The University of Southampton
University of Southampton Institutional Repository

Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?

Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?
Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are able to inhibit partly a number of aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines and T cell reactivity. In parallel, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonioc acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving resolvins and protectins. Mechanisms underlying the anti-inflammatory actions of n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor NR1C3 (i.e. peroxisome proliferator activated receptor ?) and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked. In adult humans, an EPA plus DHA intake greater than 2?g?day(-1) seems to be required to elicit anti-inflammatory actions, but few dose finding studies have been performed. Animal models demonstrate benefit from n-3 fatty acids in rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in patients with RA demonstrate benefit supported by meta-analyses of the data. Clinical trails of fish oil in patients with IBD and asthma are inconsistent with no overall clear evidence of efficacy.

0306-5251
645-662
Calder, P.C.
1797e54f-378e-4dcb-80a4-3e30018f07a6
Calder, P.C.
1797e54f-378e-4dcb-80a4-3e30018f07a6

Calder, P.C. (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75 (3), 645-662. (doi:10.1111/j.1365-2125.2012.04374.x). (PMID:22765297)

Record type: Review

Abstract

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are able to inhibit partly a number of aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines and T cell reactivity. In parallel, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonioc acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving resolvins and protectins. Mechanisms underlying the anti-inflammatory actions of n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor NR1C3 (i.e. peroxisome proliferator activated receptor ?) and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked. In adult humans, an EPA plus DHA intake greater than 2?g?day(-1) seems to be required to elicit anti-inflammatory actions, but few dose finding studies have been performed. Animal models demonstrate benefit from n-3 fatty acids in rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in patients with RA demonstrate benefit supported by meta-analyses of the data. Clinical trails of fish oil in patients with IBD and asthma are inconsistent with no overall clear evidence of efficacy.

This record has no associated files available for download.

More information

Published date: March 2013
Organisations: Human Development & Health

Identifiers

Local EPrints ID: 349703
URI: http://eprints.soton.ac.uk/id/eprint/349703
ISSN: 0306-5251
PURE UUID: d748a1e9-540b-441b-badd-807e53264cad
ORCID for P.C. Calder: ORCID iD orcid.org/0000-0002-6038-710X

Catalogue record

Date deposited: 11 Mar 2013 10:29
Last modified: 15 Mar 2024 02:50

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×