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Abstract—This paper introduces a low-complexity algorithm
for the extraction of the fiducial points from the Electrocar-
diogram (ECG). The application area we consider is that of
remote cardiovascular monitoring, where continuous sensing and
processing takes place in low-power, computationally constrained
devices, thus the power consumption and complexity of the
processing algorithms should remain at a minimum level. Under
this context, we choose to employ the Discrete Wavelet Transform
(DWT) with the Haar function being the mother wavelet, as our
principal analysis method. From the modulus-maxima analysis
on the DWT coefficients, an approximation of the ECG fiducial
points is extracted. These initial findings are complimented with
a refinement stage, based on the time-domain morphological
properties of the ECG, which alleviates the decreased temporal
resolution of the DWT. The resulting algorithm is a hybrid
scheme of time and frequency domain signal processing. Feature
extraction results from 27 ECG signals from QTDB, were tested
against manual annotations and used to compare our approach
against the state-of-the art ECG delineators. In addition, 450
signals from the 15-lead PTBDB are used to evaluate the
obtained performance against the CSE tolerance limits. Our
findings indicate that all but one CSE limits are satisfied.
This level of performance combined with a complexity analysis,
where the upper bound of the proposed algorithm, in terms of
arithmetic operations, is calculated as 2.423N + 214 additions
and 1.093N + 12 multiplications for N ≤ 861 or 2.553N + 102
additions and 1.093N +10 multiplications for N > 861 (N being
the number of input samples), reveals that the proposed method
achieves an ideal trade-off between computational complexity
and performance, a key requirement in remote CVD monitoring
systems.

Index Terms—Mobile Healthcare, ECG Feature Extraction,
Discrete Wavelet Transform, Low Complexity Algorithm
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AGING population and continuous prevalence of Cardio-
vascular Diseases (CVD) - the number one cause of death

(30% of the global total of all deaths) according to the World
Health Organization (WHO) - leading to long-term conditions,
have put current healthcare systems worldwide under serious
strain in terms of the quality of care delivery and its associated
cost [1]. Coupled with the ensuing productivity loss, this leads
to a formidable socio-economic challenge. Effective disease
management through continuous monitoring and information
fusion of vital physiological signals in chronic CVD patients is
viewed as the key mechanism for the drastic reduction of the
cost of CVD care delivery, the enhancement of the quality of
care/life and the significant decrease in deaths and hospitaliza-
tions. Recently, advances in Wireless Sensor Network (WSN)
technology enabled the development of the next-generation
remote CVD monitoring and management systems, able to
monitor the patients’ vital sign data continuously in nomadic
environment. The main approach is to use a number of
battery powered wireless sensors to capture the vital signs and
transmit all data to a centralized service for further analysis
and disease prognosis. Since the traditional clinical feature
extraction algorithms and information fusion techniques are,
from a computational perspective, very intensive tasks, these
parts are typically executed in main-frame type computational
facilities. However, a significant energy expenditure compo-
nent in such systems, is the energy required by the radio
front-end for supporting continuous data transmission, which
may not allow a long-term sustainable operation. Taking as
an example, the ECG signal - the fundamental component
of a remote CVD monitoring system - captured at 1 KHz
sampling rate with 16-bit quantization. Considering a typical
Bluetooth V2 transceiver with 40 - 55 mA current consumption
in transmission mode and a battery capacity of 1200 mAh (the
typical batteries used for WSN applications) and following the
analysis presented in [2], we conclude that continuous data
transmission can be supported only for 24 hrs. In addition
to this, A/D conversion, quantization and signal preprocessing
steps are also carried out at the sensor node and including those
factors, it can be argued that the operation of a continuous
transmission-based system, may not be realistically sustainable
for more than 8 - 12 hrs. This falls well below the actual
clinical notion of continuous monitoring in the sense of clinical
usefulness.

The alternative approach for alleviating this problem - the
approach adopted in the ARTEMIS Joint Undertaking funded
CHIRON project of which the current work is a part - is
to carry out the feature extraction and information fusion
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operations, used to attain clinical diagnosis that are supposed
to be carried out at the main frame, at the sensor node itself
and transmit the clinically relevant decisions to the centralized
facility only upon request [3]. In this approach, the clinical
results are stored on the sensor node itself and transmission
takes place in burst mode at pre-set intervals or on-demand,
therefore eliminating the requirement for continuous transmis-
sion while maintaining the notion of continuous monitoring.
However, it may be argued that since the signal processing
tasks required for such an approach are computationally inten-
sive, the energy requirements for processing could overwhelm
the energy required for continuous transmission. A recent
attempt to implement an automated ECG delineation algorithm
in a WSN node [4] indicated that the energy required for
the ECG delineation is still significantly lower compared to
the continuous transmission scenario, although it is pointed
out that the selection of an appropriate algorithm, in terms
of computational complexity and the type of microcontroller
on which these operations will be executed, is of paramount
importance in such a scenario.

Inspired by this fact, in this paper we propose a novel
automated ECG feature extraction algorithm that is specifically
designed to be efficient from a computational perspective, thus
ideal for ultra-low-energy implementation. It is our belief that
the proposed solution is suitable for integration in the latest
generation remote CVD monitoring systems. It is important
to point out that from a clinical application perspective, the
main purpose of the automated ECG analysis in such remote
monitoring systems, is to produce an “alarm signal” if some
abnormality is detected over a long period of time and by no
means perform any detailed diagnosis of the patient’s clinical
condition, as this is eventually done through more elaborate
diagnostic means (e.g. imaging techniques) in clinical settings.
This fact prompts us to trade-off accuracy and energy con-
sumption although we show that the proposed system satisfies
the CSE Working Party recommended tolerance limits [5] or
is very close to them, when tested on standard databases,
available in Physionet [6]. In addition we have tested the
proposed method on 12 conventional paper ECG signals
supplied by the Southampton General Hospital Cardiology
Department and the achieved accuracy in all cases is endorsed
by expert cardiologists. The overall system consumes a mere
269 nW when synthesized in ST130 nm technology with 1.08
V supply voltage which clearly demonstrates its potential for
low-power implementation.

The rest of the paper is structured as follows: after reviewing
existing works in Section II, we describe our algorithm in
Section III and provide an analysis of its computational com-
plexity in Section IV. Section V is devoted for the validation
of the algorithm, whereas conclusions are drawn in Section VI.

II. BACKGROUND AND MOTIVATION

Traditionally, automated ECG analysis either takes place on-
line on high-performance bedside devices which are bulky, or
is done offline on ambulatory recordings provided by an ECG
data logger, like the Holter device. The main task here is to
automatically detect clinically important ECG fiducial points

like the onset and offset of the QRS complex, P and T waves.
These are then used to calculate various ECG parameters like
the RR-interval, the QRS-length, the PR-interval and the ele-
vation/depression of the ST-segment. A plethora of excellent
algorithms have been developed for such purpose based on
different signal processing approaches, like the time-domain
morphology analysis augmented by different types of filtering
[7]–[13], artificial neural networks [14], pattern matching [15],
hidden Markov models [16], Independent Component Analysis
(ICA) [17] and combinations of the above mentioned methods
[18]–[23]. Another significant line of approach is based on
the Wavelet Transform (WT) which represents a signal in
time-scale domain. Since the ECG signal is characterized by
a periodic occurrence of patterns with different frequency
contents, WT is deemed to be an excellent tool for its analysis.
Subsequently, WT has been used extensively in the past [24]–
[32]. In majority, WT-based ECG analysis algorithms use the
quadratic spline wavelet as the basis function and employ the
modulus-maxima analysis (MMA) method for finding out the
peaks of characteristic waves at different resolution scales [33].

All the above mentioned algorithms show excellent per-
formance in identifying the ECG fiducial points. However,
the major concern associated with these algorithms is that
they are extremely computationally intensive. As long as the
operation is performed online on bulky bed-side devices or
offline on a PC, their effectiveness is undoubted. But owing
to the resource constrained nature - in particular, their limited
battery life - of wearable wireless platforms these approaches
may not be applicable, as the energy consumption is highly
dependent on the computational complexity of the algorithmic
process. Recently the WT-based ECG delineation algorithm
proposed in [34] has been implemented on a commercially
available Shimmer embedded sensor node which consists of
an MSP430 microcontroller [35], showing that increased CPU
activity leads to shorter node life-time. That work concludes
that a careful study is necessary when choosing or designing
a microcontroller [4]. However, the fundamental aspect of
high computational complexity of the employed algorithms
and the very fact that any general-purpose processor consumes
several orders of magnitude more energy than an equivalent
ASIC, leads us to believe that the sensor node should be
augmented with an ASIC, dedicated for the ECG analysis
which needs to be designed following a holistic algorithm-
architecture optimization approach. Therefore, in the present
work we concentrated on developing a low-complexity algo-
rithm, ideal to be realized as a standalone ASIC, by exploiting
the advantages of both WT and time-domain morphology
analysis, which is described in the following sections.

III. ALGORITHMIC FORMULATION

The main engineering requirement for our purpose is to
develop a low-complexity algorithm for the automated ECG
analysis leading to low-power consumption. On the other hand,
the clinical requirement is that the algorithm needs to produce
results of acceptable clinical quality. These two seemingly
contradictory criteria put major constraints on the selection
of the signal processing tools that can be employed, in the
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backdrop of their physical implementability for reducing the
energy consumption. However, the very fact that the ECG
in such systems is mainly intended for generating an alarm
allows one to trade-off algorithmic accuracy, while still staying
within the clinically acceptable levels, for energy consumption.
In the following subsections we will present the step-by-step
formulation of a novel algorithm satisfying this criterion.

A. Choice of the Wavelet function
Owing to the effectiveness of WT, we base our algorithm

on this approach. The biggest advantage of WT is that because
of its time-scale analysis nature, it is inherently able to
separate noise and artifacts, like isoelectric line wandering,
at its different resolution levels as already been shown in
[34]. However, the mother wavelet used for this purpose is
a computationally demanding quadratic-spline Wavelet and as
mentioned previously, has an impact on the energy consump-
tion.

To keep the computational complexity low, we have selected
the Haar wavelet - the simplest wavelet function. Although this
function has its own limitations, we hypothesized that it still
may be sufficient for the present purpose. The Haar Wavelet
function and its corresponding scaling function are depicted
in Fig. 1.

To ascertain the effectiveness of the Haar DWT in dealing
with noise and isoelectric line wandering, 450 ECG signals
sampled at 1KHz, were investigated from the PTB database
(PTBDB) [6]. Representative examples of signals that demon-
strate isoelectric line wandering and signals that contain a
significant amount of noise are illustrated alongside the 5
decomposition scales of Haar DWT in Fig. 2. It is obvious that
significant noise components exist in the first two resolution
levels. Therefore, applying MMA on these scales could lead to
less accurate results. From our observations we concluded that
by employing the MMA on the 23 scale detailed DWT coeffi-
cients (cD l3), an initial estimation of the QRS fiducial points,
within the PQRST-complex, is possible. This is justified from
Fig. 2 where in the 23 scale, noise components are suppressed
to such a degree allowing for a noise-free representation of
the ECG signal from the 23 scale onwards. Therefore, for
identifying the ECG waves it is sufficient only to consider the
23 (for QRS) and 25 (for P/T waves) resolution scales. This
implicitly means substantial reduction in the computational
complexity. Nevertheless, operating exclusively on the 23 scale
introduces the disadvantage of diminished temporal resolution
due to downsampling. This is expected to add inaccuracies in
the estimation of the QRS parameters. In addition, depending
on the noise power and the statistical properties of the ECG
signal, valid ECG frequency components may lie on the
other resolution scales as well. Since we opt to operate on
a single resolution scale these components will be discarded
introducing further errors. Against this, our strategy is to
refine the findings of the 23 scale MMA, by introducing
a computationally efficient time-domain morphology based
compensatory step. This approach that we follow is ultimately
justified by the obtained performance results (see Section V).

In a similar fashion, for the extraction of the P,T-waves
parameters, instead of looking in multiple resolution levels

we focus entirely on the 25 scale. The reason for choosing
the 25 scale is that the effect of the isoelectric line wandering
in the 25 scale is minimal, as Fig. 2(a) illustrates and the
P,T components are amplified in the 25 scale, compared to
the 24 scale, enabling for a robust approximation of the P,T
boundaries, considering that the QRS boundaries are already
obtained. Fig. 2(c) depicts an extreme case where both noise
and isoelectric line wandering are present in the ECG sample.
Again, in the 23 and 25 scales of DWT decomposition, the
prominent coefficients represent valid QRS-complexes and P,T
waves which can be captured with the use of MMA. The
reason for choosing a higher scale for the P,T waves is due
to the fact that these waves comprise of lower frequency
components than the QRS complex. The frequency response
of the Haar DWT in the 23 and 25 scale is depicted in Fig. 3.
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Fig. 1. Haar Wavelet and Scaling Functions

Contrary to our approach, other WT-based approaches con-
ducted MMA on multiple-resolution levels. This multiple level
MMA, coupled with the use of computationally intensive
mother wavelets can yield very accurate results for ECG
delineation [27], [34]. However we will demonstrate in our
analysis (see Section IV) that the computational complexity,
in terms of the arithmetic operations required, by the state of
the art WT-delineator [34], which sets the basis of of DWT-
based ECG feature extraction, far exceeds the computational
complexity of the proposed algorithm, even after including
the TDM step. This, in combination with the obtained perfor-
mance (see Section V) in a diverse set of ECG signals prompt
us to conclude that the selection of the Haar function as the
mother wavelet and the choice of operating exclusively on
one DWT resolution scale, augmented by the TDM refinement
step, enable the proposed algorithm to achieve the desired
trade-off of computational complexity and accuracy.

B. DWT-based Initial Estimation

The proposed feature extraction method operates on a single
isolated heartbeat (PQRST-complex) and initially assumes the
presence of all the constituent ECG waves (P,QRS,T). Our
method is a combination of the MMA applied on the DWT
decomposition levels and the time-domain morphological anal-
ysis of the ECG signal. Since we employ both frequency and
time domain analysis we refer to the resulting algorithm as
Hybrid Feature Extraction Algorithm (HFEA). To begin with,
DWT decomposition takes place on the PQRST-complex. The
analysis is performed at five dyadic space scales (21 · · · 25)
using the 23 and 25 scale for the extraction of QRS and
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Fig. 2. ECG samples that (a) demonstrate isoelectric line wandering (b) are corrupted with noise (c) both, and their Haar DWT decomposition in 5 dyadic
scales.

P/T waves parameters respectively. The multi-scale DWT de-
composition is implemented as a cascade filter-bank structure
(known as Mallat’s Algorithm), illustrated in Fig. 4 featuring
high- and low-pass filters. Downsampling is performed after
filtering, to remove redundancy. The output of the high-pass
filters (H1(z)) provides the detailed WT coefficients (cD lx)
at the 2x scale, while the approximate WT coefficients (cA lx)
are obtained from the output of the low-pass filters (H0(z)).
The frequency resolution increases in higher resolution scales,
thus low frequency components are more easily detectable
in high resolution scales (24, 25). On the other hand, high
frequency components are expected to be more distinguishable
in the lower scales (21, 22).

From the Haar transfer functions, it can be seen that the
output of the high pass filter is proportional to the local aver-
ages of the derivative of the input, which in turn is a filtered
version of the original signal. From this, it is established that
potential extrema in the original signal x[n] are represented
as zero-crossing points in the cD lx (where x is odd), while
instances with maximum slope (deflection points) in the signal
are transformed into extrema (minima or maxima) points on
the cD lx. The resolution scales (23, 25) that we have chosen
to operate on, satisfy the above rule.
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Fig. 3. Frequency response of the Haar DWT in scales 23 and 25, where fs
is the input’s sampling frequency

Once wavelet coefficients are computed, the focus turns on
the 23 scale detailed coefficients, where MMA is employed for
the approximation of the zero-crossing points. Based on the
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Fig. 4. Cascade filter-bank Implementation of DWT

MMA principle, the boundaries of the constituent ECG waves
(P,QRS,T) are expected, due to their morphology (deflection
points), to be localized by a modulus-maxima pair (MMP) on
the DWT coefficients of the respective scale.

Given the positive or negative deflection of the ECG wave,
compared to the isoelectric line, the pair of extrema that indi-
cates the wave’s temporal position, can be either a minimum
followed by a maximum, for a positive deflection, or the
reverse for a negative deflection. Thus the MMA method also
allows the characterization of every wave as inverted or not,
which is exploited in our algorithm, as illustrated in Fig. 5.

Through MMA, we initially obtain the temporal position
of the deflection which demonstrates higher separation from
the isoelectric line. This is accomplished by calculating the
temporal positions (t1,t2) of the global extrema pair in the
cD l3 coefficients. This deflection may correspond to either
the R peak (for a positive deflection) or to Q or S peak (in
case of a negative deflection). Following, MMA is applied in
the vicinity of the global extrema pair, in order to obtain a first
approximation of the temporal position of the QRS boundaries.
The initial estimation of the QRS onset ( ˆQRSon) is obtained
as the preceding extrema (min or max) from the local MMP
in a search window defined as [t1-4,t1]. Similarly the offset
of the QRS, ( ˆQRSon) is estimated from the succeeding
extrema of the MMP found in [t2,t2+4]. Fig. 6 illustrates an
example where this procedure is followed to identify the QRS
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(a) Positive Deflection (b) Negative Deflection

Fig. 5. Characterising the direction of the deflection based on the sequence
of the WT coefficients extrema pair
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As pointed out earlier, the temporal resolution on the 23

scale is diminished (by a factor of 8) compared to the original
timescale. This coupled with fact that we operate on a single
resolution scale, may inherently lead to less accurate localiza-
tion of the main deflection (either R peak or Q, S peak) and
of the QRS boundaries. An example where the MMA produces
less accurate results is depicted in Fig. 7. For mitigating that
effect we employ a time-domain morphology-based refinement
as described in the following subsection.

C. Time-Domain Morphology (TDM) based Refinement
The TDM refinement process amends the initial MMA

approximation, leading to a more accurate estimation of the
QRS fiducial points.

The R peak time instance is amended first. From the MMA
on the cD l3, we obtain the temporal boundaries (t1, t2)
within which lies the deflection that exhibits higher separation
from the isoelectric line. If this deflection is characterized as
positive, it is interpreted as an R-wave and thus by project-
ing (t1, t2) into the original timescale of x[n], the amended

Fig. 7. An example of less accurate estimation of the R peak and QRSoff
points due to the decreased temporal resolution of scale 23 DWT. These results
are ameliorated in TDM stage

R peak time point is calculated as the maximum of the
PQRST-complex (max(x[n])) within this time window (n ∈
[t1 × 23 , t2 × 23]). If the deflection detected in the MMA is
characterized as negative (t1 is a maximum, t2 is a minimum)
then it corresponds to either the Q or the S peak. Since,
the R peak is always a positive deflection it will be always
localized by an MMP with the first point being a minimum
and the second a maximum in the cD l3.

To obtain this pair for this case we have to consider two
possible pairs. We thus search before t1 for a minimum and
after t2 for a maximum. The search windows are defined as
[t1 − 15,t1] and [t2, t2 + 10] on the cD l3 timescale. From
this we obtain two new (ta-min, tb-max) local extrema points
in cD l3. From there the two possible pairs of min-max are
(ta,t1) and (t2,tb). Finally we project the two intervals, [ta,t1]
and [t2,tb], in the x[n] timescale and obtain the maximum
value in each one of them. The final R peak is chosen as the
maximum of the two values.

Obtaining the refinement of the R peak time instance allows
us to focus on the refinement of the QRS boundaries. For
this, we exploit the characteristic steep slope of the QRS
complex by using the derivative signal. The analysis takes
place on the approximate 23 scale (cA l3) DWT coefficients.
This is chosen from a noise canceling perspective, since we
demonstrated that in the 23 scale high frequency noise is
removed. The initial QRS boundaries are expanded in time
by 64ms (equivalent of 8 cD l3 coefficients) before the initial
QRS onset (t́3 = t3 − 8) and 120ms (equivalent of 15 cD l3
coefficients) after the initial QRS offset (t́6 = t6 + 15). The
portion of the ECG signal within these two boundaries is
isolated both in x[n] and in cA l3[n]. This is performed to
ensure that the full QRS-complex is contained in the part
of the signal we extract in order to apply the refinement.
An approximation of the derivative f́ [n] is obtained as the
backward difference between two successive samples on the
23 scale approximate coefficients cA l3. We only calculate
f́ [n] for n ∈ [t́3, t́6].

To identify the QRS boundaries, the derivative signal is
investigated against a predefined threshold and the first time
point where the value of the gradient signal becomes higher
than the predefined threshold corresponds to the amended QRS
boundary. For the QRSon the derivative signal is investigated
from the beginning up to the amended R peak time point
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([t́3 → R peak]) while for the QRSoff , the gradient signal is
investigated from its end towards the R peak ([R peak← t́6]).
The two thresholds for this operation are defined adaptively
and their value is set as a dyadic fraction of the amplitude
range of the sampled ECG signal. An example where the TDM
amends the MMA results is depicted in Fig. 8. In this case, the
initial approximation, (Fig. 7) produced by the DWT analysis
is improved after the execution of the TDM stage.

The final step of the QRS refinement includes the approx-
imation of the Q peak and S peak time instances. The value
for these parameters is extracted as the time instance where the
ECG signal, in the original timescale, demonstrates minimum
value between the QRS-onset and the R peak and the R peak
and the QRS-offset for the Q peak and S peak respectively.
The final outcomes of the amendment process are used in
the ultimate stage of the HFEA algorithm which involves the
extraction of the clinically relevant features from the P and
T-waves.

Fig. 8. QRS final estimation on the signal of Fig. 7 after the TDM refinement

D. P,T-wave feature extraction
Once the QRS boundaries are finalized after the TDM

refinement process, the same modulus-maxima analysis which
was applied at the cD l3 is applied at the 25 resolution
scale detailed coefficients (cD l5) only at the portion of the
signal that precedes and succeeds the detected QRS complex
in order to identify the P and T wave boundaries and the
corresponding peaks. These waves are known to demonstrate
either convexity or concavity against the isoelectric line and
the modulus-maxima pair that localizes the wave, also allows
us to characterized it as convex or concave in a similar way that
we characterize a deflection as positive or negative. From that
point on, the peak of the wave is either the maximum/concave
or the minimum/convex point of the original signal x[n]
within the modulus-maxima defined wave boundaries. Fig. 9
illustrates the extraction of the fiducial points from the P and T-
waves, in the PQRST-complex of Fig. 7. The complete HFEA
algorithm is given in the form of pseudocode in Fig. 10. The
implementation of the algorithm for validation took place in
MATLAB.

IV. COMPUTATIONAL COMPLEXITY AND
IMPLEMENTABILITY

To quantify the complexity of the HFEA algorithm we
present here an analytical calculation of the number of arith-
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Fig. 9. P and T-wave feature extraction

metic operations required for the HFEA to run to completion.
In principle there are three major components in the HFEA:
the DWT coefficients generation, the MMA and the TDM
refinement. Following the flow of the pseudocode in Fig. 10,
the upper bound of the number of arithmetic operations is
derived considering an input of N samples. In our analysis
subtractions are considered equivalent to additions, while one
comparison operation is considered to have half the complexity
of an addition. Comparisons are used in the extraction of
extremas (min/max) within a specific interval. For the sake
of complexity analysis, we consider a completely unfolded
architecture with no resource sharing and no optimization, like
constant number multiplicatoin, for the operations.

To derive the number of arithmetic operations required for
the DWT coefficients generation, we consider that for a single
cD lx or cA lx coefficient, 1 addition and 1 multiplication is
required, according to the Haar DWT high- and low-pass filter
transfer functions. In addition, the subsamplers cause each
filter output to have half the length of the input. As an example,
in order to calculate the cD l1 or cA l1 coefficients individu-
ally, N/2 additions and N/2 multiplications are required. Sub-
sequently the calculation of cD l2 or cA l2 requires N/4 ad-
ditions and N/4 multiplications. In the HFEA we only utilize
the cD l3, cA l3 and cD l5 coefficients, which according to
Mallat’s algorithm, means that from the other resolution scales
only cA l1, cA l2 and cA l4 must be calculated. In addition,
the cA l5 coefficients do not need to be calculated since cD l5
are computed directly from cA l4. In total, the computational
complexity of calculating the coefficients that are employed in
the HFEA is N/2 +N/4 + 2N/8 +N/16 +N/32 additions
and N/2 +N/4 + 2N/8 +N/16 +N/32 multiplications, or
1.093N additions and 1.093N multiplications. The MMA step
involves the extraction of the max and min value of cD l3,
which is of N/8 length. This process requires (N/8 − 1)
comparisons. The additional MMA calculations in the vicinity
of the global MMA pair require 2 additions for the expansion
of t1, t2, 4 comparisons in the [t1−4, t1] interval and another
4 comparisons in the [t2, t2 + 4] interval (line 9 of Fig. 10),
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1: Initialise
2: Consider a PQRST complex x[n] of length l
3: HAAR DWT
4: - Calculate DWT Approximate cA l3 and Detailed Coefficients

cD l3 and Detailed Coefficients cD l5
5: QRS Initial Estimation
6: Scale 23 MMA
7: Find t1=min(cD l3[n])
8: Find t2=max(cD l3[n])
9: Find positions (t3,t4) of the MMP in cD l3[n] for n ∈ [t1 −

4,t1] and (t5,t6) for n ∈ [t2,t2 + 4]
10: Find initial ˆQRSon = t3 × 23

11: Find initial ˆQRSoff = t6 × 23

12: Time-Domain Refinement (TDM)
13: if t1 < t2 then
14: R peak = max(x[n]), for n ∈ (t1 × 23,t2 × 23)
15: else
16: Find ta = min(cD l3), for cD l3 ∈ [t1-15,t1]
17: Find tb = max(cD l3), for cD l3 ∈ [t2,t2+10]
18: R peak1 = max(x[n]), n ∈ [ta × 23,t1 × 23]
19: R peak2 = max(x[n]), n ∈ [t2 × 23,tb × 23]
20: Final R peak = max(R peak1,R peak2)
21: end if
22: Set thr1
23: Set thr2
24: Expand t́3 = t3 − 8
25: Expand t́6 = t6 + 15

26: Approximate Derivative as: f́ [n] = cA l3[n]− cA l3[n− 1],
n ∈ [t́3 t́6]

27: Final QRSon first n ∈ [t́3 R peak], f [n] > thr1
28: Final QRSoff last n ∈ [R peak t́6], f [n] > thr2

29: Find Q peak = min(x[n]), n ∈ [QRSon × 23 R peak]
30: Find S peak = min(x[n]), n ∈ [R peak QRSoff × 23]
31: P,T Wave Estimation
32: Scale 25 MMA
33: Find t7 = min(cD l5[n]), n ∈ [1, QRSon] for P
34: Find t8 = max(cD l5[n]), n ∈ [1, QRSon] for P
35: if t7 < t8 then
36: Calculate Pon = t7 × 25

37: Calculate Poff = t8 × 25

38: P peak = max(x[n]) n ∈ [Pon Poff]
39: else
40: Calculate Pon = t8 × 25

41: Calculate Poff = t7 × 25

42: P peak = min(x[n]) n ∈ [Pon Poff]
43: end if
44: REPEAT P Block with n ∈ [QRSoff cD l5 end] for the T-

wave

Fig. 10. Pseudocode of the HFEA Algorithm

thus in total 6 additions. At this point the TDM refinement
step takes place. The t1, t2 values, obtained from MMA
(line 7,8 of Fig. 10) define an interval of length T in the
cD l3 subspace. For the R peak extraction, the first possibility
where t1 < t2, (positive major deflection, line 13 of Fig 10)
involves the projection of the T interval boundaries to the
original timescale with 2 multiplications, where an interval
of length 8 ∗ T is now defined and for the extraction of
the R peak (8T − 1) comparisons are required to localize
the maximum point and designate it as the R peak (line 14
of Fig. 10). The second scenario where t2 < t1 (negative
major deflection, line 15 of Fig 10 requires 2 additions for
the expansion of t1, t2 values by 15 and 10 respectively,

((15 − 1) + (10 − 1) = 23) comparisons for deriving the
ta and tb values (lines 16,17 of Fig. 10), 4 multiplications
for projecting the t1, t2, ta, tb into the original timescale and
a total of (8∗15−1)+(8∗10−1)+1 = 199 comparisons for
the localization and comparison of the R peak1 and R peak2
values (lines 18,19,20 of Fig. 10). The final R peak is mapped
back to 23 scale subspace, with 1 multiplication, where it is
used for the QRS boundaries refinement beginning with setting
the adaptive thresholds, for which (N + 2) comparisons, 1
addition and 1 multiplication are required. Assuming that the
interval of [t3, t6] has a length of M , after the expansion by
23 samples in total (2 additions, lines 24,25 of Fig. 10), the
refinement will take place on a sample of M + 23 cA l3
coefficients. For the backward difference operation (gradient
calculation) in that sample, (M + 22) additions are required.
The operation of comparing the gradient to the thresholds
requires, M +20 comparisons for identifying both QRSon and
QRSoff. After projecting the QRS boundaries to the original
timescale with 2 multiplications, the final stage of the TDM
which pertains to the extraction of the Q and S peak position
which requires, 8(M+23)−(ε1+ε2) comparisons, where ε1, ε2
are the differences in samples in the original timescale between
the beginning of the 8(M+23) interval and the detected QRSon
and QRSoff and the end of the 8(M+23) interval respectively
(lines 29,30 of Fig 10).

From the above, the TDM stage collectively requires 11M+
N + 203−1/2(ε1 + ε2) comparisons, M + 24 additions and 6
multiplications, for the first if-statement of the TDM and by
following the same process 9M + N + 426 − 1/2(ε1 + ε2)
comparisons, M + 26 additions and 8 multiplications for the
else-statement. To sum up the calculation of the TDM stage,
we consider that M < N/8, T < M/4 thus T < N/32.
Moreover from our experiments ε1, ε2 < 30. With these in
mind and by expressing comparisons as half additions the total
computational complexity of the TDM stage is 1.31N + 95
additions, 6mults or 1.18N + 208 additions, 8 multiplications
depending on which if-statement is satisfied.

The final stage of the HFEA for the extraction of the P,T-
wave fiducial points initially requires the MMA analysis on the
cD l5 coefficients. For the P-wave, the MMA can theoretically
run on a maximum of N/64 coefficients and may require upto
(N/64 − 1) comparisons to extract the max and min points
(lines 33,34 Fig. 10). Localizing, through MMA, the min and
max point of cD l5 defines an interval of length P which after
being projected (with 2 multiplications, lines 36,37 Fig. 10) in
the original timescale has a length of 8P . In this interval the
P peak time instance is localized, as the min or max value of
the interval and for this (8P−1) comparisons are used (line 38
Fig. 10). From our experiments P < N/80, thus the equivalent
number of additions for the P-wave analysis is 0.0391N − 1
additions and 2 multiplications. For the T-wave analysis, the
same number of operations is considered to be required, thus
the total number for this stage is 0.0875N −2 additions and 4
multiplications. From the above investigation the total number
of operations required for the HFEA algorithm is 2.553N+102
additions and 1.093N + 10 multiplications, or 2.423N + 214
additions and 1.093N + 12 multiplications based on which
if-statement is executed on the R peak extraction. This final
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number represents an upper bound on the required arithmetic
operations. It is obvious that the upper bound depends on the
number of input samples N . By considering the number of
multiplications to be approximately the same for both cases,
we focus on the number of additions and conclude that for
N ≤ 861 the upper bound is 2.423N+214, while for N > 861
the upper bound is 2.553N + 102. In reality the number of
actual arithmetic operations is going to be lower since M <<
N/8, T << N/32 and the MMA on cD l5 will be executed
on a smaller than N/64 number of coefficients.

We now perform a similar analysis on the computational
complexity of the WT-delineator in [34]. In this work, which
creates the basis of WT-based ECG delineation, the quadratic-
spline wavelet is used, with the algorithme ‘a trous imple-
mentation to avoid decimations. From the transfer functions
provided, we observe that for computing a single pair of WT
coefficients 4 additions and 4 multiplications are required.
Since, the number of generated WT coefficients in each level
is the same as the number of input samples, for an input of
N samples 4N additions and 4N multiplications are required
to generate the WT coefficients in one level. Since the first
5 scales of WT coefficients are considered 17N additions
and 17N multiplications are needed for the DWT coefficients
generation, if the approximate coefficients of the 25 are not
computed. It is obvious that the amount of required arithmetic
operations only for the calculation of the WT coefficients in
[34], without any further processing, is considerably higher
that the upper bound of the computational complexity of the
HFEA. This is indicative of the possibility for significant
power reduction, compared to the WT-delineator of [34], of
the HFEA when implemented.

In an attempt to estimate how much energy and silicon
area the proposed algorithm may consume, we have coded the
HFEA in Verilog and synthesized it using the STMicroelec-
tronics 130nm technology library, following the pseudocode
of Fig.10 without any further architectural optimization. 1KHz
clock frequency and 1.08V supply voltage were used in our
synthesis. The synthesized design has an overall cell area
of 245mm2, which is equivalent to 404.7K NAND, and
consumes 269.64 nW as calculated from Synopsis PrimeTime
tool. The number of clock cycles required for the feature
extraction operation on a single PQRST complex constituting
of 800 samples is approximately 990 clock cycles.

V. VALIDATION

A. ECG Databases

In order to assess the performance of the proposed algorithm
and quantify its accuracy, manually annotated ECG signals
from various databases are used. Specifically 27 ECG excerpts
from the QT database (QTDB), 450 from the PTB database
(PTBDB), both available at Physionet [6] as well as 144
samples from the Southampton General Hospital Cardiology
(SGHCD) department database were used in our validation.

The QTDB contains 105 two-lead Holter ECG recordings
sampled at 250 Hz of 15 minutes duration, covering a wide
range of heart conditions. For each sample the boundaries
of the ECG waves (P, QRS, T) and the peaks (P, R, T)

temporal position are manually annotated by at least one
expert and for at least 30 PQRST complexes in each record,
resulting in a total of 3622 annotated complexes [36]. The
PTBDB contains 549 high resolution (1KHz) standard 15-lead
ECG recordings, with all leads recorded simultaneously from
294 subjects of several different heart conditions (myocardial
infarction, hypertrophy, valvular heart diseases, etc.) as well as
sinus rhythm. From SGHCD 12 standard 12-lead paper ECG,
sampled at frequencies of 250Hz and 500Hz from patients
confirmed to be exhibiting myocardial scar, were digitized
at a rate of 1000 samples/s with the use of the ECGScan
digitization software [37] and used in our validation.

From the QTDB we chose 27 records and applied the HFEA
algorithm on every beat on both ECG channels. We specifically
selected those records having annotations for every ECG
wave (P,QRS,T). The available manual annotations allowed
us to partition the signals into individual ECG heartbeats (by
considering the Pon and Toff) and then execute the feature
extraction algorithm in every one of them. We then calculated
the accuracy, in terms of the mean and standard deviation of
the error between the algorithm’s results and the annotations
for each channel separately. Following the guidelines applied
in [34], from the two available channels we finally considered
the channel that exhibited less error. The overall mean and
standard deviation values are calculated as the average mean
and standard deviation of the error from the 27 records.

Different to the QTDB, signals from PTBDB and SGHCD
were not pre-annotated. From the PTBDB, 30 records were
chosen from every available disease category. The 30 ECG
records of PTBDB and the 12 records of SGHCD resulted
in a total of 450 and 144 heartbeats to be given for anno-
tation respectively. The manual annotations were performed
by experts cardiologists with the help of a simple graphical
annotator interface also implemented in MATLAB. Whenever
the annotation of a particular wave was not possible, either
due to the absence of the wave or due to poor sampling, the
algorithm’s results were disregarded. In order to extract one
global temporal position for each fiducial point from the 15
available annotations per record in PTBDB, we followed the
k-nearest neighbors (knn) rule applied in [34] for multilead
delineators. The 15 onset/offset annotations were ordered in
succession and the first time instance which had “k” neighbors
within an e ms interval was chosen as the wave onset.
Conversely, the last time instance obeying in the same knn
rule is characterized as the wave offset. We also employed the
same multilead rule in the results obtained from our algorithm.
For these signals, since only one heartbeat per lead is annotated
the mean and the standard deviation were calculated from the
error between the annotations and the algorithm’s results for
the 30 records.

In the SGHCD ECG samples, the 12 leads were captured
simultaneously in groups of 3 leads. As a result the previous
knn rule could not be applied. For these signals we followed
the CSE guidelines as described in [12]. In every record, the
12 leads were divided into 4 groups each containing the 3
simultaneously captured leads. The groups were formed of
leads I-III, aVR-aVF, V1-V3, V4-V6. For each leadgroup, the
earliest onset and the latest offset were selected as the global
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temporal positions of the boundaries of ECG waves. Based on
this rule we then calculated the mean and standard deviation
between the HFEA results and the manual annotations for each
leadgroup separately using all 12 records. The final results
were produced by averaging the mean and standard deviation
of the 4 leadgroups.

B. Results and Discussion

Table I lists accuracy results in terms of mean (µ) and
standard deviation (σ) attained from executing the HFEA on
27 records from the QTDB. Apart from the mean (µ) and the
standard deviation (σ) in ms we provide the standard deviation
in the equivalent number of samples rounded towards the
nearest integer. We also list the performance of the quadratic-
spline based WT delineator, presented in [34] as well as results
of the low-pass-differentiator method (LPD) reported in [38],
from the same database. The final row lists the tolerance limits
for automatic feature extraction algorithms as were defined by
the CSE Working party in [5]. Although, in the QTDB results
the HFEA algorithm satisfies the CSE tolerance limit only for
the T-wave offset, the interpretation of the CSE limits in the
QTDB, as also expressed in [34], can not be straightforward
due to the limited number of different annotators in the
QTDB. Compared to the quadratic-spline WT delineator and
the LPD the HFEA demonstrates comparable results, since,
only the QRS offset and T-wave peak position are estimated
with considerable less accuracy. In the final row we provide
the difference of the standard deviations between the HFEA
and the CSE tolerance limits in terms of the number of
samples, based on the sampling frequency of the database (i.e
1 sample = 4 ms). Wherever there is no CSE tolerance we used
the lowest standard deviation among the WT delineator by
Martinez et. al and LPD. This result was not produced for the
P peak where the HFEA demonstrated the best performance
of the three algorithms and there are no CSE tolerance limits.
It is to be noted that, for these parameters that the CSE limit
is not satisfied, the error, in terms of the actual ECG samples,
is one sample, except from T peak.

Table II lists performance results obtained from the 450
signals of PTBDB and the 144 signals of SGHCD. Both
databases facilitated the assessment of the HFEA performance
in a multilead ECG system. The knn and the earliest(onset)-
latest (offset) rules, described in Section V-A, were used to
obtain the global temporal position of each parameter for each
record from the 15 simultaneously recorded leads of PTBDB
and for each leadgroup in SGHCD. In this investigation we
restricted ourselves to the parameters, for which CSE tolerance
limits are provided and the mutlilead knn rule has been applied
previously [34], [39].

Although a different database, PTBDB allows for a more
valid comparison with the CSE tolerance limits since it also
contains standard 15-lead recordings. The best performance
was observed for k = 3 neighbors for all parameters, and e =
10ms for the P-wave boundaries and QRSon while e = 12ms
was used for the QRSoff and the Toff. From the results we
observe that all CSE tolerance limits are satisfied apart from
the one for QRSon.

The obtained results from the digitized SGHCD database
are also given in Table II. The paper digitization process
diminished the quality of the actual recordings, thus only one
CSE limit (Toff) was satisfied in these signals. In spite of
this, the outcome of the HFEA algorithm was endorsed by
cardiologists.

VI. CONCLUSIONS

In this paper a novel algorithm (HFEA), based on the
combination of WT analysis and time-domain morphology
principles, for extracting the ECG fiducial points is proposed.
The HFEA is tailored for application in energy constrained
remote CVD monitoring environments. The use of DWT with
the Haar function as the basis, allows for a significant reduc-
tion in the computational complexity compared to other WT-
based approaches, which is beneficial in terms of the overall
energy consumption. Experiments carried out on ECG signals
from publicly available databases, covering both standard 12-
lead (PTBDB) and ambulatory (QTDB) recordings, as well
as on a non-commercial database (SGHCD) show that the
HFEA performance is very close to the state of the art
ECG delineators. When comparing the HFEA results from
PTBDB to the CSE tolerance limits, all but one (QRSon) are
satisfied. Although slightly less accurate, the computational
complexity, in terms of the required mathematical operations
of our approach, which is found to be 2.423N+214 additions
and 1.093N+12 multiplications for N ≤ 861 or 2.553N+102
additions and 1.093N + 10 multiplications for N > 861,
is significantly smaller than that of the other WT-based ap-
proaches. This facilitates the implementation of the HFEA in
ultra low-power systems, in the form of a standalone ASIC,
enabling the long-term deployment of the HFEA architecture
in battery power-devices. By taking into account that mobile
CVD monitoring systems are predominantly used for assessing
the patient’s overall condition, rather than making a complete
diagnosis, the proposed scheme is an ideal candidate for the
ECG analysis in such systems.
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