The University of Southampton
University of Southampton Institutional Repository

Development of resonant inelastic x-ray scattering spectroscopy

Development of resonant inelastic x-ray scattering spectroscopy
Development of resonant inelastic x-ray scattering spectroscopy
This research focuses on the development of Resonant Inelastic X-ray Scattering spectroscopy (RIXS) as a tool in homogeneous catalysis by looking at 3d transition metal compounds and specifically Cr(salen) epoxidation catalysts. Previous studies have demonstrated the sensitivity of transition metal K-edge X-ray absorption pre-edge and edge features to their chemical environment, but the exact origins are unassigned. The aim of this study is to bring together a collection of complementary, and some novel, X-ray techniques to assign these features and obtain more detailed structural and electronic information on the systems under investigation.

Novel high energy resolution data on transition metal complexes have been obtained and the pre-edge region has been simulated with the FEFF9 multiple scattering code. The increase in spectral structure compared to normal XANES allows for a more detailed analysis and as such, provides detailed insights in the electronic properties. L-edge XAS data obtained using soft X-rays enabled the determination of crystal field parameters, which were compared with other X-ray (RIXS) and optical absorption techniques. The novel RIXS experiments provide L and K-edge spectra unaffected by lifetime broadening or background from the main absorption edge. 2D images of X-ray emission as a function of absorption are obtained, revealing the relationship between them and providing direct and detailed information on the presence and position of molecular orbitals. These 1s2p RIXS experiments make use of hard X-rays enabling in-situ experiments, which are important in the field of catalysis, making it a promising tool to monitor the changing electronics of the metal centre as well as ligand coordination during the catalytic process.

Whereas the electronic differences on the Cr metal as a function of salen ligand are not revealed by the current RIXS experiments, which is likely due to resolution issues, new preliminary insights in the different catalytic Cr intermediates of the epoxidation reaction have been obtained.
Hobbs, Sarah
2d35e5ff-a4ea-47a9-ba91-061732bb8ee9
Hobbs, Sarah
2d35e5ff-a4ea-47a9-ba91-061732bb8ee9
Tromp, Moniek
48c1ebbb-579c-42b6-83bb-7188c668b322

(2012) Development of resonant inelastic x-ray scattering spectroscopy. University of Southampton, Chemistry, Doctoral Thesis, 212pp.

Record type: Thesis (Doctoral)

Abstract

This research focuses on the development of Resonant Inelastic X-ray Scattering spectroscopy (RIXS) as a tool in homogeneous catalysis by looking at 3d transition metal compounds and specifically Cr(salen) epoxidation catalysts. Previous studies have demonstrated the sensitivity of transition metal K-edge X-ray absorption pre-edge and edge features to their chemical environment, but the exact origins are unassigned. The aim of this study is to bring together a collection of complementary, and some novel, X-ray techniques to assign these features and obtain more detailed structural and electronic information on the systems under investigation.

Novel high energy resolution data on transition metal complexes have been obtained and the pre-edge region has been simulated with the FEFF9 multiple scattering code. The increase in spectral structure compared to normal XANES allows for a more detailed analysis and as such, provides detailed insights in the electronic properties. L-edge XAS data obtained using soft X-rays enabled the determination of crystal field parameters, which were compared with other X-ray (RIXS) and optical absorption techniques. The novel RIXS experiments provide L and K-edge spectra unaffected by lifetime broadening or background from the main absorption edge. 2D images of X-ray emission as a function of absorption are obtained, revealing the relationship between them and providing direct and detailed information on the presence and position of molecular orbitals. These 1s2p RIXS experiments make use of hard X-rays enabling in-situ experiments, which are important in the field of catalysis, making it a promising tool to monitor the changing electronics of the metal centre as well as ligand coordination during the catalytic process.

Whereas the electronic differences on the Cr metal as a function of salen ligand are not revealed by the current RIXS experiments, which is likely due to resolution issues, new preliminary insights in the different catalytic Cr intermediates of the epoxidation reaction have been obtained.

PDF
__soton.ac.uk_ude_PersonalFiles_Users_lp5_mydocuments_Theses PDF files_Hobbs_Thesis_Final.pdf - Other
Download (5MB)

More information

Published date: 31 October 2012
Organisations: University of Southampton, Chemistry

Identifiers

Local EPrints ID: 349475
URI: http://eprints.soton.ac.uk/id/eprint/349475
PURE UUID: 3894c3c7-a01a-4524-8d94-f87734dceaa8

Catalogue record

Date deposited: 11 Mar 2013 12:09
Last modified: 18 Jul 2017 04:41

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×