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Abstract 

A multi-parameter optimization approach for a lightweight FRP composite 

triangular truss under nonlinear structural response constraints is presented in 

this paper. The composite truss exhibited bilinear behavior under three-point 

bending which was observed by both experimental and numerical investigation. 

Sensitivity analysis was conducted to evaluate the effects of geometric parameters 

on the flexural performance of the composite truss. A response surface, developed 

from a finite element analysis, was employed to replicate the outputs of nonlinear 

structural responses with respect to four key geometric parameters. Gradient-

based and Genetic Algorithm optimization processes were selected and 
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implemented from the MATLAB Optimization Toolbox. Final adjustments to the 

optimal design, obtained using MATLAB, were made according to the results of 

sensitivity analysis. The results show that significant improvement in terms of 

weight saving were achieved by adopting the proposed optimization design 

procedure. 
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1. Introduction 

Fiber reinforced polymer (FRP) composite materials offer potential savings in 

structural weight and their structural applications have increased due to their 

excellent specific stiffness, specific strength, sufficient durability, and reduced 

energy consumption [1]. Trusses, as an efficient structural form, have been widely 

used in civil engineering and industry while composite truss structures have been 

widely applied in advanced transportation technologies.  As an example, Schtüze [2] 

has used the triangular cross section lightweight carbon fiber composite truss in 

the Zeppelin airship. 

Recent developments in manufacturing technologies have allowed composite truss 

structures to be integrally fabricated using filament winding with the same 
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structural element repetitively appearing along the length. These new types of 

continuous filament FRP composite truss structures, also known as beam-like 

lattice structures, have attracted considerable attention due to their high efficiency 

in load distribution, long span, good integrity (few joints), and high specific 

stiffness and strength. An IsoTrussTM structure has been developed by Jensen et al. 

[3-5] whose manufacturing technique and mechanical properties have been 

researched over many years. Load transfer paths are mainly along the members of 

these truss structures. Continuous unidirectional FRP composite materials are 

particularly well suited for manufacturing these composite truss structures as the 

high directionality of unidirectional FRP composite materials allows the majority 

of material's stiffness and strength to be located and directed along the load 

transfer path. The high specific stiffness and strength of unidirectional FRP 

composite materials are fully utilized in these trusses, thus weight saving is 

achieved. 

Further weight savings of the FRP composite truss structures can be achieved by 

geometric optimization. Optimization design for composite structures is a difficult 

task because of the numerous design variables and state variables which have to 

be simultaneously taken into account. Optimization procedures of composite 

structure are often developed for specific applications for which the geometry of 

the structure is simple. This is mainly due to the fact that the explicit analytic 

expressions of structural response are available in these cases [6]. Structural 

responses, such as stress, strain, load and displacement, are usually employed as 

constraints in an optimization process. Industrial composite structures exhibit 

more complex geometries and loading cases in which designers have to use finite 
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element analysis (FEA) to obtain the structural response. For these structures, the 

approach of coupling optimization and finite element (FE) calculation is naturally 

adopted. Paluch et al. [6] and Walker et al. [7] have combined a finite element 

program and a genetic algorithm to optimize the ply thickness and orientation of 

composite laminated structure. Liu and Lu [8] have developed a multi-parameter 

optimization procedure for ultra-lightweight truss core sandwich panels by 

combining standard finite element analysis with structural system profile analysis 

and multi-factor optimization techniques. 

The method of combining finite element analysis (commercial FE code) with 

standard optimization process work well for cases where the structural responses 

are under static linear mechanical behavior allowing easy extraction of data 

automatically, using an optimization program. For structures with nonlinear 

mechanical behavior, the solution and extraction of structural responses becomes 

much more time consuming and difficult when using FEA. In addition, for problems 

associated with FE nonlinear solutions, convergence difficulties due to large 

deformations causing mesh distortion were encountered which led to failure or 

low efficiency of the optimization process. Consequently, new means were 

explored and developed to obtain the values of structural response for the 

optimization process. 

Researchers in the mid 1970s began to explore the use of approximation concepts 

as a device to reduce the number of structural analyses, and hence the total 

computational effort. Response surface methodology (RSM), as a robust global 

approximation method, is more capable of satisfactorily predicting structural 
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response over a wide range of design space [9]. RSM is a set of techniques that 

encompasses: 

(1) Designing a set of experiments that will yield adequate and reliable 

measurements of the response of interest; 

(2) Determining a mathematical model that best fits the data collected from the 

design chosen in (1), by conducting appropriate tests of hypotheses concerning the 

model's parameters; and 

(3) Determining the optimal settings of the experimental factors that produce the 

maximum (or minimum) value of the response. 

RSM was formally developed by G.E.P Box and K.B. Wilson et al. [10] from 1951 

and initially used to explore the relationship between the yield of chemical process 

and a set of input variables presumed to influence the yield. Since the pioneering 

work of Box and his colleagues, RSM has been successfully applied in chemical 

engineering, industrial development, biological research, and computer simulation 

[11]. Abu-Odeh et al. [9] has constructed the response surfaces of vertical 

displacement and three bending moment components at a point on a composite 

plate, which have been used in the optimization of a composite laminated plate, 

instead of an exact FE analysis, during constraint evaluation. Chen et al. [12] have 

combined the response surface method and a first order reliability method to 

calculate the safety index and failure probability. A discussion on the sensitivity of 

each variable that effects the reliability has also been included. A new method of 

experimental design has been proposed by Todoroki and Ishikawa [13] to obtain a 

response surface of buckling load of laminated composites. Lanzi and Giavotto [14] 
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have developed a multi-objective optimization procedure for the design of 

composite stiffened panels and the response surfaces have been used to 

approximate the post-buckling behavior of the composite stiffened panels. 

Previous optimization work employing response surface methods mainly focused 

on the composite laminated plates or stiffened panels. Limited studies have been 

performed on the long span composite truss structures under nonlinear structural 

response constraints. This paper proposes a multi-parameter optimization design 

approach combining the standard optimization program and a response surface 

methodology to minimize the structural weight of lightweight FRP composite truss 

structure under nonlinear structural response constraints. 

2. Design optimization framework 

This study has developed a multi-parameter optimization procedure of combining 

RSM and a standard program to optimize complex composite structures under 

nonlinear structural response constraints. The long span FRP composite truss with 

triangular cross section is taken as an instance to illustrate the proposed 

optimization procedure. 

The flow chart in Fig. 1 depicts the proposed design optimization framework for 

the complex composite structures with nonlinear structural response. To ensure 

the optimized result is practical, it is necessary to validate the numerical results by 

experimental studies before the FE model is formally employed. Further 

modification of the FE model is required until good agreement is achieved between 

the results of the experiment and FEA. A parametric modeling technique is 

adopted in building the FE model as it will facilitate the sensitivity analysis and 
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sampling steps that follow. Sensitivity analysis is performed to investigate effects 

of design variables on structural responses which will also provide a design 

guideline for choosing actual design variable values. RSM is used to design 

'numerical experiments' to collect sample points data as parsimoniously as 

possible corresponding to the whole design space. This while provides sufficient 

information to construct a response surface model as accurately as possible. The 

computation and extraction of the sample point data is the most time consuming 

work during the whole optimization process. However, for complex composite 

structures, significant time saving is still achieved compared with embedding the 

FEA into the optimization program, especially for nonlinear solutions. These 

sample points are then adopted to construct a response surface model. Errors 

between the structural responses predicted by the response surface model and 

FEA are then assessed. The accuracy of the response surface model can be 

improved by increasing sample points at specific regions of interest. When the 

response surface model is working with satisfactory accuracy it is then connected 

to some standard optimization programs (e.g. MATLAB Optimization ToolboxTM). 

Compared to the FE solution, RSM is an approximation method and some errors 

are inevitable. RSM based optimization often leads to results that are close to the 

true global optimum but may never reach this exact value. The optimized results 

may need to be adjusted, by referring to a sensitivity analysis, before a final 

optimal design is obtained. 

For the case of a triangular cross section lightweight FRP composite truss structure, 

four geometric parameters, circumscribing diameter of triangular cross section D, 

longitudinal member diameter d1, helical member diameter d2, and bay number N, 
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are simultaneously taken into account as design variables (see Fig. 2). Total length 

L is fixed. The same structural element 'lXl' repeats along the length direction on 

three sides in this composite truss structure. It is of practical interest that the 

structural weight W of the composite truss is considered as the objective to be 

minimized. In many applications, the critical condition for the long span composite 

truss structure is buckling under bending load. Thus the composite truss structure 

under three-point bending is considered as the critical loading condition. For many 

composite structural components it is desirable for them to withstand external 

loads without suffering excessive deformation. From this point of view, the 

ultimate load Lt and the displacement under this load St are taken as constraints. 

Consequently, the optimization design problem of minimizing structural weight of 

lightweight FRP composite truss structures subjected to nonlinear structural 

responses can be formulated as follows: 

minimize structural weight: 

W = f (D, N, d1, d2), (1) 

subject to ultimate load and displacement inequality constraints: 

Lt = g1 (D, N, d1, d2) ≥ Ltp, (2) 

St = g2 (D, N, d1, d2) ≤ Stp. (3) 

Geometry constraints are: 

Dl ≤ D ≤ Du, (4) 

Nl ≤ N ≤ Nu (N = 1, 2, 3, …), (5) 
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d1l ≤ d1 ≤ d1u, (6) 

d2l ≤ d2 ≤ d2u, (7) 

where f is objective function which can be written as: 
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ρL and ρH are the density of the longitudinal and helical members of the composite 

truss, respectively. g1 and g2 are performance functions [15], describing the 

relationship between design variables and structural responses, which are always 

evaluated by analytical or numerical techniques [16] in optimization processes. 

For ultimate load and displacement constraints, Ltp and Stp are prescribed a 

minimum and maximum allowable value respectively, chosen according to the 

practical application requirements. Symbols l and u in the geometry constraints 

denote the lower and upper bounds of the design variables which will be given 

based on the considerations of the feasibility of manufacturing process and the 

rationality of the composite structure. 

Applying the proposed design optimization framework to this practical case, three 

main research steps are included. 

1) A 6 m long, triangular cross section, GF/epoxy lightweight FRP composite truss 

specimen is made and tested under three-point bending. FEA corresponding to the 

experimental study is conducted simultaneously. Experimental and numerical 

results are compared. The critical structural responses, ultimate load Lt and 
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corresponding displacement St, are identified and extracted as constraints for the 

optimization loops. After confirming that a good agreement is achieved between 

the experimental and numerical results, a parametric FE model is built by APDL 

(ANSYS Parametric Design Language) and employed to perform sensitivity 

analysis. Effects of design variables D, N, d1, d2 on the objective function f and 

constraint performance (St, Lt) are obtained by sensitivity analysis. 

2) Instead of obtaining (St, Lt) by analytical or numerical techniques in the 

optimization loops, RSM is introduced to construct performance functions g1 and 

g2. This is a key step in proposed optimization approach and directly relates to the 

precision of final optimal design. Central composite designs (CCDs) method [11] is 

adopted to design 'numerical experiments', also known as sampling. Each sample 

is a combination of the four design variables (D, N, d1, d2) with different values. 

Limited numbers of samples selected from the entire design space are computed 

by commercial FE software ANSYS and (St, Lt) are extracted for each sample. All 

the samples (D, N, d1, d2) with corresponding (St, Lt) are then employed to build the 

full quadratic response surface model for g1 and g2. To evaluate the error between 

this approximation model and the FEA results, (St', Lt') predicted by g1 and g2 are 

compared to (St, Lt) calculated by ANSYS at each sample point and residuals are 

obtained. 

3) MATLAB Optimization ToolboxTM is employed to implement the optimization 

procedure. Performance functions g1 and g2 are used as constraint functions. Both 

the gradient-based and Genetic Algorithm optimizers [17] are chosen to solve this 

formulated mathematical optimization problem and optimized results are 

compared. Further validations of these optimal results are done for constraint 
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violations by FEA. Slight adjustments to the geometry may be needed to ensure 

these violations do not occur which can be based on the observations obtained 

from a sensitivity analysis to develop the final optimal design. 

3. Flexural properties of the composite truss 

3.1. Experimental and numerical study 

The composite truss specimen used in three point bending test has a total length (L) 

of 6 m, triangular cross section circumscribing circle diameter (D) of 348 mm, bay 

number (N) of 18, longitudinal member diameter (d1) of 8.5 mm and the helical 

member diameter (d2) of 5.2 mm. The total weight of the composite truss is 5.3 kg. 

The longitudinal members have an average density (ρl) of 2.092 g/cm3 and axial 

tensile modulus (E1) of 45.8 GPa, while helical members have an average density 

(ρh) of 2.099 g/cm3 and axial tensile modulus (E1) of 46.6 GPa. The composite truss 

specimen is fabricated from glass fiber (GF) reinforced epoxy in the form of a 

prepreg tow: 2400 tex alkaline free glass fiber roving, Bisphenol-A epoxy resin 

CYD-128 (epoxy equivalent is 184~194, Epoxy Resin Division of Baling 

Petrochemical Co., Ltd.) [18] and curing agent diaminodiphenyl-methane (DDM) 

system. Just like in the composite IsoTrussTM [19] structures, a filament winding 

process has been employed to manufacture the triangular cross section composite 

truss specimen. 

As shown in Fig. 3, a three-point bending test is performed on a universal testing 

machine (UTM). In the middle of composite truss specimen, the apex of triangular 

cross section is employed as the loading point. To measure the vertical 

displacement at the middle of composite truss, two electromechanical dial gauges 

http://www.made-in-china.com/showroom/epoxyresin-baling/companyinfo/Epoxy-Resin-Division-of-Baling-Petrochemical-Co-Ltd-.html
http://www.made-in-china.com/showroom/epoxyresin-baling/companyinfo/Epoxy-Resin-Division-of-Baling-Petrochemical-Co-Ltd-.html
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are mounted at other vertices of the middle triangular cross section. The 

composite truss specimen is loaded at a rate of 1 mm/min. The data of the force 

sensor and electromechanical dial gauges are simultaneously recorded by the 

same data acquisition system. 

To numerically simulate the three point bending test process, FEA is carried out 

using the general purpose finite element program ANSYS. A schematic view of the 

finite element model for the composite truss is shown in Fig. 4, which has the same 

geometry dimensions as the composite truss specimen used in three point bending 

test (L = 6 m, D = 348 mm, N = 18, d1 = 8.5 mm, d2 = 5.2 mm). A quadratic three 

node beam element BEAM189 is selected for the modeling. To simulate the simply 

supported boundary conditions, all the translational degrees of freedom at the four 

supporting nodes are fixed but they are rotationally free. The geometric non-linear 

option is switched on and an element size of 0.05 m is chosen for the finite element 

mesh.  

Both the experimental and numerical results of the composite truss under three-

point bending test are plotted in Fig. 5. The two load-displacement curves are close 

to each other indicating that the flexural performance of the composite truss under 

three point bending can be simulated by FEA with adequate accuracy. Further 

examination of the graph shows that member buckling is initiated at 405 N which 

is the elastic limit (St, Lt) of the load-displacement curve. Both the experimental 

and simulated curves consist of a turning point, elastic limit, and two linear parts, 

i.e. a bilinear curve. The slope (k) of the first linear part defined by the elastic limit 

k = Lt/St which is 33.75 N/mm, this is an indication of the structural stiffness of the 

composite truss. After the elastic limit, continued loading caused a rapid increase 
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in the displacement but almost no change to the bearing load. The failure of the 

composite truss specimen occurs soon after the elastic limit is reached and is 

caused by the local buckling of the members. Consequently, the ultimate load is 

only slightly higher than the load which causes the structure to yield. As the elastic 

limit (St, Lt) of the load-displacement curve indicates both the load bearing 

capacity and flexural stiffness of the lightweight composite truss, it can be 

considered as the most significant feature of this composite truss, under three-

point bending condition, and is chosen as structural response constraint for the 

optimal design. 

3.2. Sensitivity analysis 

To obtain the final optimal design of the composite truss, it is necessary to perform 

a sensitivity analysis of the design variables on the objective and constraint 

functions. In general, design sensitivity analysis is important to accurately 

determine the effects of changes to the design variables on the performance of 

composite structures. To evaluate these sensitivities efficiently and accurately, it is 

important to have appropriate techniques associated with good structural models 

[20]. A parametric finite element model is built in APDL in ANSYS and used to 

determine how the design variables (D, N, d1, d2) affect the structural performance 

(St, Lt). To ensure the loading point is located at mid span, the total bay number (N) 

is constrained to be an even number. Eq. (8) is employed to evaluate effects of (D, 

N, d1, d2) on the objective function f. For the initial design, the following values are 

selected: L = 5.2 m, D = 330 mm, N = 18, d1 = 8.5 mm, d2 = 5.4 mm. For practical 

considerations, D varies from 190 mm to 650 mm; N is set as any even number 

between 10 and 44; and both d1 and d2 are from 4.0 mm to 10.0 mm. Only one 
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variable is changed at a time while the other three are maintained at the initial 

value. A load-displacement curve is obtained for each change and then the flexural 

performance of the composite truss structure is derived based on the effects of 

each individual design. The flow chart of sensitivity analysis by APDL is shown in 

Fig. 6. The effects of each design variable on the load-displacement curve of the 

composite truss under three-point bending are shown in Fig. 7. Corresponding to 

each curve and design variable, the elastic limit (St, Lt) and structural weight W are 

derived and plotted in Fig. 8 and Fig. 9 respectively. 

As shown in Fig. 7 and Fig. 8, with an increase of D, Lt increases while St decreases 

which cause a distinct increase in structural stiffness k. It can be seen that the 

flexural properties of these lightweight composite truss structures are highly 

dependent on D as the flexural stiffness and ultimate bearing capacity of the 

composite trusses are sensitive to changes in this value. Obvious increases of St 

and Lt, with minimal changes of k, can be observed while N varies from 10 to 44. 

However, N is considerably more effective in increasing the ultimate load Lt, even 

more so  than D. This indicates that circumscribing circle diameter D and bay 

number N are critical to the integral flexural stiffness k and ultimate load Lt 

respectively. St, Lt and k will simultaneously increase with the increase of d1 and d2 

from 4.0 mm to 10.0 mm. However, d1 is not as effective as D and N in increasing 

the values of k and Lt. Compared with d1, the increase of d2 will also cause  an 

increase of Lt but with little effect on k. Structural weight W is most sensitive to the 

change of d2 although increasing any design variable will lead to the increase of W 

(See Fig. 9). 

4. Response surface model of design constraints 



 

15 

To save time and overcome convergence difficulties, which may be encountered 

due to highly distorted elements in large deformation nonlinear FE solutions, a 

response surface was employed for constraint evaluation in the optimization loops. 

The precision of the optimization solution depends only on the performance of the 

RSM  which depends on the number of samples and the method used to select 

them. 

Response surface models are multivariate polynomial models which can be written 

as: 
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from left to right, an intercept, linear terms, quadratic interaction terms, and 

squared terms. Higher order terms would follow, as necessary. Linear terms alone 

produce models with response surfaces that are hyper-planes. The addition of 

interaction terms allows for warping of the hyper-plane. Squared terms produce 

the simplest models in which the response surface has a maximum or minimum, 

and so an optimal response [11]. For this triangular cross section composite truss, 

a full quadratic response model is employed to construct performance functions g1 

and g2: 
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where ai, bi (i = 0, 1, 2, …, 14) are coefficients to be determined by linear least-

square fitting to sample data generated from numerical computation. 

Although the precision of the response surface depends on the number of samples, 

a large quantity of samples will lead to significant computational costs. 

Consequently, selecting an adequate amount of sample points which will produce 

acceptable accuracy in the regions of interest is vital for an accurate optimization 

procedure. To generate adequate sample points for fitting, central composite 

designs (CCDs), also known as Box-Wilson designs [11], are adopted to design 

numerical experiments. Table 1 shows sample sets of D, N, d1 and d2 patterned by 4 

factors CCDs which allows 25 possible combinations of the 4 variables and 5 

different values for each variable. For example, in the case of variable D ∈ [Dl, Du], 

Dl, Du, (Du+Dl)/2, [Dl+(Du+Dl)/2]/2 and [(Du+Dl)/2+Du]/2 values of -2, 2, 0, -1 and 1 

are selected for sampling in the given design space [Dl, Du].. To increase the 

number of sample points further, resulting in improving the accuracy of response 

surface model, in addition to the given design space (D ∈ [190, 650], N ∈ [10, 44], 

d1 ∈ [4.0, 10.0], d2 ∈ [4.0, 10.0]), an additional 3 sub regions (D ∈ [200, 400], N ∈ 

[12, 30], d1 ∈ [4.5, 9.0], d2 ∈ [4.5, 9.0]; D ∈ [220, 420], N ∈ [14, 32], d1 ∈ [4.1, 6.0], d2 

∈ [4.1, 6.0]; D ∈ [340, 560], N ∈ [24, 42], d1 ∈ [5.6, 9.0], d2 ∈ [5.6, 9.0]) are used for 

sampling. A total of 100 sample points are obtained and the parametric FE model 

used in the sensitivity analysis is employed to compute and extract the (St, Lt) data 

for all the sample points. 
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The 100 sample sets of (D, N, d1, d2) and corresponding (St, Lt) together with Eq. 

(10) and Eq. (11) lead to a linear least-square fitting problem which is 

implemented in the MATLAB Statistics ToolboxTM and the fitting coefficients of g1 

and g2 are listed in Table 2. To assess the performance of the response surface 

model g1 and g2, the residual (r) between the exact FE result (y) and the results 

predicted by the response surface model (y') is defined as: 

r = y − y', (12) 

r% = (y − y')/y×100%. (13) 

Residuals between (St, Lt) computed by FE simulation and (St', Lt') calculated by g1, 

g2 for all the 100 sample points are plotted in Fig. 10. Except for a few boundary 

condition sample points (sample points located at bounds of a given design space), 

most of the results predicted by g1, g2 have good accuracy with the precision of g2 

being higher than g1. 

5. Optimization results 

After obtaining the performance function g1, g2 by RSM, the constrained nonlinear 

minimization solver 'fmincon' and the genetic algorithm solver 'ga' provided in 

MATLAB Optimization ToolboxTM are employed to solve this formulated 

optimization problem. ‘fmincon’ solver attempts to find a constrained minimum of 

a scalar function of several variables starting at an initial estimate. This is generally 

referred to as constrained nonlinear optimization. Genetic Algorithm solver ‘ga’ is 

used to solve both constrained and unconstrained optimization problems based on 

natural selection, the process that drives biological evolution. The algorithm begins 

by creating a random initial population and repeatedly modified a population of 



 

18 

individual solutions. At each step, the algorithm selects individuals at random from 

current population to be parents and uses them to produce the children for the 

next generation. Over successive generation, the population “evolves” toward an 

optimal solution. The algorithm stops when stopping criteria is met. 

Structural weight W = f (D, N, d1, d2) expressed in Eq. (8) is specified as the 

nonlinear multivariable objective function to be minimized. As an example the 

minimum allowable ultimate load Ltp and corresponding maximum allowable 

displacement Stp are set as 1000 N and 20 mm respectively . Lower and upper 

bounds of [190 mm, 650mm], [10, 44], [4.0 mm, 10.0 mm] and [4.0 mm, 10.0 mm] 

given in constructing the response surface model of g1, g2 are imposed to D, N, d1 

and d2 respectively. As prescribed by the MATLAB Optimization ToolboxTM, the 

nonlinear inequality constraint c and nonlinear equality constraint ceq should be of 

the form c ≤ 0 and ceq = 0; the nonlinear constraint function in this case can be 

written as: 

c (1) = Ltp − g1 (D, N, d1, d2) ≤ 0, (14) 

c (2) = g2 (D, N, d1, d2) − Stp ≤ 0, (15) 

ceq = N − 2∙round (N/2) = 0, (16) 

where Eq. (16) is the nonlinear equality constraint ensuring that N is an even 

number. 

One of the 100 sample points (D, N, d1, d2) = (450 mm, 24, 7.3 mm, 7.3 mm) with 

satisfied constraints (St, Lt) = (17.23 mm, 1098 N) and minimum total structural 

weight of W = 9.57 kg is selected as the design for comparison. For the 'fmincon' 
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solver, two algorithms 'active set' and 'interior point' are optional and both of them 

have been used to solve this optimization problem. Three types of termination 

criteria are provided: the maximum number of iterations, the tolerance of the 

design variables, and the tolerance of the function value. When one of these 

termination criteria is satisfied, the optimization iteration will be finished [17]. All 

the criteria are set as default. Different random combinations of (D, N, d1, d2) in 

given bounds are used as starting points for the 'fmincon' optimization solutions. A 

starting point is not required by the 'ga' solver. Genetic algorithms allow global 

optimization but often lead to results that are only close to the global optimum. 

Final adjustments to the optimal results are required based on the observations 

obtained from the sensitivity analysis. 

The optimal results obtained by both of the 'fmincon' and 'ga' solver with different 

options are listed in Table 3. The corresponding (St, Lt) values checked for 

violations on all these optimal designs by FE simulation are also listed in the table. 

For all the 10 optimal results in Table 3, No. 8 has the minimum optimized 

structural weight 4.394 kg while satisfies performance constraints (St ≤ 20 mm, Lt 

≥ 1000 N), thus it is selected as the temporary optimal design for the following 

adjustments. Helical member diameter d2, which is the most sensitive to the 

structural weight, has already reached its lower bound and can not to be changed. 

As shown in Fig. 9, structural weight will decrease with decreases in D, N, and d1. In 

order to further minimize weight, adjustments should be made to produce minimal 

D, N, and d1 while satisfying the performance constraints. Compared with making 

changes in d1, changes to D and N are more efficient in decreasing weight. Hence it 

is preferable to adjust D and N rather than d1. For the temporary optimal design, St 
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= 19.78 mm is deemed to be close enough to the allowable value 20.00 mm while 

Lt = 1151.48 N is too far from the allowable value 1000 N. Fig. 8 indicates that a 

decrease of N will cause a decrease of St and Lt while decreasing D will lead to a 

decrease in Lt but an increase in St. Thus the first adjustment is to modify N from 

28 to 26 which led to a variation of (St, Lt) from (19.78 mm, 1151.48 N) to (17.63 

mm, 1033.89 N). Further adjustments are made to D from 391.91 mm to 378 mm 

resulting in the change of (St, Lt) to (18.19 mm, 1000.05 N). As Lt = 1000.05 N is 

close enough to the allowable ultimate load 1000 N, any further decrease on D, N, 

or d1 will lead to a violation of the design constraints. Consequently, the design (D, 

N, d1, d2) = (378 mm, 26, 8.61 mm, 4.00 mm) with structural weight of 4.179 kg 

can be considered as the final optimal result. Compared to the initial design, a 

significant weight saving of 56% is achieved using this optimization approach. 

6. Conclusion 

A proposed multi-parameter optimization approach combining response surface 

methodology and a standard optimization program has been successfully applied 

to optimize the lightweight FRP composite truss structure under characteristic 

nonlinear structure response constraints. The composite triangular truss exhibited 

bilinear behavior under three-point bending test. The FEA result fits the 

experimental result well. A parametric FE model has been employed to perform 

sensitivity analysis and effects of the four design variables on the flexural 

performance of the composite truss are obtained. Response surface methodology 

has been used to construct performance functions of the composite truss structure 

under three-point bending and the result shows that flexural performance 

predicted by response surface model has good accuracy. Performance functions 
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constructed by RSM are then employed by optimization program. Two different 

optimization solver ‘fmincon’ and ‘ga’ provided in MATLAB are used to solve this 

problem. Final optimal design is obtained after slight adjustments to design 

variables based on the results of sensitivity analysis. Significant savings in terms of 

weight (56%) are achieved compared to the initial design. It indicates that 

coupling a response surface methodology with a standard optimization program 

leads to a useful tool suitable for the optimization of complex composite structure 

with nonlinear structure responses. 
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Figure Captions 

 

Fig. 1. Design optimization framework. 
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Fig. 2. Geometry of the triangular cross section lightweight FRP composite truss. 
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Fig. 3. Experimental setup for three-point bending test. 
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Fig. 4. FE model for the composite truss under three point bending. 
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Fig. 5. Load versus displacement curve at the middle of composite truss under 

three-point bending. 
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Fig. 6. Flow chart of the sensitivity analysis by APDL. 
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Fig. 7. Load-displacement curves of different design variables: (a) D; (b) N; (c) d1 

and (d) d2. 
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Fig. 8. Effects of individual design variable on (St, Lt): (a) D; (b) N; (c) d1 and (d) d2. 
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Fig. 9. Effects of individual design variable on W: (a) D; (b) N; (c) d1 and (d) d2. 
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Fig. 10. Residuals for all the sample points. 

 

Table 1 

Sample sets of (D, N, d1, d2) patterned by CCDs in given design space. 

No. 
 CCDs  D (mm) N d1 (mm) d2 (mm) 
 x1 x2 x3 x4  [190, 650] [10, 44] [4.0, 10.0] [4.0, 10.0] 

1  -1 -1 -1 -1  305 20 5.5 5.5 
2  -1 -1 -1 1  305 20 5.5 8.5 
3  -1 -1 1 -1  305 20 8.5 5.5 
4  -1 -1 1 1  305 20 8.5 8.5 
5  -1 1 -1 -1  305 36 5.5 5.5 
6  -1 1 -1 1  305 36 5.5 8.5 
7  -1 1 1 -1  305 36 8.5 5.5 
8  -1 1 1 1  305 36 8.5 8.5 
9  1 -1 -1 -1  535 20 5.5 5.5 
10  1 -1 -1 1  535 20 5.5 8.5 
11  1 -1 1 -1  535 20 8.5 5.5 
12  1 -1 1 1  535 20 8.5 8.5 
13  1 1 -1 -1  535 36 5.5 5.5 
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14  1 1 -1 1  535 36 5.5 8.5 
15  1 1 1 -1  535 36 8.5 5.5 
16  1 1 1 1  535 36 8.5 8.5 
17  -2 0 0 0  190 28 7.0 7.0 
18  2 0 0 0  650 28 7.0 7.0 
19  0 -2 0 0  420 10 7.0 7.0 
20  0 2 0 0  420 44 7.0 7.0 
21  0 0 -2 0  420 28 4.0 7.0 
22  0 0 2 0  420 28 10.0 7.0 
23  0 0 0 -2  420 28 7.0 4.0 
24  0 0 0 2  420 28 7.0 10.0 
25  0 0 0 0  420 28 7.0 7.0 

 

Table 2 

Coefficients for constraint functions g1 and g2. 

g1  g2 
a0 8266.4437  b0 0.0085520500 
a1 -7920.1524  b1 0.0405911773 
a2 -186.3750  b2 -0.0005812750 
a3 -1410746.1978  b3 -0.4639449479 
a4 -457042.9579  b4 -4.0941267061 
a5 120.6124  b5 -0.0051143869 
a6 814575.1836  b6 -15.0981499093 
a7 324749.2878  b7 -9.8416083341 
a8 19087.4212  b8 0.2147312638 
a9 6447.8101  b9 0.2449830932 
a10 70321179.7090  b10 1217.4360850941 
a11 -1280.2942  b11 0.2425572699 
a12 0.3586  b12 0.0000176626 
a13 38017146.0323  b13 -266.0652872443 
a14 -12463074.8300  b14 -301.8074909760 
 

Table 3 

Optimal results with different optimization solvers and final optimal design 

obtained by adjustments. 

No. Solver 
Starting point  Optimal results  FEA  Weight 

D (mm) N d1 (mm) d2 (mm)  D (mm) N d1 (mm) d2 (mm)  St (mm) Lt (N)  W (kg) 
1 fmincon 500.00 30 6.00 6.00  348.20  30 8.59  4.00  24.84  1144.00  4.281  
2 fmincon 450.00 28 5.00 4.00  324.97  28 9.16  4.00  26.41  1200.33  4.293  
3 fmincon 350.00 32 8.00 7.00  369.29  32 8.09  4.00  23.78  1096.33  4.331  
4 fmincon 310.00 26 9.30 6.50  371.18 26 9.17 4.00  20.13 1192.78  4.401 
5 fmincon 550.00 26 7.50 5.50  325.24  26 9.58  4.00  24.91  1239.33  4.378  
6 fmincon 280.00 34 5.00 8.00  388.49  34 7.67  4.00  22.99  1054.13  4.429  
7 fmincon 320.00 24 9.00 5.50  364.51  24 9.68  4.00  18.64  1180.00  4.480  
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8 fmincon 380.00 28 8.50 5.00  391.91 28 8.61 4.00  19.78 1151.48  4.394 
9 ga      353.55  28 8.90  4.00  23.49  1187.33  4.332  
10 ga      383.39 26 9.07 4.00  18.99 1169.95  4.415 
                

Temporary optimal design  391.91 28 8.61 4.00  19.78 1151.48  4.394 
Adjustment on N (from 28 to 26)  391.91 26 8.61 4.00  17.63 1033.89  4.247 

Adjustment on D (from 391.91 mm to 378.00 mm)  378.00 26 8.61 4.00  18.19 1000.05  4.179 

 


