forward direction, and

since time-dependent Hamiltonians are invariant to time reversal, the entire tra-

jectory.

In molecular dynamics the “next” phase point in the trajectory is generated by

integrating Newtons’s laws of motion. This results in a trajectory that will give

variations in the positions and momenta of the atoms through time.

The relationship between two positions (r) is,

r(t2) = r(t1) +

∫ t2

t1

p(t)

m
dt, (2.72)

where p is the momentum (velocity multiplied by mass, p = vm), and m is

the mass. The relationship between two momentum vectors is similarly given

as,

p(t2) = p(t1) +m

∫ t2

t1

a(t)dt, (2.73)

where a is the acceleration. By solving the differential equations embodied by

Newton’s second law (F = ma) we have a relationship between force and the
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position and can obtain the trajectory.

d2xi

dt2
=
Fxi

mi

. (2.74)

Equation 2.74 describes the motion of a particle with massmi along the coordinate

xi, with the force in that direction being given by Fxi
.

In real systems, the force felt by any particle will change whenever it moves,

or when any particle it interacts with moves. Using a continuous potential, the

motions of all the particles are coupled together, however, this leads to a many-

body problem that can not be solved analytically. To solve this problem the finite

difference method must be used to integrate the equations of motion.

The basic concept is to split the integration into many small intervals, each sepa-

rated by a constant time δt. The differential form of Equation 2.72 is,

r(t+ δt) = r(t) +
p(t)

m
δt, (2.75)

and of Equation 2.73 is,

p(t+ δt) = p(t) +ma(t)δt. (2.76)

For finite δt, this is called Euler’s approximation, and is exact in the limit of

δt → 0. Thus, using this approach, given the initial positions and momenta, and

a formula for calculating the force on each particle at any moment, we have the

ability to “simulate” a phase space trajectory.

This approach is often too simple and leads to unstable trajectories. More sophis-

ticated algorithms have been developed based on the assumption that the posi-
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tions, velocities, and accelerations can be approximated as a Taylor series expan-

sion.

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) +

1

24
δt4c(t) + . . . (2.77)

v(t+ δt) = v(t) + δta(t) +
1

2
δt2b(t) +

1

6
δt3c(t) + . . . (2.78)

a(t+ δt) = a(t) + δtb(t) +
1

2
δt2c(t) + . . . (2.79)

where r(t) is the position, v(t) is the velocity (first derivative), a(t) is the acceler-

ation (second derivative), b(t) is the third derivative, and so on. One method, first

used by Verlet [62], considers the sum of the forward and reverse ∆t steps ex-

panded in this way. In the sum, all odd terms cancel since they will have opposite

signs, and truncating at the second derivative gives,

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t). (2.80)

Using this equation, the position of each subsequent time step is determined from

the current position, the previous position, and the acceleration (calculated from

the forces, a = F/m). For the initial step, where no previous step is available,

Equations 2.75 and 2.76 can be used.

An initial structure is often taken from what a chemist thinks to be “reasonable”.

When working with a protein system, this can often come from an experimentally

resolved structure (from x-ray crystallography or NMR).

Initial momenta are assigned randomly subject to a temperature restraint. Tem-
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perature is related to momentum via,

T (t) =
1

(3N − n)kB

N∑
i=1

|pi(t)|2

mi

, (2.81)

where N is the total number of atoms and n is the number of constrained degrees

of freedom.

It is often desirable to control the simulation temperature. This is accomplished

by scaling the particle velocities so that the temperature (Equation 2.81) can be

kept constant. However, this is not possible to implement in the Verlet scheme

as it has no reference to velocity. To couple the position and velocity vectors

a modification is made to Verlet’s approach, called the leapfrog algorithm [63].

This approach though has a major disadvantage: the kinetic energy can not be

calculated at the same time as the potential energy since the velocity and positions

are not synchronised. A further improvement proposed to solve this issue is the

velocity Verlet method [64], which calculates the positions, the velocities, and the

accelerations at the same time.

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t). (2.82)

v(t+ δt) = v(t) +
1

2
δt [a(t) + a(t+ δt)] . (2.83)

The use of a finite time step produces problems in the practicality of simulating the

trajectory. If too large a time step is used then atoms may be rammed into each

other, resulting in atomic distances far smaller than the van der Waals contact.

This will result in large repulsive forces for the next step and the molecule will be

blown apart. At infinitesimally small time steps Equations 2.72 and 2.73 will be

recovered. However, due to the computational expense of having to calculate the
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forces on every particle at every time step, if too small a time step is taken then the

simulation will not sample enough of the trajectory to observe anything of chemi-

cal interest. The generally accepted time step is one (or two) orders of magnitude

smaller than the period of the fastest periodic motion in the system.

The fastest motion in classical (molecular mechanics) systems is the bond vibra-

tion of a heavy-atom – hydrogen bond, which is about 10−14 s. This limits the time

step to a maximum of 1 fs (1x10−15 s). A method used for increasing the time step

restrains the heavy-atom – hydrogen bonds to a constant length. This results in

the fastest motion being heavy-atom – heavy-atom bonds, which have periods that

are 2-3 times larger, allowing a time step of 2 fs. A commonly used approach for

eliminating these degrees of freedom is the SHAKE algorithm [65].

2.3.1 Thermodynamic ensembles

The thermodynamic state of a molecular system in thermodynamic equilibration

is achieved by a set of state variables, namely the temperature, the pressure, the

volume, and the number of particles in the system. A thermodynamic ensemble is

a surface in phase space that satisfies the conditions of a particular thermodynamic

state. There are three such states commonly used during molecular dynamics

simulations:

1. The microcanonical ensemble (NVE), where the number of particles (N),

the volume (V), and energy (E) is kept constant.

2. The canonical ensemble (NVT), where the number of particles (N), the vol-

ume (V), and the temperature (T) are kept constant.

3. The isobaric-isothermal ensemble (NPT), where the number of particles
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(N), the pressure (P), and the temperature (T) are kept constant.

To achieve a desired temperature in a system, temperature stabiliser algorithms

called “thermostats” are used to imitate heat exchange between the system and

its surroundings. Examples of these are the Berendsen thermostat [66], which

corrects deviations of T from the set temperature, T0, by multiplying the velocities

by a factor, and the Langevin thermostat [67] which uses the Langevin equation

of motion instead of Newton’s law of motion.

ma = ζv + f(r) + f ′, (2.84)

where m is the mass, a is the acceleration, v is the velocity and ζ is a frictional

constant. f ′ is a random force randomly determined from a Gaussian distribution

to add kinetic energy to the particle, and its variance is the function of the set

temperature and time step. This balances the random force with the frictional

force.
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2.4 Solvation models

When calculating the binding energy of a ligand bound to a protein it is important

to take into account the energy of solvation, ∆Gsolv. This is particularly important

in biological molecules when the penalty of taking a ligand out of solution can

negate the benefit that arises from binding to a protein. Many models have been

proposed for the simulation of liquid water, from explicit solvation models where

the molecules are present, to implicit models in which the solvent is represented

as a continuum of dielectric permittivity surrounding the solute in a cavity.

2.4.1 Explicit solvation

Explicit water models can be categorised by the number of points used to define

the model (additional lone pairs or dummy atoms, Figure 2.11), whether the model

is rigid or flexible and whether the model is polarisable.

Figure 2.11: Explicit water binding models.
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3-site models

The simplest model would be to treat the water molecule as rigid and use only the

non-bonded interaction from the force field as given in Equation 2.85.

Enm =
on n∑

i

on m∑
j

[(
A

r12
OO

− B

r6
OO

)
+

qiqj
4πεrij

]
, (2.85)

where A and B are chosen to give reasonable structural and energetic results for

liquid water, and gas phase complexes of water and alcohols. This was the original

TIPS model [68]. It was further parametrised for liquid water by Berendsen [69]

(SPC model) to produce better energies and a smaller second peak in the OO

radial distribution function (shown in Figure 2.12), although the first peak is in

worse agreement with experimental x-ray data than TIPS. This 3-point model was

later parametrised by Jorgensen to further improve energies and densities of liquid

water in the TIP3P [70] model. Berendsen added a term to the SPC potential to

account for polarisation, referred to as SPC/E [66], and described by,

Epol =
1

2

∑
i

(µ− µ0)
2

αi

, (2.86)

where µ is the dipole of the effectively polarised water molecule, µ0 is the dipole

moment of an isolated water molecule, and αi is an isotropic polarisability con-

stant. Further additions to the SPC model aided to make it flexible. The flexible

SPC model is one of the most accurate three-centre water models, and can pro-

duce the correct density and dielectric of bulk liquid water during MD simula-

tions.
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Figure 2.12: Radial distribution function determined from a 100 ps molecular
dynamics simulation of liquid water at a temperature of 100 K and a density of
1.396 g/cm3 [6].

4-site models

The 4-site model was first proposed by Bernal and Fowler [71] (BF model) for

calculating the properties of a monomer, a dimer, and ice. The model places

a negative charge at the M site in Figure 2.11. This improves the electrostatic

distribution around the water molecule. Equation 2.85 still applies but with a little

increase in complexity, requiring ten distances to evaluate the function instead of

nine for the 3-site model. A different monomer geometry and set of parameters

were proposed for the TIPS2 [72] model for liquid water, and another alternative

parametrisation for the TIP4P [70] model. TIP4P has been re-parametrised several

times to increase accuracy when used with Ewald summation methods (TIP4P-

EW [72]), for use with ice (TIP4P/ice [73]), and a more general parametrisation

(TIP4P/2005 [74]) .
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5-site models

5-site models place negative charges on the L sites in Figure 2.11 to represent

the lone pairs. The first model was proposed by Ben-Naim and Stillinger (BNS

model) in 1971, and further improved by the ST2 [75] model of Stillinger and

Rahman in 1974. The TIP5P [76] model by Mahoney and Jorgensen results in

improvements in the geometry for the water dimer, a closer representation of the

experimental radial distribution functions, and the temperature of maximum den-

sity of water.

2.4.2 Implicit Solvation

Using explicit waters greatly increases the number of molecules in the simulation

making it much more complicated and time consuming, even when classical ap-

proaches are used. The major contribution to the solvation energy comes from

long-range electrostatic interactions. These can be modeled in an implicit way

by treating the solvent as a continuum with the same dielectric constant as the

bulk solvent. The solvation energy is split into two terms, a polar term describ-

ing the electrostatics, and a non-polar term representing the energy of creating a

solute-shaped cavity in the solvent.

Polar solvation energy

The theory for calculating the electrostatic component of the solvation free energy

is the Poisson-Boltzmann equation,

∇ · (ε(r)∇ν(r)) = −4π{ρ(r) + ρm(r)}
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∇ · (ε(r)∇ν(r)) = −4π
{
ρ(r) +

∑
j

qjcje
−Ej(r)

kBT
}

∇ · (ε(r)∇ν(r)) = −4π
{
ρ(r) +

∑
j

qjcje
−zjqjν(r)

kBT
}
, (2.87)

where ρm(r) is the charge density of the mobile charges (ions), and ρ(r) is the

charge density (the distribution of charge throughout the system) of the solute.

ε(r) is a dielectric constant for the solvent, q is the charge of the proton, c is the

concentration of ions and z is the charge of the ion. T is the temperature and kB

is the Boltzmann constant. In this model only the charge of the ion is taken into

account (+1, +2, -1, -2), it does not distinguish between atoms (such as K+ and

Na+).

A cavity in the solvent is created in which the solute is placed. Within the cavity

the solute is given a dielectric of 1, and outside the cavity the dielectric is that

of the bulk solvent (for example, 80 for water). Different methods differ in their

definition of the cavity. Examples are a very simple method using a spherical cav-

ity within the solvent, and a cavity defined by the outside surface of interlocking

spheres centred on the solute atoms.

Non-polar solvation energy

The non-polar contribution to the solvation energy (i.e. the energy required to

create a solute shaped cavity in the solvent) is often modelled by a term that is de-

pendent on the solvent-accessible surface area of a molecule. This can be obtained

by “rolling” a sphere (of solvent) of a certain radius (usually 1.4 Å to represent

a water molecule) across the molecule to probe the surface area. The non-polar
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energy is calculated as,

Gnp = γSA+ b, (2.88)

where SA is the surface area of the solute, γ is the surface tension and taken to be

0.00542 kcal/Å2, and b is 0.92 kcal/mol [77].

2.4.3 Implicit solvation in ONETEP

A minimum parameter implicit solvent model has recently been developed within

ONETEP [78]. In this model the total potential of the solute is obtained by solving

the nonhomogeneous Poisson equation within the self-consistent calculation in

ONETEP,

∇ · (ε[ρ]∇φ) = −4πρtot(r). (2.89)

Where ρtot(r) is the total charge density and is calculated as a sum of the electronic

density ρ(r) and the density of the atomic cores. The solute cavity is constructed

directly from isosurfaces of the electronic density of the solute, which reduces

the number of parameters required to only two. The model includes a smooth

transition of the relative permittivity, shown by the graph in Figure 2.13, according

to the following expression,

ε(r) = 1 +
ε∞ − 1

2

(
1 +

1− (ρ(r)/ρo)
2β

1 + (ρ(r)/ρo)2β

)
, (2.90)

where ε∞ is the bulk permittivity, β controls the smoothness of the transition of

ε(r) from 1 to ε∞, and ρ0 is the density value for which the permittivity drops

to half that of the bulk. Figure 2.14 displays the approach that this method uses

to calculate the solvation energy. The model in ONETEP defines the shape of the
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Figure 2.13: Depiction of density dependent dielectric.

Figure 2.14: Implicit solvation computation methods in ab initio quantum chem-
istry approaches.
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Figure 2.15: Graph of β plotted against ρ0 for the three molecules. The diamond
shows the choice for both parameters.

solute cavity from the charge isodensity. The charge representation of the solute

is taken from the computed charge density of the molecule, and the reaction field

of the dielectric is computed by the numerical solution of the nonhomogeneous

Poisson equation (NPE) within the SCF procedure. This makes it the most ab

initio implicit solvation model available.

The parameters for ρ0 and β were taken from the best choices from three molecules,

a neutral molecule (NH3), a positively charged molecule (H3C-NH+
3 ), and a neg-

atively charge molecule (NO−
3 ). These are shown in Figure 2.15.
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The non-polar term (cavitation energy) uses Equation 2.88. The surface area is

calculated by the electronic density at ρ0, γ is scaled by a factor of 0.281 to take

account of dispersion, and b is set to zero.

This model was validated on two test sets, one of 60 small molecules (20 neu-

tral, 20 cationic and 20 anionic) and the second of 71 larger molecules; On which

the solvation energies obtained had a root mean square (rms) error with respect

to experiment of 3.8 kcal/mol (when dispersion is included). While the polaris-

able continuum model (PCM) in Gaussian 03 [79] showed an rms error of 10.9

kcal/mol and the highly parametrised state-of-the-art SMD model [80] in Gaus-

sian 09 [81] had a rms error of 3.4 kcal/mol.
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2.5 Free Energy of Binding

A central problem in drug discovery is the prediction of ligand-receptor binding

free energies. There are many approaches available, from purely empirical based

methods such as QSAR, to much more theoretically rigorous approaches such

as free energy perturbation [82]. An important consideration when choosing the

binding free energy approach to use is the computational time required for the cal-

culations. Amongst the many approaches available for free energy calculations,

scoring [18] methods, commonly used in conjunction with docking, are amongst

the least computationally expensive, and therefore the fastest, but also most ap-

proximate. In these methods ligand orientations (poses) are assigned scores, and

the quality of the fit is expressed by an empirical function, the scoring function.

These scores are used to rank each pose relative to other poses and other lig-

ands. Methods with a higher level of statistical mechanics rigour include Molecu-

lar Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) [83] and Molecular

Mechanics Generalised Born Surface Area (MM-GBSA) [84]. These methods es-

timate absolute free energies of bound and unbound reference states using molec-

ular dynamics (MD) simulations to sample phase space. Free energies of bind-

ing are obtained as averages of interaction energies over snapshots from the MD

simulations with entropic contributions calculated from vibrational frequency cal-

culations and solvation free energy contributions from an implicit solvent model.

Although this approach has found extensive usage, especially for the calculation

of relative free energies of binding, its accuracy is limited by the approximate na-

ture of including entropy and solvation effects, as well as the force field which

is required to reproduce structures and energies with high accuracy. At the most

theoretically rigorous end of the spectrum, and most computationally expensive,
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we have methods such as alchemical free energy perturbation approaches [85].

Another example of an alchemical method is Thermodynamic Integration (TI). It

follows an unphysical pathway, where one ligand is “mutated” to another. It esti-

mates relative binding free energies and their gradual change during the mutation

which happens in small steps, and fully includes the entropic and solvation con-

tributions which are heavily approximated with the less rigorous approaches. In

principle, alchemical free energy calculations allow the exact prediction of relative

binding free energies, at very high computational cost. However, inadequacies in

the force fields used and insufficient sampling introduce errors into the calculated

free energies. These errors are exacerbated by ligands that cause changes which

are difficult to capture by classical force fields such as charge transfer and polari-

sation, or cause conformational change on binding which may require extremely

long simulations to describe sufficiently.

This section will give an overview of some of the more commonly used binding

free energy approaches. The two main methods that will be discussed are TI

and MM-PBSA. The differences between these two methods are shown in Figure

2.16. Details of the advancements made during this PhD towards more accurate

QM binding free energies will be detailed in later chapters.

2.5.1 Free Energy Perturbation

The free energy difference between two states is formally obtained from the Zwanzig

equation [86].

∆A = AY − AX = −β−1 ln
〈
e−β∆V

〉
X
, (2.91)
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Figure 2.16: Free energy cycle. Moving from bottom to top follows the realistic
“physical” route from the unbound to the bound states. Moving from left to right
follows the “unphysical” mutation of L1 to L2 in the bound (top) and unbound
(bottom) states.

where β = 1/kBT , kB is Boltzmann’s constant and T is the temperature, and 〈〉X

denotes an an ensemble average of ∆V = VY − VX that is sampled using the

potential of VX . Equation 2.91 calculates the Helmholtz free energy,

∆A = ∆U − T∆S, (2.92)

where U is the internal energy and S is the vibrational entropy. Gibbs free energy

is related to Helmholtz free energy by,

∆G = ∆A+ P∆V, (2.93)

where P is the pressure and V is the volume. When doing this mutations, ∆V

is often very small, so small is can often be neglected. Given this approximation,

the Gibbs free energy is equivalent to the Helmholtz free energy, and hence the

Zwanzig equation in 2.91 can be written as,

∆G = GY −GX = −β−1 ln
〈
e−β∆V

〉
X
. (2.94)
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For this equation to be practical, the structural configuration sampled on the po-

tential VX , should also have a high probability of occurrence on VY . This means

that the potential energy surfaces of X and Y should overlap very well. If this is

not the case then convergence will be very slow. In order to solve the case where

potentials do not overlap well, a path between the states X and Y is adopted in a

multistep approach, in which state X is slowly mutated into state Y.

2.5.2 Thermodynamic Integration

In Thermodynamic Integration (TI), a set of intermediate to X and Y potential

energy functions are introduced. These are usually constructed as a linear combi-

nation of the initial (X) and final (Y) state potentials.

Vm = (1− λm)VX + λmVY , (2.95)

where λ varies from 0 to 1 and Vm goes from VX to VY . The free energy change

can now be calculated by summing over the intermediate states,

∆G = ∆G1 + ∆G2 + ∆G3 + ∆G4 + · · ·∆Gn−1

= GY −GX = −β−1

n−1∑
m=1

ln
〈
e−β(Vm+1−Vm)

〉
X
. (2.96)

The exponent in Eq. 2.96 can be written as Vm+1−Vm = ∂Vm

∂λm
∆λm, as long as the

λ steps are sufficiently small. Eq. 2.96 then takes the form,

∆G = GY −GX = −β−1

n−1∑
m

ln
〈
e−β ∂Vm

∂λm
∆λm

〉
X
. (2.97)
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This equation can be linearised, for small steps in λ, by retaining only the leading

terms in the Taylor expansion of the exponent to give us,

∆G =
n−1∑
m

〈
∂Vm

∂λm

〉
m

∆λm. (2.98)

This can be written as an integral over λ with λ→ 0

∆G =

∫ 1

0

〈
∂V

∂λ

〉
dλ. (2.99)

The use of a linear combination for intermediate potentials means that only the

two end point potentials need to be used and the forces and energies are simply

scaled by the appropriate λm coefficient.

There are a large variety of algorithms available to preform TI simulations The

“slow growth” method involves a single topology, were λ is changed during the

MD simulation, changing state X into state Y. Another method is the dual topol-

ogy approach, where a separate trajectory is obtained for every λ value. This

approach has the advantage of allowing equilibration at each point, as well as the

ability to add additional λ points at any time to increase the smoothness of the

transition to optimise and improve convergence. This allow this approach to be

efficiently parallelised since each λ window is ran independently of the others,

and the accuracy to be systematically improvable.

The TI calculations often use soft-core potentials, which generally use a modified
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Lenard Jones (LJ) equation, of the form,

Vij = 4εij (1− λ)t

[
αLJλ

s +

(
rij

σij

)n]− 12
n

− 4εij (1− λ)t

[
αLJλ

s +

(
rij

σij

)n]− 6
n

,

(2.100)

in which εij and αij are common LJ parameters, rij is the interatomic distance,

αLJ adjusts the softness of the potential and t,s, and n are set to 1, 2, and 6

respectively in the original formulation of the potential function. The use of soft-

core potentials allows oppositely charged particles to come to close to each other,

since at low λ values the repulsive force in Equation 2.100 is weakend, leading

to numerical instabilities in the simulation. Since as rij decreases the Coulomb

potential can give rise to numerical singularities. This introduces an additional

practical problem when running such calculations. A solution to this is that the

vdW mutation from X→Y is done without the partial charges on the atoms (zero

charge atoms). To remove this problem the additional steps are added, of remov-

ing the partial charges (CR), mutating the atoms (VDW), and adding the new

partial charges (CA), following the free energy cycle in Figure 2.17. This is per-

formed for both the bound and unbound systems following the TI route in Figure

2.16.

2.5.3 Molecular Mechanics Poisson-Boltzmann Surface Area

Ligand binding affinity is calculated as,

∆Gbind = Gcomplex −Greceptor −Gligand. (2.101)
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Figure 2.17: Free energy cycle. Removing partial charges going up, mutating the
atoms going right, adding the new partial charges going down.

Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) is a method

of computationally predicting ligand binding affinity. The approach is based on

the postprocessing of a molecular dynamics trajectory, typically ran in explicit

solvent and counterions in a periodic box. The free energy of binding is com-

puted by extracting a representative structural ensemble of “snapshots” from the

trajectory. Solvent molecules and counterions are removed, then MM is used to

calculate the gas phase interaction energy and a continuum solvent model (PBSA)

to calculate the solvation energies.

The free energy of binding is then obtained as the average over the ensemble

of structures as shown in Figure 2.18, with the interaction energies from each

snapshot being calculated using the free energy cycle in Figure 2.19.

∆Gbind,solv = ∆G1 + ∆G2 + ∆G3 · · ·+ ∆Gn (2.102)

= 〈∆Gbind,vac〉+ 〈∆Gsolv3 −∆Gsolv1 −∆Gsolv2〉 (2.103)

=
〈
∆EMM

〉
+ 〈∆GPBSA〉 − T

〈
∆SMM

〉
. (2.104)
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Figure 2.18: Binding free energies obtained from averaging of interaction energies
over structural ensemble taken from MD simulation.

Figure 2.19: MM-PBSA free energy cycle.

In 2.104
〈
∆EMM

〉
is the interaction energy in vacuum, 〈∆GPBSA〉 is the dif-

ference in solvation energy on binding, and
〈
∆SMM

〉
is the change in entropy,

which can be obtained using normal mode analysis. By using a continuum sol-

vent model, the problem is simplified since we are implicitly integrating out all
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the solvent coordinates which results in more rapid convergence with the number

of snapshots.

The obvious way to calculate this is the three trajectory approach, where sepa-

rate simulations are carried out for the complex, receptor and ligand. However, it

has been found that the one-trajectory approach, where only the complex simula-

tion is ran and receptor and ligand configurations are extracted from the complex

geometries, is more accurate due to error cancellation [87]. It is also 2-3 times

faster, since the most computationally demanding part is the MD simulations and

now only a single trajectory is required. However, this approach assumes that

there are no conformational changes to the ligand or receptor upon binding. Fur-

thermore, using the single trajectory approach,
〈
EMM

〉
is the difference in non-

bonded terms only, since all bonded terms will cancel.

Calculation of the entropy in a consistent and accurate manner is challenging. This

makes calculation of the absolute binding free energies difficult. An approxima-

tion often used is to calculate, instead, the relative binding free energies of similar

ligands. In this case, entropy change is assumed to be comparable for the two

ligands and, can be assumed to cancel. Although this may seem a poor assump-

tion, calculating the entropy of the ligand from structures taken from the complex

trajectory may well be an equally poor simplification; Since the ligand geometry

is extracted from the complex the structural ensemble is constrained and would

be expected to have many more degrees of freedom when free in solution. The

relative free energy is hence calculated as,

∆∆GA→B = ∆〈∆EMM〉A→B + ∆〈∆Gsolv〉A→B. (2.105)
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A significant source of error in MM-PBSA can be the accuracy of the interaction

energies computed for each snapshot, as this accuracy depends on the parame-

terisation and transferability of the selected force field. Apart from the obvious

approach of using more advanced force fields, a related direction for improvement

is to replace either part or all of the force field description by a quantum descrip-

tion of the system. This would be expected to be more accurate and transferable

due to explicitly accounting for the electronic effects, which are the source of all

the interactions.

2.5.4 Some other binding free energy approaches

Scoring functions

Scoring functions are empirically trained functions using a large data base of

known binders. They are most commonly used in combination with docking

to obtain quick and predictive estimates of ligand affinities.[88, 89, 90, 91, 92]

There are many different scoring functions available, they are however very sim-

ple and often not very accurate for molecules that do not fit the training set very

well.

Linear interaction energy / Linear response approximation

In the linear interaction energy [93, 94] (LIE) method two MD simulations are

ran: one for the ligand in the solution, and an other for the ligand in the protein

binding site. Snapshots are extracted from the trajectories to represent Boltzmann

ensembles of structural conformations. Boltzmann-averaged electrostatic and van

der Waals interaction energies are then computed for the ligand with its surrounds,
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in the bound and unbound states. The binding free energy is estimated as a linear

combination of the differences in potentials between the bound and unbound states

over Boltzmann averages.
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Chapter 3

T4 lysozyme

Lysozymes are enzymes that act as a natural form of protection from pathogens,

forming part of the innate immune system. They destroy bacteria by attacking the

carbohydrate chains which are one of the main structural component of the bac-

terial cell wall (“skin”) that supports their delicate membranes against the cell’s

high osmotic pressure. The process involves catalysing hydrolysis of 1,4-beta-

linkages between N -acetylmuramic acid and N -acetyl-D-glucosamine residues.

The lysozyme binds to the bacterial cell wall and destroys its structural integrity

so that the bacteria burst under their own internal pressure.

There has been a great deal of research into protein stability, folding and de-

sign by looking at mutations of the lysozyme from the bacteriophage T4. T4

lysozyme can only hydrolyse substrates which have peptide side chains bonded

to the polysaccharide backbone. Two well studied mutants of T4 lysozyme are

Leu99Ala (L99A) [95, 96, 97] and Leu99Ala/Met102Gln (L99A/M102Q) [98,

99]. These mutations create a small buried apolar and polar cavity respectively,

which are capable of encapsulating small aromatic ligands. Both the T4 lysozyme
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single mutant L99A and the double mutant L99A/M102Q have been used to com-

pare and validate binding free energy methods and to develop docking procedures

[98, 100]. Some of these have been briefly summarised below.

Wei et al [98] used the single mutation, L99A, of T4 lysozyme to investigate

how the atomic charges and solvation energies affect the molecular docking and

the quality of scoring functions. To further investigate the new atomic charges for

their docking model and qualify their predictive ability, the apolar Met102 residue

in the binding pocket was mutated to a polar Glutamine (making a double mutant

L99A/M102Q). They repeated their docking procedure with this double mutant

and tested seven molecules that, on the basis of the simulations, bound preferen-

tially to the polar site (over the apolar site) experimentally via isothermal titration

calorimetry (ITC) to verify their results. From this work they concluded that bet-

ter treatment of the atomic charges and desolvation energies can lead to better

distinction between binders and non-binders. They later (2004) [101] used the

L99A to evaluate the ability of a new flexible-receptor docking algorithm, using

around 200,000 molecules from the Available Chemical Directory. They found

that larger ligands bound more favourably, but after adding an energy correction

to account for the formation of the larger cavity they obtained improved ranking.

To test their method they then used the L99A/M102Q mutant of T4 lysozyme.

They predicted 18 new binders and tested these experimentally. Of the 14 ex-

perimentally confirmed binders, the bound structures of 7 were determined from

x-ray crystallography. In conclusions this work found that improved enrichment

of docking can be obtained from sampling receptor flexibility, however, it is im-

portant to account for receptor conformational energy.

Graves et al [102] also used both T4 lysozyme mutants, as well as β-lactamase,
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to test their docking and scoring functions. They looked at using decoy databases

to improve protein structure algorithms. By using these simple cavities, the de-

coys can be used to highlight weaknesses in their scoring functions. They used a

mixture of geometric decoys and “hit list” decoys, which after being ranked high

by a number of docking algorithms were tested experimentally and confirmed as

decoys.

Boyce et al [100] used binding free energy methods to predict the binding affini-

ties of previously untested ligands for the T4 lysozyme double mutant L99A-

/M102Q. A large library of small organic molecules were docked, from which

thirteen ligands were chosen. The binding free energy was obtained computation-

ally and experimentally using ITC. In addition 6 phenol derivatives were chosen,

and the relative binding energies calculated relative to phenol and catechol. X-

ray co-complex structures were obtained and the bound geometries compared to

the computational comformations to help understand, at the atomistic level, the

obtained computational results and the variation seen from experiment. It was

concluded that it is important to start from near native binding poses and that

unexpected binding modes, protein conformational changes and multiple ligands

binding all proved challenging to the computational free energy methods.

Gallicchio et al [99] used the two cavities to present their new binding free energy

approach, the Binding Energy Distribution Analysis Method (BEDAM). This ap-

proach is based on a statistical mechanics theory of molecular association. The

binding constant in BEDAM is computed by a weighted integral of the probabil-

ity distribution of the binding energy from the canonical ensemble, in which the

ligand is positioned in the binding site, but both the receptor and the ligand in-

teract only with the solvent continuum. In the paper it is shown that the binding
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energy distribution encodes all of the physical effects of binding. This method

successfully distinguished between known binders and non-binders. They con-

clude their paper by stating that in these two systems the binding affinities are

reflected in the contributions from multiple conformations over a wide range of

binding energies.

Deng et al [103] presented a review of results on 5 systems, including the two

mutants of T4 lysozyme, using two binding free energy approaches; alchemical

double decoupling, were the environment surrounding the ligand is turned off and

the potential of mean force method, were the ligand is physically separated from

the receptor. Restraining potentials are activated and released during the simula-

tions to increase configurational sampling, but the bias added by doing this must

be rigorously accounted for when calculating the binding free energies. They ob-

serve that it is difficult to account for induced conformational changes on binding

without biasing the sampling, but this requires prior knowledge of the relevant de-

grees of freedom. This is only a part of the overall problem though, the accuracy

of the computations is determined by the force field. Binding energies calculated

from force fields can benefit from fortuitous error cancellation. Dependable re-

sults require accurate representation of the ligand, receptor and solvent. They

conclude by stating that “while there is still much to be done, the methods are

already bearing fruits and the path towards progress is very clear.”

For our study we have chosen to investigate small aromatic ligands binding to

the polar cavity of the double mutant L99A/M102Q. The relative simplicity and

small size of this system make it attractive for validating computational studies.

Coupled with the abundance of literature, it is a good choice for our benchmark

calculations. Below describes the MD simulation set up and equilibration . Fur-
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ther use of this system is detailed in the next chapter.

3.1 T4 lysozyme double mutant L99A/M102Q

The first mutation to this protein changes leucine 99 into an alanine. This creates a

buried, hydrophobic pocket capable of encapsulating small molecules. When this

pocket is empty, it is completely dry [98] under normal conditions (1 atmosphere

of pressure). The second mutation changes methionine 102 to a glutamine. This

mutation adds a polar binding site within the cavity. Under normal conditions

it is believed that the apo-protein contains a single water molecule in the cavity,

hydrogen bonded to the glutamine. These mutations can be seen in Figure 3.1.

3.1.1 Molecular dynamics simulations

The lysozyme structure was protonated with the MOE2010 [104] program using

Pronate3D and visually check the His, Gln, and Asn residues. MM simulations

were carried out using the AMBER10 [54] package, with the ff99SB [105] force-

field used for the protein and the generalised AMBER forcefield [59] (gaff) used to

model the ligands. Ligand charges were calculated with the AM1-BCC method

with antechamber (part of AMBER). The system was explicitly solvated in the

TIP3P water model [70] and the charge neutralised by Cl− ions.

The system was equilibrated using the following protocol. Hydrogens were re-

laxed with restraints placed on all heavy atoms in the complex and solvent, before

relaxing the solvent with restaints only on the complex. The system was heated
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to 300 K over 200 ps, still restraining the heavy atoms of the complex, with the

NVT ensemble. Then ran for a further 200 ps with the NPT ensemble at 300 K

in order to equilibrate the solvent density. This was cooled over 100 ps to 100 K

and a number of relaxations were ran, reducing the restraints on the heavy atoms

in stages (1000, 500, 100, 50, 20, 10, 5, 2, 1, 0.5 kcal mol−1Å−2). Finally the sys-

tem was reheated to 300 K with no restraints over 200 ps and then for a further

200 ps at 300 K with the NPT ensemble. At the end of this it was confirmed that

the water density in the box (Figure 3.2), the energies (Figure 3.4) and the pro-

tein structure were stable, as measured by the root mean squared deviation of the

protein backbone atoms (converged to 0.8Å relative to the starting frame).

Since the binding modes of the ligands are all very similar, only catechol bound

in the pocket (PDB: 1XEP) was equilibrated. All other ligands were mutated

from the catechol at the end point of the equilibration. Production simulations

were run for 20 ns with the NVT ensemble at 300 K, with the first 1 ns being

considered as further equilibration of the ligand in the pocket. All MD simulations

used the Langevin thermostat [67], the particle mesh Ewald sum (PME) for the

electrostatic interactions and the SHAKE algorithm [65] to constrain hydrogen-

containing bonds allowing a time-step of 2 fs.
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Figure 3.2: The density of the box for the final step of the equilibration. Frames
were recorded every 0.5 ps.
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Figure 3.3: The total, potential and kinetic energies for the final step of the equi-
libration. Frames were recorded every 0.5 ps.
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Figure 3.4: The rmsd of the backbone for the final step of the equilibration.
Frames were recorded every 0.5 ps.
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Chapter 4

QM-PBSA

The accurate prediction of drug binding affinities is an ongoing goal within com-

putational drug optimisation and development. A quantitative measure of binding

affinity is provided by the free energy of binding. Such calculations typically

require configurational sampling of entities such as proteins with thousands of

atoms and are beyond the reach of conventional ab initio quantum chemistry ap-

proaches. The sampling of configurations and energies is usually carried out with

force fields, using a variety of approaches. One such approach is Molecular Me-

chanics Poisson-Boltzmann Surface Area (MM-PBSA), which obtains free ener-

gies from evaluation of the energy of configurations in an implicit solvent model.

A limitation of MM-PBSA is the force field, which can potentially lead to large

errors due to the restrictions in accuracy imposed by its empirical nature.

Kaukonen et al [106] presented a QM/MM-PBSA approach and compared it to

MM-PBSA for the purpose of studying reactions in proteins. The QM system

consisted of 46 atoms with the MM part consisting of 12132 atoms. The aim

was to study the stability of two states with a shared proton. The QM calcula-
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tions were performed with DFT using the BP86 exchange-correlation functional

with a 6-31G* basis set and DZP for metal ions for one system, and the B3LYP

functional for another system using the same basis sets. This method showed

improved results for the proton transfer and was in good agreement with more

rigorous approaches (QTCP [107]) with median absolute deviations (MADs) of

4-22 kJ/mol.

Wang et al [108] used the SIESTA DFT code [109] combined with the implicit

solvation model in the UHBD software [110] in a QM/MM-PBSA approach. They

used a fixed geometry (single structure) approximation, were only minimised

crystal structures are used and no protein configurational sampling was performed.

The only differences between the ligands in the pocket was a single chemical func-

tional group, with all common atoms being in identical positions. This was done

to improve the odds of cancellation of systematic errors when comparing bind-

ing free energies. Relaxed structures were generated in three different ways. The

first was geometry optimised with SIESTA [109] and the second and third in a

QM/MM approach with the ONIOM method in GAUSSIAN 03 [79].

Diaz et al [15] replaced ∆〈∆EMM〉with energies from linear-scaling semi-empirical

QM calculations on an ensemble of structures from an MM MD simulation in a

QM-PBSA type model. Prior to the single-point energy calculations, QM/MM

geometry optimisations of a subsystem of the enzyme were performed, keeping

the rest of the enzyme fixed. Single point energy calculations were performed

with AM1 [24] and PM3 [111] using the divide and conquer (D&C) approach on

the subsystem of the enzyme. The DivCon99 [112] program was used to perform

the D&C calculations. They found that the resulting QM/MM geometry opti-

mised structures were similar to the MD representations generated from the force
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fields, and using semi-empirical QM D&C gave comparable relative binding free

energies to MM-PBSA.

Cole et al [113] have recently extended the MM-PBSA approach to a full QM-

PBSA approach, with sampling of protein motion, where the calculation of the

interaction energies in vacuum by the force field is replaced by DFT calculations

on the entire molecule for an ensemble of snapshots taken from an MD simulation.

The energy of each snapshot is obtained as EQM = EDFT + Edisp, where Edisp

is the dispersion correction [5] to the total DFT energy, EDFT. In previous work

[113, 114], the free energy of solvation in the QM calculation, GQM
solv was obtained

by scaling the classical solvation energy by the QM electrostatic energy, giving

the free energy of binding as,

∆Gtot = 〈∆EQM〉+ 〈∆GPB

(
∆EDFT

∆EEL

)
+ ∆GSA〉 (4.1)

= 〈∆EQM〉+ 〈∆GQM
solv 〉, (4.2)

where ∆EEL is the electrostatic contribution to the binding energy from the MM

calculation, ∆GPB is the polar term from the solvation energy and ∆GSA is the

non-polar term. The first application of QM-PBSA with ONETEP has been on

protein-protein interactions [113]. The results obtained were in good agreement

with MM-PBSA, most likely because the force field employed has been exten-

sively and carefully parametrised for protein systems and improved over a number

of years.

This chapter will detail the work we have been doing towards a more accurate

QM-PBSA approach. This approach was applied to a model of a host-guest sys-

tem [114] where the force fields are much more general and harder to parametrise,
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and a model protein-ligand system, where force fields can be well parametrised to

describe the protein.

4.1 The Tennis ball dimer

This host-guest system was chosen for evaluating the use of first principles calcu-

lations in combination with a classical force field to simulate host-guest interac-

tions. The system we have selected to study is a model for a protein ligand-binding

cavity based on a self-assembling superstructure, the “tennis ball” dimer (Figure

4.1). The QM free energy of solvation was calculated in a slightly different way

to that proposed by Cole et al, using the following,

∆GQM
solv = ∆GMM

solv

(
∆EQM

∆EMM

)
, (4.3)

where ∆EQM is the total QM energy, ∆EMM is the total binding energy from the

MM force field, and, as in usual MM-PBSA, is averaged over the snapshots and

added to the total DFT energy to give the free energy of binding as,

∆Gtot = 〈∆EQM〉+ 〈∆GQM
solv〉. (4.4)

In this system the scaling method in Equation 4.1 does not work since dispersion

interactions are responsible for most of the binding energy. The result of this is

that the MM electrostatic component of the binding energy, in the denominator,

is very close to zero, effectively multiplying the solvation energy by a very large

number leading to a numerical error. We found that the simpler form shown in

Equation 4.3 produces reasonable solvation energies. We have chosen this model

92



4.1. THE TENNIS BALL DIMER

Figure 4.1: 2D diagram of the monomer (left), Truncated structure of the “ten-
nis ball” depicting the shape of the cavity (middle), Encapsulation of a methane
molecule in the whole dimer (right).

as it combines simplicity with realism and also because there are previous com-

putational [115] studies and experimental [116] data to compare with. We first

compare structure optimisation with a force field and first principles approaches

in terms of the structural parameters. We then introduce dynamic effects through

molecular dynamics simulations and compare binding energies calculated from

MM-PBSA and QM-PBSA to experimental values.
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4.1.1 Simulation details

The tennis ball structure was built and loosely minimised with the MOE [104] pro-

gram. MM simulations were carried out using the AMBER10 [54] package. The

tennis ball was modelled using the generalised AMBER force field [59] (gaff) and

solvated with the CHCl3 explicit solvent model (as implemented in AMBER10) in

a periodic box.

To equilibrate the system, the hydrogens were relaxed keeping all heavy atoms

restrained in the host and solvent, then relaxing the solvent with restraints still on

the host. The system was heated to 300 K still restraining the host for 200 ps with

the NVT ensemble and ran for a further 200 ps with the NPT ensemble at 300

K in order to equilibrate the solvent density. This was cooled to 100 K over 100

ps and minimisation’s carried out reducing the restraints on the host heavy atoms

in stages (500, 100, 50, 20, 10, 5, 2, 1, 0.5 kcal mol−1Å−2). Finally the system was

heated to 300 K with no restraints over 200 ps and then ran for a further 200 ps

at 300 K with the NPT ensemble, at the end of which the root mean squared de-

viation of the C,N and O atoms was converged and less than 0.8Å relative to the

starting frame. Production simulations were run for 2 ns with the NPT ensemble

at 300 K. All MD simulations used the Langevin thermostat, the particle mesh

Ewald sum (PME) for the electrostatic interactions, a time-step of 2 fs and the

SHAKE algorithm [65]. For the MM-PBSA calculation an infinite non-bonded

cutoff was used with a dielectric constant of 4.5 to represent the chloroform sol-

vent. All ONETEP single point energies were converged to 0.0002 Hartree (∼0.1

kcal mol−1). 4 NGWFs were used to describe carbon, oxygen and nitrogen, 1 for

hydrogens and 9 NGWFs for the halogen atoms. A kinetic energy cutoff of 800

eV for the psinc basis set was used, with the GGA exchange-correlation functional
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4.1. THE TENNIS BALL DIMER

PBE [34] combined with our implementation of the DFT+D approach to account

for dispersion parametrised specifically for this functional [5].

4.1.2 Results and Discussion

Validation tests

In cases where two different approaches are used to explore the conformational

space, the compatibility of the methods used is an important consideration [17].

Firstly, it is desirable that the minima on the potential energy surface between

the QM and the MM approach are as close as possible. To investigate this we

have carried out geometry optimisations of the three complexes using ONETEP

and AMBER. We have also carried out further validation of the QM approach by

doing the same geometry optimisations with the Gaussian [81] program which

can perform all-electron DFT calculations with Gaussian basis sets. For these all-

electron calculations we used a correlation consistent split valence basis set (cc-

pVDZ [117]) and the B97 exchange-correlation functional [118] with the DFT+D

approach for including dispersion contributions as parametrised by Grimme et al

[53]. The structural parameters between the optimised geometries by the three

methods were compared. Bond lengths vary by less than 0.03 Å and internal

angles, such as those within rings, vary by less than 0.5°, with the more flexible

angles differing by 2-3°. Hydrogen bonds from ONETEP (Gaussian) are shorter

than these from the AMBER optimised structure by 0.2 Å (0.1 Å), and the distance

separating the monomers differs by as much as 0.5 Å between the ONETEP and

AMBER structures. All the methods predict hydrogen bonds which are longer by

around 0.2 Å for the CHCl3 complex compared to the tennis ball complexed with
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CH4 or CF4 and the empty dimer, which is to be expected as the CHCl3 is slightly

larger than the size of the empty cavity.

As we are interested in properties at finite temperatures (usually room temper-

ature), using only equilibrium geometries is not sufficient as dynamical motion

causes the molecules to visit many configurations which can differ from the re-

laxed structures. Thus, MD simulations are run for time-scales which are long

enough (ns) to sample the dynamical behaviour of this system, using the classi-

cal force field approach. The importance of accounting for dynamic motion for

the tennis ball system is shown in Figure 4.2. Here we examine hydrogen bond

lengths in the CH4 and CHCl3 complexes throughout the 2ns MD simulations.

During the simulation the hydrogen bonds in the CH4 complex are stable, staying

at around 2 Å. In contrast, the hydrogen bonds in the CHCl3 complex are intermit-

tent: we observe that the dimer opens at a point, to around 4 Å, then moves back

into position, re-establishes the hydrogen bond and breaks at another point. This

happens due to the size of the chloroform ligand; it is too large to fit comfortably

between the monomers causing the cavity to open and close during the simulation.

Figure 4.2 demonstrates that the CHCl3 complex has one hydrogen bond broken

most of the time. In this case the minimum energy structure which has all the hy-

drogen bonds intact, albeit elongated, will not provide an adequate description of

the ensemble of structures encountered at room temperature. We can demonstrate

this further by noting that the binding energy for the CHCl3 complex as calculated

with ONETEP on the optimised structure is 2.6 kcal mol−1 while when taking into

account 200 snapshots extracted from the MD ensemble it is -7.1 kcal mol−1, in

close agreement with the experimental value of -7 kcal mol−1.

As a dynamical ensemble of structures is necessary for this study we also need
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4.1. THE TENNIS BALL DIMER

Figure 4.2: Plots of the hydrogen bond lengths from four H-bonding positions
(C=O’s of top monomer to H-N’s of bottom monomer) in the CH4 complex (left)
and CHCl3 complex (right). Structures taken as “snapshots” at two points of
the simulations are shown, the green dashed lines represent the hydrogen bonds
present at each snapshot. In the graphs, the four coloured lines correspond to the
four hydrogen bonds measured in each complex. (Phenyl-rings not displayed)
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Table 4.1: Average (maximum) of forces on atoms from AMBER and ONETEP

from 10 snapshots. Values in kcal mol−1 Å−1.
Complex ONETEP AMBER

CH4 29.3 (153.0) 29.9 (107.0)
CHCl3 29.3 (147.8) 29.7 (105.0)
CF4 30.1 (150.8) 30.1 (128.1)

to confirm that the conformations sampled by the force field are not unphysical

as far as the QM potential energy surface is concerned. To explore this issue,

we have compared forces on atoms calculated from ONETEP and AMBER on sev-

eral of the snapshots. An indication that the compatibility of the two approaches

is good in this case is given by the values reported in Table 4.1 which presents

the average (maximum) of the absolute values of the force on all atoms, over 10

equally-spaced snapshots. Even though these agree extremely well between the

two approaches, if we look in more detail at individual atoms the agreement is not

so good. The largest difference between the QM and MM forces on any single

atom is ~80 kcal mol−1 Å−1, but for most atoms it is less than 20 kcal mol−1

Å−1. Fig. 4.3 compares the forces between QM and MM between individual

atoms for a single snapshot of the CH4 complex, coloured according to the type

of element. We can observe that for hydrogen and carbon atoms both ONETEP

and AMBER forces agree reasonably well. The large differences are on the oxy-

gen and nitrogen atoms are as expected, this is because the parametrisation of the

ligand is done in group-wise fashion, so an urea-group will have a charge of one,

but it is not clear how the charges are distributed over the atoms, thus the charges

for heteroatoms will strongly differ from ONETEP causing a strong difference in

gradient. This behaviour is representative of all snapshots for the three systems.

Our comparisons show that there is substantial variability in the forces obtained

with the two approaches, however the forces in both cases are within expected
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4.1. THE TENNIS BALL DIMER

Figure 4.3: Correlation between |FQM |and |FMM | for a single snapshot of the
CH4 complex. Other snapshots and complexes show similar behaviour.

ranges and the average forces are comparable. This suggests that no unphysical

conformations are visited by the force field.

Having established the importance of taking into account the dynamical behaviour

of this system, we finally tested the convergence of PBSA energies as a function

of the number of MD snapshots. An increasing number of snapshots was used,

obtained by sampling uniformly through the 2ns production simulations. 50, 100,

160 and 200 equally-spaced snapshots were extracted from each simulation to

study the convergence. We found that the variation in the binding free energies

calculated in ONETEP or AMBER when going from 50 snapshots to 200 snapshots

was less than 0.2 kcal mol−1 for all systems studied. All MM-PBSA and QM-

PBSA results we report here were obtained using 200 snapshots.
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Free Energies of Binding

The energies of binding that were obtained with the MM-PBSA and QM-PBSA

approaches for all the complexes are presented in Table 4.2. The table shows the

enthalpies of binding (∆H) computed from either the force field or the DFT cal-

culations with ONETEP and the free energy of binding (∆G) which includes sol-

vation contributions. We obseve that for CH4 AMBER predicts a ∆H that agrees

well with experiment (to <0.3 kcal mol−1) however it overestimates the ∆H for

the halogen containing ligands to over twice the experimental value. This suggests

that the force field does not capture well the interaction energies of the halogen

atoms with the cavity. ONETEP produces ∆H values that are in close agreement

(within 0.1 kcal mol−1) to the experimentally determined ∆H values, which sup-

ports further our earliest observation that the ensemble of structures provided by

the force field has a high overlap with the QM ensemble. The larger standard er-

rors in the calculated energy differences for the CHCl3 complex, 0.27 kcal mol−1

compared to 0.04 kcal mol−1 for CH4, are expected since this structure shows

considerably more fluctuation than the other complexes, as we saw in Figure 4.2.

Standard error is calculated as the standard deviation over the square root of the

number of data points.

Since AMBER overestimates the interaction energies for the halogen containing

ligands, the calculated ∆∆G’s predict a more favourable interaction than was

found experimentally and in the previous computational study. Our improvements

by the QM calculations refer to the enthalpic part of the binding energies and

indeed we can observe that the ∆∆H values are a very good match to experi-

ment.

As the enthalpy is accounted for so well, and the free energy of solvation in this
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4.1. THE TENNIS BALL DIMER

case makes a minimal contribution due to the non-aqueous solvent, the large dis-

crepancy in the free energy differences ∆G can be attributed to the neglect of

configurational entropy. When considering the ∆∆G values a large fraction of

this error is cancelled and we obtain reasonably good agreement with experiment

(2.7 kcal mol−1 versus 5.2 kcal mol−1 for ∆∆G(CH4 −→ CHCl3) and 3.2 kcal

mol−1 versus 2.8 kcal mol−1 for ∆∆G(CH4 −→ CF4)) for ONETEP while the AM-

BER values show discrepancies of more than 5 kcal mol−1, precisely due to the

bad estimation of enthalpy.

Previous computational results by Fox et al [115] were obtained from TI calcula-

tions. Simulations were performed with AMBER4.1 using the all atom force field

by Cornell et al [55] and partial charges obtained from a multiple molecule RESP

fit. Table 4.3 compares their results to TI free energies we obtained with AM-

BER10 using the gaff force field and with our MM-PBSA and QM-PBSA results.

We observe that both TI approaches obtain comparable relative binding free ener-

gies (7.8 kcal mol−1 versus 7.2 kcal mol−1 for CH4 → CHCl3 and 0.9 kcal mol−1

versus 0.1 kcal mol−1 for CH4 → CF4) and considerably better than MM-PBSA

(∆∆G(CH4 → CHCl3) of 7.8 kcal mol−1 rather than −6.4 kcal mol−1). While TI

is a more rigorous approach which fully accounts for entropic effects, we observe

that our QM-PBSA energies achieve improved agreement with experiment. So

at least in this system the accurate description of interaction energies that is pro-

vided by the DFT calculations is critical for the correct calculation of free energy

differences.

As we have mentioned in the introduction, force fields are significantly less com-

putationally demanding than first principles quantum calculations, and this is re-

flected in our timings. For example, a single point energy force field calculation on

101



CHAPTER 4. QM-PBSA
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Table 4.3: Relative binding free energies (kcal mol−1) obtained via TI by Fox et al,
TI results using the generalised amber force field and results from our QM-PBSA
approach.

TI [115] TI with gaff QM-PBSA MM-PBSA Exp. [116]
CH4 −→ CHCl3 7.8 7.2 2.8 −6.4 5.2
CH4 −→ CF4 0.9 0.1 3.2 −3.4 2.8

one of our complexes takes about 0.35 core-seconds on an Intel CORE2 machine,

while the same calculation with DFT takes about 24 core-hours on the same com-

putational platform. Therefore in terms of throughput, the force field calculations

have a clear advantage. However, the point is, that in several cases the unbiased

and accurate description that is provided by the first principles calculations can

be indispensable. For example, electronic polarisation, or halogen-pi interactions,

which are poorly described by available force fields. We therefore expect that

large-scale first principles quantum calculations will be a valuable tool in the fi-

nal stages of computational drug design where careful refinement is required. The

linear-scaling formalism makes it feasible to extend the application of these calcu-

lations to biomolecules with thousands of atoms, especially in combination with

new HPC technologies such as GPUs and peta-scale supercomputers.

4.1.3 Conclusions

In this work we have presented an approach for reducing some of the limitations of

the MM-PBSA method. Towards this aim we have used the ONETEP program to

calculate the QM interaction energies with solvation contributions extracted from

a traditional MM-PBSA method and scaled to match the QM energies. Confor-

mational space was sampled with classical force field molecular dynamics sim-
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ulations and the compatibility of the structural ensemble, with respect to the po-

tential energy surface, was checked by comparing forces on atoms between the

two methods. These showed that although there was substantial variation in the

forces obtained with the two approaches, the forces in both cases were within ex-

pected ranges and no unphysical conformations appear to be visited by the force

field. This QM-PBSA approach obtained energies which are significantly im-

proved over the MM computed energies, with enthalpic energies agreeing with

experimental ∆H values to within 0.1 kcal mol−1. The neglect of entropy leads

to poor agreement with experimental absolute binding free energy values, how-

ever, relative binding free energies show considerable improvement agreeing well

with experiment. These even show an improvement over the more rigorous TI

method.

While the model we have studied is relatively simple and small (for biomolecu-

lar standards), it does include important and difficult to capture interactions such

as halogen-pi interactions which are not at all well described by force fields and

even hydrogen bonds whose accurate description by non-quantum methods is rea-

sonable, but cannot be taken for granted. Therefore this is a small but important

step towards modelling some of the crucial interactions in real protein-ligand sys-

tems.
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4.2 T4 lysozyme L99A/M102Q

In this work we are presenting the first QM-PBSA study of a protein-ligand sys-

tem where the entire protein of 2602 atoms has been described by DFT calcula-

tions. These calculations have been performed with ONETEP, and in contrast to

our previous QM-PBSA studies in section 4.1, the solvation free energy has been

computed within ONETEP with a newly implemented self-consistant minimal pa-

rameter implicit solvation model [78]. In this study we are comparing the free en-

ergy of binding from the conventional MM-PBSA approach with our QM-PBSA

approach on 8 ligands bound the the T4 lysozyme double mutant L99A/M102Q.

Rather than going back to the tennis dimer with a full QM solvent, this system

was chosen. Since the solvent in the tennis ball work was chloroform, which has

a small dielectric and little effect on the binding free energies, very little would be

gained by including the solvent in the QM calculation. Water has a much higher

dielectric and is the solvent most biological molecules will be in. This system is

the next step towards protein-ligand systems of interest.

The 8 chosen ligand are displayed in Table 4.4. These ligands were chosen as they

comprise of a variety of chemical and physical properties (polarity, inclusion of

halides, size and binder/non-binder).

4.2.1 Simulation details

The protein-ligand system was equilibrated as previously discussed. Since the

binding modes of the ligands are all very similar, only catechol bound in the

pocket (PDB: 1XEP) was equilibrated. All other ligands were mutated from

the catechol at the end point of the equilibration. Production simulations were
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Table 4.4: Chosen ligands for study in the T4 lysozyme double mutant
L99A/M102Q. Experimentally measured free energies of binding (∆Gexp) are
given in kcal mol−1.

L99A/M102Q ligands ∆Gexp PDB code structure

Toluene -5.2 [98]

Phenol -5.5 [98] 1LI2

Catechol -4.4 [100] 1XEP

2-fluoroaniline -5.5 [98] 1LGW

2-methylphenol -4.4 [98] 3HT6

3-chlorophenol -5.8 [98] 1LI3

2-aminophenol non-binder

1-phenylsemicarbazide non-binder
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run for 20 ns with the NVT ensemble at 300 K, with the first 1 ns being con-

sidered as further equilibration of the ligand in the pocket. All MD simulations

used the Langevin thermostat [67], the particle mesh Ewald sum (PME) for the

electrostatic interactions and the SHAKE algorithm [65] to constrain hydrogen-

containing bonds allowing a time-step of 2 fs. For the MM-PBSA calculation an

infinite non-bonded cutoff was used with a dielectric constant of 80 to represent

the water solvent. The 1-phenylsemicarbazide ligand was treated slightly differ-

ently. Since it is a lot bigger than catechol this ligand was built into the protein

pocket using the structure of benzyl acetate (PDB:3HUK), which is structurally

similar to 1-phenylsemicarbazide. This structure was then equilibrated in the same

way as catechol followed by a 20ns NVT production simulation, the last 19ns of

which were used to generate the snapshots for this study.

In the ONETEP calculations, 4 NGWFs were used to describe carbon, oxygen and

nitrogen atoms, 1 NGWF for hydrogens and 9 NGWFs for the halogen atoms. A

kinetic energy cutoff of 800 eV for the psinc basis set was used, with the GGA

exchange-correlation functional PBE [34] combined with our implementation of

the DFT+D approach to account for dispersion, parametrised specifically for this

functional [5]. The QM implicit solvation model parameters were chosen after

validation in previous work involving the same protein [119].

It is important to note that the QM total energies of the complex and host are of

the order of millions of kcal mol−1, in contrast the binding energies are only a

few tens of kcal/mol, a minute value in comparison. For the accurate calculation

of the binding energies the total energies have to be very well converged, and

for systems of this size (+2600 atoms) this can be challenging. The parameters

chosen for our ONETEP calculation were previously compared against a Gaussian
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basis set code on a small system and shown to very accurately calculate binding

energies [4]. We further tested these parameters on our large system to observe

total energy convergence for some indication of the reliability of the calculated

binding energies. The results for two snapshots of phenol bound in the pocket is

displayed in Table 4.5. For all our ONETEP calculations on this system we see

very good convergence with errors less than 0.1 kcal mol−1.

Snapshots were taken in two ways.

The first way aims to select a single snapshot in such a way that it will provide a

binding energy in solvent that is as close as possible to the result obtained by the

MM-PBSA or QM-PBSA calculation. To achieve this we assume that the median

of the MM binding energy in vacuum agrees closely with the mean of these bind-

ing energies. This can be justified by considering that in the MM-PBSA approach

the free energy of binding is obtained as the mean of the binding energies in the

solvent. If we approximate the distribution of binding energies with a Gaussian,

then the mean will be equal to the median. Fig 4.4 shows the interaction energy

distribution for 1000 MM snapshots for 2-methylphenol in vacuum with a fitted

Gaussian overlayed (R2=0.98). Here the mean is 28.3 kcal mol−1 and the median

is 28.4 kcal mol−1, showing that this could be a good approach to use for reducing

the number of snapshots required to obtain free energies. An additional require-

ment of the single snapshot approach, is that the energy distributions in vacuum

correlates well with the energy distribution in solvent, so that the median chosen

in vacuum remains also a very good approximation to the median in solvent. This

would be ideally done using the full solvated binding energies. However, if we

look at Figure 4.5b, which shows the QM solvated binding energies against the

MM solvated binding energies, the R“2 value is 0.17. Showing no correlation.

108



4.2. T4 LYSOZYME L99A/M102Q

Ta
bl

e
4.

5:
To

ta
l

en
er

gi
es

an
d

bi
nd

in
g

en
er

gi
es

fr
om

O
N

E
T

E
P

fo
r

tw
o

sn
ap

sh
ot

s
of

ph
en

ol
bo

un
d

in
th

e
ca

vi
ty

of
T

4
ly

so
zy

m
e

L
99

A
/M

10
2Q

,a
nd

th
e

SC
F

co
nv

er
ge

nc
es

er
ro

rs
of

th
e

ca
lc

ul
at

io
ns

.E
ne

rg
ie

s
in

kc
al

m
ol
−

1

Sn
ap

sh
ot

C
om

pl
ex

R
ec

ep
to

r
L

ig
an

d
B

in
di

ng
en

er
gy

1
-7

35
98

29
.2
±

0.
07

-7
32

59
16

.1
±

0.
07

-3
38

81
.9
±

0.
00

00
07

-3
1.

2
2

-7
36

02
91

.3
±

0.
07

-7
32

63
81

.5
±

0.
07

-3
38

82
.9
±

0.
00

00
07

-2
6.

9

109



CHAPTER 4. QM-PBSA

Figure 4.4: 2-methylphenol binding energy distribution from 1000 MM snapshots
with a fitted Gaussian. Energy in kcal mol−1.

Figure 4.5 shows that there is good correlation between ∆GMM
vac and ∆GQM

vac (Fig

4.5a), ∆GMM
vac and ∆GQM

solv (Fig 4.5c), and ∆GQM
vac and ∆GQM

solv (Fig 4.5d), with R2

values of 0.95, 0.67, and 0.73 respectively. This would suggest that if we select the

MM median vacuum energy snapshot the QM energy of that snapshot in solvent

will be close to the average QM binding energy in solvent, or in other words the

QM-PBSA results that would be obtained by averaging many snapshots.

The second way involves taking snapshots at constant time intervals from the pro-

duction trajectory. For the MM-PBSA the binding free energies were calculated

with an increasing number of snapshots up to a total of 1000 snapshots from the

19ns production simulations. Figure 4.6 displays the convergence of the energies

as more snapshots are included in the ensemble, taking the value at 1000 snap-

shots as the fully converged value (standard errors less than 0.08 kcal mol−1).

The maximum error observed using 5 snapshots is 1.15 kcal mol−1, for the 2-

methylphenol ligand. Using 50 snapshots the maximum error is reduced to less

than 0.5 kcal mol−1 (with catechol having the largest error of 0.41 kcal mol−1).

110



4.2. T4 LYSOZYME L99A/M102Q

Figure 4.5: Correlation of MM and QM binding energies for the 8 ligands. a. MM
vacuum binding energies against QM vacuum binding energies. b. MM solvated
binding energies against QM solvated binding energies. c. MM vacuum binding
energies against QM solvated binding energies. d. QM vacuum binding energies
against QM solvated binding energies.

Assuming equally good convergence for the QM system, in this study we have

chosen to use 5 snapshots to calculate the QM-PBSA energies. We can further

examine the standard errors for the 5 snapshots for the MM and QM binding en-

ergies (both in solvent) to support the assumption of similar convergence rates.

For the case of phenol the MM standard error over 5 snapshots is 1.4 kcal mol−1,

while the QM value is 1.0 kcal mol−1. For catechol the MM error is 1.0 kcal

mol−1 compared to a QM value of 0.5 kcal mol−1, and for toluene the MM stan-

dard error is 0.4 kcal mol−1 compared to a QM value of 0.9 kcal mol−1. MM

and QM standard error values are similar to each other, suggesting that the QM
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Figure 4.6: Absolute deviations of the binding energies of our ligands as a function
of snapshots included in the MM-PBSA calculation, taking 1000 snapshots as the
converged value.

Table 4.6: Components of binding energy for a single snapshot of phenol. Ener-
gies in kcal mol−1.

QM Binding energy MM Binding energy
Purely QM 97.62 Purely MM 0.0
Electrostatic terms -107.57 Electrostatic terms -10.1
Dispersion terms -23.80 Dispersion terms -19.1
Total binding energy -33.8 Total binding energy -29.2

binding energies would converge at a similar rate as MM binding energies shown

in Figure 4.6.

To better understand the contributions to the binding energies, and the differences

seen between QM and MM, the components of the binding energies in vacuum

for a single snapshot of phenol bound to the protein are presented in Table 4.6.

From this we can see further evidence that the binding energies in vacuum agree

very well between the QM and the highly parametrised force field (R2=0.95 for

Figure 4.5a).
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4.2. T4 LYSOZYME L99A/M102Q

Another issue for the T4 lysozyme L99A/M102Q is that of Val111 in the bind-

ing pocket, which is known to have two rotamers with a χ1 angle of ∼ 180◦

and ∼ −60◦, shown in Fig 4.7. Studies have shown that using the wrong ro-

tamer can have an effect around 4 kcal/mol on the calculated binding free energies

[120, 121]. Explicit modelling of this has been shown to improve the agreement

with experimental binding free energies [121]. The starting structure for all our

MD simulations is the catechol bound crystal structure. Taking this fact into con-

sideration requires two median snapshots in total, which correspond to the two

rotamer distributions. The obtained binding energy in solution is the weighted

sum of these two snapshots. The weights are computed as the fraction of time the

simulation spent on each rotamer.

4.2.2 Results and Discussion

We computed the binding free energy of the 8 ligands shown in Table 4.4 to the T4

lysozyme double mutant L99A/M102Q using MM-PBSA and QM-PBSA. These

ligands were chosen as they comprise of a variety of chemical and physical prop-

erties (polarity, inclusion of halides, size and binder/non-binder). Tables 4.7 and

4.8 present the computed binding free energies of these ligands, relative to phenol,

for the case of the median energy snapshots and for the mean of five snapshots re-

spectively. Since the cavity of the apo-protein will always contain a single water

(bound to Gln102) [98], we also calculated the binding free energy using only the

ligand solvation energy added to the binding energy in vacuum. The approxima-

tion made in this case, is that the complex and receptor solvation energies should

be very similar and assumed to cancel each other, so only the desolvation of the

ligand would make a significant contribution to the free energy of binding. Figures
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Figure 4.7: Molecular surface depiction of the binding pocket and the the rotamers
of Val111. Red: -60◦. Blue: -180◦.
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4.8c and 4.8d show that this approximation works quite well in this system, as the

binding solvation energies are very similar to the negative of the ligand solvation

energies. This approximation works better for the QM solvation energies than

the MM solvation energies, as the complex and host solvation energies happen to

be much closer when calculated by QM. If we compare the smallest difference

between Figure 4.8c and 4.8d for the QM energies, which is seen to be phenol,

the QM solvation energies of the complex and host only differ by 0.1 kcal mol−1,

whereas the MM solvation energies differ by 4.2 kcal mol−1. The largest dif-

ference observed between Figure 4.8c and 4.8d is for the 1-phenylsemicarbazide

ligand. In this case the complex and host solvation energies differ by 2.1 kcal

mol−1 in the QM calculations, and 7.9 kcal mol−1 in the MM calculations. The

other ligands have differences ranging between 0.2 to 1.2 kcal mol−1 for the QM

calculations and 4.0 to 5.9 kcal mol−1 for the MM calculations, and are shown

in Table 4.9. This observation can be explained by considering that in the QM

calculation the dielectric is density dependent, so the pocket will have a smaller

dielectric than the bulk value due to residual density of the protein in the cavity.

This is in contrast to the MM calculation which will have the full solvent dielectric

in the pocket. This will make a significant contribution to the solvation energy of

the host leading to the larger differences seen in MM. The largest differences in

both MM and QM is observed for the 1-phenylsemicarbazide ligand. It is much

larger than the others ligands and causes the pocket to enlarge to accommodate it,

and hence has a larger solvation contribution to the host.

When relative binding free energies are calculated an approximation that can be

used, if ligands are of a similar size, is that the changes in entropy of binding

between different ligands are comparable and will cancel. To investigate the ef-

fect of this approximation for this system, we have also calculated the entropy
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using normal mode analysis in AMBER and the results with and without entropy

are shown. In Table 4.7 the entropy is calculated from the median energy snap-

shots and weighted in the same way, in Table 4.8 the entropy is calculated as the

average from 50 snapshots, instead of 5 snapshots, taken at constant time inter-

vals from the trajectories to improve the convergence of the entropy. This was

done to improve convergence for the computed entropies. The standard error us-

ing the 5 snapshots to calculate the entropy (T∆S) for phenol bound is 0.94 kcal

mol−1, with an average T∆S of -14.64 kcal mol−1. Using different sets of 5 snap-

shots, the average entropies range from -13.4 kcal mol−1 to -15.2 kcal mol−1 with

standard errors of up to 1.9 kcal mol−1. Using 50 snapshots the average entropy

(T∆S) is -14.22 kcal mol−1 with a standard error of 0.38 kcal mol−1.

Figures 4.8a, 4.8b and 4.8c display the QM and MM binding energy in vacuum,

solvent and solvation energies for the eight ligands. We observe very good corre-

lation of the binding energies in vacuum as can be seen in 4.5a (and 4.8a). This is

to be expected since the ff99SB force field is well parametrised for proteins, but

there is hardly any correlation when comparing the solvated binding energies as

shown in 4.5b (and 4.8b). In figure 4.8c we see just the binding solvation ener-

gies (the difference between ∆Gbind,solv and ∆Gbind,vac). The solvation energy in

MM-PBSA is a combination of the polar term, Gpolar from the PB equation and

the non-polar term, Gnon−polar from the solvent accessible surface area (SASA)

calculation which are added to the vacuum energy. In the QM solvation calcu-

lation the reaction field and the cavitation energy are explicitly included into the

Hamiltonian and affect the density, and hence the final ground state energy. Thus

the polar and non-polar parts of solvation between the two methods are very dif-

ferent. For example, for catechol, the polar QM part is 15.5 kcal mol−1 while the

polar MM part is 28.8 kcal mol−1. The non-polar QM is -9.3 kcal mol−1 while
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for MM it is -2.7 kcal mol−1. Since these partitions are so different, only the to-

tal solvation energy should be compared. The experimentally obtained hydration

energies of catechol, phenol and toluene are -9.4 kcal mol−1, -6.6 kcal mol−1 and

-0.8 kcal mol−1 respectively. Hydration energies obtained from QM-PBSA av-

eraged over our five snapshots are -8.0 kcal mol−1, -3.7 kcal mol−1 and 1.5 kcal

mol−1 in contrast to MM-PBSA which gives -20.6 kcal mol−1, -9.9 kcal mol−1

and -1.4 kcal mol−1. These hydration energies are shown in Table 4.10 for easy

comparison. We can clearly see that the MM-PBSA hydration energies are less

accurate and this is expected to impact the quality of the free energy calculations.

The QM-PBSA energies on the other hand have a smaller error and the relative hy-

dration energies are substantially closer to experimentally obtained values (errors

less than 1.5 kcal mol−1 for QM compared to 7.9 kcal mol−1 for MM).

To test the robustness of the median snapshot approach, the snapshots either side

of the median energy snapshot (eg. left and right of the median in Figure 4.4) were

taken to calculate the QM binding free energy. The three MM binding energies

in vacuum differ by less than 0.1 kcal mol−1, however, there is a difference of

1.2 kcal mol−1 in the QM binding energies. In solution the binding energies from

MM-PBSA differ by 2.7 kcal mol−1, whereas from QM-PBSA they differ by 1.0

kcal mol−1. This suggests that using just one snapshot (the median) is not likely

to produce converged binding energies. The median snapshot binding energies are

presented in Table 4.7.

Looking at the binding free energies averaged over five snapshots in Table 4.8, the

relative binding free energies from MM-PBSA are not very close to the experi-

mental values. Catechol is the exception and has a predicted relative binding free

energy with an error of 0.7 kcal mol−1 compared to the experimental value. The
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smallest error for the other ligands is 2.3 kcal mol−1, which is for 2-methylphenol.

The computed ligand rankings from MM-PBSA is, however, very similar to ex-

perimental ranking, with an R2 of 0.93 for the ligand binders. The binding free

energies from QM-PBSA are slightly improved, with two ligands having errors

less than 0.8 kcal mol−1 from experiment (2-fluoroaniline and toluene). Catechol

however, in contrast to MM-PBSA, has the largest error of the known binders

of 7.8 kcal mol−1. The overall result is a worse trend for QM-PBSA compared

to experiment than for MM-PBSA, with an R2 of 0.41. Given that the vacuum

binding energies from MM and QM correlate very well, the difference observed

in the binding energies in solvent is due to the solvation energies. For a sim-

pler comparison, we will look at only the desolvation energy of the ligands, using

the approximation that complex and host solvation energy cancels, when com-

paring relative binding energies. We will use catechol as an example, since the

MM-PBSA relative binding free energy is very close to the experimental value

(a difference of 0.7 kcal/mol) and the QM-PBSA value is not (with a difference

of 7.8 kcal mol−1). The experimental hydration energy of catechol is -9.4 kcal

mol−1. The QM hydration energy averaged over the five snapshots is -8.0 kcal

mol−1, in contrast to the MM hydration energy averaged over the same five snap-

shots which is -20.6 kcal mol−1. This shows that the MM solvation energy is

substantially overestimated, however, MM-PBSA still produces a very good rel-

ative binding free energy compared to experiment. Since MM and QM binding

energies in vacuum are so close to each other, this suggests that both MM and

QM overbind the catechol in the pocket in vacuum, however the excessively large

solvation energy from MM-PBSA cancels out the overbinding in vacuum to give a

final relative free energy of binding that does agree closely with experiment.

As we have seen, the MM-PBSA solvation energies seem to be inconsistent for the
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different ligands. Not every ligand appears to have such a ideal error cancellation

between an overestimated solvation energy and the overbinding in vacuum that

catechol appears to have to produce such a good relative binding free energy. The

more accurate QM solvation energy does not lead to the same error cancellation,

resulting in worse relative QM-PBSA binding free energy for catechol, but does

see improvements for some of the other ligands. Thus, it appears that the error in

the QM results may be mainly due to the inherent approximations in DFT, such

as the exchange-correlation functional chosen.

Both methods predict the experimental non-binders as good binders. 1-phenyl-

semicarbazide has a very strong binding energy in vacuum, this value is reduced

when including the desolvation energy of the ligand, which is higher for this lig-

and than the others, but remains the strongest predicted binder. Due to the larger

size of 1-phenylsemicarbazide, when it is placed in the pocket it forces the pocket

to expand so that it can fit. This causes around a 4.1 kcal mol−1difference in

the calculated binding entropies compared to phenol. The approximation of en-

tropy cancellation in this case is not valid. All other ligands have entropies of

binding much closer to phenol, between 0.4 kcal mol−1 and 1.6 kcal mol−1, with

the largest value being for 2-methylphenol. Even though this is quite a small

difference, we observe a small improvement in agreement with experiment when

entropy is included in the calculation of the relative binding free energies averaged

over 5 snapshots.

Since MM-PBSA appears to produce improved rankings for the binding free en-

ergies as a result of error cancellation due to the overestimation of the solvation

energy, the QM binding free energies have been calculated scaling the MM sol-

vation energy as previously proposed by Cole et al [113] (Equation 4.1). The
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a.

b.

c.

d.

Figure 4.8: Energies averaged over 5 snapshots for all eight ligands compared
between QM and MM calculations. a. Binding energies in vacuum. b. Binding
energies in solvent. c. Binding solvation energies. d. The negative of the ligand
solvation energies.
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results are shown in Table 4.11. The largest difference between the scaled solva-

tion energy approach and the full QM solvation energy approach is observed for

catechol bound in the cavity. The MM-PBSA relative binding free energy is very

close to the experimental value and the MM and QM vacuum binding energies

so similar, that when the MM solvation energy is scaled and added to the QM

vacuum binding energy, the QM-PBSA energy is much closer to the experimental

value: With an error of 0.2 kcal mol−1 off instead of 7.8 kcal mol−1. The other

ligands are effected very little, except for toluene, whose binding free energy is

made much worse. This is due to the scaling method used in Equation 4.1. For

toluene, ∆EDFT is a positive value, while ∆EEL is negative, so the resulting QM

solvation energy is a large negative number. This results in a relative binding free

energy that is too strong in favour of toluene. Due to the form of Equation 4.1,

this method would only work when the binding energy from DFT, and the electro-

static part of the binding energy from MM, are less than -1.0 kcal mol−1. If this is

not the case the scaled solvation energy will be meaningless. Using this approach

to calculate the QM solvation energy is not a reliable approach, it is much more

preferable to use a full QM solvation approach, such as the method implemented

in ONETEP, since this result is more “correct”.

4.2.3 Conclusions

We have presented a QM-PBSA approach in which large-scale DFT calculations

with a near-complete basis set were performed to evaluate the energy of the con-

figurations in place of the force field that is used in the conventional MM-PBSA

technique. The solvent in the DFT calculations was described by a minimal pa-

rameter self-consistent implicit solvent model. We applied the QM-PBSA ap-
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proach to compute the relative binding free energies of eight small aromatic lig-

ands bound in the polar cavity of the T4 lysozyme mutant L99A/M102Q protein

which contains more than 2600 atoms, and have compared our results to the tra-

ditional MM-PBSA method.

Due to the high cost of the quantum calculations, and the limited computer re-

sources we currently have, the ensemble of structures we used here is not large

enough to obtain converged results, but the trends we see when comparing ap-

proaches are converged.

The MM and QM binding energies correlate very well for all ligands in vacuum,

and the relative binding free energies obtained by the two methods in vacuum are

very similar. However, there is very little correlation between binding energies

in solvent. The QM ligand hydration energies have systematic errors of about

1.5 kcal mol−1 and relative errors of less than 1.5 kcal mol−1 with respect to

experimentally measured values while the MM hydration energies for the ligands

show inconsistencies and errors of up to -11 kcal mol−1. Nevertheless, for this

system, the MM-PBSA calculations replicate the experimental trend in binding

affinities better than our QM-PBSA approach. This appears to be due to fortuitous

error cancellation between the vacuum and solvent energies in the MM model,

something that is not observed for the more accurate QM solvation energies. An

alternative, earlier approach, which involves obtaining the solvation energy of the

QM calculation by the scaled MM solvation energy tends to imitate the MM-

PBSA results for the polar ligands but fails spectacularly for the non-polar ones

such as toluene.

Thus, while the QM-PBSA approach is more rigorous than MM-PBSA, in the

sense that interaction energies are obtained from a calculation that explicitly in-

122



4.2. T4 LYSOZYME L99A/M102Q

cludes electronic polarisation, in this case they appear to over-estimate the binding

energies in vacuum which results in errors in the free energies of binding in solu-

tion. This limitation could be overcome in future studies by using a more accurate

exchange correlation functional such as for example hybrid functionals and/or a

functional which explicitly includes dispersion interactions.

There are many sources of error in the MM-PBSA approach. These include the

sampling of the phase space which can often be incomplete, the use of the im-

plicit solvation model, the approximation of entropy, as well as those inherent in

the force field. The last of these is reduced for the calculated interaction energies

when it is evaluated using a QM potential, however the systematic errors of the

force field in the structure generation are still present. The calculation of entropy

using normal mode analysis with the force field is approximate at best, and assum-

ing cancellation of entropy when considering relative binding free energies, and

hence neglecting it, could well provide less error when observing small perturba-

tions. For this system most of the experimental binding free energies are within

kBT (0.6 kcal mol−1) of each other, which makes them very hard to distinguish

between. When combining all these errors it is impressive that for this system the

approach can obtain reasonable results, both with MM and QM.

The types of ligands and protein considered here were common enough to be

well-described by the force field so the MM-PBSA approach performs very well.

This QM-PBSA method would be expected to perform better than MM-PBSA ap-

proaches on systems which force fields would not describe very well (e.g. ligands

with unconventional functional groups). As well as more accurate energies, there

are also other advantages of large-scale ab initio quantum chemistry calculations

that have not been explored in this work, such as the ability to visualise localised
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orbitals, densities and potentials that are responsible for specific interactions and

the quantitative estimation of these interactions with energy decomposition ap-

proaches.
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CHAPTER 4. QM-PBSA

Table 4.10: Hydration energies for catechol, phenol and toluene from experiment,
QM-PBSA and MM-PBSA in kcal/mol. Hydration energies averaged over the 5
chosen snapshots.

Molecule ∆Gexp
lig,solv ∆GQM

lig,solv ∆GMM
lig,solv

Catechol -9.4 -8.0 -20.6
Phenol -6.6 -3.7 -9.9
Toluene -0.8 1.5 -1.4

Relative hydration energies
Catechol - phenol -2.8 -4.3 -10.7
Toluene - phenol 5.7 5.2 8.5

Table 4.11: QM binding free energies with the solvation energy calculated via
Equation 4.1. Energies in kcal mol−1.

Ligand ∆GQM
bind,vac ∆GQM

bind,solv ∆GQM
bind,solv - T∆S ∆Gexp

Catechol -15.6 -4.6 -4.2 -4.4
Toluene 0.5 -17.6 -17.2 -5.2
2-fluoroaniline -5.0 -6.7 -5.6 -5.5
3-chlorophenol -8.6 -8.7 -9.1 -5.8
2-methylphenol -9.2 -9.6 -8.0 -4.7
2-aminophenol -12.9 -9.9 -8.9 0.0
1-phenylsemicarbazide -21.0 -14.9 -10.8 0.0
Phenol -5.6 -5.6 -5.6 -5.6
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Chapter 5

QM corrected Thermodynamic

Integration

The work presented in this chapter has been done in collaboration with Chris

Pittock.

An approach for accurately estimating relative binding free energies using a fast

Hamiltonian, and then using efficient sampling approaches to approximate the dif-

ference between a QM/MM Hamiltonian and the fast Hamiltonian, was first pro-

posed by Warshel and and co-workers in 2002 [122]. This approach was proposed

as a method to overcome the limitations of force fields to describe polarisation and

charge transfer, and implemented for the most theoretically rigorous binding free

energy approach available, thermodynamic integration (TI). This extension is pre-

sented in Figure 5.1.

This method first uses a reference Hamiltonian (often a pure MM force field) to

estimate the free energy. This estimate is then corrected by calculating the free en-

ergy necessary to change the reference Hamiltonian to the QM/MM Hamiltonian.
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Theoretically this method can calculate the exact QM/MM free energy change,

however, since the computational cost of sampling phase space using a QM po-

tential is still very high, sampling is done with only the cheaper and faster refer-

ence potential. The free energy change from the MM to QM/MM Hamiltonian is

then done using only the structural ensemble generated from the reference Hamil-

tonian via a single step free energy perturbation. This approach will converge

quickly if the energies from the MM and QM/MM have good overlap. However,

in practice, there can be large fluctuations between the energies of the reference

Hamiltonian and the QM/MM Hamiltonian, which leads to poor convergence of

the free energy.

Woods et al [123] used two approaches to calculate the MM to QM energy.

The first involved using the same approach as Warshel with further development

aimed at creating approximate Hamiltonians that were a good match to the target

QM/MM Hamiltonian to improve the overlap. The second method involved using

an approximate Hamiltonian to speed up the sampling of phase space described

by a QM/MM Hamiltonian. Using this second method the ensembles produced

will be correct for the QM/MM Hamiltonian used, and the ensemble can be used

directly with FEP.

To solve the issue of the large differences in the magnitudes between the MM and

QM/MM energies, Beierlein et al [124] proposed to correct only the solute/solvent

Coulomb interaction energy differences. In this way the polarisation of the solute

(ligand) would be accounted for in the different states A and B whilst sampling

would be done using a relatively cheap MM method. The Zwanzig equation is
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CHAPTER 5. QM CORRECTED THERMODYNAMIC INTEGRATION

then written as,

∆GMM→QM/MM = −kBT ln〈e−
UQM/MM−UQM,vac−Ucharges,MM−UCoul,solute−solv,MM

kBT 〉MM

(5.1)

where UQM/MM is the energy of the QM/MM system, UQM,vac is the energy of

just the QM region, UQM/MM is the energy of the MM region in the QM/MM sys-

tem, and UCoul,solute−solv,MM is the electrostatic part of the all MM system. The

aim of their work was to obtain reproducible, converged free energies, without the

need for closely coupled MM and QM programs. Beierlein et al [124] demon-

strated, via a series of careful tests, that free energies obtained from a classical

forcefield (MM) can be converted to free energies that would have been obtained

if a quantum description was used for the solute, and a classical description for

the surrounding atoms.

We propose that instead of total energies, or just correcting the Coulomb energies

as in the approach by Beierlein, we use the complete interaction energies, defined

as,

∆EAB = EAB − EA − EB. (5.2)

Where, for example, A is a solvent, B is a ligand, and AB is the protein-ligand

complex. The MM to QM energy will now be calculated using,

∆GMM→QM = −kBT ln〈e−
∆EQM−∆EMM

kBT 〉MM, (5.3)

where ∆EQM is the interaction energy in the quantum description with EQM =

EDFT + Edisp and so including all interaction energies. ∆EMM is the interaction

energy in the force field description. The notation 〈· · · 〉MM signifies an ensem-

ble average over the structures obtained from the MD simulation with the MM
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5.1. ELECTROSTATIC EMBEDDING IN ONETEP

force field. To save on computational time we will employ a QM/MM approach

to do this. As long as no covalent bonds are involved in the QM/MM bound-

ary, interactions between the quantum and classical parts can be described by

non-bonded terms only. This approach is commonly referred to as “electrostatic

embedding”.

5.1 Electrostatic embedding in ONETEP

The energy of the entire embedded system is composed of the following terms,

EQM/q = EQM + Eint + Eq, (5.4)

whereEQM is the electronic energy of the quantum system (with its density/wavef-

unctions polarised by the potential due to the embedding charges), Eint is the en-

ergy of interaction of the electrons and nuclei of the quantum system with the em-

bedding charges, andEq is the electrostatic energy of the embedding charges.

The interaction of the QM with the MM, in atomic units, is,

Eint =
Nat∑
J=1

Nemb∑
a=1

ZJ

∫
qa(r−Ra)

|r−RJ |
dr−

Nemb∑
a=1

∫ ∫
qa(r−Ra)n(r′)

|r− r′|
dr′dr, (5.5)

where the first term on the righthand side is the Coulomb (i.e. electrostatic) energy

of interaction between Nat nuclei (with atomic number ZJ ) and the Nemb embed-

ding charges qa, and the second term is the Coulomb energy of interaction between
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CHAPTER 5. QM CORRECTED THERMODYNAMIC INTEGRATION

the electronic density n(r) and the embedding charges. We also have,

Eq =

Nemb∑
a=1

Nemb∑
b>a

∫ ∫
qa(r−Ra) qb(r

′ −Rb)

|r− r′|
dr′dr, (5.6)

which is the energy of interaction between the embedding charges.

In ONETEP the external potential due to the ionic cores, which are represented by

norm-conserving pseudopotentials, in the Kleinman and Bylander representation

has local and non-local parts:

V̂ext(r) = V̂ext,loc(r)+V̂ext,nl(r) =
Nat∑
p=1

[
υ̂p

ps,loc(r−Rp) + υ̂ps,nl(r−Rp)
]
, (5.7)

where Nat is the total number of atoms and Rp is the position of atom p. The

potential due to the embedding charges is of similar form to the local part of the

external potential,

V̂emb =

Nemb∑
a=1

υ̂
(a)
emb(r−Ra). (5.8)

We therefore generate directly the sum of the two [4], which can be written in the

following form,

V̂ext,loc(r) + V̂emb(r) =

Nspecies∑
k=1

Nk∑
I=1

υ̂
(k)
ps,loc(r−Rk,I)

+

Nemb−species∑
j=1

Nj∑
L=1

υ̂
(j)
emb(r−Rj,L), (5.9)

where υ̂(k)
ps,loc(r − Rk,I) is the local pseudopotential for a particular “species” of

atomic core (e.g. oxygen) which is centred at position, Rk,I . υ̂(j)
emb(r−Rj,L) is the

electrostatic potential due to a particular type of embedding charge distribution

which is centred at position Rj,L. If the Fourier transform of the potential of
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5.1. ELECTROSTATIC EMBEDDING IN ONETEP

each species is provided, the Fourier transform of the total local potential can be

obtained as follows,

Ṽext,loc(g) + Ṽemb(g) =

Nspecies∑
j=1

υ̃
(j)
ps,loc(g)

Nj∑
J=1

e−ig·Rj,J

+

Nemb.species∑
p=1

υ̃
(p)
emb(g)

Np∑
P=1

e−ig·Rp,P

=

Nspecies∑
j=1

υ̃
(j)
ps,loc(g)S(j)

ps (g)

+

Nemb.species∑
p=1

υ̃
(p)
emb(g)S

(p)
emb(g), (5.10)

where the terms S(j)
ps (g) and S

(p)
emb(g) as defined by the above equation are the

structure factors [125] for each species of pseudopotential and embedding poten-

tial respectively. The incorporation of the embedding potentials to the Kohn-Sham

Hamiltonian can be done with minimal additional cost by building them into the

Fourier transform of the local part of the external potential. The above form gives

us the flexibility to use any functional form for the embedding charge distribution

q
(p)
emb(r), since if its Fourier transform q̃

(p)
emb(g) can be obtained, it is possible to ob-

tain an expression for its potential, υ̃(p)
emb(g). The incorporation of the embedding

potentials into the electronic Hamiltonian through equation 5.10 ensures that the

second term in equation 5.5 is obtained as part of the interaction of the electrons

with the external potential (now augmented by the embedding potentials).

Electrostatic energies are computed for periodically repeated charge distributions

and uniform background charges to ensure charge neutrality. Dispersion interac-

tions (only amongst the quantum atoms) are included with the DFT+D approach

as implemented in ONETEP [5]. To avoid the unphysical effect of “charge spilling”
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CHAPTER 5. QM CORRECTED THERMODYNAMIC INTEGRATION

[126] (shown in Figure 5.2), where electron density from the QM region is pulled

onto the classical atoms with positive charge, υ̃emb is described as the potential of

a Gaussian function [127], rather than a point charge.

Figure 5.2: Electron density isosurfaces of the diaqua ASP complex, with the
molecular structure overlayed, for the case qO=-4.0 e− (isosurface value=0.2
e2 a−3

0 ). Spilling of electronic density occurs when the embedding is done with
point charges (left), but not when Gaussian charge distributions are used (right)
This is for quite extreme charges and is used to show the effect which with normal
charges is still present and effect the energy but is not as obvious to visualise. [4]

5.1.1 Interaction energies

Our goal is to extend the QM corrected TI approach to a quantum mechanical

treatment of the ligand and a large portion of the surrounding atoms, large enough

to ensure that the interaction energies will be converged to chemical accuracy. Al-

though this could be achieved by simply increasing the size of the QM region, us-

ing the electrostatic embedding should allow for faster convergence with a much

smaller QM region. The aim is to obtain interaction energies via a QM EE ap-

proach with no appreciable change from the energies obtained from a calculation

when the entire system is described by QM. This was investigated for a number

of different ligands in water, and for a protein-ligand system where all of the lig-

and, the protein, and a number of waters surrounding the pocket are treated in a

quantum way.

136



5.1. ELECTROSTATIC EMBEDDING IN ONETEP

Solvent-ligand interactions

As ligand test molecules we have used toluene, bromobenzene, phenol, thiophe-

nol, catechol (2-hydroxyphenol), cysteine terminated with ACE and NME groups,

cystine zwitterion, and serine zwitterion.

Each ligand was generated in the MOE program [104] and solvated with explicit

water in a cubic box with periodic boundary conditions in the AMBER Version

10 [54] package. To equilibrate the ligand in a waterbox, the system was heated

from 100 K to 300 K with the NVT ensemble over 300 ps then for 200 ps at 300

K with the NPT ensemble in order to adjust the volume of the simulation cell and

consequently the density of the water. Then the equilibration was completed with

the NVT ensemble for 200 ps again at 300 K. The production calculation was with

NVT at 300 K for 1 ns.

All MD simulations used the Langevin thermostat, the particle mesh Ewald sum

(PME) for the long range electrostatics, and a time-step of 2 fs with the SHAKE

algorithm [65]. The AM1-BCC method was used to obtain partial charges for the

ligands with antechamber in the AMBER package. The TIP3P model [70] was

used for the water solvent and the generalised amber forcefield (gaff) [59] for the

ligands. The small systems (ligands in water and amino acid pairs) were solvated

in such a way that the simulation cells were cubes with faces at least 15Å away

from the atoms of the initial structure of the solute. This resulted in a total of

between 1500 and 1600 water molecules in each simulation cell.

For each of these ligands, production MD simulations were ran and 2 (or 3) snap-

shots were taken. Interactions energies were obtained for each snapshot with an

increasing number of solvent molecules from the simulation cell surrounding the
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CHAPTER 5. QM CORRECTED THERMODYNAMIC INTEGRATION

ligand. The waters that are kept are those closest to the ligand, described as “sol-

vation shells” of increasing radius, as demonstrated in Figure 5.3. The interaction

Figure 5.3: Separation of the phenol-water system into quantum and embedding
atoms. From left to right, 50, 250 and 750 water molecules closest to the ligand are
treated as quantum atoms within the ONETEP calculation. The remaining water
molecules of the simulation (which was carried out in a waterbox of about 1600
water molecules) are treated as classical embedding charges. [4]

energies were then calculated in three ways:

1. MM1 force field calculations for the ligand and the surrounding water sol-

vation shell (MM).

2. ONETEP DFT calculations for the ligand and the surrounding water solva-

tion shell (QM).

3. ONETEP DFT calculations for the ligand and the surrounding water sol-

vation shell, including the remaining water molecules of the waterbox via

electrostatic embedding (QM EE).

The interactions energies as a function of increasing number of water molecules

obtained from these three approaches are shown in Figure 5.4. A measure for

deciding how many quantum waters to include can be provided by the radii of

the solvation shells. For the case of the phenol molecule in Figure 5.4, the ener-

gies are obtained for shells of water with approximate distances from the atoms
1
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5.1. ELECTROSTATIC EMBEDDING IN ONETEP

of the phenol of 3.4 Å (first solvation shell), 5 Å (second solvation shell), 9 Å

(200 water molecules), 12 Å (400 water molecules), 14 Å (700 water molecules),

and 17 Å (1000 water molecules). The embedded QM (QM EE) calculations gave

the smoothest and most rapid convergence for all the cases. These results indi-

cate that the combination of a number of quantum waters surrounding the solute,

with electrostatic embedding to represent the remaining water in the simulation

cell, can adequately capture all the charge polarisation of the ligand and the back-

polarisation of its surroundings that is characteristic of the quantum description.

This approach also correctly describes the long range electrostatic interactions as

they emerge from the periodic boundary conditions that apply to both our MD and

quantum calculations. From these calculations it would suggest that with a QM

region consisting of around 200-400 water molecules (radii of 9-12Å) combined

with electrostatic embedding is enough to reproduce interaction energies that are

very similar to those obtained from full QM calculations with errors less than 0.5

kcal mol−1. Although treating the entire system is possible, reducing the number

of QM atoms in the simulation dramatically reduces the computational cost. For

example, the full quantum system took 2800 core hours, compared to 336 core

hours for the 400 water QM EE calculations.

A further measure of the performance of the embedding approach can be provided

by investigation of its effect on atomic charges, which are indicators of the chem-

ical environment that the atoms experience. In Figure 5.5 we investigate the Mul-

liken atomic charges of the atoms of the cysteine zwitterion for increasing sizes

of solvation regions for the QM and QM EE approaches. Taking the fully quan-

tum calculation as the benchmark, we observe that for the first solvation sphere

the QM EE approach produces for most atoms less than half the error of the QM

calculation. However for the case of 400 quantum waters or more the differences
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Toluene Bromobenzene

Phenol Thiophenol

Catechol Cysteine ACE and NME terminated

Cysteine zwitterion Serine zwitterion

Figure 5.4: Interaction energies between ligands and water as a function of in-
creasing number of water molecules. [4]
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5.1. ELECTROSTATIC EMBEDDING IN ONETEP

between QM and QM EE diminish as the errors become small (less than 0.01 eV),

and for this case the difference between the QM and QM EE interaction energies

is small.

Receptor-ligand interactions

Initially we considered the interaction of two amino acids: a serine-lysine complex

with a net charge of +1, and a serine-aspartate complex with a net charge of -1.

Electrical neutrality is imposed by the presence of a counterion (either Na+ or

Cl−) and is always treated as a classical charge. Three snapshots were taken:

snapshot 1 with the counterion at 10 Å form the complex, snapshot 2 with the

counterion at 17 Å from the complex, and snapshot 3 with the counterion at 24 Å

from the complex. The interactions for the three snapshots for these two receptor-

ligand complexes are shown in Figure 5.6 as a function of increasing number of

water molecules. As with the solvent-ligand calculations, the interaction energies

have been calculated with MM, QM and QM EE. Interaction energies converge

following patterns similar to those of the neutral ligands in water (Figure 5.4) for

the electrostatic embedding approach.

Finally this approach was applied to phenol bound in the buried polar cavity of T4

lysozyme L99A/M102Q. For the protein ligand complex, the X-ray crystal struc-

tures were checked and protonated with the MOE program [104], then solvated

with explicit water in a rectangular box with periodic boundary conditions in the

AMBER Version 10 [54] package. The following equilibration procedure was em-

ployed: the hydrogens were relaxed keeping all heavy atoms fixed with harmonic

restraints in the protein and solvent, then the solvent was relaxed with the protein

atoms still fixed. The system was heated gradually to 300 K while still restraining
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Figure 5.5: Variation of atomic charges from the quantum calculation on the cys-
teine molecule as a function of the thickness of the solvation shell, for snapshot
1 (left) and snapshot 2 (right) for (A) 20 quantum waters, (B) 400 quantum wa-
ters and (C) 1000 quantum waters. For each solvation shell, the difference of the
charge on each atom from the charge obtained from the full QM calculation (in-
cluding all waters in the simulation cell in the quantum description) is given for
the QM and QM EE approaches.[4]
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Figure 5.6: Interaction energies between a serine (SER) and a Lysine (LYS) in
water (left) and between serine and an aspartate (ASP) in water (right). [4]

the protein for 200 ps with the NVT ensemble and ran for a further 200 ps with

the NPT ensemble at 300 K. This was cooled to 100 K over 100 ps and a series of

minimisations was carried out reducing the restraints on the protein heavy atoms

in stages (500, 100, 50, 20, 10, 5, 2, 1, 0.5 kcal mol−1Å−2). Finally the system was

heated to 300 K with no restraints over 200 ps and then ran for a further 200 ps

at 300 K with NPT, at the end of which the energy and the density of water in

the simulation cell were stabilised and so was the internal structure of the protein

as measured by the root mean squared deviation of the backbone atoms from the

starting structure, which was 0.75 Å. Production simulations were run for 10 ns

with the NVT ensemble at 300 K. All MD simulations used the Langevin thermo-

stat, the particle mesh Ewald sum (PME) for the long range electrostatics, and a

time-step of 2 fs with the SHAKE algorithm. The AM1-BCC method was used to

obtain partial charges for the ligands with antechamber in the AMBER package.

The ff99SB forcefield [105] was used for the protein with the TIP3P model [70]

for the water solvent and the generalised amber forcefield (gaff) [59] for the lig-

ands. The total charge of this protein is +8, so 8 Cl− counterions were included to

impose charge neutrality. The system contained 9053 water molecules.

In this case the receptor is now the entire 2601 atom protein. DFT calculations
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have been performed for zero quantum waters (where only the 2601 protein atoms

plus the 13 ligand atoms are described by DFT), and by including shells with

thickness of 3.4 Å, 5.0 Å, 7.5 Å, 9.0 Å, 10.5 Å, up to 12.0 Å which results in 10151

atoms in total being treated by DFT. The interaction energies of two snapshot shots

calculated in the same manner as the previous two example is shown in Figure 5.7.

The inclusion of water into the calculation of the binding energy has a very small

effect on the obtained value. The embedded calculation shows marginally bet-

ter convergence with respect to the quantum calculation without embedding, but

the advantage of embedding is almost negligible with variations which are less

than 1 kcal mol−1. This is a result of the fact that the cavity of T4 lysozyme

(L99A/M102Q) is completely buried and shielded from the solvent. In complexes

with solvent accessible cavities the inclusion of water is expected to have a larger

effect. The regions and thickness of quantum water layers that need to be included

will vary from one protein to another and need to be determined on a case by case

basis. It is interesting however to observe that in the case of this protein the use of

electrostatic embedding with no quantum waters leads to the largest errors as the

embedding atoms in contact with the quantum atoms of the protein appear to over-

polarise it. In fact Figure 5.7 shows that the DFT calculation with no water at all

would be in this case the best compromise between accuracy and efficiency as the

errors that result are of the order of 0.5 kcal mol−1 which is comparable to other

errors intrinsic in DFT calculations (such as the choice of exchange-correlation

functional and the basis set). Another interesting observation is that the QM and

QM EE curves, for snapshots 1 and 3, do not coincide, even for the largest calcula-

tions with 2517 quantum water molecules. As the total energies in our calculations

were converged to 0.1 kcal mol−1 it is unlikely that this is due to numerical noise
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but most likely it is a manifestation of the long-range nature of electronic polarisa-

tion which appears to not be completely converged for these structures even with

this large number of water molecules.
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5.2 QM corrected TI ligand hydration energies

Relative hydration energies were computed using the electrostatic embedding ap-

proach described in section 5.1 and the scheme in Figure 5.8. The molecules for

which hydration energies were obtained are toluene, phenol, catechol, 2-fluoroaniline,

3-chlorophenol, thiophenol, and 2-methylphenol (shown in Figure 5.9)

5.2.1 MM simulation setup

For the setup of the MD simulations we started from a catechol molecule (gener-

ated in the MOE program [104]) placed in a water box containing 1545 explicit

waters in a cubic box with periodic boundary conditions in the AMBER Version

10 [54] package.

To equilibrate the system, the positions of the Hydrogens were relaxed before

heating the system from 100 to 300 K with the NVT ensemble over 200 ps with

positional restraints of 1000 kcal mol−1 Å−2 on the catechol molecule. Then

we switched to the NPT ensemble for 200 ps keeping the positional restraints

on catechol. The system was then ran for a further 200 ps with no restraints in

the NVT ensemble and again switched to NPT for 200 ps at 300 K in order to

add a final adjustment to the volume of the simulation cell, and consequently the

density of the water. The simulation cell was constrained to remain cubic and its

final volume had sides of 36.222 Å.

At this point it was confirmed that the water density, kinetic energy, and potential

energy had only small oscillations around a constant value so the system was

deemed to be equilibrated. The catechol ligand was manually mutated in the MOE

program to the six other ligands in Figure 5.9. Production MD simulations were
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Figure 5.9: Chosen ligands for study.
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started from the catechol and these new structures (with randomly assigned initial

velocities), each containing a ligand in a water box, and ran in the NVT ensemble

at 300 K for 20 ns. Snapshots were taken from the last 18 ns of the trajectory

treating the first 2 ns as further equilibration.

For thermodynamical consistency, we have ensured that the same number of water

molecules (1545) was used in all simulations. Furthermore, a cubic simulation cell

of length 36.222 Å was used in all simulations to ensure identical basis sets for all

subsequent ONETEP calculations. For our MD simulations we used the Langevin

thermostat [67] with the default parameters in AMBER10, the particle mesh Ewald

sum (PME) for the long range electrostatics, a non-bonded cutoff of 8.0 Å, and a

time-step of 2 fs with the SHAKE algorithm [65]. The AM1-BCC method was

used to obtain partial charges for the ligands with the antechamber tool in the

AMBER package. The TIP3P model [70] was used to describe the water solvent

and the generalised amber forcefield (gaff) [59] to describe the ligands.

5.2.2 MM to QM calculation set up

Each QM region was defined as the ligand (solute) and the closest 200 waters

(roughly equivalent to a 9.0 Å solvation shell). All the remaining water molecules

were treated as classical embedding charges. The charge given to the classical

Oxygens was -0.834 e and for the classical Hydrogens 0.417 e, as they are in the

TIP3P model. NGWF radii of 8.0 a0 were used for all atoms, with 4 NGWFs on

Carbon, Oxygen, and Nitrogen, 9 NGWFs on Sulphur, Fluorine, and Chlorine,

and 1 NGWF on Hydrogen. A kinetic energy cut-off of 800 eV was used along

with the PBE exchange-correlation functional [34] and with the DFT+D approach

[5] accounting for dispersion interactions. All simulation cells were cubic and had
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identical sizes with a side length of 68.450 a0 (equivalent to 36.222 Å) to ensure

identical psinc basis sets.

For the MM single point energy calculations a non-bonded cutoff of 13.0 Å was

used in a periodic cubic box with side lengths 36.222 Å. Full Ewald was used to

accurately calculate the electrostatic interactions.

5.2.3 TI calculations

TI calculations were performed with the AMBER program. Ligand starting geome-

tries were taken from the starting geometries for the MD simulations. Perturba-

tions were in the direction phenol → new ligand. 39 λ windows were performed

(λ = 0.025). Each λ step involved the relaxation of the entire system, an equili-

bration rising the temperature from 100 K to 300 K in the NVT ensemble over 50

ps, and finally a 200ps production step in the NPT ensemble at 300 K.

Convergence tests were performed using 9 λ windows, 19 λ windows, then fi-

nally 39 λ windows. The difference in the calculated ∆∆G using 9, 19, or 39

windows is very small. For example, the difference between using 19 windows or

39 windows to calculate the ∆∆G for the phenol→catechol mutation is 0.34 kcal

mol−1, with the error between the forward and reverse calculations being reduced

from 0.04 kcal mol−1 for 19 windows to 0.01 kcal mol−1 when using 39 win-

dows. When using only 9 windows the ∆∆G differs form 39 windows by 0.20

kcal mol−1, however the error between the forward and reverse paths is larger at

0.08 kcal mol−1. The maximum difference between 9 and 39 windows is for the

phenol→2-methylphenol mutation, which is 0.66 kcal mol−1. This is reduced to

0.09 kcal mol−1 when using 19 windows. We have chosen to use 39 windows for
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the small improvement in convergence that is seen.

5.2.4 Interaction energy distributions

A one step energy perturbation uses the form of the Zwanzig equation we have

proposed in Equation 5.3 to calculate the energy change from the MM description

of the system to the QM EE description of the system. Snapshots are taken at

constant time intervals from the last 18 ns of the production trajectories, and the

interaction energies are computed with MM and with QM EE.

As well as using interaction energies in the one step perturbation, the interaction

energy distributions were fitted to a Gaussian curve and the resulting function used

in the Zwanzig equation to calculate the MM → QM free energy change [128].

This method of analysis is done to minimise systematic and random error. The

form of the Gaussian used is,

C exp
(
α(E − E0)

2
)
. (5.11)

An example of a Gaussian of this form fitted to the histogram of ∆∆E of the

phenol QM interaction energies minus the MM interaction energies can be seen

in Figure 5.10.

The Zwanzig equation is now written as,

∆G = E0 −
(

1

4αkBT

)
. (5.12)

This form has been derived in the following way:

If the probability distribution of the energies is given by a function W(E), we
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wish to obtain the average of the Zwanzig equation in the form of an integral as

follows, 〈
e
−E

kBT

〉
=

∫∞
−∞ e

−E
kBT W (E)dE∫∞

−∞W (E)dE
=
I1
I2
, (5.13)

where the function W(E) is, in our case, a Gaussian function as presented in Equa-

tion 5.11.

If we first look at I1,

I1 =

∫ ∞

−∞
e
−E

kBT e−α(E−E0)2dE

=

∫ ∞

−∞
e−βEe−α(E−E0)2dE

=

∫ ∞

−∞
e−α(E−E0)2−βEdE. (5.14)

where β = 1
kBT

. If we work on the exponent,

−α (E − E0)
2 − βE

= −
{
αE2 + αE2

0 − 2αEE0 + βE
}

= −
{
αE2 + E(β − 2αE0) + αE2

0

}
= −α

{
E2 + E

(
β

α
− 2E0

)
+ E2

0

}
= −α

{
E2 + 2E

(
β

2α
− E0

)
+

(
β

2α
− E0

)2

−
(
β

2α
− E0

)2

+ E2
0

}

= −α

{[
E +

(
β

2α
− E0

)]2

− β2

4α2
+
βE0

α

}

= −α
[
E +

(
β

2α
− E0

)]2

− β2

4α
+ βE0. (5.15)
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Therefore I1 becomes,

I1 =

∫ ∞

−∞
e−α(E−E0)2−βEdE

=

∫ ∞

−∞
e−α[E+( β

2α
−E0)]

2
−β2

4α
+βE0dE

= e
β2

4α
+βE0

∫ ∞

−∞
e−α[E+( β

2α
−E0)]

2

dE. (5.16)

If we set x =
√
α
[
E +

(
β
2α
− E0

)]
, then dx =

√
αdE ∴ dE = 1√

α
dx. The

integral then becomes,

I1 =
1√
α
e

β2

4α
+βE0

∫ ∞

−∞
e−x2

dx, (5.17)

if
∫∞
−∞ e−x2

dx =
√
π, then

I1 =

√
π

α
e

β2

4α
+βE0 . (5.18)

If we now look at I2

I2 =

∫ ∞

−∞
e−α(E−E0)2dE (5.19)

If we set y =
√
α(E − Eo), then dy =

√
αdE ∴ dE = 1√

α
dy.

I2 =
1√
α

∫ ∞

−∞
e−y2

dy =

√
π

α
. (5.20)

Combining I1 and I2 gives,

I1
I2

= 〈e−βE〉 = e−
β2

4α
+βE0 . (5.21)

154



5.2. QM CORRECTED TI LIGAND HYDRATION ENERGIES

So if E = ∆EQM −∆EMM then,

∆G = −β−1 ln〈e−βE〉

= −β−1 ln
I1
I2

= −β−1 ln

[
e−

β2

4α
+βE0

]
= −β−1

(
β2

4α
− βE0

)
= E0 −

β

4α
. (5.22)

Another function that can be used is a “universal” probability function (UPDF)

[128], and has the form,

P (y) = Kea[b(y−s)−eb(y−s)], (5.23)

where K, a, b, and s are adjustable parameters. This function has the advan-

tage of being capable of modelling data that is both non-Gaussian and “heavily-

tailed”.

Snapshots were taken from the 18 ns trajectories at constant time intervals. Con-

vergence of the Zwanzig equation using interaction energies are shown in Figure

5.11. This shows the result for the MM to QM energy as the number of snap-

shots are increased, up to a total of 180 snapshots. It can be seen that a few

snapshots result in jumps in the free energy change, however the energy is seen

to be converging with the last 10 snapshots changing the energy by less than 0.5

kcal mol−1. The free energy change was also calculated using a “leave one out”

approach, where the free energy change using the Zwanzig equation is calculated

using all but the current snapshot. This data is presented in Figure 5.12 against
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the energy difference between the MM and QM interaction energies for energy

snapshot that is “left out”. You can see that the snapshots with a large negative

energy difference between the MM and QM interaction energies have the largest

effect on the total free energy change. In most cases this difference is less than

0.2 kcal mol−1. Thiophenol is a noticeable exception with the largest difference

being 0.73 kcal mol−1, and phenol with a difference of 0.48 kcal mol−1.

The 180 snapshots were split into 4 sets of 90 snapshots in the ways depicted in

Figure 5.13. The standard error over the 4 sets of 90 snapshots was estimated to

present an idea of convergence of the computed free energy. For the interaction

energies being used in the Zwanzig equation the standard errors are reasonably

small, less than 0.3 kcal mol−1 for most of the ligands. Except for thiophenol

which has a standard error of 0.69 kcal mol−1. This suggests that more sampling

should ideally be done for thiophenol, whereas the other ligands are reasonable

well converged by 90 snapshots. This is not the case when using the fitted Gaus-

sian approach, with generally larger errors for the ligands, and substantially larger

for thiophenol, at 1.53 kcal mol−1. The standard errors can be seen in Table 5.1.

Since interaction energies are being used, and not total energies, the right and left

sides of the bottom line in Figure 5.8 will be zero since there will be no change in

the interaction energy of the ligand with a vacuum between the MM and QM EE

descriptions. In the future, when protein-ligand binding energies are calculated,

this will not be the case, as the bottom row will depict the ligand in solvent, and

sampling would have to be performed at these points.

An overview of the simulations performed is depicted in Figure 5.14.
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5.2.5 Results

Relative binding free energies obtained from TI have been corrected using the

Zwanzig equation, using the averages of the interaction energies, using a Gaussian

fit (as in Equation 5.12), and using implicit solvation rather than explicit waters.

The calculated relative hydration free energies for the corrected and uncorrected

results are presented in Table 5.2 using 90 snapshots for the MM→ QM perturba-

tion (the odd set as depicted in Figure 5.13), and in Table 5.3 using 180 snapshots

in the MM → QM perturbation.

When the experimental hydration value wasn’t available, the computed hydration

energy is compared to the solvation energy obtained from a Gaussian SMD im-

plicit solvation [80] calculation. The Gaussian calculations were performed with

Gaussian09 [81] at the m052x/6-31G(d) SCRF(IEFPCM,Solvent=Water,SMD)

level. The average ∆∆E approach simply consists of using the average of the

MM and the QM EE interaction energies in Equation 5.3. This results in ∆G

values being the difference in just the average of the MM interaction energies

and the average of the QM EE interaction energies. The implicit solvation cal-

culations were performed on the 90 snapshots using the implicit solvation model

in ONETEP [78] and the MM-PBSA approach in AMBER. The difference in the

resulting solvation energies was used in the Zwanzig equation.

For a small mutation in the ligand, as with the molecules in this study, standard TI

predicts the relative binding free energies very well, and has a very good correla-

tion with experiment with an R2 value of 0.98. The largest error seen for the MM

TI results is 1.4 kcal mol−1 (for toluene) with a mean error of 0.9 kcal mol−1 and

an rms error of 0.9 kcal mol−1. TI is the most theoretically rigorous free energy

approach available and the results from standard TI show that for these cases the
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force field describes the systems well.

The best QM corrected result is obtained with the Zwanzig equation (column 2

of Tables 5.2 and 5.3. For 90 snapshots we see an improvement over the MM TI,

when one is possible, and very little change when the MM TI result is already

very good. The exception is thiophenol whose value is made worse when the

QM correction is applied. The correlation using the Zwanzig approach to add

a QM correction shows an improvement with an R2 of 0.99 when not including

the result for thiophenol (and 0.91 when it is). The max error is 0.6 kcal mol−1

(2.3 kcal mol−1) with an average error of 0.2 kcal mol−1 (1.0 kcal mol−1) and

an rms error of 0.3 kcal mol−1 (1.0 kcal mol−1). The results from the Zwanzig

equation using 180 snapshots agree less well with the experimental values, with

an rms error of 0.5 kcal mol−1 (1.0 kcal mol−1), however the correlation with

experiment is further improved with an R2 of 1.0 when not including the result for

thiophenol.

The Gaussian fit shows no improvement over standard TI using 90 snapshots. The

total max error of this approach is 8.8 kcal mol−1 (for thiophenol), with an rms

error of 4.0 kcal mol−1. This approach does retain a high correlation however,

with an R2 value of 0.97., which is improved when using 180 snapshots, now with

an R2 of 0.99. When the 180 snapshots are used the max error is reduced to 3.6

kcal mol−1 and the rms error is reduced to 1.8 kcal mol−1. These improvements

are likely due to the increased sampling performed when using 180 snapshots

which will produce coefficients for the Gaussian curve that better describe the

distribution.

The implicit solvation does surprisingly well, and substantially better for thio-

phenol, reducing the error in the QM corrected value from the experimental value
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from 2.3 kcal mol−1 to 0.1 kcal mol−1. The problem ligand is now 2-fluoroaniline,

which goes from an improvement in accuracy of 0.7 kcal mol−1, to a deterioration

in accuracy of 0.3 kcal mol−1. The max error here is 1.6 kcal mol−1, with an

average error of 0.7 kcal mol−1 and an rms error of 0.7 kcal mol−1.

5.2.6 Conclusions

In this study we have used an extended free energy cycle to calculate the relative

hydration energies using a quantum Hamiltonian. We have used an electrostatic

embedding approach to reduce the number of quantum waters required in the sim-

ulation, describing a solvation sphere of waters around the solute with quantum

mechanics and the remaining waters in the simulation cell with classical charges.

Interaction energies with a differing numbers of quantum water molecules were

calculated to obtain the optimal number to use in combination with electrostatic

embedding so that no discernable difference is observable from the full QM calcu-

lation. We have seen that quite a significant number of water molecules described

by QM are necessary to see convergence towards a full QM calculation. Using

200 waters is seen to be a good compromise between accuracy and computational

cost, and this number was used for the perturbation from the MM to QM descrip-

tion.

Using the Zwanzig equation with the interaction energies gives the best results

compared to experiment from the approaches investigated when 90 snapshots are

used. Increasing the number reduces the improvement, this is possibly due to

increased sampling of the high energy differences between the QM and MM ener-

gies. This is seen when the snapshot generated by the MM potential would not be

visited by the QM potential, leading to errors in the energies, and large interaction
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energy differences between the two methods. Since the exponential of the value

is used in the Zwanzig equation this can lead to a few unduly influential snapshots

being responsible for the majority of the computed free energy change. This can

be avoided by using large structural ensembles, or by removing high energy snap-

shots from the sample. Using a Gaussian fit was another possibility for correcting

for this phenomenon.

Although an improvement towards the experimental relative hydration energy is

ideal, this approach is actually obtaining a relative hydration energy that will be

closer to the value that would have been obtained if the mutation had been per-

formed completely by a QM approach. Errors from the results form this approach

and the experimental results can be due to approximations made in the QM cal-

culation, which can be reduced by increasing the quality of the QM calculations.

For the case of our DFT calculations, improvements could be made by using a

higher quality exchange-correlation functional.

The improvements that we see with respect to the R2 values are very marginal

(0.97 to 0.99) and with such a small sample it would be hard to say that it is

actually an improvement and not just noise. Ideally more ligand perturbations

would be performed to better judge the advantage of this method. Standard TI

also does quite well for these test systems. It would be interesting to apply this

method to small systems where TI in known to break.

This approach could be applied to protein-ligand complexes, however the compu-

tational cost is still quite prohibitive. Not only does it require the computational

cost of the TI approach, it also require long MD simulations to sample the phase

space of the entire molecule, and many expensive QM calculations at either end

of the free energy cycle in Figure 5.1.
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Figure 5.13: Schematic showing the four different ways the 180 snapshots were
divided into sets of 90 to estimate errors.
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Chapter 6

Extracting binding information

from the electron density and

molecular orbitals

When performing large-scale quantum mechanics calculations, the explicit treat-

ment of the electrons allows the calculation of properties dependent on the elec-

tronic distribution. Examples include the polarisation of a molecule on binding,

charge redistribution, or a breakdown of the contributions to the binding energy

into specific interactions.

This chapter will detail two such approaches, Natural bond orbital analysis, Hir-

shfeld density analysis, and their application to inhibitors of the cGMP-specific

Phosphodiesterase type 5 protein.



CHAPTER 6. EXTRACTING BINDING INFORMATION FROM THE
ELECTRON DENSITY AND MOLECULAR ORBITALS

6.1 Energy decomposition approaches (EDA)

6.1.1 Natural bond orbitals

Molecular orbitals (MOs) obtained from DFT are delocalised over the entire mole-

cule. Since each MO contains two electrons this means that the electrons are also

delocalised, and hence do not have any chemical interpretation. A natural bond

orbital (NBO) [129, 130, 131] is a localised orbital providing an optimal represen-

tation of a chemical bond between two atoms. The NBOs are one of a sequence of

natural localised orbital sets that include “Natural Atomic Orbitals” (NAO), “Nat-

ural Hybrid Orbitals” (NHO), “Natural Bonding Orbitals” (NBO) and “Natural

(semi-)Localised Molecular Orbitals” (NLMO). These natural localised sets are

intermediates between atomic orbitals and molecular orbitals.

NBO theory allows the construction of hybrid atomic orbitals which are numeri-

cally optimised to give the best description of the chemical environment. These

hybrid atomic orbitals are called natural hybrid orbitals (NHOs), they are gener-

ated from a linear combination of atomic orbitals (AOs) of the atom on which

they are centred. For example, the hybrid orbital on a Carbon pointing towards a

Hydrogen, hC1→H1(r), would be,

hC1→H1(r) =

NC1∑
i=1

ciχi(r), (6.1)

where χi are the AOs on the Carbon, and ci are the coefficients, summed over all

atomic orbitals on the Carbon.

Unlike AOs, NHOs are directional and point towards the atom they are bonded

to. In traditional chemistry a C-H bond would consist of an ‘sp3’ hybrid orbital
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Figure 6.1: Examples of NBOs of methylamine. The left picture shows a C-H
bond, where the NHO on the Carbon is an sp2.84. The middle shows an N-H bond,
where the NHO on the Nitrogen is an sp2.55. The right shows a Nitrogen lone pair
with an sp6.72 hybrid orbital.

based on the Carbon and an ‘s’ AO on the Hydrogen. However, in NBO theory the

hybridisation is optimised to take into account the chemical environment of that

bond (now derived from ci), and so moves away from idealised Lewis structure.

An example of these hybrid and natural bond orbitals for methylamine are shown

in Figure 6.1. The C-H NBO shown on the left in Figure 6.1 is made from an

‘sp2.84’ on the Carbon and an ‘s’ on the Hydrogen. The N-H NBO shown in the

middle of Figure 6.1 is made from an ‘sp2.55’ on the Nitrogen and an ‘s’ on the

hydrogen. The electron lone-pair of the Nitrogen shown on the right of Figure 6.1

is a ‘sp6.72‘ hybrid orbital.

NBOs are then a Linear combination of these NHOs from only two atoms involved

in a chemical bond. For example, the NBO for the C-H bond shown in Figure 6.1

is made by,

Ω(C1 −H1) = 0.77843hC1→H1(r) + 0.6204hH1→C1(r). (6.2)
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NBO theory gives the best possible NBOs in the sense that they minimise the en-

ergy. They are however, by definition, approximations to the exact orbitals, which

are the delocalised MOs. NBO-based properties have been found to converge

rapidly to well-defined numerical limits, independently of the basis set used to

approximate the wavefunction [129].

Natural Lewis structures

The “Lewis-structure” model [132] of a molecule is the traditional way of viewing

a molecule, made up of chemical bonds sharing electron pairs, and lone-pairs of

electrons. The description of the electronic structure in terms of NBOs is consis-

tant with the Lewis picture of a chemical bond. The NBO approach produces two

valence-shell NBOs: a Lewis-type “in-phase” NBO, and a corresponding non-

Lewis “out-of-phase” NBO (which is unoccupied in the Lewis-structure picture).

Lewis-type NBOs include one-centre core, lone pair, and two-centre bond orbitals,

whilst non-Lewis sets include unoccupied lone pair and Rydberg orbitals as well

as valance antibonds.

EDA by 2nd-order perturbation theory involving NBOs

It is possible to obtain quantitative estimates of the strength of specific acceptor-

donor NBO interactions. This analysis is carried out by examining all possible

interactions between “filled” (donor) Lewis-type NBOs and “empty” (acceptor)

non-Lewis NBOs, and estimating their energetic importance by 2nd-order per-

turbation theory. Since these interactions lead to donation of electrons from the

localised NBOs of the idealised Lewis structure into the empty non-Lewis orbitals

(and thus, to departures from the idealised Lewis structure description), they are
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referred to as ”delocalisation” corrections to the zeroth-order natural Lewis struc-

ture. For each donor NBO (i) and acceptor NBO (j), the stabilisation energy E(2)

associated with delocalisation is estimated as,

E(2) = ∆Eij = qi
F (i, j)2

εi − εj
, (6.3)

where qi is the donor orbital occupancy, εi and εj are diagonal elements (orbital

energies), and F (i, j) is the off-diagonal NBO Fock matrix element.

NBO calculations with ONETEP

A recent development has interfaced the ONETEP program with the NBO 5 anal-

ysis package [133] in order to perform NBO analysis of large systems containing

thousands of atoms [134]. In this approach the NGWFs are transformed into or-

thogonal natural atomic orbitals (NAOs), the linear combination of which create

NHOs, and then finally NBOs which are obtained from the NBO 5 analysis pack-

age. Using ONETEP, NBO analysis can be performed within a localised region

of the system in such a way that the results are identical to an analysis on the

full system. In this manor, interactions in a particular region of chemical interest,

such as the active site of a protein, can be investigated, whilst fully accounting for

long-range electrostatic effects from the entire system.

6.1.2 Density analysis

The view of molecules as combinations of atoms being held together by chemical

bonds is prominent and successful in all fields of chemistry. One of the most

straightforward and clear-cut schemes for partitioning the electron-density is the
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Hirshfeld population analysis.

The Hirshfeld approach and iterative Hirshfeld approach

This approach was originally proposed to obtain reasonable partial charges on

atoms [135]. This was done by generating a “promolecule”, which is a sum of the

atomic densities of the individual atoms, and using it to determine the contribution

of individual atoms to the density in the molecule. Another use of this approach

is to find the change in electronic density when atoms (or molecules) combine to

gain a qualitative understanding on the electron redistribution.

For a protein-ligand system, the electronic density of a promolecule is defined

as,

npro(r) = nrec(r) + nlig(r), (6.4)

where nrec(r) is the density of the receptor, and nlig(r) is the density of the ligand.

A sharing function is then defined as,

wX(r) =
nX(r)

npro(r)
, (6.5)

where X denotes either the ligand or receptor density. The density of the bonded

fragment is then,

nb.X(r) = wX(r)ncom(r), (6.6)

where ncom(r) is the density of the complex. Density deformations can be calcu-

lated by,

∆nX(r) = nb.X(r)− nX(r). (6.7)

The charge gain/loss (q) on the fragment can then be calculated by integrating

174



6.1. ENERGY DECOMPOSITION APPROACHES (EDA)

over space,

q =

∫
∆nX(r)dr. (6.8)

A positive value of q would indictate charge gain upon binding, and a negative

value would indicate charge loss.

An issue with the Hirshfeld approach is the arbitrariness in the choice of the pro-

molecule, which effects the partial charges produced by this method. An extension

to the Hirshfeld approach to solve this issue is the Iterative Hirshfeld approach

[136]. In this approach the aim is to obtain “pro-atom” densities that have the

same number of electrons as the atomic partitions in the molecule. This method

has been shown to obtain atomic charges that are less basis set dependent than the

original approach.

Voronoi deformation density

A similar approach to Hirshfeld’s is the Voronoi deformation density (VDD) [137],

QA = −
∫

Voronoi cell A

(
n(r)−

∑
B

nB(r)
)
dr, (6.9)

where QA is the charge on atom A of the molecule. The Voronoi cell of atom

A is defined as the compartment of space bounded by the bond midplanes on

and perpendicular to all bond axes between nucleus A and its neighboring nuclei.

It is therefore the region of space that is closer to atom A than any other atom.

n(r) is the electron density of the molecule and
∑

B nB(r) is equivalent to the

promolecule. QA has a straightforward interpretation, it is the amount of charge

that flows into (QA < 0) or out of ( QA > 0) the Voronoi cell of atom A due to

chemical interaction in the molecule.
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6.2 Phosphodiesterases

Phosphodiesterases (PDEs) comprise a large family of enzymes that catalyse the

hydrolysis of cyclic adenosine mono-phosphate (cAMP) or cyclic guanosine monophos-

phate (cGMP) and are implicated in various diseases. cAMP and cGMP are ubiq-

uitous second messengers that mediate biological responses to a variety of extra-

cellular cues, including hormones, neurotransmitters, chemokines, and cytokines.

Increased concentration of these cyclic nucleotides results in the activation of pro-

tein kinase A and protein kinase G. These protein kinases phosphorylate a vari-

ety of substrates, including transcription factors and ion channels, which regu-

late a myriad of physiological processes, such as immune responses, cardiac and

smooth muscle contraction, visual response, glycogenolysis, platelet aggregation,

ion channel conductance, apoptosis, and growth control. There are at least 11

members of the Phosphodiesterase superfamily [138]. Drugs for this family can

be non-selective PDE inhibitors such as caffeine and pentoxifylline, or highly spe-

cific to a certain PDE isotype, such as Vinpocetine for PDE1, Ibudilast for PDE4,

Sildenafil for PDE5, and Papaverine for PDE10.

Card et al [139] reported the cocrystal structures of PDE4B, PDE4D, and PDE5A

chimera in complex with ten known inhibitors to try to define some of their com-

mon and selective features. Through this study they revealed two common fea-

tures of binding in PDEs which define all known PDE inhibitors. They found

that selectivity of inhibitors towards different members of the PDE family can be

achieved by exploiting the differences in shape of the hydrophobic binding cavity

near the glutamine. The inhibitors generated in this study, of drastically different

chemotypes, have a highly conserved binding mode. They share a core binding

site that can be characterised by H-bonds to an invariant glutamine, and a planar
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ring held by a hydrophobic clamp. This clamp is formed by a pair of conserved

hydrophobic residues: A phenylalanine with an off-set face to face interaction

with the main aromatic ring of the inhibitor, and a valine/leucine/isoleucine that

interacts at the centre of the ring from the opposite side (These interaction are

depicted in Figure 6.3). They conclude that all inhibitor scaffolds have the same

interactions that can be split into three parts: the interactions with the metal ions

through a water network, the H-bond interactions with the glutamine, and the hy-

drophobic interactions with residues lining the pocket. They state that the design

of new drugs for PDEs should take advantage of these three interaction. By the

addition of new functional groups onto ligand scaffolds that meet these binding

criteria, they believe greater selectivity can be introduced for inhibition of specific

PDEs.

6.3 PDE5

PDE5 (cGMP-specific Phosphodiesterase type 5) specifically targets cyclic guano-

sine monophosphate (cGMP), which is a purine second messenger, and is regu-

lated by the synthesis and degradation of GMP. The PDE5 isoform is expressed

in smooth muscle tissue, including the rod and cone photoreceptor cells of the

retina, but most prominently the corpus cavernosum found in the penis/clitoridis.

The inhibition of the PDE5 enzyme causes the concentration of cGMP to increase

which leads to a reduction in the amount of calcium, resulting in smooth mus-

cle relaxation, and increased sexual arousal. This cycle is shown in Figure 6.2.

The PDE5 inhibitor Sildenafil (Viagra) provides an effective treatment for erectile

dysfunction [140]. Sildenafil has also been shown to have positive effects in the
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Figure 6.2: Cycle of cGMP in smooth muscle [7].

treatment of heart failure, systemic hypertension and Vascular disease.

Despite the clear utility of these compounds, one potential drawback is cross-

reactivity with the closely related PDE6 and PDE11. Interest in PDEs as molec-

ular targets of drug action has grown with the development of isozyme-selective

PDE inhibitors. These offer potent inhibition of the selected isozymes without the

side-effects that can be caused by nonselective inhibitors.

PDE5 is composed of 3 functional domains: an N-terminal cyclin fold domain, a

linker helical domain and a C-terminal helical bundle domain. The active site is

a deep pocket at the junction of the 3 domains and is lined with highly conserved

residues between the different isotypes of PDE. The active site can be split into

three pockets; A metal binding pocket, a solvent-filled pocket, and a pocket con-

taining a hydrophobic clamp (VAL250 and PHE 288) and a selective glutamine

(GLN 285), shown in Figure 6.3. The metal site is at the wider end of the pocket.

It is a binuclear metal centre that contains highly conserved polar and hydrophobic
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Figure 6.3: PDE5 cavity highlighting the three regions in the binding cavity. A
metal binding pocket (Zn2+ and Mg2+), a solvent-filled pocket, and a pocket con-
taining a hydrophobic clamp (made from VAL250 and PHE 288) and a selective
glutamine (GLN 285).

residues that coordinate to these metal ions. The first metal is a Zinc ion (Zn2+)

and the second is a Magnesium ion (Mg2+). The Zinc is coordinated to two his-

tidines, two apartates and two water molecules. The Magnesium is coordinated

to five water molecules and one of the aspartates the Zinc binds with. One of the

water molecules bridges the two ions and is believed to be a hydroxide ion [141]

(HO−).

The pharmacological interest in this target protein has lead to a number of compu-

tational studies attempting to gain greater insight into the reaction mechanisms of

the protein with its natural substrate, and towards reducing the expense involved

in drug discovery projects.

O’Brien et al [142] used all-quantum hybrid calculations with ONIOM(B3LYP/6-
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31G(d):PM3MM) [142] to accurately describe the interactions of PDE5 with cGMP.

They concluded that the preference of cGMP over cAMP for PDE5 is due a num-

ber of factors. This preference comes mainly from the fixed orientation of a

consevered glutamine reside (Gln 817) together with the fixed orientation of a

nonconserved glutamine residue (Gln 877). cGMP has stronger hydrophobic in-

teraction, having a near parallel alignment between Phe 820 and the guanine base

suggesting favourable pi stacking, in contrast to cAMP that is off by 23◦. The

deselection of cAMP is enhanced by an energy penalty that arises due to a steric

clashes with Gln 775 and Gln 817 at the back corner of the pocket.

Zagrovic et al [143] studied the thermodynamics and mechanics of PDE5 selec-

tive inhibitors Sildenafil and Vardenafil. Through the use of molecular dynam-

ics of PDE5 with the inhibitors bound and unbound, they suggest a mechanism

in which two loops surrounding the binding pocket execute sizable conforma-

tional changes, clamping the ligand into place. They used the GROMOS package

for their MD simulations. The complex was solvated with the SPC water model

[69] and the GROMOS 45A3 force field [144] was used to describe the system.

They noted that there were changes in the coordination’s of the divalent ions and

changes to the motions of PDE5 when the ligand was bound. They went on to per-

form thermodynamic integration (TI) and single-step perturbation (SSP) to calcu-

late the relative binding free energies of the two ligands plus demethyl-vadenafil.

TI was used to check the quality of the force field for describing the energy of

this system. Their TI results accurately predicted the experimental trend in lig-

and binding affinities. However, the results obtained from SSP were at odds with

both the experimental and the TI results, suggesting poor convergence of the SSP

approach.

180



6.3. PDE5

Work on modelling novel tetrahydro-β-carboline derivatives with PDE5 inhibitory

and anticancer properties was carried out by Mohamed et al [145]. As well as

synthesis of the novel compounds, docking was carried out with GOLD. Three

independent docking experimenters were carried out using three different scoring

functions in GOLD (GoldScore, ChemScore, and ASP) [90, 91]. 10 poses for

each compound were generated for each function, then rescored with the other

two functions and further scored using DrugScoreCSD [92] and DrugScorePDB.

The final score for each pose was a consensus calculated from the mean of the 5

scoring methods. They concluded that docking accurately differentiated between

active and inactive analogues and revealed conformational, steric, and lipophilic

requirements for potent inhibition of PDE5. Many of the derivatives they found

showed some low potency inhibition of the growth of MDA-MB-231 breast tu-

mour cell line.

Niinivehmas et al [146] presented an improvement to the negative image-based

(NIB) screening approach. PDE5 was chosen as the target protein to improve

the method with electrostatic information since the binding site contains both po-

lar groups and coordinated water molecules. The ligand-shape and the protein

structure-based virtual high throughout screening (vHTS) methods were com-

pared using this protein. The top 5% of the ranked results were rescored using

MM-GBSA to estimate the binding free enegies. MD simulations were ran in

AMBER using the ff03 force field to describe the protein, gaff to describe the lig-

and, and used the TIP3P water model to solvate the system. Starting structures

for the ligands were taken from poses generated by GLIDE [147]. They conclude,

that with the improvements made to the NIB screening approach, in combination

with MM-GBSA, the enrichment is taken to a level that is desired to keep the costs

of drug discovery projects within reasonable limits.
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The PDE5 inhibitors chosen in this study were first presented by Haning et al

[148]. They synthetically prepared molecules based on a number of different lig-

and scaffolds to characterise the structure-activity relationship (SAR) trends. The

scaffolds they used were the known 3H-imidazo[5,1-f][1,2,4]triazin-4-ones and

pyrazolopyrimidinones, and a new iosomeric imidazo[1,5-a][1,3,5]triazin-4(3H)-

ones, which they identified as a new PDE5 inhibitor with oral efficacy.

6.3.1 MD simulations

The 1XP0 crystal structure of the PDE5 complex was checked and protonated in

the MOE [104] program. MD simulations were carried out using the AMBER10

[54] package, with the ff99SB [105] forcefield used for the protein and the gener-

alised AMBER forcefield [59] (gaff) used to model the ligands, the metal ions and

the hydroxide ion. The gaff parameters for the Zn2+ ion where obtained through

personal correspondence [149]. Ligand charges were calculated with the AM1-

BCC method with the antechamber tool in AMBER10. The charges of the met-

als and the hydroxide where set to their formal charges, +2 and -1 respectively.

The system was explicitly solvated in the TIP4P water model [70], keeping all

crystallographic waters. This resulted in a total of 13333 water moleclues in the

system.

The system was equilibrated using the following protocol. Hydrogens were re-

laxed with restraints placed on all heavy atoms in the complex and solvent, before

relaxing the solvent with restaints only on the complex. The system was heated

to 300 K over 200 ps, still restraining the heavy atoms of the complex, with the

NVT ensemble. Then ran for a further 200 ps with the NPT ensemble at 300 K in

order to equilibrate the solvent density. This was cooled over 100 ps to 100 K and
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Figure 6.4: PDE5 energies from the last equilibration step. Frames recorded every
0.5 ps.

a number of relaxations were ran, reducing the restraints on the heavy atoms in

stages (1000, 500, 100, 50, 20, 10, 5, 2, 1, 0.5 kcal mol−1Å−2). Finally the system

was reheated to 300 K with no restraints over 200 ps and then for a further 200 ps

at 300 K with the NPT ensemble. At the end of this it was confirmed that the water

density in the box was stable and energies converged to oscillate about a constant

value (Figure 6.4). MD simulations used the Langevin thermostat [67], the par-

ticle mesh Ewald sum (PME) for the electrostatic interactions and the SHAKE

algorithm [65] to constrain hydrogen-containing bonds allowing a time-step of 2

fs.

This system is more complicated than the T4 lysozyme previously mentioned. It
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is over twice the size containing almost 5800 atoms. It has two metal ions in the

binding cavity and a host of structurally important water molecules that must be

accounted for in the MD simulation, one of which is a hydroxide ion bridging the

metal ions. A production MD simulation was ran for 50 ns in the NPT ensemble

using the Langevin thermostat, PME, and a timestep of 2 fs.

During the course of the 50 ns MD simulation the ligand was seen to move very

little. The two residues that make the hydrophobic clamp (Phe288 and Val250)

also showed very little movement. The RMSD of Phe288 stays around a value

of 0.4 Å form the first frame (Figure 6.5). Val250 has two distinct structures

shown by the RMSD, one at around 1 Å and another at around 1.5 Å (Figure

6.6). These correspond to a swap of the γ1 and γ2 Carbons, having very little

change in the actually position of the side chain. The Gln285 residue, in which

two hydrogen bonds are formed with the ligand, showed more movement than

the other important pocket residues. It has two distinct structures, one with an

RMSD of around 0.3 Å, and the other with an RMSD of around 1.1 Å, as shown in

Figure 6.7. These two structures show the C=O and the N-H of the glutamine both

pointing at the ligand, generating two hydrogen bonds, and a switch of side chain

that points the C=O in the opposite direction, leaving the NH2 group pointing at

the ligand. This is shown in Figure 6.8.

During the simulation the interaction of the Nitrogen lone pair with a water molecule

remains fairly constant. However, the water molecule involved in the interaction

is not constant. The water molecules seem to be quite free to move in and out of

this end of the cavity, although there is always a water molecule in this position.

This might suggest that this water molecule could be easily displaced with an ad-

ditional mutation of the ligand to take advantage of the polar interactions that a
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Figure 6.5: RMSD of Phe288. Frames recorded every 10 ps.

Figure 6.6: RMSD of Val250. Frames recorded every 10 ps.
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Figure 6.7: RMSD of Gln285. Frames recorded every 10 ps.

water in this position benefits from.
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Figure 6.8: The ligand and interacting residues of the protein, showing the two
orientations of Gln285. The ligand Carbons are coloured grey and the protein
residue Carbons in cyan.
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Figure 6.9: PDE5 inhibitors based on a 2-ethoxyphenyl heterocyclic scaffold. Top
left: L10 - IC50 1 nM. Top right: L14 - IC50 27 nM. Bottom left: L15 - IC50 50
nM. Bottom right: L18 - IC50 300 nM.

6.4 Binding interactions in PDE5

Four ligands were selected from the ligands described by Hanning et al [148]

based on a 2-ethoxyphenyl hetrocyclic scaffold. They were chosen for their range

of IC50 values (varying from 1 nM to 300 nM) and their similar structures, and are

displayed in Figure 6.9. The ligand labels have been taken from the numbering

system in Table 1 of the Hanning et al paper.
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6.4.1 DFT calculation set up

For the NBO and electron density analysis calculations initial structures were

taken from the crystal structure of 1XP0. The PDB was checked and proto-

nated with the MOE [104] program and side chains and ligand relaxed using

the MMFF94 force field [60]. From this relaxed structure the ligand was man-

ually mutated into the other ligands, keeping all common atoms in identical posi-

tions. ONETEP calculations used a kinetic energy cut-off of 800 eV with the PBE

exchange-correlation functional. NGWF radii were 7.0 a0 for all atoms, with 1

NGWF for Hydrogen, 4 NGWFs for Carbon, Oxygen, Nitrogen and Magnesium,

and 9 NGWFs for Sulphur and Zinc. The atomic solver in ONETEP [150] was

used to generate better starting NGWFs for the metal ions and standard STOs

where used to initialise the NGWFs for all other atoms. Although the entire sys-

tem was included in the calculation, the NBOs were generated only for the atoms

of a subsystem containing the active site (pocket residues and ligand).

NBO calculations were also carried out using the GAMESS-UK program. This

was performed on a much smaller system containing only the ligand and an im-

portant water molecule hydrogen bonding to the 5 membered hetrocyclic ring the

mutations occur in (shown in Figure 6.10). The GAMESS-UK calculations were

done at PBE/TVZP and B3LYP/TVZP levels of theory.

6.4.2 Results

Hirshfeld density analysis was performed on the four ligands bound in the pocket.

Fig. 6.11 shows density deformations of ligand 14 and the receptor over the entire

system, and focused on the pocket, showing the hydrogen bonds in green. This
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Figure 6.10: Minimal system for NBO calculations with GAMESS-UK (example
shown is for L10).

depicts the charge redistribution when the ligand binds, showing the extent of

polarisation that the ligand and receptor experience. It is interesting to note that

this redistribution of charge in not localised to the pocket but is seen on peripheral

charged residues, some at a distance from the binding cavity greater than 10 Å.

Integrating the density deformations can give a qualitative insight of charge trans-

fer that occurs on ligand binding. The unbound ligands have a charge of 0. The

charges displayed in Table 6.1 suggest that the ligands are, overall, electron ac-

ceptors (an increase in the total number of electrons on the ligand). The structural

differences between these ligands occur around the H-bond between the water and

the lone-pair of electrons on the common Nitrogen in the 5 membered hetrocyclic

ring. Assuming all other interactions are the same between the different ligands

and the receptor, we can focus on just this interaction. For this H-bond the ligand

acts as an electron donor (giving electrons). Since overall the ligand is an electron

acceptor (gaining electrons), the stronger this H-bond, the lower the integrated

density deformations (charge of the ligand) would be. This is due to more charge

being donated from the ligand to the receptor, and this is indeed the trend we ob-
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Figure 6.11: Density denformation on the ligand and receptor (example is for L14
bound in the cavity). The top panel shows the deformation density over the entire
protein. The bottom panel shows a close up of the pocket.
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Table 6.1: Intergrated density deformations giving a qualitative overview of elec-
tron gain/lose on the ligand (positive is electron gain).

Ligand L10 L14 L15 L18∫
∆nlig(r)dr 0.016 0.017 0.029 0.042

Table 6.2: Strengths of the hydrogen bond between the water molecule and the
Nitrogen lone pair in the ligands (LigN–HOH). Energies in kcal mol−1.

Ligand L10 L14 L15 L18
GAMESS-UK (B3LYP/TZVP) 5.0 5.2 5.1 4.3
GAMESS-UK (PBE/TZVP) 4.7 4.9 4.9 4.0
ONETEP (PBE / 800 eV) 13.7 14.0 13.7 11.9
ONETEP (PBE / 1200 eV) 13.8 14.1 13.8 12.0

serve in Table 6.1; with the strongest binder, having the smallest charge, and the

weakest binder, having the largest charge.

NBO calculations were first performed on the minimal system of the ligand hy-

drogen bonding with a water molecule, as shown in Figure 6.10. The strength of

the interaction of the nitrogen lone-pair with the H-O anti-bonding orbital, shown

in Figure 6.12, was obtained by the 2nd order perturbation estimate and are pre-

sented in Table 6.2. The results from GAMESS-UK are fairly independent of the

exchange-correlation functional, or the basis set used in the ONETEP calculation.

We see a reasonable agreement with the more qualitative overview from the Hir-

shfeld analysis, with the weakest binder having the weakest bond. The results

from GAMESS-UK are closer to the expected strength of a hydrogen bond, at

around 5 kcal mol−1, however ONETEP shows an excellent qualitative correlation

with these results, with an R2 value of 0.97 between the GAMES-UK PBE/TZVP

results and the ONETEP PBE/800 eV results.

The strength of the other hydrogen bonds between the ligand and the protein

were obtained with ONETEP only, since the entire system is far too large to use
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Figure 6.12: NBOs of the hydrogen bond between the ligand and a water
molecule, as obtained form ONETEP calculations. The blue isosurface indicates
the electron donor: the lone pair on the Nitrogen. The orange and red isosurfaces
indicate the electron acceptor: the H-O antibonding NBO.
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Table 6.3: Estimated E(2) energies of the hydrogen bonds between the ligands
and the receptor. Energies in kcal mol−1.

Interaction L10 L14 L15 L18
LigN—HOH 14.0 14.2 13.9 12.4
LigO—H-N(GLN) 17.9 17.7 17.9 18.2
LigN-H—O(GLN) 16.4 16.4 16.5 16.4

GAMESS-UK (5799 atoms). Figure 6.13 displays the electron density of the en-

tire 5799 atom system and the NBOs for the hydrogen bonds between L10 and

the PDE5 cavity. The strengths of these interactions are presented in Table 6.3.

When the rest of the protein is taken into account when the NBOs are generated,

the strengths of the hydrogen bond between the Nitrogen lone-pair and the water

molecule increase by a small amount (less than 0.3 kcal mol−1), but retain the

same trend. The other hydrogen bonds between the ligand and the receptor (the

Gln 285 shown in Figure 6.3) have very similar strengths for the four ligands,

varying by a maximum of 0.5 kcal mol−1. In contrast to the first hydrogen bond

that varies by up to 1.8 kcal mol−1.

To estimate ligand binding affinities we need more than just a measure of the

strength of the polar interaction in the pocket. We also require an estimate of the

hydrophobic interactions, the desolvation energies of the ligand, and the entropies

of binding. Since the ligands in this study are so structurally similar, entropy

can be assumed to cancel. Hydrophobic interactions are estimated by calculating

the binding energy of the empirical dispersion correction in ONETEP [5]. The

solvation energies of the four ligands were calculated using our implicit solvent

model [78] in ONETEP. These results, along with the H-bond strengths for the

Nitrogen–water interaction from Table 6.3, and the experimentally derived IC50

values, are displayed in Table 6.4. The IC50 value is a measure of the effectiveness

of a compound in inhibiting biological function. The value represents the amount

194



6.4. BINDING INTERACTIONS IN PDE5

Figure 6.13: NBOs of the hydrogen bonds between the ligand and the receptor.
In the top picture the protein structure is shown as cartoon, with the subregion
in which the NBOs were calculated shown as lines, with coloured isosurfaces
indicating some of the NBOs. The transparent contour is the electron density of
the entire system as obtained with ONETEP. The bottom picture shows the NBOs
involved in the hydrogen bonds between the ligand and the glutamine residue,
and the ligand and the water molecule. The blue and green isosurface indicates
the electron donor: the lone pairs on the Oxygen. The orange and red isosurfaces
indicate the electron acceptor: the H-N antibonding NBO.
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Table 6.4: Solvation energies (kcal mol−1), E(2) (kcal mol−1) and IC50 values
(µM) of ligands.

Ligand L10 L14 L15 L18
Solvation energy of ligand -5.2 -5.0 -8.6 -11.6
∆Edispersion -49.8 -49.8 -45.9 -45.0
E(2) LigN–HOH 14.0 14.2 13.9 12.4
IC50[148] 1 27 50 300

of a drug needed to inhibit the target by 50%. The smaller this value the more

effective the drug.

The hydrophobic interactions, measured by ∆Edispersion, for ligands 10 and 14 are

the same strength, while ligand 15 is weaker by 3.9 kcal mol−1, and ligand 18 is

weaker by 4.9 kcal mol−1. The change in hydrophobic interaction strength could

be from the removal of the methyl at the top of the 5 membered hetrocyclic ring.

In the case of ligand 15 this is mutated to a Hydrogen, whereas for ligand 18 this

is removed entirely. This would suggest some additional favourable interactions

from this site. Looking at the solvation energies, L10 and L14 are very similar,

however, L15 has a solvation energy that is larger by 3.6 kcal mol−1, and L18 is

much larger again with a value of -11.6 kcal mol−1, 6.6 kcal mol−1 larger.

Using a combination of the deformation densities (with a chemical interpretation

of the results), the strengths of the individual H-bond interactions that the ligands

have in the pocket, as well as the hydrophobic interactions, and the ligand solva-

tion energies, expected trends can be derived for ligand relative binding affinities.

For these four ligands, with the amount of data we have collected, the predicted

ligand binding affinities would be ranked,

L10 ∼ L14 > L15 >> L18,
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which agrees well with the experimental IC50 values in table 6.4.

These calculations were only performed on a static structure, with side-chains and

ligand position relaxed from the crystal structure using the MMFF94 force field

in MOE. To study the change of these interactions through time, MD simulations

must be ran and multiple conformations analysed at different points in time.

6.4.3 Conclusions

We ran large-scale QM calculations on the PDE5 protein with 4 different ligands

bound in the cavity. Calculations were started from the relaxed crystal structure

of PDB 1XP0 and the ligand was mutated into three very chemically similar lig-

ands. The electron density was analysed using the Hirshfeld approach to gain a

qualitative measure of the interactions and charge redistributions when a ligand

binds. This showed charge redistribution across the entire protein when the lig-

and bound, not just localised to the binding cavity. We also gained a qualitative

view of the charge transfer upon ligand binding, with charges calculated on the

bound ligands indicating that all the ligands always gain charge when they bind.

To gain a more quantitative understanding of the polar interactions of the ligands

with the receptor, NBOs were generated and 2nd order perturbation estimates of

the hydrogen bond strengths were performed. The ligands all made two hydrogen

bonds with Gln285 in the cavity, these were found to have equivalent strengths for

the four ligands. The differences were most evident for the hydrogen bond made

between the lone pair on the common Nitrogen of the hetrocyclic ring where the

ligand mutations occurred, and a water molecule. For this hydrogen bond, we

saw that the weakest binder also had the weakest bond, smaller by 1.8 kcal/mol.

Looking at the hydrophobic binding energy, as calculated in ONETEP, L15 and
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L18, where a methyl group has been removed, have smaller binding energies.

Reduced by 3.9 kcal mol−1 when a Hydrogen is present instead of the methyl,

and reduced by 4.9 kcal mol−1 when nothing replaces the methyl. The calcula-

tion of the ligand solvation energies (calculated in ONETEP) further distinguished

the trends in ligand binding affinity, with the weakest experimental binder having

the largest computed desolvation energy. Using the data acquired from these two

approaches, in combination with the binding dispersion energies and the ligand

solvation energies, the computed ligand rankings reproduced the experimentally

observed ligand rankings.

In this study only a small test set was used, however, these preliminary results

look quite promising. Overall this method gives a qualitative view of the ligand

binding affinities, but has the potential to lead to a greater understanding and an

explanation of the trends observed. Most importantly these methods are based on

ab initio calculations and were able to give us information on the PDE example

without any prior empirical parameterisation. Therefore we expect that this ap-

proach is fully transferable to any biomolecular system, and as a result, could be

very useful towards drug design and optimisation.
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Conclusions

This research project was aimed at utilising large-scale quantum mechanics sim-

ulations to study protein-ligand interactions using the linear-scaling density func-

tional code ONETEP in combination with conformation sampling from MM meth-

ods. The applications of these approaches to various problems have been de-

scribed in Chapters 4, 5, and 6.

From this work we have shown that large-scale DFT calculations can be used to

obtain information on protein-ligand interactions. We have performed the first

large-scale full QM-PBSA calculations for protein-ligand binding free energy es-

timation. While the QM-PBSA approach is more rigorous than MM-PBSA, in

the sense that interaction energies are obtained from a calculation that explicitly

includes electronic polarisation, they appear to over-estimate the binding ener-

gies in vacuum, which results in errors in the free energies of binding in solution.

Although, as we have seen, ligand solvation energies are much more accurately

computed via the QM implicit solvation model. Thus, better MM-PBSA results

seem to come from fortuitous error cancellation between the overbound ligands
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and overestimated solvation energies. The overbinding from the QM calculations

could be overcome in future studies by using a more accurate exchange correla-

tion functional, such as for example hybrid functionals and/or a functional which

explicitly includes dispersion interactions. Due to the high cost of the quantum

calculations, and the limited computer resources we currently have, the ensemble

of structures we used here is not large enough to obtain converged results, but the

trends we see when comparing approaches are converged. The types of ligands

and protein considered here were common enough to be well-described by the

force field so the MM-PBSA approach performs very well. However, this QM-

PBSA method would be expected to perform better than MM-PBSA approaches

on systems which force fields would not describe very well (e.g. ligands with

unconventional functional groups).

The QM corrected thermodynamic integration calculations gave better relative

hydration energies compared with the experimental values than standard TI. Al-

though an improvement towards the experimental relative hydration energy is the

ideal result, this approach (in the limit of infinite sampling) is actually obtaining a

relative hydration energy that would have been obtained if the mutation had been

performed completely in a QM description. Errors seen in the trends compared to

experiment from these approaches appear to be mainly due to the inherent approx-

imations in DFT, such as the exchange-correlation functional chosen. For the case

of our DFT calculations, improvements could be made by using a higher quality

exchange-correlation functional.

As well as more accurate energies, there are also other advantages of large-scale

quantum calculations that have been explored in this work. Such as the abil-

ity to visualise natural bond orbitals (NBOs), densities, and potentials that are
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responsible for specific interactions and the quantitative estimation of these inter-

actions with energy decomposition approaches. Such approaches were applied to

the phosphodiesterase type 5 protein. The results from the NBO analysis of the

hydrogen bond interactions of the ligands with the protein, and the subsequent

energy decomposition using a second order perturbation estimate, were used in

combination with the binding dispersion energies and the ligand solvation en-

ergies. The computed ligand rankings reproduced the experimentally observed

ligand rankings. Overall this method gives a qualitative view of the ligand bind-

ing affinities, and leads to an understanding and explanation of the trend seen in

ligand binding.

This work, to our knowledge, has presented:

• The first application of large-scale full QM-PBSA calculations on a protein-

ligand system.

• The first QM EE calculations using hundreds of atoms in the QM region

combined with an extended QM corrected free energy cycle for the predic-

tion and improvement of relative hydration energies.

• The first use of large-scale QM calculations to generate NBOs of protein-

ligand interactions and full protein-ligand complex electron density analy-

sis.

The application of large-scale QM calculations to the three problems has shown

great potential for an increased understanding and increased accuracy in the com-

putational prediction of protein-ligand binding affinities. But most importantly,

these methods are based on ab initio calculations and were able to give us informa-

tion on the protein-ligand examples without any prior empirical parameterisation.
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We therefore expect that these approaches are fully transferable to any biomolec-

ular system, and as a result, could be very useful tools towards drug design and

optimisation.
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