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ABSTRACT
Bidders’ selection of an auction is important in the study
of competing auctioneers. However, in a variety of settings,
such as in the spot pricing of online display advertisements,
bidders, represented by autonomous agents, are not allowed
to bid directly but only via specialized intermediaries. Mo-
tivated by the emergence of these markets, we analyze a
scenario where a single indivisible good is auctioned at a
central seller via two intermediary auctions. We study, for
the first time, the selection problem faced by the buyers
who have to decide in which intermediary auction to bid af-
ter observing the set reserve prices. We find that, when the
reserve prices of the intermediaries are sufficiently different,
the unique pure-strategy equilibrium is for all buyers to se-
lect the low-reserve intermediary. When this is not the case,
the equilibrium strategy depends on the valuation of the
buyers and consists of three intervals. In this unique equi-
librium, buyers in the low-valuation interval always choose
the low-reserve intermediary. Buyers in the middle interval
follow a strictly mixed strategy. Finally, the strategy of the
buyers in the high-valuation interval is for all of them to go
to either the high-reserve intermediary, or the low-reserve
one, but not both.
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1. INTRODUCTION
A rich theory of auctions has been developed over the last
decades for the setting of a monopolist who is auctioning a
good to a number of buyers. However, much less is known for
the case of multiple auctioneers that compete for buyers’ at-
tention. A handful of researchers have dealt with this prob-
lem, usually assuming an infinite population of agents [7, 10]
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or duopoly competition [4, 9], mainly due to tractability is-
sues. Our work takes the latter approach, but, in contrast to
the previous literature, focuses on the effects of competition
between intermediary auctions. These are contingent auc-
tions that are held among buyers before the actual selling of
the good at a central auction.

Our motivation stems from the online advertising exchange
marketplace [8], whereby impressions are sold using real time
auctions, following the sponsored search paradigm. Nowa-
days, autonomous agents are used to bid on behalf of their
owning advertisers in these auctions that take place billions
of times per day, a fact that has attracted the attention of
the multi-agents society. The introduction of these markets
has resulted in increased complexity for the advertisers, who
are usually not allowed or are not able to bid directly in the
central exchange, but can only participate via certified in-
termediaries, such as ad networks or demand side platforms.
The latter typically run their own auction before forwarding
their bid on behalf of the advertiser onto the exchange.

Against this background, in this paper we apply game the-
oretic concepts to the problem of how a buyer should choose
an intermediary, and discuss how this decision affects the
policies (in particular, the reserve prices) of the intermedi-
aries. This is the first work that considers the problem of
competing intermediaries where buyers are non-captive, i.e.
can choose an intermediary. More specifically, we study an
abstracted setting where buyers are willing to buy an in-
divisible good from a central auctioneer by placing a bid
at one of two intermediaries, each running a local auction
among their delegated buyers. These intermediaries then
compete at the center for the good. Our formulation is gen-
eral enough to encompass other markets such as real estate,
treasury bills or procurement auctions where intermediaries
are prominent. Buyers then face the following problem: af-
ter determining their valuations for the good and observing
the reserve prices of the intermediaries, they must simulta-
neously select one of them to bid in, i.e. bidders “single-
home”. This is a natural assumption for a qualitative analy-
sis on the effect of intermediary competition, as advertisers
cannot typically fully multi-home with hundreds of inter-
mediaries. This is due to the high costs for managing each
campaign and technology integration given the real time na-
ture of the auctions. In addition to the impact on their own
utility, buyers’ strategy also has important implications for
the design of the auctions, both at the level of the interme-
diaries, and at the exchange. Note that our setting departs
from standard models of two-sided markets where emphasis
is given on network effects [11]. In contrast, intermediaries



here are one-sided platforms representing the demand side
of the market.
Our contributions are as follows. We identify resulting

equilibria of the intermediary selection subgame when buy-
ers have probabilistic information about their competitors’
valuations. We find that the presence of intermediaries fun-
damentally changes the incentives of both the buyers and the
auctioneers compared to the setting with independent auc-
tions. Interestingly, even in this simple scenario, the buyers’
resulting strategy is fairly complicated, illustrating the com-
plexity of the problem, and thus partially explaining simpler
strategies that are likely to be encountered in practice. How-
ever, our equilibrium analysis serves as a useful benchmark
against these strategies, and provides insights regarding the
auction design problem faced by the intermediaries and the
exchange. More specifically, we show that, whenever the
reserve prices are sufficiently high or different, there is a
unique pure-strategy equilibrium where all buyers select the
low-reserve intermediary. When this is not the case, there is
a unique equilibrium strategy that depends on the valuation
of the buyers and consists of three intervals, whose limits we
call cut-off points. In this equilibrium, buyers in the interval
with low valuations always go to the low-reserve intermedi-
ary; buyers with valuations in the rightmost interval either
select the high-reserve or the low-reserve intermediary (but
not both); finally, the equilibrium strategy for buyers with
valuations in the middle interval is strictly mixed. This is in
contrast to previous works on competing Vickrey auctions,
where it was shown that buyers’ selection admits simple cut-
off strategies involving uniform randomization among the
eligible auctions [2, 4, 7, 9, 10].
The paper is structured as follows. In Section 2, we pro-

vide an overview of related work on competing auctions.
Then, Section 3 provides a formal description of our model.
We define the intermediary selection problem and detail our
results in Section 4. Finally, Section 5 concludes.

2. RELATED WORK
Our model extends that of Feldman et al. [5], who study
the reserve price setting problem faced by the center and
multiple intermediaries implementing Vickrey auctions with
reserve prices. The authors show that intermediaries will use
stochastic reserve prices over an interval, whereas the center
maximizes its revenue by setting a reserve price that depends
on the number of intermediaries. However, crucially, they
consider symmetric intermediaries (equal number of buyers
with identical type distributions) and captive buyers (i.e.
they cannot move between the intermediaries). By contrast,
we assume that the buyers can choose their intermediary,
and so the distribution at an intermediary is endogenously
defined by the buyers’ selection strategies.
Competition between auctions that do not involve inter-

mediaries in a non-captive setting has first been studied by
McAfee [7] and Peters and Severinov [10]. They identify
a symmetric equilibrium where buyers follow strategies in-
volving cut-off points, so that buyers with valuations be-
tween two consecutive cut-off points equally randomize be-
tween eligible auctions. Moreover, they show that the re-
serve prices equal sellers’ production cost in the limit. How-
ever, their results require an infinite number of sellers, and
break down in the case of oligopolies which naturally arise
in our setting. Given this, Burguet and Sákovics [4] studied
the competition between two sellers implementing Vickrey

auctions with reserve prices. The authors identify a unique
Bayes-Nash equilibrium for the selection problem faced by
the buyers, involving a single cut-off point, w, so that buy-
ers with valuations less than w always prefer the low-reserve
auction, whereas buyers with higher types randomize equally
between the two auctions. Hernando-Veciana [2] extended
these results to more than two auctions, assuming a finite
set of reserve prices for the auctioneers. Based on this work,
Gerding et al. [6] studied the duopoly competition between
auctions in presence of a mediating institution and identified
a pure-strategy equilibrium for the sellers with asymmetric
production costs. Furthermore, competing auctions in the
context of sponsored search were studied by Ashlagi et al. [3]
who consider a setting with two auctions that differ in their
click through rates. One of their findings is that, when sell-
ers offer VCG auctions with reserve prices, there is a unique
equilibrium for the buyers’ selection subgame, uniquely de-
fined by two cut-off points, so that buyers with valuations
in the interval defined by the cut-off points follow a strictly
mixed strategy, whereas buyers with valuations outside of
this interval follow pure strategies. However, none of the
previous works considers the problem of competing interme-
diaries in a non-captive setting, whose presence fundamen-
tally changes the nature of the problem. More specifically,
the auctions are no longer independent, as they compete ad-
ditionally as bidders at the central auction. This provides
incentives to increase their reserve prices, and hence their
contingent payments, that in turn decreases demand from
buyers.

3. MODEL
We consider a setting with a unique indivisible good (corre-
sponding to an impression) for sale by a single auctioneer, c,
called the center. There is also a population of n ∈ N, n ≥ 3,
ex ante symmetric, purely profit maximizing (risk-neutral)
buyers that compete for this good, but are allowed to par-
ticipate only via two qualified intermediaries, s1, s2. The
center and the intermediaries are also profit maximizing but
have no value for the good itself. The preferences of buyers
and auctioneers are described by von Neumann and Mor-
genstern utility functions.

We study a standard independent private values model,
where each buyer i has a valuation, υi, i ∈ {1, ..., n}, for the
good to be traded over a compact support V = [0, 1]. It is
assumed that valuations, υi, i ∈ {1, ..., n}, for the good to be
traded are i.i.d. drawn from a commonly known distribution
F with a continuous, positive density f and support V =
[0, 1]. F, f and the total number of buyers, n, are assumed
to be common knowledge. The expected utility for a buyer i
with valuation υi is Πℓ(υi) = αℓ(υi)(υi−ρℓ), where αℓ : V 7→
[0, 1] is the probability of obtaining the good in intermediary
sℓ’s local auction (ℓ = 1, 2), and ρℓ ∈ [0, 1] the price to be
paid to the intermediary.

In our setting, each intermediary, sℓ, ℓ = 1, 2, runs a Vick-
rey auction with a reserve price, rℓ, ℓ = 1, 2, respectively1.
Without loss of generality, for the remainder of this paper
we will assume that r1 ≤ r2. The center runs a Vickrey
auction without a reserve price2 and a fair tie-breaking rule,

1This is the mechanism implemented in large, automated ad
networks, such as Google AdWords.
2This is done for simplification reasons. We could also as-
sume that the center sets a reserve price, but this has no



and each intermediary is allowed to submit a single bid3.
Buyers must select their (single) intermediary after learning
their valuations based on the announced reserve prices and
available information. We note that the selection problem
is independent of the actual bidding. Thus, after selecting
their desired intermediary, it is a weakly dominant strategy
to submit their true valuations.
Each intermediary, sℓ, ℓ = 1, 2, runs a contingent auc-

tion among its set of buyers, denoted Kℓ, to determine the
winning bid, wℓ = maxi∈Kℓ

{υi}, the price to be paid from
the winning buyer conditional on its winning at the cen-
tral auction, ρℓ = max{υargmax{υi∈Kℓ\{wℓ}}, rℓ}, as well as
the bidding amount to be submitted to the center. Given
that the auction at the center is dominant-strategy incen-
tive compatible, it is a weakly dominant strategy for the in-
termediaries to bid their contingent payments, ρℓ, ℓ = 1, 2.
Hence, the expected profit of an intermediary sℓ is Πsℓ(ρℓ) =
αc(ρℓ)(ρℓ − ρm), m 6= ℓ, where αc : V 7→ [0, 1] is the prob-
ability of obtaining the good at the center. In more detail,
the game proceeds as follows:

1. Buyers learn their valuations for the good.

2. Intermediaries announce their reserve prices, r1, r2.

3. Buyers select their preferred intermediary, sℓ, ℓ = 1, 2,
and submit a bid to their selected intermediary.

4. Intermediaries run their auctions for the good among
their local buyers and submit their bids, ρℓ, ℓ = 1, 2,
to the center.

5. The center runs its auction given the bids submitted by
the intermediaries, transfers the good to the winning
intermediary and receives payment.

6. The winning intermediary transfers the good to its
winning buyer and receives payment.

Given this formulation, we will now study the intermedi-
ary selection problem faced by the buyers. The following
examples illustrate some of the implications stemming from
the introduction of the intermediaries, namely a pressure
for intermediaries to increase the reserve prices and the in-
applicability of the revenue equivalence theorem. Suppose
that there are three buyers, 1, 2, 3 with valuations υ1 = 1,
υ2 = 0.9 and υ3 = 0.8. First, suppose that the reserve
prices are r1 = 0.85 and r2 = 0.89 (i.e. buyer 3 cannot par-
ticipate). Then, if buyer 1 selects s1 and buyer 2 selects s2,
the intermediaries submit their reserve prices at the center
and s2 wins, giving the good to buyer 2 for a price of r2 and
s2 obtains a profit of r2−r1. In this case, it is an equilibrium
for buyer 1 to select the high-reserve intermediary, s2, that,
although offering him a higher price, guarantees that he will
always win the good at the center. It is clear here that in-
termediaries have incentives to increase their reserve prices.
In another example, suppose that r1 = 0.7 and r2 = 0.75.
Buyer 3 can never obtain the good, so we can assume that
he randomizes equally between the intermediaries. Then, if
both buyers 1 and 2 select the same intermediary, buyer 1
always wins for a utility of υ1 − υ2 = 0.1 (as the selected
intermediary submits 0.9 at the center, whereas the oppo-
nent intermediary will only submit its reserve price half of

effect on the buyers’ choice of intermediary.
3Variations of the Vickrey auction with reserve price are
used in all major ad exchanges.

the time, when buyer 3 is there, and zero otherwise). How-
ever, if they select different intermediaries, then buyer 1’s
expected utility is 1

2
(υ1 − υ3) = 0.1 and buyer 2’s expected

utility is 1
2
(υ2 − υ3) = 0.05 (each of them wins whenever he

is in the same intermediary auction as buyer 3). In this sce-
nario, there exist two (weak) pure strategy Nash equilibria,
where buyers 1 and 2 select different intermediaries. This
means, that there can be situations where the good is not
allocated to the buyer with the highest valuation.

4. BUYER EQUILIBRIUM STRATEGIES
Having illustrated our model and examples, we begin our
analysis. Since we are in a probabilistic environment, our
equilibrium concept is symmetric Bayes-Nash. We denote
by θ : V 7→ [0, 1] the selection strategy of the buyers, which
is a mapping from a buyer’s valuation to the probability of
selecting the low-reserve intermediary, s1. Thus, 1− θ(υ) is
the probability that the same buyer selects intermediary s2.

As we will show, there is a unique pure-strategy Nash equi-
librium (PSNE) where all buyers select the low-reserve in-
termediary when the reserve prices are sufficiently different.
If this is not the case, the intermediary selection problem
admits a unique mixed-strategy Nash equilibrium (MSNE)
involving three intervals defined by two cut-off points. In
this equilibrium, buyers with valuations below the low cut-
off point always select the low-reserve intermediary. Also,
buyers with valuations between these cut-off points random-
ize between the intermediaries according to a function whose
form will be different for different distributions of valuations
assumed. Finally, buyers above the high cut-off point will
all select either the low-reserve intermediary, or the high-
reserve one, but never both. Due to space limitations, parts
of some proofs are moved to an online appendix [1]. In what
follows, we start by providing a closed form expression for
the utility from each intermediary that the buyers expect.

The expected utilities for a buyer with valuation υ from se-
lecting the low- and high-reserve intermediary, Π1(υ),Π2(υ)
respectively, when r1 < r2, can be written as:

Π1(υ) =











































0 if υ ∈ [0, r1)
∫

υ

r1
F

(n−1)
1 (y)dy if υ ∈ [r1, r2)

(υ − r1)F
(n−1)
1 (r1) +

∫

r2
r1

(υ − y)f
(n−1)
1 (y)dy+

+
∫

υ

r2
(υ − y)θ(y)f

(n−1)
1 (y)dy+

+
∫

υ

r2

∫ 1
y2

(υ − y2)(1 − θ(y1))θ(y2)f
(n−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [r2, 1]

(1)

Π2(υ) =






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


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






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0 if υ ∈ [0, r2)

(υ − r2)F
(n−1)
1 (r2) +

∫

υ

r2
(υ − y)(1 − θ(y))f

(n−1)
1 (y)dy+

+(υ − r2)
∫ r2
0

∫ 1
r2

θ(y1)f
(n−1)
1,2 (y1, y2)dy1dy2+

+
∫

υ

r2

∫ 1
y2

(υ − y2)θ(y1)(1 − θ(y2))f
(n−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [r2, 1]

(2)

where F
(n−1)
1 (y) = Fn−1(y), f

(n−1)
1 (y) = (n−1)Fn−2(y)f(y)

are the cumulative distribution and density functions of the

first-order statistic, and f
(n−1)
1,2 (y1, y2) = (n−1)(n−2)f(y1)

f(y2)F
n−3(y2) is the joint density of the first- and second-

order statistics among n− 1 bids.
The first term in (1) represents a buyer’s expected utility

from the low-reserve intermediary, s1, when his valuation
is in [r2, 1] and all opponent bids are less than or equal to
r1. The buyer also expects positive utility from s1 when the
expected highest opponent bid over the population of buyers



is higher than r1, lower than his valuation, and is submitted
in the same auction (second and third terms in (1)), as this
bid will always win at the center. Finally, he expects positive
utility from s1 when the expected second highest opponent
bid over the population of buyers is higher than r2, lower
than his valuation, and is submitted in the same auction,
and, at the same time, the expected highest opponent bid is
submitted in the high-reserve intermediary (fourth term in
(1)). This is because the local second highest bids compete
at the center, and hence his local second highest bid (which
will be the third highest global bid) is guaranteed to win
against the local second highest bid in the other auction
(which will be at most the fourth highest global bid or r2).
Similarly, a buyer with valuation in [r2, 1] expects posi-

tive utility from the high-reserve intermediary, s2, when all
opponent bids are less than or equal to r2 (first term in (2)),
or when the expected highest opponent bid over the popu-
lation of buyers is higher than r2, lower than his valuation,
and is submitted in the same auction (second term in (2)).
He also expects positive utility from s2 when the expected
second highest opponent bid over the population of buyers
is higher than r2, lower than his valuation, and is submitted
in the same auction, and, at the same time, the expected
highest opponent bid is submitted in the low-reserve inter-
mediary auction (fourth term in (2)). Finally, the third term
in (2) corresponds to the case where the expected highest op-
ponent bid is higher than r2 and submitted in s1, and, at
the same time, the expected second highest opponent bid
is less than r2. Then, the buyer’s expected payment is r2,
as the forwarded bid by s1 (which will be at most the third
highest global bid or r1) will always be less than r2.
We begin our analysis with the special case of equal re-

serves and then provide results for the more general case
where r1 is strictly less than r2.

4.1 Special Case: Equal Reserve Prices
When r1 = r2 = r, assuming a fair tie-breaking rule by the
center, the expected utilities for a buyer with valuation υ

from the low- and high-reserve intermediary simplify to:

Π
eq
1 (υ) =


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


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











0 if υ ∈ [0, r)

(υ − r)F
(n−1)
1 (r) +

∫

υ

r
(υ − y)θ(y)f

(n−1)
1 (y)dy+

+ 1
2 (υ − r)

∫

r

0

∫ 1
r
(1 − θ(y1))f

(n−1)
1,2 (y1, y2)dy1dy2+

+
∫

υ

r

∫ 1
y2

(υ − y2)(1 − θ(y1))θ(y2)f
(n−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [r, 1]

(3)

Π
eq
2 (υ) =
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




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0 if υ ∈ [0, r)

(υ − r)F
(n−1)
1 (r) +

∫

υ

r
(υ − y)(1 − θ(y))f

(n−1)
1 (y)dy+

+ 1
2 (υ − r)

∫

r

0

∫ 1
r
θ(y1)f

(n−1)
1,2 (y1, y2)dy1dy2+

+
∫

υ

r

∫ 1
y2

(υ − y2)θ(y1)(1 − θ(y2))f
(n−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [r, 1]

(4)

The third term in both equations above represents the ex-
pected utility of a buyer when the highest opponent bid is
submitted in the other intermediary, whereas all remaining
bids are less than the reserve price set by the intermediaries.
In this case, both intermediaries will submit r at the center,
where a fair tie breaking rule yields the same probability of
winning the auction. The following theorem illustrates the
equilibrium intermediary selection strategy of the buyers in
this scenario.

Theorem 1. Whenever r1 = r2 = r, it is a mixed-strategy
Nash equilibrium for the buyers in the intermediary selec-

tion problem to equally randomize between the intermedi-
aries. Moreover, there exists a pure-strategy Nash equilib-
rium where all buyers select the low-reserve intermediary
auction if the reserve prices are such that F (r) = 0 or
F (r) = 1.

Proof. It is easy to see that the only mixed equilibrium
strategy θ(υ) ∈ (0, 1) equals 1

2
for all υ ∈ [r, 1], due to the

symmetry of (3) and (4). For the PSNE, suppose without
loss of generality that all (other) buyers select intermediary
s1, i.e. θ(υ) = 1 for all υ ∈ [r, 1]. Then, the utility difference
that a buyer with valuation υ ∈ [r, 1] expects will be:

Π1(υ)−Π2(υ) =

∫

υ

r

F
(n−1)
1 (y)dy−(υ−r)[

n − 1

2
F

n−2
(r)−

n − 3

2
F

n−1
(r)]

(5)
The second partial derivative of this function w.r.t. υ is:

∂2

∂υ2
(Π1(υ) − Π2(υ)) = (n − 1)F

n−2
(υ)f(υ) ≥ 0 (6)

This means that the function is convex, so its global mini-
mum at a valuation we denote υc will satisfy the FOC:

F
n−1

(υc) =
n − 1

2
F

n−2
(r) −

n − 3

2
F

n−1
(r) (7)

For the existence of a PSNE, we would like that Π1(υc) −
Π2(υc) ≥ 0. Using (7), this means that

∫ υc

r
Fn−1(y)dy ≥

Fn−1(υc)(υc − r). However, from the first mean value the-
orem for integration,

∫ υc

r
Fn−1(y)dy = Fn−1(ω)(υc − r),

where r < ω < υc. So, we would have that Fn−1(ω)(υc −
r) ≥ Fn−1(υc)(υc − r), which can only happen for υc = r,
since f > 0 ⇒ F (ω) < F (υc). Using this last fact in (7)
yields:

F
n−1

(r) =
n − 1

2
F

n−2
(r)−

n − 3

2
F

n−1
(r) ⇒ F (r) = 0 or F (r) = 1

(8)

4.2 Pure Nash Equilibrium Strategy
Having analyzed the equal reserve prices scenario, for the
remainder of this report, we will assume that r1 < r2. In
this general case, as the next theorem shows, buyers have an
incentive to select s1 when the reserve prices are sufficiently
different.

Theorem 2. There exists a pure-strategy Nash equilib-
rium in the buyer intermediary selection problem where all
buyers select the low-reserve auction if the reserve price of
the low-reserve intermediary, r1, is lower or equal than a
critical value rc ∈ [r1, r2), satisfying

∫

υc

rc

F
(n−1)
1 (y)dy = F

(n−1)
1 (υc)(υc − r2) (9)

where υc is such that

F
(n−1)
1 (υc) = F

(n−1)
1 (r2) + (n − 1)(1 − F (r2))F

(n−2)
1 (r2) (10)

Proof. Consider the case that all (other) buyers select
the low-reserve auction, i.e. θ(υ) = 1 for all υ ∈ [r1, 1].
Then, using (1) and (2), we can write the utility difference
that a buyer with valuation υ ∈ [r2, 1] expects as:

Π1(υ) − Π2(υ) =

∫

υ

r1

F
(n−1)
1 (y)dy− (11)

− [F
(n−1)
1 (r2) + (n − 1)(1 − F (r2))F

(n−2)
1 (r2)](υ − r2)



The second partial derivative of this function w.r.t. υ is:

∂2

∂υ2
(Π1(υ) − Π2(υ)) = f

(n−1)
1 (υ) ≥ 0 (12)

This means that the function is convex, so its global mini-
mum at a valuation we denote υc will satisfy the FOC:

F
(n−1)
1 (υc) = F

(n−1)
1 (r2) + (n − 1)(1 − F (r2))F

(n−2)
1 (r2) (13)

For this to be a PSNE, we want Π1(υc) − Π2(υc) ≥ 0.
The equality Π1(υc)− Π2(υc) = 0 gives us an upper bound
for r1, which we call the critical reserve price, rc. As can
be seen from (13), υc is only dependent on r2. Additionally,
Π1−Π2 is a decreasing function of r1 (see (11)). This means
that, for a given r2, setting r1 = rc + ǫ, where ǫ > 0 is a
strictly positive quantity, Π1(υc)−Π2(υc) < 0. This bound
is strict as F (·) is strictly increasing. On the other hand,
setting r1 = rc − ǫ gives a positive utility difference, i.e.
Π1(υc)−Π2(υc) > 0. So, a PSNE exists for any r1 ≤ rc.

In what follows, we prove, through a number of steps,
that the equilibria of Theorem 2 are the only PSNE. First,
we show that it is not a PSNE for the buyers to always select
the high-reserve intermediary.

Proposition 1. There is no pure-strategy Nash equilib-
rium where all buyers always select the high-reserve inter-
mediary.

Proof. Similarly, when all other buyers select the high-
reserve intermediary, the difference in expected utilities for
a buyer with valuation υ ∈ [r2, 1] will be:

Π2(υ)−Π1(υ) =

∫

υ

r2

F
(n−1)
1 (y)dy−

∫

r2

r1

F
(n−1)
1 (y)dy−(υ−r2)F

(n−1)
1 (r2)

(14)
By taking the first and second partial derivatives w.r.t. υ,
we get:

∂

∂υ
(Π2(υ) − Π1(υ)) = F

(n−1)
1 (υ) − F

(n−1)
1 (r2) (15)

∂2

∂υ2
(Π2(υ) − Π1(υ)) = f

(n−1)
1 (υ) ≥ 0 (16)

This means that the function is convex, so there is a global

minimum at υc where F
(n−1)
1 (υc) = F

(n−1)
1 (r2). But Π2(υc)−

Π1(υc) < 0, so this can never be a symmetric PSNE.

The only remaining case for the existence of PSNE is to
consider a selection strategy consisting of a number of inter-
vals whereby the strategy remains constant but changes be-
tween two successive intervals. Suppose that there are k ≥ 1
points, wi, i = 1, ..., k, in V , which we call cut-off points, so
that θ(υ) = θ1 for υ ∈ [r2, w1), θ(υ) = θ2 for υ ∈ [w1, w2)
and so on, where θi ∈ {0, 1} for i = 1, ..., k+1 and θi 6= θi+1.
Moreover, it has to hold that Π1(wi) = Π2(wi), ∀i = 1, ..., k,
i.e. a buyer with a valuation equal to a cut-off point has to
be indifferent between choosing either intermediary. Propo-
sition 2 shows that no PSNE with such cut-off points exists.

Proposition 2. Let w1 < w2 < ... < wk ∈ (r2, 1], k ∈
N

∗ denote cut-off points and let θ : V 7→ [0, 1] be a strategy
profile where θ(υ) = θ1 if r2 ≤ υ < w1, θ(υ) = θ2 if w1 ≤
υ < w2 and so on, θ(υ) = θk+1 if wk ≤ υ ≤ 1, for a buyer
with valuation υ ∈ V , where θi ∈ {0, 1} for i = 1, ..., k + 1,
θi 6= θi+1 for all i = 1, ..., k. Then, θ(·) is not a pure Nash
equilibrium strategy profile.

Proof Sketch. Given that Π1(r2) > Π2(r2) = 0, it
should be that θ(r2) = 1 and hence θ1 = 1 ∀υ ∈ [r2, w1)
by continuity of Π1,Π2. This means that θλ+1 = 1 for even
λ and θλ+1 = 0 for odd λ. It can also be shown that the
selection strategy, θλ+1 ∈ {0, 1}, controls the convexity of
Π1 − Π2 = Dλ in [wλ, wλ+1), by taking its second partial
derivative with respect to υ. More specifically, Dλ is convex
when θλ+1 = 1, and concave otherwise. We consider two
cases, k = 1 and k ≥ 2.

When k ≥ 2, for the existence of a PSNE, we would have
a non-negative decreasing convex Π1 − Π2 at [r2, w1) (θ1 =
1) followed by a non-positive concave Π1 − Π2 at [w1, w2)
(θ2 = 0), which first decreases and then increases up to
zero, followed by a non-negative convex Π1 −Π2 at [w2, w3)
(θ3 = 1) and so on. But then there should be discontinuities
at the optima of the corresponding intervals, which is in
contrast with the well-defined first derivative of Π1 − Π2.
Hence, there cannot be a PSNE with k ≥ 2 cut-off points.

When k = 1, w is a saddle point. So, from FOC:

F
(n−1)
1 (w) + (n − 1)(1 − F (w))F

(n−2)
1 (w) =

F
(n−1)
1 (r2) + (n − 1)(1 − F (r2))F

(n−2)
1 (r2) (17)

However, the function xn−1+(n−1)(1−x)xn−2 is strictly in-
creasing for 0 < x < 1, which means that F (w) = F (r2). So,
it should be that w = r2. Nevertheless, Π1(r2)−Π2(r2) > 0,
whereas we require that Π1(w)−Π2(w) = 0. Hence it cannot
be a PSNE. The full proof can be found in [1].

Given this last result, we derive the following corollary.

Corollary 1. The equilibrium of Theorem 2 is the unique
pure-strategy Nash equilibrium of the buyer intermediary se-
lection problem.

This can be directly derived by the nonexistence results of
propositions 1 and 2 that cover all possible cases, combined
with the existence result of Theorem 2.

4.3 Mixed Nash Equilibrium Strategy
Given this last result, when the reserve prices do not satisfy
the conditions of Theorem 2, buyers should follow a mixed
strategy θm(υ) ∈ (0, 1) at an appropriate interval in equi-
librium. The following lemma provides the conditions that
θm(·) should satisfy, no matter what the form of the pure
strategies (if any) before and after randomizing.

Lemma 1. Let θ : V 7→ [0, 1] be a mixed Nash equilibrium
strategy profile involving an interval [w, a] ⊆ (r2, 1], where
θ(υ) = θm(υ) ∈ (0, 1) for a buyer with valuation υ ∈ [w, a]
and θ(υ) = θ∗(υ) ∈ {0, 1} for υ ∈ (a, 1]. Then θm(·) satisfies
the condition

[2F (υ) + (n − 2)(1 − F (υ))]θm(υ) =

= (n − 2)[

∫

a

υ

θm(y)f(y)dy +

∫ 1

a

θ
∗

(y)dy] + F (υ) (18)

Proof. Suppose that buyers follow a pure strategy θ(υ) =
θp(υ) for all υ ∈ [r2, w), then follow a mixed strategy θ(υ) =
θm(υ) ∈ (0, 1) for all υ ∈ [w, a] and then follow again a pure
strategy θ(υ) = θ∗(υ) for all υ ∈ (a, 1], i.e. the selection
strategy involves an interval [w, a] where buyers randomize
between the two intermediary auctions. Then, for the exis-
tence of a MSNE, Π1(υ)− Π2(υ) as well as all of its higher
order derivatives should be zero for all υ ∈ [w, a]. Under this



assumption, the second order derivative of the utility differ-
ence for a buyer with valuation υ in [w, a] can be written as
(see [1] for the derivation):

∂2(Π1(υ) − Π2(υ))

∂υ2
= (n − 1)F

n−3
(υ)f(υ)

{

[2F (υ) + (n − 2)(1 − F (υ))]

θm(υ) − F (υ) − (n − 2)[

∫

a

υ

θm(y)f(y)dy +

∫ 1

a

θ
∗

(y)dy]

}

(19)

where setting ∂2(Π1(υ)−Π2(υ))

∂υ2 = 0 gives the condition of
(18).

We will now show that there can only be a single cut-
off point, w ∈ (r2, 1], before and at most a single cut-off
point, a ∈ (w, 1], after randomizing, where w, a are such that
Π1(w) = Π2(w), Π1(a) = Π2(a), and θ(r2 ≤ υ < w) = 1,
θ(w ≤ υ ≤ a) = θm(υ) ∈ (0, 1), θ(a < υ ≤ 1) ∈ {0, 1}.

Lemma 2. The mixed equilibrium intermediary selection
strategy of a buyer can only involve a single cut-off point
w ∈ (r2, 1] before randomizing and at most a single cut-off
point, a ∈ (w, 1] after randomizing.

Proof Sketch. As has been mentioned at the proof of
Proposition 2, there will be at least a single cut-off point
w ∈ (r2, 1] so that buyers with valuations in [r2, w) al-
ways select the low-reserve intermediary, as their utility from
the low-reserve intermediary is positive, whereas their ex-
pected utility from the high-reserve intermediary is arbitrar-
ily close to zero. Suppose there are σ′ ≥ 2 such cut-off points
w1 < w2 < ... < wσ′ ∈ (r2, 1], so that θ(υ) = θp1 = 1
for υ ∈ [r2, w1), θ(υ) = θp2 = 0 if υ ∈ [w1, w2), and
so on, θ(υ) = θpσ′

∈ {0, 1} if υ ∈ [wσ′−1, wσ′). Sim-
ilarly, we can show that θpλ+1 , controls the convexity of
Dλ = Π1(υ) − Π2(υ) for valuations υ ∈ [wλ, wλ+1), λ =
0, ..., σ′ − 1 (where we denote w0 = r2). This means that
when θpλ+1 = 1, the corresponding utility difference is con-
vex, whereas when θpλ+1 = 0, it is concave. Hence, in equi-
librium, the utility difference for υ ∈ [r2, w

′
σ) will comprise

pairs of non-negative convex intervals and non-positive con-
cave intervals, which cannot happen unless there are discon-
tinuities at the local optima, a fact which is not supported
by the first order derivative, so there can only be a single
cut-off point w before randomizing.
Similarly, if there are k′ ≥ 2 cut-off points, a1 < a2 <

... < ak′ ∈ (w, 1], so that θ(υ) = θ∗λ ∈ {0, 1} for valuations
υ ∈ [aλ, aλ+1), Π1(aλ) = Π2(aλ) and θ∗λ 6= θ∗λ+1 for all
λ = 1, ..., k′, we would then have a series of non-negative
convex utility difference intervals and non-positive concave
alternating intervals if θ∗1 = 1, or the opposite when θ∗1 = 0.
This means that there should be discontinuities at the local
optima of the corresponding intervals, which is in contrast
with the well defined first order derivative of Π1 − Π2, and
hence there can only be at most a single cut-off point a in
(w, 1]. The full proof can be found in [1].

We have shown that there has to be a single cut-off point,
w, before randomizing, and at most a single cut-off point, a,
after randomizing. We posit that the equilibrium strategy
should, in general, involve exactly one a. Equation (18) is
a Volterra integral equation of the second kind. However,
solving it requires, in general, knowledge of the distribu-
tion function. Hence, the form of θm(·) will depend on our
assumptions about the distribution of valuations, parame-
terized by a. Nevertheless, when a = 1, (18) has a solution

θm(υ) = 1
2
for all υ ≥ w. This strategy is identical to the

one proposed by Burguet and Sákovics for two independent
auctions. Substituting the proposed θm(·), Π1(υ) − Π2(υ)
will have the following form:

Π1(υ) − Π2(υ) =

∫

w

r1

F
n−1

(y)dy +
n − 1

2
(1 − F (w))

∫

w

r2

F
n−2

(y)dy+

+ r2[(n − 1)F
n−2

(r2) − (n − 2)F
n−1

(r2)] + w[
n − 3

2
F

n−1
(w)−

−
n − 1

2
F

n−2
(w)] + υ[(n − 2)F

n−1
(r2) − (n − 1)F

n−2
(r2)−

−
n − 3

2
F

n−1
(w) +

n − 1

2
F

n−2
(w)] (20)

For this to be a NE for all υ ≥ w, w must set both the
first-order and zero-order coefficients of this polynomial to
zero. Nevertheless, this can only be true for at most a sin-
gle pair of reserve prices: in the zero-order coefficient, w is
uniquely defined by both r1, r2, whereas in the first-order it
only depends on r2. So, given that the system of equations
is underdefined, w cannot be the solution of both equations
for all valid pairs of r1, r2. This means that there should be
exactly one more cut-off point, a < 1.

Given this last result, we have shown that the mixed-
equilibrium selection strategy of the buyers will involve three
intervals defined by two cut-off points: buyers with valua-
tions in the first interval always select the low-reserve in-
termediary, buyers with valuations in the middle interval
will randomize between the intermediaries with a probabil-
ity that is given by the solution to (18), and buyers whose
valuations lie in the third interval will also follow a pure
strategy. We formalize this finding in the following theo-
rem where we additionally prove uniqueness of the resulting
equilibrium and also give the conditions for w and a.

Theorem 3. Let θ : V 7→ [0, 1] be a strategy profile where
θ(υ) = 1 if υ ∈ [r2, w), θ(υ) = θm(υ) if υ ∈ [w, a], and
θ(υ) = θ∗ ∈ {0, 1} if υ ∈ (a, 1], for a buyer with valuation
υ ∈ [r2, 1], where θm(·) satisfies the condition

[2F (υ) + (n − 2)(1 − F (υ))]θm(υ) =

= (n − 2)[

∫

a

υ

θm(y)f(y)dy + θ
∗

(1 − F (a))] + F (υ) (21)

and w, a are given by:

F
n−2

(w)

∫

w

r1

F
n−1

(y)dy − F
n−1

(w)

∫

w

r2

F
n−2

(y)dy = [(w − r2)F
n−2

(w)

−

∫

w

r2

F
n−2

(y)dy]F
n−2

(r2)[F (r2) + (n − 1)(1 − F (r2))] (22)

F
n−2

(w){F (w) + (n − 1)[1 − F (w) −

∫

a

w

θm(y)f(y)dy−

− θ
∗

(1 − F (a))]} = F
n−2

(r2)[F (r2) + (n − 1)(1 − F (r2))] (23)

Then, θ(·) is a unique mixed Nash equilibrium strategy pro-
file.

Proof Sketch. (21) can be directly derived from Lem-
mas 1 and 2, where we have used the fact that there can only
be one w and one a. Given that this makes the utility dif-
ference a linear function of the valuation, for the existence
of a MSNE, both the utility difference and its first order
derivative should be zero for all υ ∈ [w, a]. We will apply
these conditions at υ = w to get the solutions for w and a.
More specifically, FOC at w yields:



F
n−2

(w)[F (w) + θ
∗

(n − 1)(1 − F (a))] = F
n−2

(w)[2F (w) + (n − 1)

(1 − F (w)) −

∫

a

w

θm(y)f(y)dy)] − F
n−2

(r2)[F (r2) + (n − 1)(1 − F (r2))]

(24)

Then, setting Π1(w)−Π2(w) = 0 yields:
∫

w

r1

F
n−1

(y)dy + (n − 1)

∫

w

r2

F
n−2

(y)dy[1 − F (w) −

∫

a

w

θm(y)f(y)dy−

− θ
∗

(1 − F (a))] = (w − r2)F
n−2

(r2)[F (r2) + (n − 1)(1 − F (r2))]
(25)

The system of (24) and (25) provides the conditions that
w and a should jointly satisfy. Eliminating a from these
equations, we obtain the following equation for w:

F
n−2

(w)

∫

w

r1

F
n−1

(y)dy − F
n−1

(w)

∫

w

r2

F
n−2

(y)dy = [(w − r2)F
n−2

(w)−

−

∫

w

r2

F
n−2

(y)dy]F
n−2

(r2)[F (r2) + (n − 1)(1 − F (r2))] (26)

and then find a by substituting the w found in any of (24)
or (25).
We have reasoned about the existence of these cut-off

points (Theorem 2 and equation (20) respectively). Unique-
ness of w is proved by taking the first order derivatives of
the LHS and RHS in (22) w.r.t. w, where it is easy to
see that the former is always lower than the latter, given
that

∫ w

r1
Fn−1(y)dy− (w− r2)F

n−2(r2)[F (r2) + (n− 1)(1−

F (r2))] < 0, as can be directly derived from (25). Similarly,
taking the first order derivatives of the LHS and the RHS in
(23) w.r.t. a, we can see that the former is strictly higher
(lower) than the latter for θ∗ = 1 (θ∗ = 0 respectively). Fi-
nally, the existence and uniqueness of the solution to (21)
is guaranteed as this integral equation can be transformed
to a first order linear differential equation with continuous
coefficients (Existence and Uniqueness Theorem). The full
proof is provided in [1].

To gain intuition, two examples of the equilibrium selec-
tion strategy when θ∗ = 0 and θ∗ = 1 for different pairs of
reserve prices, a uniform distribution U(0, 1) and 5 buyers
are given in Figure 1. In this case, the mixed equilibrium
selection strategy, θm(·), will have the form:

θm(υ) =



















1
2 −

(1−2θ∗)(1−a)
2 exp(−a)

exp(−υ) if n=4

1
2 + (n − 2)

(1−2θ∗)(1−a)

2[(n−4)a−(n−2)]

n−2
n−4

[(n − 4)υ − (n − 2)]
2

n−4

otherwise

(27)

and w, a can be directly derived from (22) and (23).
Figure 2 illustrates two examples showing existence of all

NE with r1 < r2 when valuations are i.i.d. drawn from a uni-
form distribution U(0, 1) when 5 (top) or 10 (bottom) buy-
ers are present. As can be seen, there is a region of PSNEs
where all buyers select s1 (right), followed by a region of
MSNEs where buyers with valuations υ ∈ (a, 1] always select
s1 but buyers with valuations in [w, a] follow mixed strate-
gies (center). Finally, there is a region where buyers with
high valuations (υ ∈ (a, 1]) always select the high-reserve
intermediary, s2 (left). This means that buyers will only
prefer the low-reserve intermediary when the reserve prices
are high or when they are sufficiently different, so interme-
diaries have incentives to increase their reserve prices up to
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Figure 1: Two examples of the equilibrium strategy,
θ, (bottom in each) and the corresponding utility
difference, Π1 − Π2, (top in each) for the buyers’ in-
termediary selection problem when there are 5 buy-
ers whose valuations are i.i.d. drawn from U(0, 1). In
the top subfigure, buyers with high valuations select
the high-reserve intermediary (θ∗ = 0), whereas in
the bottom subfigure the opposite happens (θ∗ = 1).

a point, in contrast with the classical setting without in-
termediaries. Moreover, as can be seen, the region where
buyers (always or after mixing) select the low-reserve inter-
mediary shrinks as the number of buyers increases, making
the pressure for high reserve prices more apparent.

As we have shown, the problem of competition between
intermediaries is fundamentally different than the classical
setting with independent auctions. The form of the equi-
librium strategy is significantly more complex and involves
two cut-off points, and additionally buyers’ randomization
between the auctions will be different for different distri-
butions on the valuations assumed. In contrast, for two
independent auctions, the equilibrium strategy comprises a
single cut-off point and buyers randomize uniformly between
the auctions. Moreover, we can see a pressure for the reserve
prices to increase, whereas reserve prices have been shown
to converge to zero for the case of independent auctions [4].
This is due to the fact that intermediaries participate in the
central auction as buyers, thus facing a trade-off between
profit maximization and probability of winning at the center.
Furthermore, the intermediaries submit to the center their
second highest local bid. This triggers different behaviour
for the buyers: in order to win the good, the buyer with the
highest valuation must now select the same intermediary as
the buyer with the second or third highest valuation.
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(b) 10 buyers.

Figure 2: Two examples of Nash equilibria for the
buyers’ intermediary selection problem with 5 and
10 buyers respectively whose valuations are i.i.d.
drawn from U(0, 1) when r1 < r2. There are three
distinct regions for the reserve prices: (i) PSNE:
buyers always select the low-reserve intermediary
(right), (ii) MSNE: buyers with valuations in [r2, w)
select the low-reserve intermediary, buyers with val-
uations in [w, a] randomize between the intermedi-
aries, and buyers with valuations in (a, 1] either se-
lect the low-reserve (center) or the high-reserve in-
termediary (left).

5. CONCLUSIONS AND FUTURE WORK
In this paper we have studied, for the first time, the selec-
tion problem of buyers in auctions with intermediaries in a
Bayesian setting. As we have shown, the buyers’ strategy is
fairly complex even in the simplest scenario with two inter-
mediaries. More specifically, this problem admits a unique
pure symmetric Bayes-Nash equilibrium where all buyers
prefer the low-reserve intermediary when the difference be-
tween the reserve prices is large enough or when both reserve
prices are sufficiently high. If this is not the case, there is a
unique mixed-strategy Nash equilibrium involving two cut-
off points. In this equilibrium, buyers with valuations lower
than the first cut-off point select the low-reserve intermedi-
ary, buyers with valuations that are higher than the second
cut-off point either select the high-reserve or the low-reserve
intermediary (when the reserve prices are low or moderately
high respectively), whereas buyers with valuations lying in-
side this interval follow a strictly mixed strategy.
Our study is a first step towards understanding competi-

tion between auctions involving intermediaries and provides
useful insights in the design of both bidding strategies and

auctions in the display advertising marketplace. Neverthe-
less, there are many remaining challenges to be addressed.
First, we intend to investigate the problem of optimal auc-
tion design for the intermediaries and the center. This is an
important task in oligopolies, given that a seller’s selection
of mechanism affects the number and distribution of visit-
ing buyer types, as well as the response of competing sellers,
leading to an infinite regress. Primary simulation results for
the uniform distribution case show that reserve prices are
driven high, as expected, and that intermediaries are un-
likely to follow pure reserve price strategies in equilibrium.
This is in accordance with the results of Feldman et al. [5].
Second, the complexity of the intermediary selection prob-
lem for the buyers and our results for this simple duopoly
competition show the need for computational techniques,
such as fictitious play or iterative best response, as well as
for simplification of the model so as to circumvent issues of
tractability in more general settings. Finally, an important
area for future research is the study of information asymme-
tries between buyers (i.e. different intermediaries provide
different user information that affects buyers’ valuations).
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