[n the I Sy mapesivm on /4?‘?'&,#@@@ Inteligence, oud Adaplive
/5/1’ S "??‘ H. /wﬂggﬁégu,é)em and 84 Oeltsa Céaﬁf)j ,La [7[6?6(&,’&53. 230 -0Y|

An Evolutionary Cellular Program on the Solution of the

Travelling Salesman Problem *

José A. Moreno, Adriana G. Egea®

Laboratorio de Computacidn Emeryente,
Facultad de Ciencias,
Universidad Central de Venezuela.

Caracas - Venezuela. {jose,aegea}@neurona.ciens.ucv.ve
b Current address: Wessezr Institute of Technology, Ashurst, Southampton SO{0TAA,
UK. e-matl: aegea@uessez.ac.uk
hitp : [Jwww.wessez.ac.uk/ aegea

An evolutionary algorithm is described for solving instances of the Travelling Salesman Problem (TSP). The
key point of the algorithm is the distribution of the population over a grid, being in that sense a sort of cellular
automata, but having as rules of change an iteration of a genetic algorithm each time. This genetic algorithm
operating in miniature just takes on account a subset of the whole population, using for that a given neighborhood

relation, among several defined.

This work compares the behaviour of the algorithm against a genetic algorithm, for different program’s param-
eters. The set of benchmark instances of TSP was taken from the worldwide known collection TSPLIB.

1. Introduction

Resolution of problems can be seen as searching
into a solutions’ space, where it i3 needed to find the
best one. When the problem is elementary, this can
be done by using thorough analysis.

Unfortunately, many real-world problems are so
large and difficult that these methods cannot be ap-
plied due their large storage or computational-time
requirements.

Thus, it is a good approach designing algorithms
which instead of searching an absolute optimum, will
return, in a reasonable computing time, solutions that
are quite close to the optimum. Such algorithms are
called heuristics, and the program presented here cer-
tainly belong to this class of algorithms.

We discuss briefly about combinatorial optimisa-
tion on section 2 and in section 3 about the TSP, as
a particular problem of this kind. In section 4 we
consider evolutionary algorithms as heuristics to deal

* This work was partially supported by Consejo Nacional de
Investigaciones Cientificas y Tecnolégicas (CONICIT).

236

with this kind of problem, paying especial attention
just to two of them: genetic algorithms and cellular
automata. Section 5 is about the program we present
here. Finally the experimental design and conclusions
are presented in section 6.

2. Combinatorial Optimisation

An instance of a optimisation problem is a pair (F,
¢), where F' is any set, the domain of feasible points;
and c is the function of costs, a mapping

c: Fo R (1)
The problem is to find an f € F for which
c(f)z cly) VyeF (2)

such a point f is called a globally optimal solution to
the given instance, or, when no confusion can arise,

simply an optimal solution [?].

\S‘g $ &K{,ﬂ)

e

Sl L —

-
el

—~

spaws oworE T

Optimisation problems can be classified in two cat-
egories: those with continuous variables, and those
with discrete ones, which are called combinatorial.

In combinatorial problems we are looking for an
object from a finite (or possibly countably infinite)
set. This object is typically an integer, set, permu-
tation or graph, instead of a real number as in the
other kind of problems.

There are many types of optimisation problems,
each one with characteristics that makes their reso-
lution expensive in computing resources or not. Ac-
cording to this, there are problems more difficult to
be solved than others. Actually, there is an important

class of problems for which no efficient algorithm is
known: the NP — complete problem class. This class
has the following properties:

1. No NP-complete problem can be solved by any
known polynomial algorithm

2. If there is a polynomial algorithm for any NP-
complete problem, then there are polynomial algo-
rithms for all NP-complete problems [9], [11].

That is why it is so interesting trying to solve ef-
ficiently any specific problem of this class. And, as
we show further, the Travelling Salesman Problem is
one of them. :

3. The Travelling Salesman Problem

The Travelling Saleman Problem (TSP) is one of
the most known and representative of the class of
NP-complete problems, which has been investigated
profusely (2], [4], (7], 9], [11], [7], [22], [28], (32], [33],
[34] and that is why it is elegible to test our evolution-
ary program. In TSP, the cost function ¢ to optimize
is the total distance of a travelling salesman’s tour,
whose restrictions are to go through a set of cities,
visiting only once each one of them, and returning to
the first city visited. In an instance of the TSP we
are given an integer n > 0 and the distance between
every pair of the n cities in the form of an n x n ma-
trix [di;] (not necessarily simmetric). Being F the
feasible domain composed by all cyclic permutations
m on n objects, the cost ¢ maps 7 to

237

c=3 djni) (3)
Jj=1

where 7(i) must be interpreted as the city visited
after city ¢ according to the permutation .

The computing time required to solve this problem
grows exponentially because there are L’f—;}—’ feasibles
solutions in any instance of size n [4] and there is no
polynomial algorithm to find the desired optimum.
It is clear then that the enumerative way becomes
nonviable to solve huge problems, and is essential the
use of heuristics in these cases, and the evolutionary
programming becomes an interesting option.

4. Evolutionary Algorithms

One class of heuristics is constituted by evolution-
ary programs. These are variants of the Holland’s
genetic algorithm [10], which have been widely stud-
ied in the last years and have been used mainly as
function optimizers (8], [16].

Researchers have performed several changes and
additions to this algorithm, limiting their general-
ity in exchange for improving their performance on
the solution of the specific problem. Nevertheless, in
spite of all of these modifications, always is preserved
the primal Darwinian idea of evolution of the species.
That is why they are called evolutionary programs,
or evolutionary algorithms (EAs) [5], [18], [18], [32].

There is a huge diversity of evolutionary computa-
tional models that have been proposed and studied,
some of them even before Holland’s work, and many
authors agree in classify them in this category. EAs
share a conceptual basis of simulation the individ-
ual structures’ evolution by means selection and re-
production processes, opposite to other optimisation
methods, which work with just a single solution in-
stead a population of them. The evolutionary process
depends on the performance of the individual struc-
tures (fitness) into the environment where it belongs.

Specifically, EAs hold a structures’ population that
evolves in accordance with certain rules of selection
(1], [3], [7], [13], [20], [30], recombination(3}, [4], [7],
(13], [18], [27] and mutation(1], [3], [6], [7], [13], [17],

[18] . Each individual is evaluated and rated accord-
ing its fitness. Every individual of the population has
a score, which is used in the selection process. This
process focuses in well-adapted individuals, but also
generally allows poorly adapted survive (with fewer
probabilities). After that, recombination and muta-
tion operate over the selected structures, generating
new information, which could improve the solutions
population.

We are concentrated in two specific families of al-
gorithms belonging to this class. They are the genetic
algorithms and the cellular automata.

4.1. Genetic Algorithms

On one hand, genetic algorithms (GA) have all of
these evolutionary processes, and most of them in-
clude some modifications to the original Holland’s al-
gorithm. For example, with the inclusion of an elitist
criterion, it is possible to preserve the best structure
found in the current generation into the next one.
The generation gap strategies preserve not only the
best, but a big percentage of individuals, removing
just the worse ones.

As it is easily inferable, not all the genetic algo-
rithms’ iterations will imply the same computational
work. That is why many authors compare their re-
sults using the number of substitutions as measure
instead of number of generations or computational
time. Both measures do not depend on the computa-
tional work itself but on other factors, as the design
of the algorithm or the hardware used.

In spite of being simple from a biological point of
view, these algorithms are the sufficiently complex
thing like providing robust and adaptive mechanisms
search [18], [25]. Some of them (the genetic algo-
rithms) have even been compared very favorably with
respect to non-evolutionary methods, like statistical
methods [21].

4.8. Cellular Automata

On the other hand, we have cellular automata
(CA). These are discrete and dynamic systems whose
behaviour is completely specified on terms of a local
relationship. The cellular automata can be seen as a

238

Ed

[

L}

& 1]

3

Figure 1. Neighbors (shaded cells) respect to the central (dark)
according to the neighborhoods: a) VonNeumann, b) Moore,
c) L2, d) R2, e) L3, f) R3 and g) L4

universe on miniature, where the space is represented
as a uniform grid and each cell contain just an ele-
mentary data. Here, the time progresses on discrete
steps [12], [26].

The laws of the universe are simple rules, local
and uniform, which allows that each cell change of
state according to the values of their neighbour cells.

' Thus, the relationship of neighbourhood plays a very

important role in the dynamic system, because it al-
lows the interaction and defines the information flow
(24]. There are many shapes and sizes of neighbor-
hood, and both characteristics affects the behavior of
the automata, because they affect directly the infor-
mation flow through the mesh. Some of these neigh-
borhood are illustrated at Figure 1.

5. Cellular Genetic Algorithm

We present here a cellular genetic algorithm
(CGA), called this way because it is a CA in which
local laws are given by an iteration of a GA. Previ-

ously, other researchers have worked along this idea,
(23], [31].

The population in each case is composed by the in-
dividuals belonging to the neighbourhood previously
defined. The rule for the parents selection can be
random or deterministic (but always depending on
the fitness), because the size of the population is
small enough to handle it. Nevertheless, this is still a
stochastic algorithm, because the recombination and
mutation are stochastic as well.

Because of the size of sub-populations, there is a
quicker updating of the whole population. That is
why other kinds of modifications to the GA perform
better here, such as the use of elitism and elimination
of repeated cells just in the moment of their creation.

It worth to be noted although, that those crite-
ria are not absolutes anymore, because there are no
more global interactions but just local. In that sense,
it is impossible guarantee that the newly produced
offspring does not exist anywhere into the grid but in
the neighborhood knowing it is possible.

To evaluate appropriately the behaviour of CGA,
it was subjected to several problems taken of the
collection TSPLIB'. A comparison of these results
against to those given by a typical genetic algorithm
is performed, varying their input parameters.

The genetic algorithm chosen was the Whitley-
Starkweather-Fuquay’s [29] slightly modified. As a
result, we took in account population size, maximum
number of substitution, use of elitism, elimination of
repeated cells in the neighbourhood and use of gener-
ation gap, haing as result an algorithm that we called
TGA.

Additionally to those parameters, in our CGA we
include in the study: type of neighbourhood used and
synchronous or asynchronous updating of the grid.

The importance of changing values to these pa-
rameters lay in tuning the genetic search, because it
affects both selective pressure and population diver-
sity. As we comment in the following section, these
two factors affect the performance of evolutionary al-
gorithms.

! Available via ftp at the host softlib.cs.rice.edu

239

6. Experiment and Conclusions

The experimentation is being performed using the
evolutionary programs TGA and CGA varying the
input parameters shown in Table 1.

TGA < cities file.tsp >
< output _file >
< population size >
< max.sustit >< elitism>
< No_re_offspring > < gap >
CGA < cities_file.tsp >
< output_file >< mesh order >
< max.sustit >< elitism >
< No_re offspring >< gap >
< neighborhood >< updating >

Table 1:Parameters of the algorithms

The experimental values of test for the indicated
input parameters vary as is specified in Table 2.

Parameters Values

Cities file From TSPLIB

Population size (TGA) | 100 to 5625

Mesh Order 10 to 75

Max. Sustitut. 1000 to 50000

Elitism 0/1

No repeated offspring | 0 /1

Generational Gap 0/01

Neighborhood (CGA) | Moore/Von Neumann
/L2/L3/L4/L6/R2/R3

Updating Synchronous /
Asynchronous

Table 2:Values of the experimental parameters

The first computational results produced let us in-
fer that the cellular genetic algorithm behaves better
than the traditional genetic algorithm. The tendency
to fall in a local optimal solution is lower. Althought
the test have not been run for many problems, similar
results are expected for most of the cases.

Most of the times, increasing the order or the grid
does not imply improve the results obtained, and
we strongly believe that the other parameters have
a more critical influence on the convergence of the
algorithm.

Regarding the neighborhoods, it is likely to be true
the following hypothesis only for huge instances of

TSP: the greater is the radius, the faster is the con-
vergence. But the fewer cells belonging to the neigh-
borhood, the lower is the tendency to obtain degen-
erated solutions. The inclusion of generational gap
doesn’t seem as critical in the CGA as in the TGA,
while the criterium of eliminating identical offsprings
is more effective in the TGA rather in the CGA.

As an immediate future work we planned incorpo-
rate more instances of the TSP to our experimenta-
tion, while a more long term future work could be the
implementation of this algorithm in a parallel system,
and then study the influence of the neighborhoods in
this changed environment.

References

(1] Bramlette, M.F., Initialization, Mutation and Selec-
tion Methods in Genetic Algorithms for Function Opti-
mization” 4th. Int. Conference on Genetic Algorithms,
Morgan-Kauffmann, 1991, pp. 100-107.

Carrasquero, N. and J.A. Moreno, A new genetic opera-
tor for the travelling salesman problem. Working Paper,

[2

Laboratorio de Computacién Emergente, Fac. Ingenieria,
UCV, 1998.

Davis, L., Handbook of Genetic Programming. Van Nos-
trand Reinhold, 1991.

De Jong, K. and W.M. Spears, Using Genetic Algorithms
to Solve NP-Complete Problems, 3rd. Int. Conference on
Genetic Algorithms, Morgan-Kauffmann, 1989, pp. 124-
132.

De Jong, K. and W. M. Spears, On the State of Evo-
lutionary Computation, 5th. Int. Conference on Genetic
Algorithms, Morgan-Kauffmann, 1993, pp. 618-623.
Fogarty, T.C., Varying the Probability of Mutation in the
Genetic Algorithm, 3rd. Int. Conference on Genetic Algo-
rithms, Morgan-Kauffmann, 1989, pp. 104-109.
Goldberg, D.E., Genetic Algorithm in Search, Optimiza-
tion and Machine Learning, Addison-Wesley, 1989.
Gordon, V.5. and D. Whitley, Serial and Parallel Ge-
netic Algorithms as Function Optimizers, 3rd. Int. Con-
ference on Genetic Algorithms, Morgan-Kauffmann, 1989,
pp. 104-109.

Grétschel, M., L. Lovdsz and A. Schrijver, Geometric
Algorithms and Combinatorial Optimization, Springer-
Verlag, 1988.

Holland, J. Genetic Algorithms, Scientific American, July
1992, pp. 44-50.

Lewis, H.R., Elements of the Theory of Computation,
Prentice-Hall, 1998.

Margolus, N. and T. Toffoli, Cellular Automata Machines.
A New Environment for Modelling, MIT Press Series in

(8

[9

(10]
(1)

[12]

240

(13]
[14]

(18]

(18]

(17]

(18]

(18]

[20]

[21)

(22]

(23]

[24)

28]

(26)

(27]

(28]

Scientific Computation, 1987.

Michalewicz, Z., Genetic Algorithms 4+ Data Structures
= Evolution Programs, Springer-Verlag, 1894.
Miihlenbein, H. et al., Evolution Algorithms in Combina-
torial Optimization, Parallel Computing 7:65-88, 1988,
Miihlenbein, H., Parallel Genetic Algorithms, Population
Genetics and Combinatorial Optimization, 3rd. Int. Con-
ference on Genetic Algorithms, Morgan-Kauffrmanon, 1989,
pp. 416-421.

Miihlenbein, H. et al, The Parallel Genetic Algorithm
as Function Optimizer, Parallel Computing 17:619-632,
1991.

Miihlenbein, H., How Genetic Algorithm Really Work. I:
Mutation and Hillclimbing, Parallel Problem Solving from
Nature (PPSN II), ed. Ménner and Manderick, North-
Holland, 1992, pp. 15-26.

Miihlenbein, H., Optimal Interaction of Mutation and
Crossover in the Breeder Genetic Algorithm, Proc. of
Fifth Int. Conf. on Genetic Algorithms (ICGA-93), Mor-
gan Kaufmann, 1993, pp. 648.

Miihlenbein, H., Evolutionary Algorithms: Theory
and Applications, 1993. Technical Paper. Available via
ftp at ftp://borneo.gmd.de/pub/as/ga/gmd. as_ga-
93.03.ps

Miihlenbein, H., On the Mean Convergence Time of Evo-
lutionary Algorithms for Parameter Optimization, 1994.
Reeves, C.R. and C.C.Wright, Genetic Algorithms and
Statistical Methods: A Comparison, Genetic Algorithms
in Engineering Systems: Innovations and Applications
(GALESIA), 12-14 September 1995, Conference Publica-
tion No. 414, pp. 137-140

Rintala, T., Population Size GAs TSP,
2nd Nordic Workshop on Genetic Algorithms and
their Applications, 1996. Available via www at
http://www.uwasa.fi/cs/publications/2NWGA .html.
Rudolph, G. y J. Sprave, A Cellular Genetic Algorithm
with Self-Adjusting Acceptance Threshold, Genetic Algo-
rithms in Engineering Systems: Innovations and Appli-
cations (GALESIA), 12-14 September 1995, Conference
Publication No. 414, pp. 365-372.

Sarma, J. y K. De Jong, An Analysis of the Effects of
Neighborhood Size and Shape on Local Selection Algo-
rithms. Fourth International Conference or Parallel Prob-
lem Solving from Nature (PPSN96), Sept. 22-26, 1996.
Spears, W. M., The Role of Mutation and Recombination
in Evolutionary Algorithms, PhD. Thesis, George Mason
University, 1998.

Stauffer, D., Computer Simulations of Cellular Automata,
J. Phys. A. Math. Gen. 24 (1991), pp.909-927.

Syswerda, G., Uniform Crossover in Genetic Algorithms,
3rd. Int. Conference on Genetic Algorithms, Morgan-
Kauffmann, 1989, pp. 2-9.

Telfar, G., Generally Applicable Heuristics for Global Op-
timisation: An Investigation of Algorithm Performance

in for

