The University of Southampton
University of Southampton Institutional Repository

Implications of failure criteria choices on the rapid concept design of composite grillage structures using multiobjective optimisation

Implications of failure criteria choices on the rapid concept design of composite grillage structures using multiobjective optimisation
Implications of failure criteria choices on the rapid concept design of composite grillage structures using multiobjective optimisation
Grillage topologies are commonly used in many composite structural applications to produce low mass designs that have a high stiffness. While composite failure criteria are being compared in many different simple structures, for example plates and tubes, literature must also compare more complicated applications, including grillages, as there are distinct differences in behaviour. This paper therefore performs analysis of grillage structures with more up to date failure criteria, taken from the world wide failure exercise, than previously investigated. The grillage theory selected is that of Navier theory with elastic equivalent properties due to its low computational expense for use with a genetic algorithm to optimise a composite structure. The results take an example from leisure boatbuilding showing the grillages produced from the different limit states, comparing the cost and mass. The final results show that the method allows a rapid analysis of grillages and that the selection of the limit state has an important effect on the optimised grillage topology
1615-147X
735-747
Sobey, A.J.
e850606f-aa79-4c99-8682-2cfffda3cd28
Blake, J.I.R.
6afa420d-0936-4acc-861b-36885406c891
Shenoi, R.A.
a37b4e0a-06f1-425f-966d-71e6fa299960
Sobey, A.J.
e850606f-aa79-4c99-8682-2cfffda3cd28
Blake, J.I.R.
6afa420d-0936-4acc-861b-36885406c891
Shenoi, R.A.
a37b4e0a-06f1-425f-966d-71e6fa299960

Sobey, A.J., Blake, J.I.R. and Shenoi, R.A. (2013) Implications of failure criteria choices on the rapid concept design of composite grillage structures using multiobjective optimisation. Structural and Multidisciplinary Optimization, 47 (5), 735-747. (doi:10.1007/s00158-012-0875-4).

Record type: Article

Abstract

Grillage topologies are commonly used in many composite structural applications to produce low mass designs that have a high stiffness. While composite failure criteria are being compared in many different simple structures, for example plates and tubes, literature must also compare more complicated applications, including grillages, as there are distinct differences in behaviour. This paper therefore performs analysis of grillage structures with more up to date failure criteria, taken from the world wide failure exercise, than previously investigated. The grillage theory selected is that of Navier theory with elastic equivalent properties due to its low computational expense for use with a genetic algorithm to optimise a composite structure. The results take an example from leisure boatbuilding showing the grillages produced from the different limit states, comparing the cost and mass. The final results show that the method allows a rapid analysis of grillages and that the selection of the limit state has an important effect on the optimised grillage topology

Text
Implications of failure criteria choices on the rapid concept design of composite grillage structures using multiobj.pdf - Author's Original
Download (451kB)

More information

Published date: May 2013
Organisations: Fluid Structure Interactions Group

Identifiers

Local EPrints ID: 349500
URI: http://eprints.soton.ac.uk/id/eprint/349500
ISSN: 1615-147X
PURE UUID: 5f855ec3-f502-407e-842a-bbfec9203580
ORCID for A.J. Sobey: ORCID iD orcid.org/0000-0001-6880-8338
ORCID for J.I.R. Blake: ORCID iD orcid.org/0000-0001-5291-8233

Catalogue record

Date deposited: 06 Mar 2013 12:13
Last modified: 18 Feb 2021 17:09

Export record

Altmetrics

Contributors

Author: A.J. Sobey ORCID iD
Author: J.I.R. Blake ORCID iD
Author: R.A. Shenoi

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×