
 1 

The Application of Reliability Methods in the Design of Tophat Stiffened 

Composite Panels under In-plane Loading  

Yang N.
 (1)(2)

& Das P. K.,
(2)

 (1) Harbin Engineering University, China (2)University of Strathclyde, UK 

Blake, J.I.R., Sobey, A.J. & Shenoi, R.A. University of Southampton, UK 

 

ABSTRACT:  

Composite materials have been widely used in modern engineering fields such as aircraft, space and 

marine structures due to their high strength-to-weight and stiffness-to-weight ratios. However, 

structural efficiency gained through the adoption of composite materials can only be guaranteed by 

understanding the influence of production upon as-designed performance. In particular, topologies that 

are challenging to production including panels stiffened with pi or tophat stiffeners dominate many 

engineering applications and often observe complex loading. The design of stiffened composite panels 

against buckling is a key point of composite structures. While a growing number of studies are related 

to the reliability analysis of composites few of these relate to the local analysis of more complicated 

structures. Furthermore for the assessment of these structures in a design environment it is important to 

have models that allow the rapid assessment of the reliability of these local structures. This paper 

explores the use of a stochastic approach to the design of stiffened composite panels for which typical 

applications can be found in composite ship structures. A parametric study is conducted using Navier 

grillage theory and First-order Reliability Methods to investigate any detectable trend in the safety 

index with various design parameters. Finally, recommendations are made to provide guidance on 

applications.  
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1. INTRODUCTION 

 

Composite materials have been widely used in modern engineering fields such as aircraft, space and 

marine structures due to their high strength-to-weight and stiffness-to-weight ratios. Stiffened panels, 

comprised of a plate, longitudinal stiffeners and transverse frames, are very important components in 

ship and offshore structures, which can be found in decks, bottoms, bulkheads, side shells and 

superstructures. The design of stiffened composite panels against buckling is a key point of composite 

structures, particularly in bottom shell or deck units subjected to compressive load by longitudinal 

wave-induced or explosion-induced bending of the ship hull.  

 

The inherent uncertainties in geometry, materials, loads, and other aspects of any structure are 

unavoidable in structural responses. Because of the existence of such uncertainties, to ensure the 

structures can perform their intended function with desired confidence, these uncertainties or 

variabilities must be considered during structural design. Traditional methods of dealing with the 

uncertainties are to use conservative fixed values in equations to guard against the possibility of 

structural damage. Assumptions are made that all factors influencing the load, strength and other 
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uncertainties are known, ignoring uncertainties that might occur such as variability of material 

properties or uncertainty in analysis models. The conventional deterministic design methods are simple 

but inflexible to adjust the prescribed safety margin and do not give a reliable indicator of satisfactory 

performance for the design of FRP structures. With the development of reliability technology, reliability 

methods have been used in reliability-based design for marine and offshore structures. Structural 

reliability methods allow the designers to limit the probability of undesirable events and lead to a 

balanced design. Reliability-based design is more flexible and consistent than corresponding 

deterministic analysis because it provides more rational safety levels over various types of structures 

and takes into account more information that is not considered properly by deterministic analysis. 

 

Reliability techniques have been in development for a number of years. These methods first appeared in 

a mathematical form in the 1920’s by Mayer [1] and further developed by Streletzki [2] and Wierzbieki 

[3]. Practical usage of these methods was not developed until the late 1960’s with the development of a 

second moment reliability index by Cornell [4]. Cassenti [5] furthered deterministic design methods by 

developing the probabilistic static failure analysis procedure of unidirectional laminated composite 

structures. Yang [6] presented a reliability analysis of laminated plates based on the last-ply-failure 

analysis concept. Cederbaum [7] presented work related to in-plane loads using first ply-failure on 

symmetric angle-ply laminates. Gurvich [8],[9] developed a probabilistic failure model for the 

reliability of laminated composites subjected to combined lateral pressure and in-plane loads based on a 

ply group concept and this was further developed to include both a ply group and a laminated plate 

subjected to uni-axial tensile loads. Specific to a marine environment Jeong and Shenoi [10], [11] 

presented a simulation approach to assess the first-ply failure reliability of composite plates. Other 

marine specific studies have concentrated on global assessment of ship hulls including Chen et al.[12] 

and Zhang [13]. Finally Blake et al. [14] looked at a method for assessing the reliability of composite 

grillages utilising Navier grillage theory with simple limit states under out of plane load. This research 

showed that grillage theory was good for assessing more complex composite structures however it for a 

full analysis of composite structures there will be a requirement to analyse grillages with the addition of 

in-plane loads.  

 

While these studies have progressed the status of reliability analysis of composite structures the analysis 

has been performed on simple structures, plates, cylindrical shells and others or in the case of the more 

complex analysis has concentrated on a global rather than local assessment of reliability. Furthermore 

this review shows that while there is a growing quantity of composite reliability literature this is 

generally not marine specific and it is important to perform reliability investigations using data similar 

to marine applications.  

 

This paper therefore focuses on the reliability of composite grillage plates using Navier grillage theory 

for computationally inexpensive analysis under in-plane loading. The paper looks to incorporate 

reliability methods into the design of complex composite structures with rapid analysis techniques. 

Finally an assessment is made to detect any trend in the safety index with various design parameters 

and recommendations are made to provide guidance on applications. 
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2. RELIABILITY-BASED ANALYSIS METHODS   

 

There are two types of design format that are normally used [15], namely direct reliability based design 

and Load and Resistance Factor Design (LRFD). Limit state equations are essential for conducting 

reliability analysis and the means by which a definition of failure is articulated mathematically. If the 

load applied to the structure is defined as L and the resistance of the structure to that load as R, the 

safety margin may be defined as  

LRlrgM  ),(                         (1) 

Since R and L are random variants, M is also a random variant with corresponding probability density 

function fM(m). In this case, failure is clearly the event ( 0M ) and thus the probability of failure is  

mdmfMPP Mf 




0

)(]0[                   (2) 

Cornell proposed a reliability index defined as  

MM  /                             (3)   

where M  and M  are the mean value and the standard deviation of the safety margin, respectively. 

In engineering practice, the safety index, , instead of failure probability, Pf, is often used to represent 

the reliability level.  

 

3. GENERAL MODEL OF STIFFENED COMPOSITE PANEL 

 

A stiffened panel is a panel of plating bounded by, for example, transverse bulkheads, longitudinal 

bulkheads, side shell or large longitudinal girders. A typical stiffened panel configuration with the 

tophat-section stiffeners is shown in Figure 1. The stiffened panel is referred to x- and y- axis 

coinciding with its longitudinal and transverse edges, respectively, and a z-axis normal to its surface. 

The cross-section geometry is defined in terms of the six geometrical parameters b1, b2, b3, b4, b5 and d. 

The length and breadth of the stiffened panel are denoted by L and B, respectively. The spacing of the 

stiffeners is denoted by a between longitudinal stiffeners and b between transverse stiffeners. The 

numbers of longitudinal and transverse stiffeners are Ng and Ns, respectively. The web (sides), table (top) 

and flange (base) structures forming a tophat-stiffener are made of FRP laminates . 
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Figure 1 Stiffened panel configuration with the tophat-section stiffeners 

 

During structural design and analysis, primary failure modes should be considered carefully as most 

forms of buckling will result sooner or later in complete collapse of the structure. According to [16, 17], 

the primary failure modes for a stiffened panel subject to compressive loads might arise in panels as 

follows: 

 Local buckling of the plating between stiffeners  

Where the lowest initial buckling stress corresponds to local buckling of the plate between 

stiffeners, a substantial postbuckling reserve of strength may exist. Generally, local buckling of 

the shell is associated with loss of effective width, which may cause a reduction in the flexural 

rigidity of the cross-section.  

 Column-like buckling  

This buckling mode indicates a failure pattern in which the collapse is reached by column or 

beam-column type collapse of the combination of the stiffener with the effective plate. Collapse is 

possibly caused by material tensile or compressive failure in the stiffeners. 

 Tripping of stiffeners  

Tripping of a stiffener can occur when the ultimate strength is reached by lateral–torsional 

buckling of the stiffener. This form of instability is susceptible to open-section stiffeners. 

Tophat-section stiffeners which are usually used in composite ships have high torsional stiffness 

and this buckling mode can be prevented by using stiffeners with good proportions. 

 Overall instability of the stiffened panel  

This failure mode refers to the buckling of the gross panel involving longitudinal and transverse 

frames between the major support members. Overall instability failure mode typically represents 
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the collapse pattern when the stiffeners are relatively weak. This failure mode should be 

proportioned so that this form of failure is preceded by that interframe collapse mode because this 

failure involves a large portion of structure and is likely to be more catastrophic. 

 

4. ANALYTICAL MODELS 

 

Generally speaking, folded plate methods and numerical methods are capable of giving comprehensive 

and adequate results [17]. However, they are not computationally efficient from a design point of view 

for the considerable preparation and computational time involved, particularly if the repeated analyses 

are required at the preliminary design stage due to the involvement of a large number of variables. 

Simplified analytical methods provide a more time-effective means of calculating the strength of 

stiffened panels. For engineering practice, most of the necessary evaluation of stresses and 

deformations can be carried out by means of simple formulae based on beam and plate theory on 

idealized geometries and boundary conditions.  

 

4.1 Column-like Buckling 

 

As discussed above, initial buckling may be considered by the form of column-like instability of 

longitudinal stiffeners together with the effective plating so that they would behave as a beam-column 

when the stiffeners are dominant. Ignoring the torsional rigidity of the gross panel, the Poisson’s ratio 

and the effect of the intersecting beams, assuming the panel is simply supported, column buckling 

strength (without consideration of initial imperfection and lateral pressure) is given using the Euler 

formula [17]  

)
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

                           (4) 

in which 



N

i

iEID
1

)(  is the flexural rigidity of a stiffener with associated effective width of plate;  

i is the web (sides), table (top) and flange (base) structures; A is the total cross-sectional area of a 

stiffener with an attached strip of plate; a is the spacing between transverse frames; GAs is the shear 

rigidity in which As may be taken as the area of the stiffener webs, G is the shear modulus of the web 

(sides)

 

 

 

In real applications, composite structures exhibit some unavoidable initial imperfections due to the 

manufacturing process or heavy load connected to the hull, these initial imperfections may trigger 

buckling or premature strength failure at a load far below those corresponding to elastic buckling. The 

initial deformation w0 are assumed to be an idealization of initial deflection shapes for a 

one-dimensional member, which can be approximately expressed in mathematical form as  

 
a

x
sinw


 00                                 (5) 

which takes the half sinusoidal wave pattern. The total (initial plus added) deflection ,w, may also take a 

similar shape to the initial deflection as shown in equation (6) 
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a

x
sinw


                                 （6）     

where 0 is the maximum initial imperfection and  is amplitude of the total deflection.  

 

 

The bending moment equilibrium is given by,  

Pw
dx

)ww(d
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
2

0
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                               (7) 

The strain-energy-based approach is employed to determine the initially deflected column. The total 

potential energy can be given by,  

                                  П = U + W                                (8) 

The elastic strain energy U and the external potential energy W are calculated as,  
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Applying the principle of minimum potential energy, the amplitude of the total deflection can be found 

as follows, 

                                  0
0

1





 




E/
                      (11) 

where Ф=1/(1-/E) is called the magnification factor. 

 

The maximum stress max at the outer fibre of the cross-section can therefore be obtained by the sum 

of axial stress and bending stress as follows, 

                            
W

M

A

P max
max                           (12) 

where PM max ;
yE

D
W

i

 ; Ei is the membrane equivalent Young’s modulus of the element 

considered (Appendix A); y is the vertical distance from the neutral axis to the point in question. 

 

For plate-beam under combined axial compression P and lateral line load q, the internal bending 

moment along the span can be obtained by the sum of the bending moment due to lateral load and 

geometric eccentricity, which may include lateral deflection caused by external load as well as an 

initial imperfection. 

)w(PMM maxqmaxqmax 0                      (13) 

where Mqmax and wqmax are maximum bending moment and maximum deflection due to lateral load 

alone. The maximum stress max at the outer fibre of the cross-section can therefore be obtained by 
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substituting Mmax from Eq.(13) into Eq.(12).  

 

4.2 Overall Buckling 

 

If support members are relatively weak, they will deflect together with the plate so that the stiffened 

panel can buckle together. This mode is termed overall buckling. The overall buckling of a stiffened 

composite plate is performed based on a modified grillage model, in which the stiffened panel is treated 

as a grillage through substituting equivalent elastic properties of its laminate components into the 

analysis (Appendix A) 

The double series expression for the deflection of the stiffened panel can be assumed 

B
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



                      (14) 

which fulfil the end conditions when the plate is simply supported along all edges. The coefficient fmn in 

the series for the deflection may be determined by the condition that the change in potential energy due 

to the assumed deflection is minimum. 

 

The total potential energy of the longitudinal girders and transverse stiffeners are given by  
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
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where
1


g

i
N

iB
y , 

1


s

j
N

jL
x  when all girders and stiffeners are arranged at equal distance; Dgi 

and Dsj are the flexural rigidity of the i
th

 girder and the j
th

 stiffener, respectively. The effect of the plate 

is to act as effective flange for girder and beams. 

 

The total potential energy will be  

                                    V=Vg+Vb                                               (17) 

When the stiffened panel is subjected to a uniform longitudinal compressive stress σ in the x-direction, 

the work of the external force will be  

 
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i
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1                                  (19) 

When the stiffened panel is subjected to a uniform pressure load q alone, the work of the external force 

will be  
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where Ag is the cross-sectional area of a girder.  

 

The critical load may be determined by the minimum potential energy  

             0
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




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WV
                              (21) 

The coefficient fmn can be expressed when the stiffened panel is subjected to a uniform pressure load 

alone  
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If the stiffened panel is subjected to a lateral load q as well as to axial compression σ, the deflection 

parameter fmn are multiplied by the magnification factor 

E






1

1
.                             (23) 

where σE is the critical compression for the same m and n as the index of the parameter.  

 

If the stiffened panel has the initial deflection w0, it may approximately take a similar shape by 

equation (14) with the amplitude δ0 . The maximum stress σmax at the outer fibre of the cross-section of 

the girder can be obtained by Eq.(12) and Eq.(13). 

 

For each element of the stiffened panel, the average direct stress value acting through the thickness of 

the element of a particular laminate can be predicted at any point in the section using Eq.(12). The 

corresponding direct force intensity per unit width N and moment intensity per unit width M of the 

laminate section about its own mid-plane can be obtained. Then the ply-to-ply stress analysis can be 

performed by Appendix B. Laminate composites may fail by fibre breakage, matrix cracking or shear 

failure depending on the geometry, stacking sequence and the load. In the present study, the maximum 

stress criterion is being used in the principal material direction of each layer, in which the individual 

stress components are compared with the corresponding material allowable strength values. Failure is 

defined as First-Ply-Failure (FPF): cracking or crazing of the surface resin, which is usually detected 

in marine structures, and should be avoided because such cracks allow ingress of water to the laminate, 

leading to degradation of strength and stiffness [18]. The ultimate strength is assumed to be reached 

when the maximum stress in any layer is reached:  from this point onwards, rapid progressive 

collapse under compression is expected to ensue. This method requires an iterative procedure but 

usually only a few iterations are required. 

 

4.3 Effective Width 

 

The flange is usually not fully effectively induced by the plate buckling or shear lag, which results in a 

non-uniform stress distribution. Many different effective width equations for steel have been 

extensively studied since von Karman et al. [19] first introduced the concept. As a matter of fact, GRP 

reinforced plates have peculiar differences with respect to steel plates and not many formulae are 
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available in literature except those presented by Classification Societies in which only simple 

relationships are provided. Boote [20] summarised the formulae for effective width calculation from 

different Classifications Societies. The formula from Bureau Veritas is chosen for this calculation 

where, 

                      bbe   or 22.0 ba                           (24) 

and be is effective width between stiffeners, b is the physical width between longitudinal stiffeners, b2 

is the stiffener base width (no overlap) and a is the distance between the transverse stiffeners (see 

Figure 1). The choice of effective width is dependent on the consideration of either the transverse 

beam stiffeners or the longitudinal girders. 

 

5. APPLICATION OF THE RELIABILITY METHOD 

 

5.1 Introduction  

 

In this section, a stochastic approach to the design of a stiffened composite panel under compressive 

load and the combination of compressive and lateral loads for ship structures is applied and the 

importance of different stochastic parameters on the reliability index and failure probability is 

investigated. The panel with rectangular tophat-sections consisting of webs, crown and base plate is 

shown in Table 1. This is typical of the topology in the bottom panel of composite ship structures. The 

shell and stiffener laminates are assumed to be reinforced by woven rovings, which are balanced 

laminates of the type commonly used in ship construction. Mechanical properties for a unidirectional 

layer are dependent on lay-up and fibre-volume fraction and calculated for practical application in 

Appendix C the material properties used within these equations for  E-Glass and Epoxy are listed in 

Table 2. 

 

Table 1. Geometric Properties (mm) 

Panel thickness   Crown width Crown height Web width Web height 

15.68 
Longitudinal 50 3.36 3.36 39 

Transverse 100 6.2 6.2 80 

Thickness, t, of single layer = 0.56 

 

Table 2. Material properties of resin and fibre [17] 

 
Young’s modulus 

E (GPa) 

Poisson’s 

ratio ν 

Shear  

modulus 

 G (GPa) 

Tensile strength 

(MPa) 

Compressive 

strength 

(MPa) 

Tensile 

failure strain 

(%) 

Epoxy 3.0 0.37 1.09 85 130 5.0 

E-Glass 72.0 0.20 30 2400 - 3.0 

 

5.2 Formulation of Limit States and Random Variables Definition   

 

The following two limit states are generally considered in the design of the ship structures [22].  



 10 

 

 Ultimate Limit States (ULS) 

The ULS generally considered the maximum load at which the structure collapses and can no 

longer serve its intended function. 

 Serviceability Limit State (SLS) 

The SLS is usually related to failure modes leading to service interruptions or restrictions. Repair is 

usually required to return the structure to an acceptable state.  

 

The failure due to instability or buckling of longitudinal stiffeners (flexural or tripping) or overall 

buckling is related to the ultimate limit state. The failure margin of structures can be evaluated when the 

applied compressive load reaches or exceeds its ultimate compressive strength as defined in Eq.(25).   

                PPXg ultu                                (25) 

where Xu is the model uncertainty of the strength prediction; Pult is the ultimate compressive strength of 

a stiffened composite panel; P is the applied compressive load. 

 

Table 3 Typical Distributions for Variables from DNV [22] 

Variable Distribution Type 

Current – Long Term Speed (Pressure) Weibull 

Properties – Yield Strength (Steel) Normal 

Properties – Young’s Modulus  Normal 

Properties – Initial Deformation of Panels Normal 

 

The reliability is dependent upon the statistical distributions of the inputs. Different inputs are generally 

grouped together with statistical distributions as determined by structural codes e.g. CIRIA [21], DNV 

[22] or EUROCOMP [23]. Typical distributions for pressure and material definitions are Weibull 

distributions and Normal distributions respectively, as can be seen from Table 3 given by the DNV 

design rules and used for the analyses presented later. In general, the basic variables concerned with 

external load and geometric values have the largest and smallest coefficients of variation respectively. 

Therefore, the geometric properties such as dimension of panel a, b, b3, b4 and the thickness of laminae 

t, which may fluctuate in the vicinity of the given values depending on the manufacturing processes, are 

considered as random variables. All geometric properties are assumed to have a COV (Coefficient of 

Variation) of 3%. Initial imperfection is also taken into account as this problem can never be totally 

eliminated. The material properties of fibre and matrix, fibre volume fraction, which may affect the 

mechanical properties of the laminate, are treated as random variables with a 5% COV.  

 

The modelling uncertainty is generally associated with idealizations in formulating mathematical 

models and on the like. The modelling uncertainty is usually incorporated into a reliability analysis by 

the ratio between the actual response and predicted modelling response. Faulkner et al.[24] suggested 

that a normal distribution is usually assumed, the mean value and coefficient of variance for strength 

parameters are assumed to be 1.0 and 10% for simplicity, respectively. It is assumed that a safety 

factor of 2 is applied to the analysis and therefore the mean value has been chosen as half of the 

failure load with the loads used in the analysis found from the resulting distribution. All these 
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variables are assumed as independent variables and they are randomly generated according to their 

assumed probability distribution as shown in Table 4 where the values have been estimated based on 

experience in the marine industry and correlated against the values found in Sriramula and 

Chryssanthopoulos [25].   

 

Table 4. Statistical properties of basic design variables 

Symbol Distribution Mean value C.O.V 

a Normal 550mm 0.03 

b Normal 500mm 0.03 

t Normal 0.56mm 0.03 

b3 Normal 50mm 0.03 

b4 Normal 39mm 0.03 

 Normal 0.55mm 0.03 

Ef Normal 72.0GPa 0.05 

Em Normal 3.0GPa 0.05 

Gf Normal 30.0GPa 0.05 

Gm Normal 1.09Gpa 0.05 

Vf Normal 0.55 0.05 

Xu Normal 1.0 0.10 

P Weibull 0.5P ult 0.15 

5.3 Sensitivity Analysis  

In a practical structural design, knowing the most important design parameters and their impact on 

safety index enables the designers to know where to look to improve reliability. In a deterministic 

analysis, the sensitivities of design variables can only be computed by quantifying the change in the 

performance measure due to a change in the variable value. On the other hand, if a design is based on 

reliability theory, each random variable is defined by the mean value, coefficient of variance and 

distribution type. Once the probabilistic model is established, probabilistic analysis is run and then the 

sensitivity factors are obtained in order to determine the importance of a random variable. In addition, 

the complexity of the mathematical model is greatly influenced by the dimensionality of the space of 

variables in the analysis, therefore it is important to reduce the number of variables and thereby increase 

the efficiency of the reliability analysis. The variable having a small sensitivity factor might be assumed 

to be of fixed value rather than being a random variable in subsequent analyses.  

 

The following three important factors were considered in this paper [26]. Sensitivity factor  is 

generally considered as a measure of the sensitivity of the reliability index  with respect to the 

standard normal variable ui
*
. It provides some insight into the relative weight that each one has in 

determining the final reliability of the structures. A larger i implies more sensitivity of reliability index  

  to the standard variate ui
*
 

                                     
*

iu





 i                                   (26) 

This factor is usually providing an importance ranking of input variables. However, it is not useful for 
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design purpose as they are dependent on mean value, standard deviation and distribution type of 

random variables. Another two sensitivity parameters  and  scaled sensitivity of    with respect to 

the mean and the standard deviation of each basic random variable in question are more useful for 

design as defined in Eqs.(27)-(28).  


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


                              (28) 

where and   represent the mean value and standard deviation of basic random variables, 

respectively.  

5.4 Results and Discussions    

Table 5 shows the three sensitivity factors ,   and η  for the dominant variables. The important 

factors    for dominant variables are also shown in Figure 2. The safety index  = 3.67 and failure 

probability Pf = 1.227×10
-4

 are obtained via the proposed method together with the first order reliability 

method (FORM), calculated directly from the limit state equation.  

 

From Figure 2, the importance of the dominant variables , by order, is modelling uncertainty of the 

strength prediction Xu, applied load P, fibre volume Vf, the height of section b4, the thickness of laminae 

t, the length a, Young’s modulus of fibre Ef, and shear modulus of resin Gm. However, unrepresented in 

this figure are the sensitivities of other variables, which play such small roles in contributing to the 

probability of failure and can be replaced by deterministic values in the further analysis.  

 

The sensitivity factor   represents the sensitivity of    with respect to the mean values. The positive 

sensitivity factors  such as geometric parameters t, b4 and material properties of fibre and resin Ef, Gm, 

Vf are obtained and treated as strength parameters. That means the safety index increases with 

increasing mean value of the variables. The negative sensitivity factors    are treated as load 

parameters such as the length of stiffener a and compressive load P. This indicates that the safety index 

decreases with increasing mean value.  

 

The combination of in-plane and lateral loading is also considered because lateral loading from sea 

water pressure or cargo is always present on plates and stiffened plates elements. Pressure load of 

131.47kPa with the uncertainty 10% is considered and a Weibull distribution is assumed in the 

reliability analysis. The direction of lateral pressure is assumed to be the same with the initial 

imperfection towards the stiffeners. By comparison of the panel with and without lateral pressure, the 

reliability index decreases from 3.67 to 2.50 and the probability of failure increases from 1.227×10
-4

 to 

6.274×10
-3

. The effect of lateral pressure on the stiffened plates is to lower the ultimate collapse load 

and therefore reduce the reliability index compared with the stiffened plate under in-plane loading 

alone. 

 

Table 5 Sensitivity factors of basic variables 
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Random 

variable 
  η 

Random 

variable 
  η 

a 0.1786 -0.1786 -0.1167 Gm -0.0829 0.0829 -0.0250 

t -0.2232 0.2232 -0.1814 Vf -0.3157 0.3157 -0.3662 

b4 -0.2328 0.2328 -0.1980 Xu -0.7226 0.7226 -1.9159 

Ef -0.1435 0.1435 -0.0748 P 0.4578 -0.6339 -1.0842 

 

 

Figure 2 Important factor  

5.5 Parametric Study 

Although the probabilistic method provides more information than the corresponding deterministic 

counterparts in the analysis, this method also requires more comprehensive information. Reliability 

analysis shows that not only the mean value but also COV of random variables play a significant role 

in determining the reliability or safety. However, such information is generally indeterminate. 

Furthermore this data can be used to inform designers or production engineers where effort can be 

best utilised for the greatest cost to benefit ratio. Therefore, it is worth studying the effects of the 

statistical distribution of the various variables having the largest sensitivity factors calculated in the 

previous section. 

 

From Table 5, the modelling uncertainty Xu, the fibre volume Vf, the thickness of laminae t, Young’s 

modulus of fibre Ef and shear modulus of resin Gm are chosen to study the effect of coefficient of 

variation. The results are computed by varying each of the parameters in turn with other variables held 

the same as the previous analysis, shown in table 4. The results are presented in Figures 3-5. The 

model has also been analysed for a wider range of load uncertainties by ignoring the actual source of 

loading. Axial load COVs of 10%, 20% and 30% are considered. The results, in terms of P/Pult versus 

the safety index , are presented in Figure 6. 

 

The reliability index of the model uncertainty and applied load reduces rapidly as the uncertainty 

increases. In other words, these two variables are very sensitive to the statistics of variables. Thus 

more precisely knowing the statistics of these two design variables will induce more meaningful 

results in the reliability analysis. For example, increasing the COV from 10% to 15% in the model 
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uncertainty of the strength prediction leads to a reduction in reliability index of 22.8% and around a 

20-fold increase in the failure probability. 

  

The variations in component thickness and the fibre content within a component from design is caused 

by production defects, which may arise in the manufacture of composite structures and are difficult to 

eliminate. The influences of variation in the volume fraction Vf and thickness t on reliability are shown 

in Figure 4. It is evident that the reliability indices are strongly dependent on the variation of these two 

quantities. That is to say that the minor variation in these two variables has a major effect on the 

reliability. Therefore, if the uncertainties of such random variables can be reduced through appropriate 

care or stricter quality control, reliability can be increased. 

 

Uncertainties in material properties Ef  and Gm are also investigated as shown in Figure 5. It is evident 

that the influence of the variation in the fibre modulus Ef is stronger than the shear modulus Gm on 

reliability. This enables the designers to know where to look to improve reliability. For example, if the 

coefficient of variation of the Gm is reduced from 15% to 11%, the failure probability is reduced 

around 24%. However, the failure probability can then be reduced to almost half if the coefficient of 

variation of the Ef is reduced by the same percent. This indicates that it is better to reduce the 

uncertainty of Ef rather than Gm in terms of their relative importance with respect to variations in their 

standard deviations.  
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with change of  COV  of  Vf    and  t 

Vf 
t 

 

 

COV (%) 

COV (%) 



 15 

3

3.2

3.4

3.6

3.8

4

0 5 10 15 20

COV (%)

β

 

                       Figure 5 Variation of 
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     Figure 6 Variation of design axial load with safety index  

6. CONCLUSIONS  

 

In the present paper, a simplified analytical method was presented for the reliability assessment of the 

ultimate compressive strength of tophat-stiffened laminate panels under axial compression combined 

with uniform lateral pressure. A reliability-based design method is used for the practical design of 

composite stiffened panels. From the study the following specific conclusions can be drawn:  

 

 A unique feature of fibre-reinforced polymers is the flexibility in their composition which enables 

a designer to design a structure to specifically meet constraints. The simplified analytical method 

provides a rapid means for the initial design purpose and explores quantitatively the influence of 

the various constituent properties on reliability. This has enabled the variables having the greatest 

influence on reliability to be identified and may allow the engineer to concentrate on these more 

important variables. 

 

 The uncertainties of variables are generally caused by the lack of data, modelling simplifications, 

human errors or inadequate knowledge of physical phenomena and it is important to have an 

Gm 

Ef 

 

COV (%) 

10% 

20% 

30% 


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understanding for how these will affect a given structure. The parametric study provided an 

insight into COV of various parameters, provided by different sensitivity factors, to the effect on 

the reliability index allowing an understanding of how the variations, whatever their cause, affect 

this value.  

 

 The results show that the model uncertainty and applied loads are sensitive to the distribution and 

variation of the variables. Thus more precisely knowing the statistics of these design variables 

will induce more meaningful results in the reliability analysis. Improving the accuracy of the 

analysis method, such as by applying more advanced methods can minimise the modelling error 

and its variation so as to increase the safety index. Furthermore in a practical structural design, 

knowing the most important design parameters and their impact on safety index enables the 

designers to know where to look to improve reliability. 

 

 The variation in component thicknesses and the fibre content within a component has a large 

impact on the reliability. Therefore, if the uncertainties of such random variables can be reduced 

through appropriate care or stricter quality control, the reliability can be increased substantially. 

The analysis indicates that this area will give a good cost to benefit ratio in considering increasing 

the reliability either at the design or production stages.” 

 

 The influence of the variation in the fibre modulus Ef is stronger than in the shear modulus Gm on 

reliability. That indicates that it is better to reduce the uncertainty of Ef  rather than Gm in terms of 

their relative importance with respect to variations in their standard deviations. More testing 

would be required to control the scatter of this significant variable.  
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Appendix A 

 

For stiffened plates, the section is made from an assembly of flat layered laminated composite element 

such as crown, web and flange, which will be referred to as elements of section. The material properties 

vary from element to element, depending on the laminate configuration in each element.  

 

In order to perform the analysis of structures made from composite laminated plate using the methods 

mentioned above, the equivalent Young’s modulus value is required for each element. Symmetric 

laminates are considered here only as they are the majority of laminate configurations used in practice. 

The coupling stiffness terms Bij are zero for symmetric laminates: implying that there are no 

membrane-bending coupling effects. From Datoo [27], the membrane equivalent Young’s modulus 

value of the laminate plate in the x-direction and the y-direction are 
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where Aij are called extensional stiffness; t is the total thickness of the laminate element under 

consideration.  

 

Appendix B 

 

For each element, the average direct stress value acting through the thickness of the element of a 

particular laminate can be predicted at any point in the section using Eq.(12), then the corresponding 

direct force intensity per unit width N and moment intensity per unit width M of the laminate section 

about its own mid-plane can be obtained. Then the ply-to-ply stress analysis can be performed by using 

plate theory [28]. 

 

The force and moment resultants to the strains of a laminate are given in a compact form as  
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where  0 and  1  are vectors of the membrane and bending strains. 

 

The extensional stiffnesses Aij, the bending-extensional coupling stiffnesses Bij and the bending 

stiffnesses Dij, are defined as  
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Strains at any point in the plate can be computed  
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With these values, the strains ),,( xyyyxx  through the laminate thickness can be determined and the 

ply-to-ply stresses can be calculated based on the constitutive relations and the failure criteria is used to 

determine whether the plate is failure.  

 

Appendix C 

 

Elastic properties for a unidirectional layer should be established ideally by tests, however, for initial 

design purpose, it may be obtained by several simple approximations to the elastic constants with 

reasonable accuracy. Semi-empirical equations of moduli derived by Halpin and Tsai are chosen here 

[17], i.e. Young’s modulus E1 in the fibre direction, Young’s modulus E2 in the transverse direction, 

major Poisson’s ratio v12 and shear modulus G12 as follows 
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where M = E2 or G12, Mf = Ef  or Gf, Mm = Em or Gm respectively. Reinforcing factor ξG = 1 for the 

prediction of shear G12 and ξE = 2 for the Young’s modulus E2 approximately. 

 

The strengths of a unidirectional composite layer can be obtained using simple equations as follows 

Longitudinal tensile strength 
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Transverse tensile strength and in-plane shear strength 
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where  m
*
 and  f

*
 is strains to failure of the resin and fibres respectively. m

*
 is the matrix tensile 

strength, m
*
 is the matrix shear strength. The longitudinal and transverse compressive strength can be 

approximately estimated by the same equation.  


