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Hydrodynamic object recognition using
pressure sensing

BY ROLAND BOUFFANAIS*, GABRIEL D. WEYMOUTH AND DICK K. P. YUE

Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents,
for underwater vehicles, an alternative way of sensing the fluid environment when visual
and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing
and gain insight into its capabilities and limitations, we investigated the forward and
inverse problem of detection and identification, using the hydrodynamic pressure in the
neighbourhood, of a stationary obstacle described using a general shape representation.
Based on conformal mapping and a general normalization procedure, our obstacle
representation accounts for all specific features of progressive perceptual hydrodynamic
imaging reported experimentally. Size, location and shape are encoded separately. The
shape representation rests upon an asymptotic series which embodies the progressive
character of hydrodynamic imaging through pressure sensing. A dynamic filtering method
is used to invert noisy nonlinear pressure signals for the shape parameters. The results
highlight the dependence of the sensitivity of hydrodynamic sensing not only on the
relative distance to the disturbance but also its bearing.

Keywords: hydrodynamic mapping; pressure sensing; object detection and recognition

1. Introduction

The mechanosensory lateral line system (LLS) is a distributed, hair cell-based
system which detects the fluid flow regime at the surface of most aquatic
vertebrates, primarily fish and some amphibians. The LLS is composed of
mechanosensory units called neuromasts, which occur free-standing on the skin
(superficial neuromasts) or in fluid-filled canals (canal neuromasts) that open
to the environment through a series of pores. The flow field around these
aquatic vertebrates is perturbed by objects, peers and other living organisms
present in the immediate vicinity. These hydrodynamic perturbations of both
the pressure and velocity of the flow field are detected by the LLS and
transduced into trains of nerve impulses which are transmitted to the central
nervous system for post-processing. This provides the fish or the amphibian
with some sort of hydrodynamic image of their surroundings (Bleckmann 1994;
Coombs & Montgomery 1999; Montgomery et al. 2001; Coombs & Braun 2003).
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Despite its primitive nature, this unique distributed hydrodynamic sensing
device is instrumental for many specific behaviours; for instance, prey detection,
predator avoidance, schooling behaviour, courtship and spawning, rheotaxis,
station holding and spatial orientation (Montgomery et al. 1997, 2002; Liao
2006, 2007).

Montgomery et al. (2001) reported the central role played by the LLS in
the global sensory system of hypogean fishes, such as the Mexican blind cave
fish (BCF). In the absence of light, the only sensory modality capable of
providing detailed information of the surroundings is the LLS (Hensel 1978;
Coombs & Montgomery 1999; Montgomery et al. 2001). Hydrodynamic sensing
is conspicuous in the behaviour of the Mexican BCF. Experiments by von
Campenhausen et al. (1981) and Burt de Perera (2004b) show that the Mexican
BCF is not only able to detect the presence of obstacles placed in its environment,
but, more astonishingly, it is capable of encoding both their shape and size given
its hyperdeveloped mechanosensory LLS. Recently, Jamieson et al. (2009a,b)
revealed the existence of swarms of hadal snailfish in one of the most inhospitable
environments on the planet—in the Kermadec Trench at 7700 m below the Pacific
Ocean surface. At this depth, such swarming behaviours certainly require a high
level of distant touch hydrodynamic sensing. Given the harsh conditions, survival
and feeding also require a high level of distant hydrodynamic imaging through
pressure sensing, as hypothesized by Jamieson et al. (2009a).

To detect obstacles and to manoeuvre underwater, the vast majority of
robots and vehicles rely primarily on acoustic and vision sensing. These
traditional techniques have proved to be effective in the most commonly
encountered configurations, but become inoperative in highly confined, turbid
and murky environments. When considering autonomous underwater vehicles,
manoeuvrability is often considered a more important design criterion than
energy efficiency. Manoeuvrability requires acute sensing capabilities which can
more easily be obtained through multi-modal sensory systems and devices. From
the robotic standpoint, Fan et al. (2002) reported the first design and fabrication
of an artificial lateral line flow sensor. Later, Yang et al. (2006) reported the
first experimentations where such an artificial LLS is used to detect both a
dipole and a wake, hence allowing it to mimic the pressure-sensing capabilities
of those encountered in nature. Recently, McConney et al. (2009) reported yet
another biologically inspired design of sensors showcasing more similarities with
neuromasts than any other artificial devices before, and enhancing the detection
of flow field perturbations.

Besides the mechanosensory lateral line, many fishes such as sharks, sturgeon
and catfish are able to sense weak bioelectric fields emitted by aquatic prey
through an electrosensory lateral line (ELL) system, leading to the so-called
‘passive electrolocation’. However, two specific groups of freshwater fish are
capable of ‘active electrolocation’ as they both emit and sense an electric
field, similar to active sensing systems such as radar and sonar (Nelson &
MacIver 2006). Those active electrolocators can move around and hunt in total
darkness just like BCF. Coombs et al. (2002) and Nelson et al. (2002) have
compared the LLS and ELL, which exhibit many common features in both
their structural and functional organization. According to Coombs et al. (2002),
these two sensory systems appear to play similar roles in most of the specific
behaviours mentioned above for the LLS exclusively. Despite this large body of
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similarities, Coombs et al. (2002) also highlight the contrasting features of LLS
versus ELL, which are primarily due to acute differences in the physical bases of
mechanosensory and electrosensory stimuli as detailed in §2.

There is now accumulating evidence that superficial and canal neuromasts are
distinctively used for specific behaviours. For instance, superficial neuromasts
are essential to rheotaxis and station holding, while canal neuromasts are of
prime importance in the obstacle detection and avoidance. Most experimental
and theoretical studies on the LLS stimulus detection have focused on elucidating
the encoding of the source distance and the encoding of the source location and
direction (Coombs & Braun 2003). The vast majority of studies reported in the
literature on these problems of detection and source encoding used a simple
translating/vibrating sphere as a stimulus (e.g. the recent articles by Rapo et al.
(2009) and Goulet et al. (2008) and the multiple references therein).

Despite the pervasive character of hydrodynamic sensing in nature and
the growing body of cutting-edge biomimetic applications, the hydrodynamic
fundamentals underpinning this sensory mode are still not clearly established.
Windsor et al. (2008) have investigated the specific swimming kinematics of the
Mexican BCF owing to its hydrodynamic imaging capability. Very recently, the
foundations of hydrodynamic mapping using velocity sensing were laid by Sichert
et al. (2009), in which vectorial velocity sensing was used to locate a moving
disturbance and determine certain shape-scaling parameters. Fishes using canal
neuromasts of LLS or an artificial sensing device, however, depend primarily on
pressure sensing for fixed obstacle detection and identification (Coombs & Braun
2003; Yang et al. 2006). In addition, for any hydrodynamic mapping procedure
to be general and viable, two key features are required. First, it has to be
robust in the presence of a relatively high level of ubiquitous background noise
(Coombs & Braun 2003). Second, the hydrodynamic mapping has to rely on
a general shape representation to allow a complete sensitivity analysis (SA) to
geometric characteristics of the disturbance over ranging distance and bearing.

2. Problem definition

For definiteness, consider the forward and inverse mapping problem for a
BCF in a three-dimensional environment consisting of (vertical) column-like
structures of unknown locations, sizes and cross-sectional geometries. This type
of environment perfectly represents the fascinating tank experiment performed
by S. Coombs (M. S. Triantafyllou 2008, personal communication). In the
recorded movie of that experiment one can clearly observe a BCF swimming
and finding its way through a Lego-brick maze. The BCF manages to avoid
involuntary collisions with doors and obstacles and constantly maintains its
swimming depth. Our choice of a three-dimensional environment with column-
like structures aims at reproducing the environment sensed by the constant-depth
swimming of the BCF. For typical BCF and/or structures of dimension of
order � with � = 0.1 m, and of speed of order one body length, �, per second
(Burt de Perera 2004b), viscous effects are relatively unimportant according to
Triantafyllou et al. (2000). Thus, in this initial study, we ignore the vorticity
shed by the obstacle and fish, and also the effects of the fish body/motion
itself, and model the problem in the context of a two-dimensional potential flow.
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The neglected effects can be readily accounted for later within the present
framework. It must be added that the treatment of both the forward and
inverse problems proposed in this article remains entirely valid with any
possible flow, including the flow generated by the BCF itself while swimming.
However, with such complex flows one has to resort to numerical simulations
in order to access the solution of the forward problem unlike in the case
considered here.

Specifically, this paper addresses the problem of a single body in the vicinity
of the BCF. Our aim is to emphasize physical intuition and connections to the
real-life biological systems through analytical analysis and results. The present
results can be generalized to consider a multiple-body environment. The extension
is particularly straightforward for multiple bodies sufficiently separated so that
higher order hydrodynamic interactions can be neglected.

The problem we pose herein is decomposed into a forward and an inverse
problem as follows. Pressure sensing is available over a finite, distributed and
moving device (such as via an LLS of a fish or via an artificial sensory system of
a vehicle) in the vicinity of a fixed solid obstacle, denoted by O0:

— given the location, size and shape characteristics of O0, determine the
sensed pressure signature (the forward problem);

— given the sensed pressure signal (and a finite history of previously sensed
pressures) determine the location, size and shape of O0 (the inverse
problem).

Solving both the forward and inverse problems is instrumental in determining
the shape discrimination capabilities of aquatic vertebrates/robots which rely on
a mechanosensory LLS to build a map of their environment. The forward problem
is by its very nature independent of the characteristics of the sensing device. On
the other hand, the fact that the inverse problem is well posed and its solution is
unique are strongly connected to the sensing mechanism and strategy. The general
dependence of the properties of the inverse problem on the characteristics of the
sensing device is, however, beyond the scope of the present study.

Modelling the pressure sensing after natural or artificial devices (Fan et al.
2002; Coombs & Braun 2003; Yang et al. 2006), we assume a finite noise-to-
signal ratio g in that measurement. This noise level primarily accounts for two
sources of ubiquitous noise: the noise induced by the limited capabilities of
the mechanotransducers forming the sensing device as well as the signal post-
processing; and the background noise of the fluid flow in which the sensor is
placed. The BCF itself is subject to the cumulative effects of these two main
sources of noise and most likely to many other less intense sources.

Let the closed cross-section boundary of O0 be C, and let IS denote the sensed
hydrodynamic image by the device. The perturbation caused by the presence of
the obstacle is expressed mathematically as

IS = F (C), (2.1)

where F is a nonlinear functional that depends on the fluid flow. In contrast
to the active electrolocation discussed in §1, where the electric potential is
governed by linear (Maxwell) equations, the hydrodynamic problem associated
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with the functional F involves not only nonlinear governing equations but also
the non-local relationship between the velocity and pressure fields. Thus, the
mechanosensing forward and inverse problems are significantly more difficult than
those using active electrosensing.

3. Obstacle shape characterization

In her seminal work about the encoding of geometric parameters by the BCF,
Burt de Perera (2004b) highlights two important observations based on her
multiple sets of behaviour experiments. First, her findings show the capability for
a BCF to encode independently in its spatial map various geometric parameters
including size, absolute distance to the obstacle and also the obstacle shape.
Second, she concludes that, because of the fundamental limitations in distance
over which the LLS can operate, the BCF can detect a change in distance
despite not being able to perceive the whole environment at once. This compelling
evidence is somehow counterintuitive from the human standpoint as we are used
to perceiving the entire configuration of our environment at once through vision.
The BCF perception of its environment appears to be extremely progressive. That
progressive hydrodynamic imaging suggests that the BCF mental map accounts
for the specific relationship between the distance with obstacles and its internal
representation.

There is still no clear understanding of how the BCF builds its internal
cognitive map of the environment it evolves in Burt de Perera (2004a). Given the
limited computing and processing capabilities of any fish central nervous system,
it is reasonable to assume that this cognitive map has to be built upon a compact
representation of the environment. For the problem described in §2, our strategy
is to relate the position/geometric characteristics of any body O0 to a general
and unique mathematical representation in terms of (unknown) parameters. This
representation must be in agreement with the two key observations of Burt de
Perera (2004b) recalled above.

(a) External conformal mapping

As the set of two-dimensionally located shapes is inherently nonlinear and
infinite dimensional, finding a simple way of representing and classifying its
elements is key to determining an analytic solution of the forward problem. This
is a non-trivial task (Sharon & Mumford 2006). In the present framework of two-
dimensional potential flow, one powerful yet compact method is to conformally
map the domain D exterior to the Jordan curve C (in z-space) onto the exterior
of a disc (in z-space; see figure 1 for a schematic and a summary of notations)—
generally not the unit disc (Nehari 1952). In our sensing problem, the domain
D corresponds to the fluid domain surrounding the obstacle delimited by C,
which has to be detected and whose shape has to be discriminated. The Riemann
mapping z = f (z) is unique and should be such that at infinity it behaves like the
identical mapping; more precisely, the mapping function should have a simple
pole at infinity and has a Laurent expansion which reads

z = f (z) = z + b0 + b1

z
+ b2

z2
+ . . . , z ∈ D. (3.1)
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Figure 1. Schematic of direct and inverse mappings, and the internal and external domains. The set
(a0, R0, q0) constitutes the three conformal elements associated with the external fluid domain D.

For our study, the inverse exterior mapping z = f −1(z) = g(z) from the exterior
of a disc onto the domain D is of practical interest. This mapping is conformal
and its Laurent series

z = g(z) = z + a0 + a1

z
+ a2

z2
+ . . . , |z| > R0, (3.2)

introduces two essential geometric quantities: R0 and a0, respectively, the uniquely
defined (outer) conformal radius (Pólya & Szegö 1951) and the conformal centre
(Pommerenke 1975; Duren 1983). The (external) conformal mapping provides a
unique but not explicit definition of R0 and a0, which can be interpreted as the
characteristic size and location of the obstacle.

Given the conformal centre a0, the direct exterior mapping z = f (z) admits the
following Laurent series centred at a0

z = f (z) = z − a0 + b′
1

z − a0
+ b′

2

(z − a0)2
+ . . . , z ∈ D, (3.3)

which simplifies the required inversion of the Laurent series (Morse & Feshbach
1953).

The conformal centre, a0 = −b0, may be calculated from the inverse mapping
g by (Pommerenke 1975)

a0 = 1
2p

∫ 2p

0
g(reiq) dq, r > R0. (3.4)

In practice, it can be estimated accurately by evaluating the inverse mapping g
near infinity and subtracting off the known part of the series (3.2),

a0 � (g(z) − z)z→∞. (3.5)

In general, the conformal centre is different from the centroid of the interior
of the domain D, although the difference is often small. The outer conformal
radius R0 should not be confused with the more commonly used inner conformal
radius r0. Indeed, unlike for the definition of r0, the definition of R0 does not
involve a possibly varying point in D (Henrici 1974, 1986); the uniqueness of its
definition is based on the choice of the point at infinity which is common to all
exterior domains. It would be possible but totally inadequate to define an outer
conformal radius based on another point in D. There are several other approaches
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to this same measure of the ‘spread’ of D. For instance, the outer conformal
radius is identical to the transfinite diameter (see Ahlfors 1973). Other approaches
involve polynomial approximation (Chebyshev’s constant) or potential theory
(logarithmic capacity, Robin’s constant); see Tsuji (1959) for greater detail. The
outer conformal radius, like the transfinite diameter, the logarithmic capacity and
the Robin’s constant are all conformal invariants (Ahlfors 1973).

The shape representation is embodied in the inverse exterior Riemann
mapping (3.2), and the governing equations for potential flow in z and z are
conformally invariant. Indeed, potential flows are governed by a Laplace equation
(Milne-Thomson 1968), which remains a Laplace equation through any change
of variables associated with a conformal mapping. As we will show, the use of
equation (3.2) allows one to separate the size/location of O0 from its shape
characteristics (and a unique representation of the latter), leading to a powerful
simplification of the general problem.

We remark that the central idea behind the use of the Laurent series is
that shape information is indirectly encoded into the Laurent coefficients of the
conformal mapping. This fact has been used for the mathematical description of
two-dimensional Laplacian growth problems, such as the deterministic viscous
fingering in a Hele–Shaw cell (Bazant & Crowdy 2005) and the stochastic
diffusion-limited aggregation as modelled by Hastings & Levitov (1998) and
Davidovitch et al. (1999). Bazant et al. (2003) used the encoding of morphological
information in the Laurent coefficients of conformal mappings to study the
dynamics of non-Laplacian growth phenomena. The reader is referred to the
review by Bazant & Crowdy (2005) for details on the use of conformal mappings
for both continuous and discrete growth problems. These mathematical concepts
have also been used in a myriad of other fields where conformal mapping is
applicable, such as in image recognition (Sharon & Mumford 2006).

(b) Shape normalization and conformal elements

If one considers various domains having the same shape, but shifted, dilated
and rotated, it is possible to find a unique normalized inverse exterior mapping
characterizing the shape only and defined as its fingerprint (Sharon & Mumford
2006). The normalization procedure consists of three basic steps in the complex
plane: a translation of amplitude −a0, followed by a dilation by a factor 1/R0
and finally a rotation about the origin by an angle −q0. An arbitrary but unique
choice of the value of the angle q0 is necessary to uniquely define the conformal
axis of the shape. This latter quantity q0 associated with the conformal centre a0
and radius R0 constitute the so-called set of conformal elements of the located
shape. Mathematically, the normalization leads to the definition of the shape
fingerprint as an inverse exterior mapping, denoted by h, defined on the exterior
of the unit disc

z = a0 + R0eiq0h(x), |x| > 1, (3.6)

and admitting the following univalent Laurent series:

h(x) = x + m1

x
+ m2

x2
+ . . . , |x| > 1, (3.7)
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where the coefficients {mk}k≥1 are explicitly related to the complex coefficients
{ak}k≥1 appearing in equation (3.2), by

mk = ak

(R0eiq0)k+1
, (3.8)

and implicitly to the coefficients {b′
k}k≥1 of the recentred forward mapping f (see

equation (3.3)).
For any domain D different from the exterior of a disc,1 the Laurent series (3.7)

admits at least one non-zero coefficient, which is denoted mk0 . The angle q0 is
chosen such that it is the smallest angle enforcing that mk0 is real and positive.
In the trivial case of a circular shape, the value of the angle q0 is logically set
to zero. In the simple case where a1 �= 0 and ak = 0 for all k ≥ 2 in the Laurent
expansion (3.2), the obstacle has an elliptic cross section. The corresponding
ellipse is centred at a0 with its major axis turned about a0 by an angle equal
to arg(a1)/2 with respect to the x-axis. The conformal radius R0 has a clear
geometric meaning in this particular case, being the arithmetic mean of the
semi-minor and semi-major axes of the ellipse.

The analytic function h is, by definition, univalent (Pommerenke 1975; Duren
1983) and consequently satisfies theorems such as the so-called one-fourth
theorem and the area theorem (Krantz 1999), hence imposing constraints on
the coefficients {mk}k≥1 of the shape fingerprint, for instance

|mk | ≤ 1√
k
, k ≥ 1. (3.9)

The normalization procedure represented by equation (3.6) gives access to
the set of conformal elements and the fingerprint h, providing a unique and
complete characterization of any located body O0. Each term in 1/xk in the
Laurent series (3.7) has a clear geometric meaning and is associated with a
polygonal type of perturbation of the unit circle; more precisely, a (k + 1)-
gonal type perturbation also referred to as non-self-intersecting hypotrochoids
or order k (Muskhelishvili 1963). For example, the leading terms in 1/x and 1/x2

correspond, respectively, to a digonal2 and an equilateral triangle (or trigonal)
type of perturbation.

The essential difference between the set of conformal elements and the shape
fingerprint is that the former are independent of the distance from which the
shape is observed. Given the noise-to-signal ratio g, and the relative distance to
the body d defined by

d = |z − a0|
R0

= |h(x)|, (3.10)

only a certain number of terms are necessary in the asymptotic series (3.7) to
fully represent a located shape. This fact is central to the present problem of
shape detection and discrimination through pressure sensing.

The above shape representation exhibits the two central features reported by
Burt de Perera (2004a). First, the progressive character of the mapping process
due to the limited perceptual range of the BCF. This is fully characterized by the
fact that the shape fingerprint is represented by an asymptotic Laurent expansion
1This trivial case corresponds to mk = 0 for all k ≥ 1.
2Degenerate polygon with only two vertices.
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(see equation (3.7)) associated with the mathematical properties discussed above.
The progressive discrimination of the shape is indeed highly dependent on
the relative distance d to the obstacle and the noise-to-signal ratio g, which
condition the necessary number of terms in the asymptotic expansion of the
fingerprint. This aspect is further discussed and exemplified in §3c. Second, the
normalization procedure allows one to independently encode the size, location
and shape parameters just as BCF do. Let N = {a0, R0, q0} denote the set of
conformal elements and S = {mk}k≥1 the set of shape coefficients associated with
the fingerprint representation (3.7). The fundamental governing equation (2.1) of
the forward and inverse problems can therefore be cast as

IS = F (N , S). (3.11)

This reformulation of the problem suggests a two-step approach to tackle the
inverse problem where N and S are sought independently. This approach is
considered in the sequel together with an analysis of which of the two sets, N or
S, should be determined first (see §§4 and 5).

We remark finally that the detailed shape representation introduced here in a
two-dimensional framework for simplicity can be generalized to three-dimensional
problems. Indeed, similar representations exist in three dimensions and have been
reported in the literature (Rothe et al. 1996). In fact, all the discussion associated
with our two-dimensional representation, and its relevance with respect to the
BCF mapping behaviour, remains valid for its three-dimensional counterpart.

(c) Model description

To exemplify the mathematics underlying the description of this physical
problem, a model of biological relevance is devised based on physical parameters
encountered in a typical BCF (Astyanax mexicanus) of head-to-tail length �.
The BCF is placed in an unbounded environment (dimensions greater than
O(100�)) wherein lies a single solid obstacle O0 of characteristic length given
by its outer conformal radius, R0 = �. Given our assumptions discussed in §2, the
fish is neither generating nor perturbing the flow, which is set to a magnitude
U∞ = �/s corresponding to the average swimming speed of the BCF (Burt de
Perera 2004b) of approximately a body length � per second. The obstacle O0
is conformally centred (a0 = 0) and conformally oriented (q0 = 0). Its shape
fingerprint, characterized by the univalent mapping h, is chosen to display both
a round and a pointed end, as depicted in figure 2d. Such a normalized shape is
obtained by specifying the following values:

m1 = 1
3 , m2 = 1

6 , m3 = 1
12 , mk = 0 for k ≥ 4,

for the complex coefficients appearing in the asymptotic Laurent expansion (3.7).
The shape construction process of the obstacle O0 is highlighted in figure 2.

This process starts from the unit circle z = x in figure 2a which is perturbed by
the digonal term 1/(3x). This first additional term has the effect of flattening the
unit circle in the direction given by the argument of m1 = 1

3 , which corresponds
here to the x-axis; hence, leading to an elliptical shape represented in figure
2b. Subsequently, the shape (figure 2b) is perturbed by an equilateral triangular
term, m2/x2, leading to the appearance of three bumps in figure 2c in the three
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Figure 2. Conformal images of the outer unit disc with increasingly higher terms: (a) z = x;
(b) z = x + 1/(3x); (c) z = x + 1/(3x) + 1/(6x2); and (d) the shape fingerprint z = h(x) = x +
1/(3x) + 1/(6x2) + 1/(12x3).
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Figure 3. Geometrical map of the progressive shape discrimination. The different zones are
obtained for a residual parameter 3 = 5% in the asymptotic series (3.7) representing the
shape fingerprint.

principal directions. Ultimately, the shape (figure 2c) is perturbed by a square
term, m3/x3, leading to the actual fingerprint figure 2d, which presents both a
round and a pointed end along the x-axis.

The fingerprint being an asymptotic series, the shape-building process (a)→(d)
genuinely represents the physical dynamic deblurring effect felt by the BCF (with
finite g) when it approaches the obstacle from far away in any direction. As
discussed in §3b, this progressive hydrodynamic imaging of the obstacle is typical
of the BCF behaviour due to the natural limitations of the LLS perceptual range
(Burt de Perera 2004b). Without needing to resort to a complete hydrodynamic
analysis of the flow, it is clear that the actual shape (figure 2d) is first ‘perceived’
as a circle (figure 2a), and subsequently as an ellipse (figure 2b), then as figure 2c
and ultimately as it is (figure 2d). The geometrical map of the progressive shape
discrimination is shown in figure 3. This map must not be confused with the actual
map obtained when sensing pressure through the LLS. However, it illustrates
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perfectly the central concept of progressive shape discrimination. The transition
between successive perceptual zones (k − 1) → k occurs when the polygonal
term |mk/xk | < 3, where 3 is the maximum residual parameter in the asymptotic
series (3.7). The transitions between these zones depend both on the direction
of approach and on the value of 3. This conclusion remains valid for the actual
physical map based on pressure sensing by exchanging 3 with the noise level g.
These transitions for the physical map are fully determined when solving the
forward problem.

4. Forward problem

Prior to tackling the inverse problem, we first solve the forward problem where
the exact description is available analytically to any order.

(a) Pressure field

For definiteness, we assume an imposed uniform external flow U = U∞êa

making an angle a with the x-axis. The complex potential w is obtained through
conformal mapping (Milne-Thomson 1968)

w = U∞
[

ze−ia + R2
0e

ia

z

]
, |z| > R0, (4.1)

where z = f (z) is the Laurent series (3.1) rewritten as centred at the conformal
centre a0 as in equation (3.3). To express the complex potential (4.1) in the
physical plane in terms of z and the obstacle geometric characteristics N =
{a0, R0, q0} and S = {mk}k≥1, a series inversion up to a given order (Morse &
Feshbach 1953) of the Laurent expansion (3.2) is required. This inversion process
is mathematically guaranteed by the univalent fingerprint h and the form of its
Laurent series (Pommerenke 1975; Duren 1983). It yields the expression of the
coefficients {b′

k}k≥1 appearing in equation (3.3) in terms of {ak}k≥1 which embody
both S and {R0, q0}. The conformal centre a0, which completes the set N , appears
explicitly in the asymptotic series (3.3). This inversion allows us to express the
pressure field p as

p(z) = P∞ − 1
2

r

∣∣∣∣dw
dz

∣∣∣∣
2

, (4.2)

with P∞ = p∞ + rU 2∞/2, and p∞ being the pressure at infinity and r the fluid
density. Assuming that the smallest term in the shape fingerprint (3.7) is of order
n, then the highest order term in the asymptotic series giving the pressure field
is of order 2(n + 1). With a noise level of, say, g = O(10%), it suffices to consider
the first three terms in 1/x in the shape fingerprint h corresponding, respectively,
to a digon, an equilateral triangle and a square type of perturbation. Indeed,
the first neglected term for the relative pressure is of the order of 1/d9. Posing
Z = (z − a0)e−ia/R0, the inversion of the series up to that order gives

w = U∞R0

[
Z + 61

Z
+ 62

Z 2
+ 63

Z 3

]
+ O

(
1
Z 4

)
, (4.3)
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Figure 4. Contours of the relative pressure field (p − P∞)/(−rU 2∞/2) obtained from equation (4.4)
around the obstacle O0. The plot comprises 20 evenly distributed contours ranging from 0 to 1.
Two angles a for the imposed external flow at infinity are considered: (a) a = 0 and (b) a = p/3.

with 61 = 1 − m1e2i(q0−a), 62 = −m2e3i(q0−a) and 63 = m1e2i(q0−a) − (m2
1 + m3)e4i(q0−a).

Ultimately,

p = P∞ − rU 2∞
2

∣∣∣∣1 − 61

Z 2
− 262

Z 3
− 363

Z 4

∣∣∣∣
2

+ O
(

1
d9

)
(4.4)

is the pressure field in terms of the characteristics of the prescribed flow U =
(U∞, a) and of the obstacle C = (N , S) = (a0, R0, q0, {mk}k≥1). Contour plots of
the distribution of the pressure field are shown in figure 4 for two different
directions of the externally imposed flow, a = 0 and a = p/3. Note that, in the
close vicinity of the obstacle O0, the expression (4.4) ceases to be valid owing to
a lack of higher order terms.

The expression (4.4) governs the forward problem of hydrodynamic mapping
through pressure sensing.

One should note the different dependencies of the pressure field on the
conformal elements. On the one hand, a0 and R0 appears only indirectly through
the reduced variable Z = (z − a0)e−ia/R0. On the other hand, the conformal
orientation q0 plays a role in every single coefficient {6k}k=1,2,3. This distinctive
role played by q0 influences the directional character of the inverse hydrodynamic
pressure-sensing problem, as will be shown in §5.

(b) Radial distance SA

Given the general conformal shape representation adopted and its fundamental
properties of perceptual shape discrimination and independent determination
of size, location and shape, our approach makes possible a general SA
of hydrodynamic mapping. Such a general SA is not readily available,
for example, within the multipole expansion framework of Sichert et al.
(2009). Note that we consider here hydrodynamic mapping based on a fixed
single-point pressure-sensing device. We expect the results of this SA based
on a fixed single-point pressure sensing to be more restrictive than those

Proc. R. Soc. A (2011)

 on November 24, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Hydrodynamic object recognition 31

obtained with a moving and/or multi-point pressure-sensing device. However,
these results will still inform possible approaches to the solution of the
inverse problem.

Equation (4.4) is the nonlinear functional equation IS = F (C) = F (N , S) to
be inverted when sensing hydrodynamically. More precisely, the hydrodynamic
image Is is simply the local value of the pressure field p as single-point
pressure sensing is considered. This SA is instrumental to identifying the level
of uncertainty associated with each unknown geometric parameter depending on
the relative distance d = |Z | to the obstruction. Independent local perturbation
analyses are made possible owing to the independent representation of each
geometric parameter in N and S, as detailed in §3b.

These perturbation analyses show that the normalizing conformal elements
N = {a0, R0, q0} have their highest correction term varying in 1/d3, 1/d2 and 1/d2,
respectively. This highlights an instrumental feature of hydrodynamic mapping
based on single-point pressure sensing: the mapping procedure exhibits a lower
sensitivity in positioning the obstacle relative to its sizing, scaling or orientating.

Similarly, independent perturbation analyses of equation (4.4) reveal the
sensitivity in determining the shape coefficients S through pressure sensing with
respect to the relative distance d to the obstacle. Not surprisingly, we find that
perturbations of {mk}k≥1 result in correction terms of order 1/dk+1. In other words,
the final pressure solution is progressively less sensitive to each perturbation.
These conclusions for the shape fingerprint coefficients S are in total agreement
with the results of our simplified analysis of the progressive shape discrimination
based only on the geometric shape fingerprint representation presented in §3c.

(c) Pressure nodal lines

The SA presented in §4b reveals instrumental features of hydrodynamic
mapping through pressure sensing, though limited to the influence of the distance
to the object to detect and discriminate. However, the directionality of the
mapping process has been highlighted at the end of §4a. It seems therefore natural
to extend the SA to account for the sensitivity of the pressure distribution to the
relative angular variable (with respect to the direction of the imposed external
flow) defined as

Q = arg(Z ) = arg(z − a0) − a = q − a. (4.5)

At sufficiently large distance d, equation (4.4) becomes

p − P∞
−rU 2∞/2

= 1 − 2|61|
d2

cos(2Q − F1) + |61|2
d4

, (4.6)

with F1 = arg(61) = arg(1 − m1e2i(q0−a)) depending explicitly on the shape
coefficient m1 but also on the relative orientation of the obstacle (through its
conformal orientation) to the direction of the perturbing external flow. If one
approaches O0 along a constant Q1 line such that cos(2Q1 − F1) vanishes, then,
instead of gathering information in the 1/d2 range, one would only receive the
information scaled by 1/d4 (which may fall into the noise level). Such angles Q1
are ‘nodes’ in the pressure information for the digonal fingerprint perturbation,
and the difficulty of the inversion is greatly increased if sampling occurs only in
the vicinity of such nodal lines.
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Similar comments apply to the higher order terms involving vanishing terms
with the general form cos((k + 1)Qk − Fk) with Fk = arg(6k), thus yielding an
increasingly higher number of (higher order) nodal lines. As mentioned for Q1,
the values of Qk depend exclusively on the body shape and (relative) bearing
(q0 − a), and it is important to stress that they are not known a priori.

(d) Progressive perceptual zoning

As a final step in the study of the forward problem, we discuss the
progressive perceptual zoning based on single-point pressure sensing. To this
aim, we assume that the normalizing conformal elements N have already been
determined. This problem is considered in a simplified framework in §3c, where
the progressive shape discrimination capabilities are analysed based purely on
geometric arguments. The objective now is to determine the physical map
equivalent to the geometrical map shown in figure 3. The definitions of the zones
0 → 3 remain the same as the one used in figure 3, i.e. zone k is the part of the
fluid domain where the shape discrimination is possible up to the term of order
k associated with the coefficient mk .

Based on the expression (4.4) of the pressure field in the fluid domain
surrounding the obstacle O0, we can have access to the sensed pressure at any
point in zone 3 where the shape of O0 is completely discriminated. Zone 2 is
defined by ∣∣∣∣p(z ; N ; m1, m2, m3) − p(z ; N ; m1, m2, m3 = 0)

p(z ; N ; m1, m2, m3 = 0)

∣∣∣∣ ≥ e, (4.7)

and the frontier with zone 3 corresponds to the equality. Similarly zone 1 and its
frontier with zone 2 are given by∣∣∣∣p(z ; N ; m1, m2, m3) − p(z ; N ; m1, m2 = 0, m3 = 0)

p(z ; N ; m1, m2 = 0, m3 = 0)

∣∣∣∣ ≥ e, (4.8)

and between zone 1 and zone 0∣∣∣∣p(z ; N ; m1, m2, m3) − p(z ; N ; m1 = 0, m2 = 0, m3 = 0)
p(z ; N ; m1 = 0, m2 = 0, m3 = 0)

∣∣∣∣ ≥ e. (4.9)

The value of the parameter e is associated with both the sensitivity level of the
single-point pressure sensor and the noise-to-signal ratio g.

Based on these definitions of the zoning, the map of progressive perceptual
pressure sensing is shown in figure 5. The zoning clearly shows the fairly short-
range character of the shape discrimination based on pressure sensing. This
fact has been well known for a long time in the context of the obstacle
detection problem (von Campenhausen et al. 1981; Coombs & Montgomery
1999; Goulet et al. 2008). However, the present results extend these earlier
results to the obstacle shape discrimination problem in a quantitative way: to
determine the shape coefficient m1 (resp. m2) it is required to perform sensing
in a range � 3R0 (resp. � R0). The determination of a higher order shape
coefficient—for instance m3 in our model—requires sensing extremely close to
and almost in contact with the obstacle. These results are in agreement with
the conclusions of our SA for the shape coefficients presented in §4b. The
map in figure 5 also highlights a singular difference with the geometrical map
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Figure 5. Zoning of the progressive perceptual shape discrimination based on single-point pressure
sensing. The frontiers are given by equations (4.7)–(4.9) with e = 5% for two different directions of
the imposed external flow: (a) a = 0 and (b) a = p/3.

in figure 3. The high-sensitivity zones of shape discrimination are made of
directional lobes separated by the set of nodal lines introduced in §4c. This is a
further confirmation of the high directionality in shape detection through pressure
sensing.

Given the above forward analysis of the problem, we conclude that practical
shape discrimination, i.e. the inverse problem, based solely on static single-point
pressure sensing is simply not effective. One has to be so close and properly
oriented to have a slight chance of even detecting the lowest shape coefficients. To
overcome these serious constraints and extend the range of shape discrimination,
it is necessary to resort to a dynamically moving multi-point sensory device such
as the LLS. Our investigation of the inverse problem in the next section builds
upon these two requirements.

5. Inverse problem analysis

The objective in the sequel is to assess and demonstrate the invertibility of the
functional (4.4) based on the strategy proposed at the end of §4d. Hence, we
consider a sensor array providing a distributed set of pressure data and moving
along different possible paths.

(a) Inversion methodology

To approximately model the experience of the BCF, the sensor data are
assumed to be noisy and only given over the (small) length of a sensor array.
The array is arbitrarily prescribed as 11 single-point sensors evenly distributed
along a circle, providing the noisy average signal at the array centroid as input
for inversion. There is no doubt that the design of the sensor array plays a central
role in the optimization of the inversion procedure. Moreover, the choice of the
path followed by the sensor array as it moves in time during the dynamic inversion
also has a central importance in the optimization of the whole process. However,
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Figure 6. Characteristics of inverting the conformal centre a0 (dashed line) and radius R0 (solid
line) along circular paths at scaled distance d. (a) Error after 1.5 revolutions (540◦). (b) Required
arc of travel to reduce error to g. Results for g = 10% and a = 0.

our study aims at obtaining a proof of feasibility for the inversion procedure. The
optimal sensor array design and path followed represent new and exciting areas
for future study.

An exact inversion is not possible for the test problem considered because the
data are incomplete and corrupted, and, as equation (4.4) shows, the process
of generating the pressure from the geometric parameters is highly nonlinear.
Instead of an exact inversion, the goal is to determine the dependence of the
inversion accuracy on the distance and orientation of the obstruction in order
to establish the connection with the radial and angular SA presented in §4.
To this end, the sensor device is moved along two types of predetermined
paths: concentric circles centred at the obstacle, and ray lines converging on
the obstacle. The pressure signals are generated through use of equation (4.4)
with an added noise. In sensory ecology, noise can generally be assumed to
be random fluctuations with a normal distribution (Dusenbery 1992). In the
sequel, the background noise is considered to have a normal distribution fully
characterized by g. The estimated geometric properties are initialized with 100
per cent error and updated iteratively at each time step with an unscented
Kálmán filter, a robust dynamic probabilistic signal filtering technique for highly
nonlinear systems (Julier & Uhlmann 2004).

Following the results of the SA in §4b with respect to the relative distance
d to the obstacle, we adopt a hierarchical approach in which normalizing
coefficients N , i.e. the location and size in this case, are first determined. Once
these coefficients are known with sufficient confidence, we subsequently focus on
discriminating the shape of O0.

(b) Location and size detection

Figure 6 shows the characteristics for inverting the conformal centre a0 and
radius R0 of the obstacle O0. In figure 6a the error E in the estimated parameters
is shown after travelling 1.5 revolutions around the disturbance at a relative
distance d = |Z |. The results show a steady increase in accuracy in both centre
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Figure 7. Characteristics of inverting the shape fingerprint coefficients m1 (solid line), m2 (dashed
line) and m3 (dash-dotted line). (a) Error after 1.5 revolutions (540◦) at distance d. (b) Error after
travelling from d = 10 → 2 along approach angle Q. Results for g = 10% and a = 0.

and radius inversion with proximity of the sensor to the disturbance, as well as
the higher accuracy of the radius inversion compared with the centre inversion at
any distance.

These results are in agreement with the conclusions of the SA and are further
illustrated in figure 6b, which shows the arc of travel Q around the disturbance
required to drive the error below the noise level. The required arc increases with
increased distance and asymptotes to infinity at d � 6 for the R0 inversion and
d � 3 for the a0 inversion. Beyond these distances the conformal centre and radius
cannot be inverted accurately regardless of the path length. These conclusions
are in agreement with the previous experimental and numerical analyses of this
problem (von Campenhausen et al. 1981; Coombs & Montgomery 1999; Goulet
et al. 2008).

(c) Shape discrimination

After determining the location and size of the obstacle with the maximum
accuracy possible (given the finite level of noise), we follow the hierarchical
inversion approach and seek to discriminate the shape.

Figure 7 shows inversion characteristics for the fingerprint parameters
(m1, m2, m3) of the flow disturbance O0. The true fingerprint matches the shape in
figure 2d, and figure 7a shows the error E in each parameter after 1.5 revolutions
around O0 at a distance d. As predicted by the radial SA in §4b and by the
study of the progressive perceptual zoning in §4d, the higher order terms require
greater proximity to achieve any given error level owing to the more rapid
attenuation of the relevant portion of the pressure signal. Not surprisingly, the
present moving multi-point sensory device requires less proximity to capture each
individual shape coefficient. For instance, the progressive perceptual zoning shown
in figure 5 highlights the quasi impossibility of accessing the coefficient m3 unless
one is almost in contact with O0. Figure 7a proves that m3 can be determined
with reasonable accuracy in the range d � 2 by resorting to our (non-optimized)
inversion methodology.

Proc. R. Soc. A (2011)

 on November 24, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


36 R. Bouffanais et al.

Our study of the forward problem in §4c reveals the high directionality and
the existence of pressure nodal lines for the inverse problem. These nodal lines
are shown in the progressive perceptual zoning study in §4d. Figure 7b shows the
error after travelling towards the object from a distance of d = 10 to 2 at different
approach angles Q. As expected from the forward analysis of the problem, there
are distinct nodal lines along which the inversion is highly unreliable. The number
and spacing of the Qk -nodes are in agreement with the values corresponding
to vanishing cos((k + 1)Qk − Fk). We conclude that this is a non-obvious but
fundamental limitation in hydrodynamic mapping using pressure sensing.

6. Conclusions

In this article, a general obstacle representation based on normalization
through conformal mapping is used to account for the specific features of
progressive perceptual hydrodynamic imaging reported experimentally. For
instance, the normalizing coefficients (size, location and orientation) and the
shape ones are all encoded separately, which is recommended when considering
an incremental inversion. The shape representation rests upon an asymptotic
series which embodies the progressive character of hydrodynamic imaging through
pressure sensing.

This general representation is employed to study the forward problem
and to express analytically the pressure disturbance generated by a general
parameterized object in a background flow. The pressure disturbance is used
to analyse the efficacy of a hydrodynamic sensing system such as the LLS.
The forward problem analysis allows us to obtain a general SA of the pressure-
based hydrodynamic sensing. This SA is supplemented by a characterization of
the progressive perceptual zoning which reveals that static single-point pressure
sensing is ineffective when it comes to discriminating shapes.

Considering a moving multi-point sensing device, we investigate the inverse
problem of hydrodynamic imaging. A dynamic hierarchical approach strategy
using an LLS to build a map of a flow environment is suggested by our analysis.
First, in the long-distance range, the objective is to obtain the best normalization
parameters attainable, which is only possible by moving towards the disturbance.
In agreement with the analysis of Sichert et al. (2009) and biological findings
(Coombs & Braun 2003), the sensor must approach to within a short distance
of the disturbance (approx. 3R0) to accurately establish its location. The second
step is to discriminate the shape fingerprint, which requires the sensor to circle
around the obstruction. Indeed, the very existence of the nodal lines prevents a
purely radial straight-line approach to hydrodynamic mapping using pressure
information, favouring instead a circular approach to confidently acquire the
parameters mk .

These findings seem to explain the documented ‘accelerate and glide past’
behaviour of BCF when placed in the presence of a new obstacle (von
Campenhausen et al. 1981) and suggest that man-made vehicles using pressure
sensing for hydrodynamic mapping should probably adopt similar strategies.
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