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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

COMPUTATIONAL ENGINEERING AND DESIGN GROUP

Doctor of Philosophy

Improvement Criteria for Constraint Handling and Multiobjective

Optimization

by James M. Parr

In engineering design, it is common to predict performance based on complex computer

codes with long run times. These expensive evaluations can make automated and wide

ranging design optimization a difficult task. This becomes even more challenging in the

presence of constraints or conflicting objectives.

When the design process involves expensive analysis, surrogate (response surface or

meta) models can be adapted in different ways to efficiently converge towards global

solutions. A popular approach involves constructing a surrogate based on some initial

sample evaluated using the expensive analysis. Next, some statistical improvement

criterion is searched inexpensively to find model update points that offer some design

improvement or model refinement. These update points are evaluated, added to the set

of initial designs and the process is repeated with the aim of converging towards the

global optimum.

In constrained problems, the improvement criterion is required to update the surrogate

models in regions that offer both objective and constraint improvement whilst converging

toward the best feasible optimum. In multiobjective problems, the aim is to update the

surrogates in such a way that the evaluated points converge towards a spaced out set of

Pareto solutions.

This thesis investigates efficient improvement criteria to address both of these situations.

This leads to the development of an improvement criterion that better balances improve-

ment of the objective and all the constraint approximations. A goal-based approach is

also developed suitable for expensive multiobjective problems. In all cases, improvement

criteria are encouraged to select multiple updates, enabling designs to be evaluated in

parallel, further accelerating the optimization process.
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Chapter 1

Introduction

1.1 Design Search and Optimization

Predicting performance is fundamental to every engineering design problem. Unlike

other forms of design, engineering design builds upon the understanding and evaluation

of underlying physical processes. Over the course of history, designers have seen radical

developments in the ability to predict performance, inevitably leading towards more

accurate and, in many cases, more expensive forms of analysis. Nonetheless, successful

engineering design cannot be achieved through accurate analysis alone but rather from

an amalgamation of analysis and methodical design decisions. By exploiting analysis,

design search and optimization (DSO) aims to aid the decision making process.

In most engineering design problems, the designer wishes to make improvements to an

initial or existing design. Whether this improvement is achieved through small design

changes or a radical redesign, the designer will need to perform some sort of design

search to identify the best designs. In such a scenario, the designer is faced with a

number of decisions. What designs should be evaluated to see an improved performance?

What designs are likely to ensure design constraints are met? What forms of analysis

should be used, at what fidelity and at what cost? Making these decisions is far from

straightforward.

Naturally, early forms of design search favoured simple trial and error approaches. Al-

though structured and controlled experiments were used as early as the 18th century1,

optimization algorithms using simple heuristics only began to develop on the arrival

of the digital computer in the 1960s. Since then, the field of DSO has continued to

grow and has led to different genres of optimization, all with many classes of problem.

Structural optimization alone has large areas of research in different classes including

topology optimization, shape optimization and structural sizing.

1A famous study being the treatment of scurvy by James Lind (1716-94).
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2 Chapter 1 Introduction

Most early optimizers can be categorised as either local or global. A local search aims

to travel ‘downhill’, using information based on gradients or heuristics. Although local

searches can be very efficient, they are vulnerable to local optima and depend heavily

on initial designs. A global search aims to explore the design space more thoroughly,

visiting many local optima before converging towards a global solution. For larger

problems, better designs are often found this way but require many evaluations to reach

optimal designs. Both local and global methods typically concentrated on applications

involving analytical expressions that are cheap to evaluate. Although these methods

still have their uses in engineering design today, they tend to be less useful when used

directly to search design problems that involve expensive analysis. Over time, just as

analysis has developed, so have different approaches to DSO.

1.2 Dealing with Expensive Analysis

Driven by continual improvements in computational methods, aircraft design is one

area that has seen radical changes in analysis since the 1960s. It is now commonplace

to use tools such as computational fluid dynamics (CFD) and computation structural

mechanics (CSM) to evaluate aircraft performance. These tools enable the designer to

find new designs without the development time, cost and restrictions of experimental

testing. Even so, tough competition and ever-rising fuel prices still makes time and cost

efficient aircraft design a very difficult task. With industry being concerned with the

computational efficiency of DSO, developing efficient approaches to optimization has

become paramount.

In aircraft design, using high fidelity tools to evaluate aerodynamic performance often

requires the order of hours or even days. A typical design search requires many de-

sign evaluations, resulting in many days or months before an optimal design is found.

Searching for a globally optimal solution on a problem with many design variables quickly

becomes intractable when using traditional methods.

Perhaps the most obvious solution is to reduce the cost of the analysis. This is often

achieved using lower fidelity analysis at early stages in the design process. High fidelity

analysis is then employed as the design progresses towards more detailed stages, where

fewer designs are explored. Although this is a common approach, better designs are

often found when introducing high fidelity analysis as early on as possible in the design

process [Giunta, 1997]. Another approach to reduce costs is to lower the total number

of evaluations needed to converge towards optimal designs. For an experienced designer,

it may be obvious what sort of optimizer is the most efficient. Some aerodynamic prob-

lems can be solved quite efficiently using local methods even when analysis is expensive

[Jameson, 2004]. For problems that are less familiar or where the designer has little

knowledge of the tools being used, the analysis is treated as a black-box. Although
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many optimizers are developed with efficiency in mind, selecting the correct tool for the

job can be difficult when there is little knowledge of the problem being tackled.

Surrogate models are frequently used to deal with expensive problems. Based on a small

sample of designs evaluated using the expensive analysis, surrogates essentially aim to

fill in the gaps, replacing the expensive analysis with an approximation that is cheap to

evaluate. Traditional searches can then be used to search the surrogate inexpensively to

find new designs. Since the surrogate acts as a replacement to the expensive analysis,

they are particularly useful for dealing with analysis that is treated as a black-box.

Consider Figure 1.1 as the output of some expensive black-box computer analysis2.

This represents some design objective or performance metric, such as the drag on a

wing, when two design variables that define the geometry are changed. The designer

is unaware of what this design space looks like but wishes to find the global optimum,

the combination of design variables that give the wing with the least drag. As the

simulations are expensive, it is important to do this in the least number of function

evaluations possible. Directly employing a local search may be misled by any of the

local optima and directly running a global search would require too many expensive

evaluations. The designer could use multiple restarts of a local search to increase the

chances of finding the global optimum, but for expensive problems this can also become

impractical.
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Figure 1.1: Output of an expensive black-box analysis with × - global optimum.

Now consider a cheap approximation of this expensive objective. Figure 1.2(a) is a

surrogate based on only 15 expensive evaluations. Since the surrogate is only an ap-

proximation, the optimum according to the surrogate is not guaranteed to correspond

to the optimum of the expensive analysis. It is clear that in this case the surrogate does

not model the expensive analysis as well as hoped. Perhaps this is expected with so few

samples, nonetheless, the global optimum is unlikely to be found by simply searching the

2This is in fact a modified version of the Branin test function found in Forrester et al. [2008].
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surrogate. The surrogate could be improved using a larger sample but exploiting such

a surrogate is still unlikely to exactly approximate the region of the global optimum.

Instead the model can be updated using some sort of adaptive sampling. By using a

statistical based improvement criterion, model updates can be selected methodically to

offer improved performance or model refinement. This finds the global optimum much

more efficiently. Figure 1.2(b) adopts such a strategy using ten additional model updates

and the global optimum is located with very few evaluations of the expensive analysis.
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(b)

Figure 1.2: Objective approximation with × - global optimum. Surrogate model after
(a) # – 15 expensive evaluations, (b) △ – 10 additional updates.

The efficiency and reliability of surrogate-based optimization depends heavily on the type

of improvement criterion used. Conventionally, these model update points are added se-

quentially, rebuilding a new surrogate each time the analysis is evaluated. Provided

resources exist to evaluate several designs in parallel, updating the surrogate using mul-

tiple updates offers a promising avenue to further accelerate convergence towards global

optima. This idea is exploited in many of the methods investigated within this thesis.

1.3 Research Objectives

In the area of surrogate-based optimization, the majority of literature concentrates on

unconstrained problems. In reality, design problems are commonly subject to a number

of design constraints. This is perhaps almost always the case in engineering design

since a designer will be required to meet conflicting performance constraints, safety

requirements or even manufacturing restrictions. Keeping this in mind, there has been

relatively little research which adapts improvement criteria to be suitable for dealing

with design constraints. This work aims to contribute in the field of surrogate-based

optimization with focus on efficient improvement criteria for constrained problems.
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Furthermore, most engineering design problems are rarely characterised by a single ob-

jective function. An aircraft wing design that seeks only optimum aerodynamic perfor-

mance, i.e. low drag, irrespective of the structure is likely to be a structurally complex

and heavy design. A better wing design is much more likely to be characterised by

seeking trade-offs between good aerodynamic performance and low structural weight.

Even if a single performance goal is sought, it is likely the designer wishes to explore

the trade-offs between performance and cost. After all, a good design is often a prof-

itable one. This work therefore also aims to develop efficient improvement criteria for

surrogate-based multiobjective optimization.

The reader should note that methods developed within this thesis are intended for ap-

plications in aerospace design. Different methods are tested with an emphasised on real

engineering design problems rather than benchmarking performance on a large library

of artificial test functions.

1.4 Thesis Overview

This thesis first introduces some existing approaches in design search and optimization.

This is by no means exhaustive but provides a background for the subsequent work.

Chapter 2 includes an overview of local and global optimization such as early gradient-

based methods, pattern searches and evolutionary methods. Further emphasis is made

on multiobjective and constrained optimization, areas of research of particular interest

in this thesis. Using approximations in optimization is introduced with further detail

on global optimization using surrogates. A brief overview of initial sampling, Kriging

and improvement criteria forms the basis for surrogate-based global optimization of

unconstrained, single objective problems.

In Chapter 3, surrogate-based optimization is extended to deal with constrained prob-

lems. Three basic methods are reviewed, comparing simple penalty approaches and

a probabilistic approach to constraint handling. This sets a benchmark on some test

problems that are investigated further in Chapter 4. Here, the probabilistic approach

is enhanced, aiming to better model constraint boundaries. Chapter 4 also investigates

the use of multiobjective optimization to better balance exploration and exploitation of

the objective and all constraint approximations. These enhanced approaches offer im-

provements in both optimization efficiency and reliability when compared to the simple

approaches tested in Chapter 3.

Chapter 5 concentrates on accelerating surrogate-based constrained optimization further

by evaluating multiple updates in parallel. Some existing approaches for selecting mul-

tiple updates are modified to handle constraints and compared with selecting multiple

updates based on Pareto optimal solutions. These different approaches are implemented

with the aim of halving the optimization cost associated with evaluating single designs
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sequentially. These multiple update improvement criteria are used to optimize test

problems introduced in Chapter 3 and a real engineering design example, minimizing

the structural weight of a transonic passenger aircraft wing.

In Chapter 6 we move away from constrained optimization and concentrate on surrogate-

based multiobjective optimization. In a similar manner to Chapter 3, this aims to

benchmark the current state of research and tests some existing methods for efficient

multiobjective optimization on a number of test problems, including real engineering

design examples. Chapter 7 extends the multiobjective improvement criteria tested in

Chapter 6 to select multiple updates. This includes a novel approach based on selecting

goal points to explicitly improve on interesting regions of a Pareto set. This chap-

ter demonstrates significant savings in the optimization cost when evaluating multiple

updates in parallel.

Finally, in Chapter 8 a selection of methods are used to optimize an expensive wing

design problem. Here we use constrained surrogate-based optimization for wingbox

sizing and seek trade-offs between the wingbox structural weight and the wing drag using

surrogate-based multiobjective optimization. This demonstrates the use of different

improvement criteria developed within this thesis on a constrained multiobjective design

problem with objectives from two disciplines.



Chapter 2

Some Existing Approaches to

DSO

2.1 Local Optimization

Pioneers of early optimization techniques were often concerned with making improve-

ments to existing designs rather than creating an optimal design from scratch. This

process involves making small perturbations of design variables in an attempt to drive

the design in the direction of improved performance, known as hill climbing. Gradient-

based methods use gradient information to direct the search up or downhill. Formally,

for an unconstrained minimization of f(x), with an initial guess x0, a gradient-based

search aims to compute the next iteration xi+1 = xi + d∆x, where d is a step length

and ∆x is the direction of steepest descent.

In its simplest form, gradients can be exploited to determine the direction of steepest

decent. Moving an optimal step length in this direction and repeating the process will

inevitably lead to some design improvement. To improve the speed of convergence,

some methods exploit gradient information by assuming that the objective function in

the region close to an optimum can be approximated by a quadratic form. This can

be achieved quite simply using Newton’s method, which begins by approximating the

objective function at xi + d using a Taylor series expansion about xi

f(xi + d) = f(xi) + d∇f(xi). (2.1)

Rather than finding the root of a function, Newton’s method is used to find a point of

zero gradient. We therefore seek a step d that satisfies the condition ∇f(xi + d) = 0

and we differentiate to get

7
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∇f(xi) + d∇2f(xi) = 0. (2.2)

If the quadratic approximation holds, the point of zero gradient is also the function

optimum. Since this is unlikely to correspond to the exact function minimum, this con-

dition is instead used to compute the next step in the optimization. The next iteration

xi+1 = xi + d can be expressed as

xi+1 = xi −H−1∇f(xi), (2.3)

which is expressed in terms of the Hessian,H, the matrix of second order partial deriva-

tives.

Newton’s method assumes the Hessian is known or easy to compute but in reality this

is rarely the case and instead quasi-Newton methods use approximations of the inverse

Hessian to calculate the next step [Rao, 1996]. A popular quasi-Newton algorithm is

the BFGS method named after its inventors Broyden, Fletcher, Goldfarb and Shanno.

See Nocedal and Wright [2006] for a full discussion and implementation of the BFGS

algorithm and similar quasi-Newton methods.

In cases where gradient information is not available, inaccurate or difficult to calculate,

pattern searches, also known as direct methods or zeroth order methods, can be used

instead. These derivative free algorithms are based on selecting a trial point within the

vicinity of the initial or current design. If performance is improved, the search steps in

the direction of this trial point. If no improvement is found, a trial point in a different

direction is selected. If a number of trial points all fail to offer any improvement on the

current design, a new step length is chosen and the process is repeated. Commonly used

algorithms include Hooke and Jeeves [1960], the simplex algorithm [Nelder and Mead,

1965] and the multidirectional search of Torczon [1997].

Both gradient-based methods and pattern searches are popular for noise-free optimiza-

tion since, in low dimensions, they use relatively few function evaluations to converge to

an optimum of high precision. However, methods based on gradients naturally converge

into the closest basin of attraction and pattern searches have no way of accepting a poor

trial point even if it may offer long term improvement to the direction of the search.

This causes both gradient-based methods and pattern searches to be depended on the

location of the initial design and can only guarantee convergence towards a local opti-

mum as illustrated in Figure 2.1. Gradient-based methods are also highly dependent on

the method used to estimate local gradients and sensitive to any noise and uncertainty

in the objective.
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Figure 2.1: An example of the simplex search converging towards the local minimum
of the Forrester function [Forrester et al., 2008].

2.2 Global Optimization using Evolutionary Algorithms

A popular approach to encourage a global search is to use locally converging methods

from a number of different starting locations. This approach attempts to explore the

design space more thoroughly and assumes one of the local optima identified is also the

global optimum. This may work well in practice provided a large number of starting

points are used but the expense of such an approach can quickly become impractical

and is not guaranteed to identify the global optimum in highly multimodal problems.

Evolutionary algorithms attempt to redeem the shortcomings of gradient-based methods

and pattern searches. Some common themes for inspiration include Darwin’s theory of

evolution, annealing in metallurgy and natural social behaviour of animals or insects.

Although the composition of these different algorithms can be very diverse, they share

some fundamental features. Firstly, these methods are all stochastic in the sense that

they make use of random sequences. Repeating the search a number of times may

achieve a broadly repeatable result but the path the search takes to get there is likely

to be very different. Secondly, these algorithms tend not to be concerned with making

improvements directly to an initial or existing design. They instead usually rely on an

initial population of designs which evolve in some sense, directing the search towards

the global optimum. All these methods also allow for the incorporation of poor designs,

allowing the search to benefit from designs that do not offer objective improvement but

instead help guide the search. Provided a sufficient number of design can be directly

evaluated, these features allow the search to explore globally and enables the global

optimum to be identified even on the most complex and multimodal problems1.

1See for example Keane’s bump function, http://www.soton.ac.uk/∼ajk/bump.html.
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Coello Coello et al. [2007] provides heuristics for different evolutionary algorithms in-

cluding simulated annealing, tabu search, ant systems and particle swarms. Here, two

evolutionary algorithms that are used throughout this thesis are discussed further.

2.2.1 Genetic Algorithm

Genetic algorithms (GAs) are arguably the most popular of the evolutionary algorithms

and have received copious attention for several decades since their introduction by

Holland [1962]. They are based on Darwin’s theory of evolution where several pro-

cesses are applied to a population of individuals to mimic the progressions of natural

selection. To aid in the evolutionary process, design variables in real numbers, known

as the phenotype, are mapped to a binary (or other) encoded equivalent, the genotype.

This allows each individual in the population to be manipulated easily, creating new

designs when converted back into real design variables.

The binary encoded genotype is for a phenotype (0.1328, 0.1641) where x1, x2 ∈ [0, 1] is

pictured in Figure 2.2.

0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0

Figure 2.2: Binary encoding of a design using eight binary digits for each variable.

A key process of the genetic algorithm is the breeding between pairs of designs to spawn

the next generation. Individuals of the population are selected to be parents based on

a random procedure with some bias towards individuals with a higher fitness (lower

objective value if minimizing). This makes it more likely that the strongest individuals

are allowed to breed and pass on beneficial properties to the next generation. Although

pressure is applied to use parents of greater fitness, poor designs with a lower fitness value

are not neglected but do gradually die out. This encourages exploration of the design

space during early generations and converges towards the best designs as generations

pass.

The breeding process is performed via crossover of the two encoded genotypes, exchang-

ing a random length of bits between them. Encouraging selection of parents with high

fitness and using crossover alone is often enough to generate a working genetic algorithm

but such a basic search may get stuck in local regions if some members of the popu-

lation are over dominant. One way to escape local attractions and encourage a higher

level of global exploration is to introduce mutation, where-by after crossover there is a

probability that a genotype will get mutated. This mutation step can simply consist
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of switching a single digit in the genotype. Another mechanism useful in genetic algo-

rithms is the idea of elitism. This involves directly carrying on the individual(s) with the

greatest fitness from one generation to the next without applying crossover or mutation.

This ensures the information of the best designs is not lost and further encourages an

improvement of average fitness from one generation to the next.

Including all these processes, the design of a GA can be defined by five parameters;

population size, number of generations, probability of crossover, probability of mutation

and the level of elitism. The choice of these parameters will depend heavily on the

problem at hand, however, it is common for trade-offs between cost and accuracy to be

made. For example, a large population size will help ensure global exploration of the

design space but will require a very large number of function evaluations. Reducing the

population size but increasing the probability of mutation may achieve a similar level

of exploration by increasing diversity with fewer function evaluations but it is unlikely

the global optimum will be found to an equivalent accuracy. It is often necessary to

carefully tune these parameters to gain the best performance, see Keane [1995].

Although the correct choice of GA parameters will achieve a reliable search on even the

most complex problems, the nature of using binary encoded genotype can restrict the

level of exploitation. This makes it difficult for the GA to converge towards an optimum

with high accuracy. A common solution is to hybridize the GA with a locally converging

search. An overview of different kinds of hybridization is given by Gudla and Ganguli

[2005]. In post-hybridization a global and local search is used in two phases. First the

GA is used to locate the global region and then a local search is used to converge to

an optimum value within this region. This is a common approach and GAs have been

combined with both pattern searches [Chelouah and Siarry, 2003], and gradient-based

methods [Gudla and Ganguli, 2005]. Both the traditional GA and in its hybridized form

have been used consistently throughout literature. Examples of a GA being applied in

aerodynamic design can be found in Sóbester and Keane [2002], Vicini and Quagliarella

[1998] and in structural design Erbatur et al. [2000] and Keane [1994].

2.2.2 Dynamic Hill Climbing

A less popular approach to global optimization is dynamic hill climbing (DHC). In-

troduce by Yuret and Maza [1993], DHC takes ideas from both genetic algorithms and

classic hill climbing techniques. The algorithm begins by selecting a random individual

which is mutated to expand the population to have 2d + 1 members, where d is the

number of design variables. The mutation simply consists of adding a scalar value to

one of the design coordinates. Each member of the population is evaluated and the

member with the highest fitness is selected as the parent for the next population. If a

parent gets selected twice in a row, its age increases and if a mutated individual gets

selected, its age is inherited from its parent. As the algorithm progresses, the magnitude



12 Chapter 2 Some Existing Approaches to DSO

of the scalar applied in the mutation step is reduced with increasing age. Once the age

is beyond a certain limit, the mutation size is sufficiently small to converge upon an

accurate solution. This strategy is a simple and an effective hill climber, but is only

guaranteed to converge towards local optima.

To escape local regions, two important processes are added to the algorithm. Firstly a

dynamic coordinate frame is used, which allows the search to choose a different coor-

dinate frame if the search gets stuck. By recording previous moves, the Gram-Schmidt

orthogonalization is used to find a new direction which is applied in the next mutation

step. Secondly, once a certain age is reached the optimum found is recorded and the

search is restarted. The location for this restart is decided based on the result from all

previously found optima. To ensure global exploration, the hill climber is used to maxi-

mize diversity in the recorded optima and to select a new starting point. This does not

require further function evaluations since a measure of diversity is used as the function

fitness, which is based on the previous optimum points. This DHC process is repeated

until a specified number of function evaluations is reached.

Yuret and Maza [1993] demonstrated superior performance of the DHC method com-

pared to a basic genetic algorithm on several test problems. DHC can be applied to

complex problems with a high number of dimensions and has been used by Toal et al.

[2008] and Keane [2006] to tune hyperparameters in surrogate modelling.

2.3 Multiobjective Optimization

It is common for engineering design problems to have a number of conflicting objectives.

In aerospace design, systems are often required to have a high performance whilst being

light weight, strong and robust. Even in problems with a single performance goal, it is

likely the designer is required to also design for minimum cost.

With these multiple goals in mind it is clear that selecting an optimal design is not

possible unless some form of weighting is assigned to each objective. In some problems

it may be possible to predefine weightings on each goal, in such cases the multiobjective

problem can be transformed into a single aggregated objective function and solved using

traditional optimization methods. In most cases the assignment of weightings becomes

subjective and radical designs may be missed. Without prior knowledge of which weight-

ing produces the most desirable design, it is necessary to form a set of solutions which

are all optimal in some sense. This set of solutions is referred to as the Pareto set.

If a set of designs is evaluated, the designs which are Pareto optimal are all solutions

that are nondominated by the performance of all other solutions in all the goals. The

identified nondominated solutions make up the Pareto set and the full family of all

possible Pareto optimal designs make up the Pareto front [Fonseca and Fleming, 1995].
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Figure 2.3: A Pareto set of six nondominated points. The solid line is the Pareto

front. – Regions that augment the Pareto set. – Regions that dominate the
Pareto set.

Figure 2.3 presents an example of two objectives presented as a Pareto front. In this

figure it is obvious to see any improvement in the objective f1 will be detrimental to

the performance of f2 and vice versa. If an additional Pareto optimal solution is added

which lies within the yellow region, the new point is nondominated and will replace one

or more of the current solutions in the Pareto set. New points lying in the orange region

augment the set, adding points to the current Pareto set.

Rather than converging to a single solution, the goal of multiobjective optimization is

to construct a well balanced and spaced out Pareto set. Trying to achieve a number

of spread out Pareto optimal solutions requires additional computational effort. Fur-

thermore, the concept of local and global convergence still applies to the search of a

Pareto set and the mapping between design variables and the different objective spaces

is usually highly nonlinear. This requires all objective functions to have a large and even

spread of solutions to ensure a global Pareto set is found.

As already mentioned, a simple way to construct a Pareto set is to combine the objectives

into an single aggregate function using weightings. This aggregate function can then

be treated as a single objective optimization problem to find a single nondominated

solution. By cycling through different combination of weights it is possible to identify

a set of Pareto solutions [Vicini and Quagliarella, 1998]. For some problems the Pareto

front may be disconnected or nonconvex and a simple linear sum of weights will not

identify the full Pareto set. Alternative aggregate functions can be used to alleviate

some of these difficulties but since the shape of the Pareto front is not known prior

to its formulation, it is unclear what form the aggregate function should take. Simple

aggregation functions also require scaling of each objective function and without prior

knowledge of the full problem, choosing a suitable scaling adds further difficulties.
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2.3.1 Multiobjective Evolutionary Algorithms

One way to overcome the limitations of directly solving single aggregate functions is

to formulate the Pareto set through a multiobjective evolutionary algorithm (MOEA).

Early algorithms retained the idea of using a single aggregated function for assigning fit-

ness, see for example Schaffer [1985] and more recently Zhang and Li [2007]. Arguably,

the most successful algorithms are those that base fitness assignment on Pareto opti-

mality and not individual objective performance [Coello Coello, 2006]. The basic idea

here is to rank the solutions according to their dominance over all other solutions in the

population. The first set of nondominated solutions will be assigned rank 1 and then

removed from the population. The next set of nondominated solutions are identified and

assigned rank 2 then removed and so on, until the whole population is suitably ranked,

Figure 2.4. This idea was originally adopted by Fonseca and Fleming [1993] in their

multiobjective genetic algorithm (MOGA) and soon after in the nondominated sorting

genetic algorithm (NSGA) proposed by Srinivas and Deb [1995].
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Figure 2.4: Nondominance ranking.

Further development in this field was seen after the introduction of the strength Pareto

evolutionary algorithm (SPEA) proposed by Zitzler and Thiele [1999]. The main im-

provement made to previous algorithms was the storage of nondominated solutions from

previous populations. This can be considered a similar property to elitism in traditional

evolutionary algorithms. These improvements were quickly adopted by a number of

other authors, see Coello Coello [2006]. Among this second generation of algorithms

was the much improved NSGA-II [Deb et al., 2002]. This method does not use an ex-

ternal storage of previous nondominated solutions but instead uses an elitist approach

by combining the best parents with the best offspring, also known as (µ+ λ)-selection.

A comprehensive survey of popular multiobjective evolutionary algorithms is presented

by Ghosh and Dehuri [2004]. Despite extensive research, using MOEA’s directly to solve
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multiobjective problems requires a very large number of function evaluations to converge

to a global Pareto set. If a single objective algorithm runs in time O(GN) where G is the

number of generations and N is the population size, it is common for a multiobjective

optimization algorithm to run in time O(GMN2), where M is the number of objectives

[Deb et al., 2002].

2.4 Constrained Optimization

It is perhaps almost always the case that design optimization problems are subject

to a number of constraints. It is important to effectively deal with these constraints

during DSO to ensure a feasible optimum design is found. Formally, a single objective

constrained problem involves the minimization (or maximization) of a function f(x)

subject to multiple inequality constraints gi(x) ≥ 0 and equality constraints hj(x) =

0. Since any constraint adds complexity to the problem, where possible the designer

should aim to reduce the number of constraints. In some cases this may be achieved

through problem transformation [Keane and Nair, 2005]. A typical example of problem

transformation occurs in optimizing a wing for minimum drag and for a fixed lift. A

direct approach is to allow the angle of attack to vary as a design variable and set fixed

lift as an equality constraint. Since the angle of attack directly controls the amount of

lift, a better approach is to eliminate the angle of attack as a design variable and instead

evaluate the wing design at different angles of attack. The correct angle of attack and

corresponding drag value for a given lift can then be identified from the linear lift-curve

slope. This reduces the design space and eliminates the lift equality constraint.

A typical design constraint in structural optimization involves ensuring the maximum

allowable stress is below the material yield stress. For a full analysis this requires a

constraint to be imposed for every element in the finite element mesh, resulting in

hundreds if not thousands of constraints. If the problem is well understood, a certain

dimension, typically thickness, may be directly related to the level of stress in the model

and it may be possible to transform the problem in a similar manner to the wing design

example. For more complex models this is unlikely to be the case and the designer

may reduce the number of constraints through some form of constraint aggregation or

constraint lumping [Martins et al., 2004].

2.4.1 Lagrangian Multipliers

With some prior knowledge of the design problem, the designer may wish to eliminate

any constraints that are inactive. A constraint that is inactive does not influence the

final feasible solution and should be omitted to reduce any computational burden of

added constraints. In practice it may not be immediately obvious which constraints are
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active and which are inactive. Lagrangian multipliers are able to handle constraints by

indentifying which constraints are active at the local optimum. Considering only equality

constraints, hj(x) = 0, the original constrained problem is replaced with the Lagrangian,

f(x)−
∑

λjhj(x). The minimum is found by finding a solution where the gradients of the

Lagrangian all go to zero at the same time as the constraints. For inequality constraints,

gi(x) ≥ 0, it is necessary to introduce slack variables, ai and the Lagrangian becomes

f(x) −
∑

λi

[
gi(x)− a2i

]
, which essentially treats all inequality constraints as equality

constraints. At the minimum for each constraint either the Lagrangian multiplier λi or

the slack variable ai will be equal to zero. A slack variable equal to zero suggests the

inequality has been reduced to an equality constraint and a Lagrangian multiplier equal

to zero indicates the constraint is inactive, see Keane and Nair [2005] for examples.

A popular approach that makes use of Lagrangian multipliers is sequential quadratic

programming (SQP), see Boggs and Tolle [1995].

If a constraint is active and the solution lies on the constraint boundary, this is referred

to as being ‘tight’ [Sasena, 2002]. Figure 2.5 illustrates cases where the constraint is both

active and tight and active but not tight. Lagrangian multipliers deals with constraints

that are active and tight and ignores constraints that are not tight. Using a local

search with Lagrangian multipliers will work well in Figure 2.5(a) provided the search

is initiated in a the region of the local optimum and will happily omit the constraint

in Figure 2.5(b). It becomes less obvious which constraints should be omitted when

searching for a global optimum and ignoring the constraint in Figure 2.5(b) will lead to

an infeasible solution.
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Figure 2.5: Active and tight constraints × - minimum feasible solution. (a) Active
and tight. (b) Active but not tight.

2.4.2 Penalty Methods

Using Lagrangian multipliers assumes the gradient or Hessian of the Lagrangian can be

computed. In cases where gradients are unavailable or perhaps expensive to compute,
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it becomes necessary to employ heuristic approaches. Methods that can be applied to

all problems and integrated into any local or global search are those methods based on

penalty functions.

The simplest penalty method, known as a one pass external penalty function, simply

adds a large constant to the objective value whenever a constraint is violated, fp(x) =

f(x) + P . This transforms the constrained problem into an unconstrained one with

a clear distinction between feasible and infeasible designs. Minimizing this modified

version of the objective function will lead to a solution in the strictly feasible design

space. Due to the simplicity of penalty methods and applicability to any constrained

problem, it is not surprising that they are a popular approach and commonly used in

industry.

Using a one pass penalty method can cause problems for local searches since a solution

starting in the infeasible region is not guaranteed to descend towards feasible solutions.

This is less of a problem for evolutionary algorithms but the one pass penalty also leads

to a discontinuity along the constraint boundary. This steep cliff can make it difficult

to converge towards a tight solution that lies along the constraint boundary. Perhaps

another important consideration is that it does not take into consideration the degree

of constraint violation or the total number of violated constraints. This can be an

important consideration in engineering design since a designer may be satisfied with

a small degree of constraint violation if it results in a significant improvement in the

objective. An intuitive approach to handling the constraints is to scale the penalty on

the severity of constraint violation. One possible alternative is basing the penalty on

the number of constraints that are violated but this may lead to more discontinuities

in the landscape and remain difficult to search. More complex forms of scaling can be

used to ensure the search is directed towards feasible regions but these methods lead to

a number of penalty parameters that need to be fixed.

2.4.3 Filter Methods

A penalty parameter that is too small may falsely identify feasible regions and a penalty

that is too large can flatten the features of the objective function. In engineering de-

sign, prior knowledge of the problem is rarely available and selecting the best penalty

parameters becomes very difficult to achieve. Fletcher and Leyffer [2002] overcome the

difficulties associated with choosing effective penalty parameters by introducing the con-

cept of a filter.

The filter treats the minimization of the objective and satisfaction of constraints as

separate aims. For a single inequality constraint g(x) the constrained problem can be

redefined with two objectives where we wish to minimize f(x) and also minimize some

constraint violation function c (g(x)). This is analogous to multiobjective optimization
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and it is convenient to make use of the concept of domination. If f i and ci denote values

of f(x) and c (g(x)) evaluated at xi then the pair dominate another pair f j and cj if

f i > f j and ci > cj . A filter is simply a set of solutions that dominate all other solutions

and acts as a way to accept or reject a new step. Filter methods are often employed

when using SQP and a new step is excepted if a new trial point dominates any points

in the filter. This new nondominated point remains in the filter and any dominated

points are removed. Each new point excepted either improves the objective function or

improves constraint satisfaction.

Audet and Dennis [2004] extend filter methods for derivative free optimization. A similar

approach is adopted, replacing SQP with a generalized pattern search. Brekelmans et al.

[2005] also combine the filter method with derivative free optimization, using the trust

region approach to guide the search towards local feasible solutions.

2.4.4 Using Multiobjective Optimization to Handle Constraints

Penalty methods are also a popular approach in evolutionary optimization but suffer

from the same problems as traditional methods when selecting reliable penalty param-

eters [Coello Coello, 2002]. Deb [2000] considers the superiority of feasible solutions to

develop a penalty approach without the need to select penalty parameters. In a similar

manner to the filter methods, other approaches avoid the selection of penalty parameters

by treating the satisfaction of constraints as a separate goal. By treating the constrained

problem explicitly as a multiobjective one, solutions are found that simultaneously sat-

isfy constraints and offer objective improvement. This allows feasible solutions to be

approached in a different manner and from different directions which would otherwise

be limited by a penalty aggregated design space.

A taxonomy of different approaches is provided by Mezura-Montes and Coello Coello

[2008], categorizing constrained optimization via multiobjective optimization as two

groups. The first group transforms the constrained optimization into a biobjective prob-

lem, one for the objective and the other for a sum of constraint violations. An approach

taken by Surry and Radcliffe [1997] forms a biobjective problem using the unconstrained

objective function and an objective based on constraint violation ranking. Solutions can

then be selected based on the level of constraint violation or objective fitness. The draw-

back of this method is that it introduces extra parameters to make this choice. More

popular approaches use an individual objective for each constraint [Coello Coello, 2000a].

Here each population is evolved with the goal of finding a feasible solution with respect

to a single constraint. The populations are then combined to find a solution that satisfies

all the constraints but introducing separate populations for each constraint can become

difficult to handle as the number of constraints increase. Angantyr et al. [2003] use the

idea of Pareto ranking to rank solutions depending on their feasibility. The solution is

also given a rank depending on its objective function value and a new objective fitness
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is assigned given by a weighted sum of these rankings. A number of other approaches

exist which use multiobjective approaches in different ways, see Coello Coello [2000b],

Ray et al. [2000] and Oyama et al. [2005]. Since it is very difficult for one approach to

perform well on all problems, Mallipeddi and Suganthan [2010] conducted a study to

measure the performance of an approach that uses a combination of superiority of fea-

sible solutions, dynamic penalty functions, the ϵ-constraint method and multiobjective

constraint handling.

2.5 Using Approximations in Optimization

Many approaches in optimization take advantage of approximations. We have already

touched on Newton’s method that approximates local regions of an objective function

using a Taylor series expansion. This approach uses a quadratic model of the objective

to find suitable search directions and then takes a step in this direction. This idea

is fundamental in many gradient-based searches, improving convergence but does not

adequately accelerate the optimization process when dealing with expensive analysis. In

such cases, more general approximation methods have been developed with the aim of

reducing the number of direct evaluations of the expensive analysis. These methods build

an approximation f̂(x) of the expensive analysis f(x) that is cheaper to evaluate and

subsequently used in the optimization process. This type of approximation is commonly

referred to as a surrogate, meta or response surface model and can be used in conjunction

with a variety of local and global search algorithms.

2.5.1 Trust Regions

The trust region approach first replaces the objective function f(x) with a surrogate

f̂(x). This may take the form of a second order polynomial similar to Newton’s method

but a key advantage of the trust region method is the ability to incorporate more general

approximations. Unlike many local search methods, the chosen step length d is limited

to some trust region radius δi. This radius defines the region of the surrogate that can

be trusted and adaptively increases or decreases as the search progresses (depending on

how well the surrogate f̂(x) predicts the true objective f(x)). To find a suitable step si,

the trust region approach minimizes the sub problem f̂(xi + si) where ∥si∥ ≤ δi. Note

the minimization of the surrogate rather than the original objective function. This can

be performed cheaply using any existing optimization routine such as BFGS for example.

Once a step si is found, f(xi + si) is evaluated. Depending on how well the surrogate

has performed a decision is made to either except the step or to compute a new step

based on a new trust region radius. If the surrogate performs poorly, the trust region

radius may be reduced. If the surrogate performs well, leading to a reduced objective
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value, the step is accepted. If the step is accepted the surrogate is rebuilt based on the

new iterate and the size of the trust region is either kept the same or increased.

The trust region approach can be extended to constrained problems building a surrogate

for the objective and each constraint. A simple approach minimizes f̂(xi + si) subject

to the inequality constraints ĝ(xi + si) and equality constraints ĥ(xi + si). This can be

solved readily using a constrained optimizer such as SQP. Fletcher and Leyffer [2002]

combined trust regions with the filter method to better handle constraints.

By finding si based on minimising the surrogate model, the number of function eval-

uations using the original objective can be reduced. This can offer time savings over

traditional methods if the time taken to evaluate an objective function is significant.

As already mentioned, another advantage of the trust region method is the ability to

incorporate more general approximations. This can be achieved without sacrificing con-

vergence properties as long as the surrogate matches the value and the gradient of the

objective function at xi [Alexandrov et al., 1998]. This makes it possible to replace local

quadratic models with global approximation techniques including higher order polyno-

mials, radial basis functions and Gaussian process based models such as Kriging.

2.5.2 Surrogate-Assisted Evolutionary Algorithms

Evolutionary algorithms are reliable for global optimization but they are methods that

require a very large number of function evaluations. This characteristic is not a problem

for objective functions that are inexpensive to compute but becomes an issue when using

expensive analysis. In such cases, evaluating the objective function a large number of

times is simply too time consuming for evolutionary algorithms to be used directly.

An intuitive approach to incorporate surrogates in evolutionary algorithms is to directly

replace the expensive analysis using a surrogate model built using a limited number of

designs evaluated using the expensive analysis. The original EA can then be used cheaply

by evaluating the surrogate rather than directly evaluating the expensive analysis. The

performance of such an approach depends heavily on the accuracy of the surrogate

being used. Ratle [1998] uses Kriging interpolation in this way to reduce the expense

of a GA. The surrogate is updated after a number of generations to help improve the

accuracy of the Kriging prediction. Using a limited number of function evaluations

reduces the cost of the optimization but it becomes very difficult to build surrogates

that are globally accurate enough to converge towards reliable solutions. It is possible

to improve the accuracy of the surrogate by using more training data but this can quickly

become impractical. In fact, for high dimensional problems the curse of dimensionality

can make the cost of building a globally accurate surrogate more time consuming than

applying an EA directly.
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To overcome these difficulties, it is common to use the surrogate to assist the evolution-

ary process rather than guide it directly. This is achieved by using evaluations of the

surrogate together with evaluations of the original objective function. Jin et al. [2002]

introduced the concept of evolution control to help prevent the search from being misled

by poor surrogate models. Evolution control evaluates a certain number of individuals

in each generation using the original objective function. If an entire generation is eval-

uated using the original objective, this becomes a controlled generation. An empirical

criterion is used to decide the frequency of evolution control and evaluated individuals

are used to update a neural-network based surrogate model. Ong et al. [2004] investi-

gate different approaches to circumvent the curse of dimensionality when building global

surrogates. One approach uses local surrogates to assist a hybrid GA. Here, every in-

dividual is treated as a starting point for a locally converging search, performed using

a trust region framework. The results of each local search are evaluated using the ex-

pensive analysis and provided they are better than the starting point, they are added to

the population and the usual genetic operators applied. An alternative approach uses

coevolution, decomposing the problem into subsets. Each subset is treated as different

species that can be evolved cooperatively or in competition with one another. By divid-

ing design variables among different species, the dimensionality of each subset and each

surrogate is therefore reduced.

Emmerich [2005] pre-screens each population using surrogates based on Gaussian pro-

cesses. Only the most promising individuals are then evaluated using the original objec-

tive function. In this study the most promising individuals are those that offer greatest

fitness and/or offer improvement to the surrogate model. These individuals can be iden-

tified by making use of model error estimates available when using Gaussian processes.

This pre-screening procedure can be generalised to constrained and multiobjective prob-

lems and is analogous to the improvement criteria considered in the next section.

2.6 Efficient Global Optimization

In lieu of dealing with expensive analysis, we have visited the trust region approach

that can be combined with both local and global surrogates to converge toward opti-

mal solutions. However, for consistency conditions to be met, gradient information is

required. For global optimization and in the absence of any gradient information, a

surrogate-assisted EA may be better suited. Rather than applying an EA directly, using

surrogates can significantly reduce the number of expensive evaluations required but

this often remains impractical when using time consuming analysis that is in the order

of hours or days.

Here we visit an alternative approach that uses statistical methods to sequentially update

global surrogates and efficiently converge towards optimal solutions. A basic strategy
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is outlined in Figure 2.6. This begins prior to having any knowledge of the design

space by making use of an initial sample. The surrogate model is then built based on

evaluations of this initial sample using the expensive analysis. Next, the surrogate is

searched inexpensively to find an update point that offers some improvement over all

previously sampled points. This update point is evaluated using the expensive analysis

and the surrogate is rebuilt based on the new set of evaluated designs. This process is

repeated until a time limit, evaluation budget or model accuracy is reached.

Initial sample
(DOE)

?
Run expensive

analysis

?
Build global
surrogate

?
Search for

improvement

?

Update?

����
HHHH

HHHH
����

?

Best design

Add update

6

�

Figure 2.6: Basic strategy for optimization using global surrogates.

To distinguish this approach from the other methods discussed, we refer to this as

surrogate-based rather than surrogate-assisted optimization. The efficiency and relia-

bility of surrogate-based optimization relies heavily on the choice of initial sample, the

choice of surrogate and the improvement criterion (also known as the infill sampling

criterion) used to select new designs. The remainder of this chapter discusses these key

elements in more detail.

2.6.1 Initial Sampling

It is common in surrogate-based optimization to base an initial sample on some design

of experiments (DOE) technique. The correct choice of initial sample will depend on

the type of problem being tackled, the choice of surrogate model being used and the
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total budget of evaluations. Perhaps most significantly, the size of the initial sample

will depend on the dimensionality of the design space being modelled. Say for example,

we are happy with a surrogate that approximates a one dimensional function using ten

sample locations, to achieve the same sample density on a four dimensional problem

would require an initial sample based on 10,000 evaluations. This type of sampling

plan is regarded as a 104 full factorial and is clearly impractical when using expensive

analysis.

When using surrogates in optimization, this curse of dimensionality makes it imperative

that a designer aims to reduce the number of design variables being optimized. Pre-

screening the design problem and removing any inactive design variables will significantly

reduce the cost of building suitable surrogate models. Here we assume that any pre-

screening has been performed and the designer is left with design variables that all have

a noticeable effect on the objective.

Full factorial sampling plans result in uniform sampling with good spatial dispersion,

giving a clear indication of any correlation between design variables and their response

over the whole design space. A major drawback is that this requires sampling plans of

distinct sizes, often leading to an impractical number of evaluations. One way to provide

a more flexible sample is to stratify the design space in all dimensions. This essentially

splits the design space into a set of rows and columns, each containing a given number of

samples. This allows each dimension to be sampled at more levels without a significant

increase in the number of sample points. This is illustrated in Figure 2.7 where the 42

full factorial samples each design variable on four levels. In contrast, each sample point

in the random Latin hypercube sampling plan has a unique projection, sampling each

design variable on 16 levels.
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Figure 2.7: Sampling plans based on 16 samples. (a) 42 full factorial. (b) A random
Latin hypercube.

Any combination of points in a random Latin hypercube will result in unique projections

but is not guaranteed to give a sampling plan with a good spatial dispersion. A bad

Latin hypercube design may fail to capture important features in the design space and
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lead to surrogate models with poor global accuracy. One way to improve the space

filling properties of a Latin hypercube is by optimizing the Morris and Mitchell criterion

[Morris and Mitchell, 1995]. This essentially maximizes the minimum distance between

each pair of points, see Figure 2.8. Although many other types of sampling plans exist,

here we limit ourselves to using Latin hypercubes. They are favoured in this thesis as

they can be computed relatively quickly and are independent of the surrogate model

being used. They are also one of the most flexible methods and can be based on any

number of sample points, useful for designing initial samples around a limited budget

of design evaluations. For more detail on Latin hypercube sampling see Mackay et al.

[1979] and for a comprehensive survey of different sampling plans suitable for computer

experiments see Simpson et al. [2001].
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Figure 2.8: Optimized Latin hypercube.

2.6.2 Overview of Kriging

Once an initial sample is selected and designs evaluated, the next step is to build a

surrogate model. A wide choice of surrogate models is available to the designer, ac-

companied by a large field of literature. An overview of the most popular methods

used in surrogate-based optimization is provided by Jones [2001] and more recently by

Forrester and Keane [2009]. Some of the more popular methods include polynomial

models, radial basis functions and support vector regression, each method having their

own merits and weaknesses. Generally speaking, polynomial models offer simplicity

when modelling low dimensional problems but their weakness lies with high dimensional

problems and they offer limited flexibility when dealing with multimodal landscapes.

These problems are better dealt with using radial basis functions which have a level

of flexibility that can be easily controlled. Radial basis functions are fundamental to

other methods such as neural networks and Kriging, both offering increased flexibility

but at the cost of increased complexity and higher model training costs. Here we limit

ourselves to a more detailed discussion of Kriging.
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Kriging is one method frequently covered in the literature and has been applied to a vari-

ety of engineering design problems, including aerodynamic, [Keane, 2002, Yoneta et al.,

2010], structural [Booker et al., 1999, Sakata et al., 2003], multidisciplinary [Simpson,

2001] and multiobjective design problems [Keane, 2006, Jeong and Obayashi, 2005].

The origins of Kriging lies in the field of geophysics [Krige, 1951] and was introduced

into the field of engineering by Sacks et al. [1989]. Kriging is a Gaussian process based

model and has been popularised because of its great flexibility combined with the ability

to make estimates of model uncertainty, a characteristic useful in choosing model update

points.

The following overview of Kriging is based on the introduction provided by Jones [2001]

but other publications useful to the interested reader include Forrester et al. [2008, 2006]

and of course Sacks et al. [1989].

To begin let the function prediction, f̂(x), be used as a surrogate to the expensive

function f(x). This surrogate is built using a set of inputs x(1),x(2), . . . ,x(n) and known

outputs y = {y(1), y(2), . . . , y(n)}T found by evaluating the true function f(x).

Before demonstrating how this prediction is achieved using Kriging it is necessary to view

the function y as a realization of a Gaussian process. The Gaussian process is specified

by a mean and covariance function and is essentially a collection of random variables

each with a normal distribution. The value of y at x can be considered as a realization

of a random variable Y (x). This introduces the idea of uncertainty representing the fact

that we do not know the true output at most sets of inputs. Different interpretations of

Kriging make different assumptions about the Gaussian process. Here we assume use a

mean function that is constant in the manner as Ordinary Kriging.

Assuming that the function we wish to approximate is smooth and continuous, two

points x(i) and x(j) are close if ||x(i) − x(j)|| is small and then Y (x(i)) and Y (x(j)) are

likely to be highly correlated. As x(i) and x(j) move apart the opposite is true. This is

encapsulated in the Kriging correlation function,

Corr
[
Y (x(i)), Y (x(j))

]
= exp

(
d∑

l=1

θl|x
(i)
l − x(j)

l |pl
)
. (2.4)

Here we use a power exponential correlation function but many alternatives exists, see

Santner et al. [2003]. Note that the correlation between Y (x(i)) and Y (x(j)) depends

only on the sample locations and the parameters θl and pl. If x(i) = x(j) then the

correlation is 1 and converges to zero as ||x(i) − x(j)|| → ∞. The parameters θl and pl

are known as the hyperparameters, which must be estimated.

From this we can construct a correlation matrix for all the observed data,



26 Chapter 2 Some Existing Approaches to DSO

Ψ =


Corr

[
Y (x(1)), Y (x(1))

]
. . . Corr

[
Y (x(1)), Y (x(n))

]
...

. . .
...

Corr
[
Y (x(n)), Y (x(1))

]
. . . Corr

[
Y (x(n)), Y (x(n))

]
 , (2.5)

and the covariance matrix

Cov (Y ,Y ) = σ2Ψ. (2.6)

The correlations described is our matrix Ψ depends on the distance between sample

points and the hyperparameters θ = {θ1, θ2, . . . , θd}T and p = {p1, p2, . . . , pd}T. Broadly
speaking, the values of p control the smoothness of correlation and θ controls the extent

of influence each variable has on the correlation. These parameters can be estimated

using the maximum likelihood estimation. For a Gaussian process the likelihood can be

written as

L(µ, σ2,θ,p) =
1

(2πσ2)
n
2 |Ψ|

1
2

exp

[
−(y − 1µ)TΨ−1(y − 1µ)

2σ2

]
. (2.7)

Maximizing the likelihood identifies parameters which model the function’s behaviour

consistently with the data seen. In practice it is simpler to maximize the natural log of

the likelihood function. Ignoring constant terms, this may be written as

ln(L) = −n

2
ln(σ2)− 1

2
ln(|Ψ|)− (y − 1µ)TΨ−1(y − 1µ)

2σ2
. (2.8)

Expressions for the optimal values of µ and σ2 can be found by taking the derivatives

of equation (2.8) and setting to zero, yielding

µ̂ =
1TΨ−1y

1TΨ−11
, (2.9)

σ̂2 =
(y − 1µ̂)TΨ−1(y − 1µ̂)

n
. (2.10)

Substituting equations (2.9) and (2.10) into equation (2.8) gives the concentrated ln-

likelihood function,

ln(L) ≈ −n

2
ln(σ̂2)− 1

2
ln(|Ψ|). (2.11)
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The value of this function depends only on Ψ, and hence, on the hyperparameters θ and

p. Finding optimal values for θ and p is not simple and cannot be achieved through

differentiation. This problem requires a direct numerical global optimization and needs

treating with care if good results are to be obtained.

In order to make a prediction ŷ at some new point x, it is also necessary to maximize

the likelihood of this prediction. Suppose ŷ is an estimated function value, the quality

of this estimate can be evaluated by adding ŷ to the observed data, ỹ = {y, ŷ}T, and
computing the augmented likelihood function.

The augmented correlation matrix is given as

Ψ̃ =

(
Ψ ψ

ψT 1

)
, (2.12)

where ψ is the vector of correlation between the observed data and the prediction

ψ =


Corr

[
Y (x(1)), Y (x)

]
...

Corr
[
Y (x(n)), Y (x)

]
 . (2.13)

Using the optimum parameter values obtained, the augmented likelihood reflects how

consistent the estimate is with the observed pattern of variation. The best value for this

estimate is therefore the value of ŷ that maximizes the augmented likelihood function.

Recalling thatψ contains our new sample point x, the Kriging predictor can be expressed

as

ŷ(x) = µ̂+ψTΨ−1(y − 1µ̂). (2.14)

This predictor is for an interpolating model. In the presence of noise this procedure can

be filtered by including a regression constant λ. The regression constant λ is added to

the leading diagonal of Ψ producing Ψ+ λI, where I is an identity matrix. Using the

same derivation as before, the regressing Kriging prediction is given by

ŷr(x) = µ̂r +ψ
T(Ψ+ λI)−1(y − 1µ̂r), (2.15)

where

µ̂r =
1T(Ψ+ λI)−1y

1T(Ψ+ λI)−11
. (2.16)
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σ̂2
r =

(y − 1µ̂r)
T(Ψ+ λI)−1(y − 1µ̂r)

n
. (2.17)

A suitable regression constant λ can be found in the same manner as the other model

parameters, using maximum likelihood estimation.

2.6.3 Improvement Criteria

A key process in surrogate-based optimization is the selection of model update points

for model refinement. These updates can be selected in a number of ways. The most

straightforward improvement criterion considers the addition of an update point at the

current optimum predicted by the surrogate model. Figure 2.9 shows an example of

updating a surrogate based on the Kriging prediction. This is pure exploitation of

the approximation and with further updates can quickly converge upon an optimal

solution. Unless the surrogate model is globally accurate, this method is not guaranteed

to converge towards the global optimum. In Figure 2.9(b) we see that adding an update

at the minimum of the Kriging prediction converges towards the local optimum.
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Figure 2.9: Kriging surrogate of the Forrester function. (a) Kriging prediction as an
improvement criterion. (b) Updated Kriging prediction.

More reliable methods attempt to combine elements of both objective improvement and

global exploration of the design space. The improvement criterion should therefore aim

to strike a balance between exploitation and exploration of the objective approximation.

Using surrogate models based on Kriging allows the prediction of the mean response

(i.e. the Kriging prediction) ŷ at x but also the variance in this prediction. Assuming

an interpolating model, this is estimated as (see Sacks et al. [1989]),

ŝ2(x) = σ̂2

[
1−ψTΨ−1ψ +

(1− 1TΨ−1ψ)2

1TΨ−11

]
. (2.18)
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It is intuitive that the predicted variance will be equal to zero at previously sampled

points2 and larger in regions that are poorly sampled. This feature of Gaussian process

based models is useful in the selection of model update points, where the improvement

criteria can account for those areas with a high predicted variance. Figure 2.10 demon-

strates the Kriging prediction and the 95% confidence intervals for this prediction.
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Figure 2.10: Kriging prediction of the Forrester function and the predicted error in
the prediction.

Sasena et al. [2002] and Jones [2001] both provide comparisons of different improve-

ment criteria. This includes popular approaches used in engineering design and others

previously used in the geology literature, such as those used by Watson and Barnes

[1995]. It is clear from these two studies that the most efficient approaches utilize this

predicted variance. Other attempts at developing efficient improvement criteria, for ex-

ample Martin and Simpson [2002] and Regis and Shoemaker [2005], offer little in the

way of improvement over the methods suggested by Jones [2001].

Sampling in regions of high variance will lead to pure exploration of the surrogate model,

simply filling in the gaps between previously sampled points. Although this can be ex-

pected to converge towards the global optimum, this may take a long time to do so.

Instead a popular approach is to search the surrogate for maximum probability of im-

provement, an idea originally introduced by Kushner [1964]. This is given by integrating

over the probability density function (PDF) below the minimum point sampled so far,

ymin. Making use of the fact that y(x) is treated as the realization of a random function

and is normally distributed with N
(
ŷ, ŝ2

)
, dropping the dependencies on x for notation

simplicity, the probability of improvement can thus be expressed as,

P [y < ymin] =

∫ ymin

−∞
ϕ (y) dy, (2.19)

where ϕ (y) is the PDF representing uncertainty about y(x) given by,

2This requires re-interpolation of σ̂2
r when using regressing Kriging, see Forrester et al. [2008].



30 Chapter 2 Some Existing Approaches to DSO

ϕ (y) =
1

ŝ
√
2π

exp

[
−1

2

(
y − ŷ

ŝ

)2
]
. (2.20)

The probability of improvement can be expressed analytically as

P [y < ymin] = Φ

(
ymin − ŷ

ŝ

)
, (2.21)

where Φ (.) is the cumulative distribution function (CDF) for a standard normal distri-

bution.

The probability of improvement will return a value between zero and one, allowing re-

gions of improvement to be identified. Figure 2.11 updates the surrogate at the point of

maximum probability of improvement. Potential improvement is indicated in the unsam-

pled region around the global optimum but in this case, the probability of improvement

is largest in the region of the local optimum. Although this does not identify the global

optimum after a single update, after further updates the probability of improvement will

reduce in increasingly sampled regions and the search is forced to explore, eventually

converging on the global optimum.
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Figure 2.11: Kriging surrogate of the Forrester function. (a) Probability of improve-
ment as an improvement criterion. (b) Updated Kriging prediction.

When using the probability of improvement, it is possible that different regions of the

design space will indicate an equivalent improvement. This can lead to several plateaus

in the landscape of the improvement criterion, making it difficult to pin point the best

location for the next update. A better metric considers the magnitude of the improve-

ment. This can be achieved by defining the improvement as I(x) = ymin − y, and

computing the expected improvement given as

E[I(x)] =

∫ ymin

−∞
(ymin − y)ϕ (y) dy. (2.22)
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This can be expressed analytically as

E[I(x)] = (ymin − ŷ)Φ

(
ymin − ŷ

ŝ

)
+ ŝϕ

(
ymin − ŷ

ŝ

)
. (2.23)

where ϕ (.) and Φ (.) are the PDF and CDF for a standard normal distribution.

Figure 2.12 computes the next update point based on the maximum expected improve-

ment. This better balances the exploitation and exploration of the Kriging prediction

and the expected improvement is larger in the region of the global optimum. Maximizing

the expected improvement has been used consistently throughout the literature and is

fundamental in the popular efficient global optimization (EGO) algorithm [Jones et al.,

1998].
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Figure 2.12: Kriging surrogate of the Forrester function. (a) Expected improvement
as an improvement criterion. (b) Updated Kriging prediction.

Under certain conditions this concept will guarantee global convergence since an un-

sampled point will always indicate a predicted variance greater than zero. This results

in a positive value of expected improvement at all unsampled points even if the func-

tion is poorly modelled. For global optimization, using the expected improvement is

advantageous since it is likely to be larger at under sampled areas near to the global

optimum. Vazquez and Bect [2010] provide properties of convergence whilst Bull [2011]

provides some theoretical results for convergence rates of EGO. While it is reasonable

to suggest that theoretical properties of algorithms based on Gaussian processes are less

well understood than traditional methods, they perform well in practice and very useful

in many engineering design problems.





Chapter 3

Surrogate-Based Constrained

Optimization

There has been extensive research into the use of different surrogates and efficient im-

provement criteria over the last two decades but there has been relatively little emphasis

on dealing with constraints considering how often they arise in practical problems. This

chapter reviews some basic improvement criteria that can be used to handle constraints

in surrogate-based optimization, identifying strengths and weaknesses of these basic

approaches.

3.1 Handling Constraints

Dealing with constraints can significantly increase the complexity and the expense of

optimization depending of their severity and the number of constraints that need to

be satisfied. The designer should always aim to remove any inactive constraints and

reduce the number of constraints by construction where possible. If the constraints are

cheap to evaluate directly, it is possible to formulate an improvement criterion based

only on feasible solutions and the global optimum can be found at little extra cost. If the

constraints are expensive to evaluate they also need to be approximated using surrogates

and selecting suitable update points becomes less straightforward. In this study this is

assumed to be the case and Kriging is used to model the objective and each individual

constraint. The improvement criterion is now required to evaluate the objective and

all the constraint approximations to find updates that refine the surrogate models in

regions that converge towards a feasible optimum. It is possible to find update points by

searching the objective and constraint surrogates inexpensively using some constrained

optimization algorithm. This approach is taken by Sasena [2002] in his implementation of

SuperEGO. An alternative is to modify the improvement criterion to include information

about both objective improvement and constraint feasibility. This transforms the search

33
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for an update point into an unconstrained one and the improvement criterion can be

optimized using any global search. When transforming the problem it is important the

improvement criterion aims to strike a balance between exploitation and exploration of

the objective and all the constraint approximations for good feasible design to be found.

In this thesis the improvement criteria are modified to deal with only inequality con-

straints. Figure 3.1 shows an example of the Forrester function subject to an inequality

constraint. For the constraint to be satisfied the value of the constraint has to be greater

than or equal to the constraint limit, leading to distinct feasible and infeasible regions.

It is possible to use the methods discussed in this chapter to also handle equality con-

straints by treating each equality as two tightly bound inequality constraints, a common

approach in engineering design [Sasena, 2002].
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Figure 3.1: Forrester function subject to an inequality constraint. (a) Feasible and
infeasible regions when g(x) ≥ 0. (b) Constraint function and constraint limit.

3.1.1 Function Prediction with One Pass Penalty

The most straightforward improvement criterion considers the addition of an update

point at the current optimum predicted by the surrogate model. This was demonstrated

in the previous chapter on a simple unconstrained problem, see Figure 2.9. This is pure

exploitation of the model prediction and with further updates can quickly converge upon

an optimal solution. This method is modified to deal with constraints by transforming

the constrained problem into an unconstrained one. This is achieved most simply by

the addition of a one pass penalty function to the Kriging prediction,

ŷ(x)P = ŷ(x) + P.

This penalty is included if any one of the constraint surrogates predict a violation.

Selecting updates based on this modified improvement criteria is illustrated in Figure

3.2(d).
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Figure 3.2: Constrained Forrester function. (a) Kriging prediction of the objective.
(b) Kriging prediction of the constraint and the predicted penalty. (c) Modified im-

provement criterion. (d) Updated objective prediction.

This creates a landscape with a steep cliff marking the edge of the feasible design space

as predicted by the constraint surrogate. On simple problems this method will perform

well, however, with no element of exploration of poorly modelled regions, details of the

design space can be missed. As seen already, the lack of exploration of the design space

makes it unlikely that we will converge towards a global optimum, whilst the abrupt

cliff caused by the penalty approach also makes this method vulnerable to deceptive or

poorly modelled constraint functions. Figure 3.2(c) illustrates the uncertainty in the

constraint prediction leading to a penalty that falsely predicts the constraint boundary.

For a reduced notation, this improvement criterion is denoted as YP for the remainder

of this chapter.

3.1.2 Expected Improvement with One Pass Penalty

Using Kriging, or an alternative Gaussian process based model, permits the estimation

of model uncertainty. This feature is useful for the selection of update points where the

improvement criterion can account for those areas of the model with high uncertainty,

thus adding an element of exploration. For constrained problems, the improvement
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criterion should seek improvement over the current feasible minimum giving the expected

improvement as,

E[I(x)] = (yminfeas − ŷ)Φ

(
yminfeas − ŷ

ŝ

)
+ ŝϕ

(
yminfeas − ŷ

ŝ

)
, (3.1)

where yminfeas is the minimum feasible point sampled so far. For a poor initial sample

or if the feasible region is small, a feasible point may not have been sampled. In such

cases, the point that is closest to being feasible is used.

In order to deal with constraints, the search for maximum expected improvement can

again be modified into an unconstrained problem via a one pass penalty function,

E[I(x)]P = E[I(x)]× P.

Here the penalty is equal to one for feasible solutions and zero if any constraint is

violated. Selecting an update based on this modified improvement criterion is illustrated

in Figure 3.3.
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Figure 3.3: Constrained Forrester function. (a) Kriging prediction of the objective and
the expected improvement. (b) Kriging prediction of the constraint and the predicted

penalty. (c) Modified improvement criteria. (d) Updated objective prediction.
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Utilizing expected improvement will encourage exploration of the predicted feasible re-

gions of the objective. This works well in this problem and with further updates can

be expected to converge towards an accurate feasible optimum. One concern with this

approach is that the edges of the feasible regions are again defined by a sheer cliff, being

deceptive when the constraints are poorly modelled, illustrated in Figure 3.3(c). For the

remainder of this chapter this improvement criterion is denoted as EIP.

3.1.3 Expected Improvement with Probability of Feasibility

Using a one pass penalty function will limit updates to objective improvement only in

the strictly feasible space. Although this is sensible for refinement of the objective ap-

proximation, this may curb progression of constraint approximations. This can become

a problem, especially in cases where the constraints are poorly modelled. As already

noted, an inaccurate constraint model can cause the penalty function to be missed or

wrongly applied. One way to better handle the constraints is suggested by Schonlau

[1997]. Assuming independence between the objective and constraint functions1, this

approach combines the expected improvement of the objective function and the proba-

bility of feasibility calculated from the constraint functions as a simple product,

E[I(x)]con = E[I(x)]× P [g ≤ glimit]. (3.2)

The probability of feasibility P [g ≤ glimit] is calculated in the same manner as probability

of improvement but instead identifies regions of feasibility, where glimit is the constraint

limit. Maximizing the probability of feasibility can also be used to find an initial feasible

point as pointed out by Sasena [2002]. If the constraint value has to be less than or

equal to a constraint limit, the probability of feasibility for a single constraint is given

as

P [g ≤ glimit] =

∫ glimit

−∞
ϕ (g) dg. (3.3)

Alternatively, for a constraint value greater or equal to a constraint limit the probability

of feasibility is expressed as

P [g ≥ glimit] =

∫ ∞

glimit

ϕ (g) dg, (3.4)

The probability of feasibility can be expressed analytically as

1This is a modelling assumption.
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P [g ≤ glimit] = Φ

(
glimit − ĝ

ŝ

)
, (3.5)

or

P [g ≥ glimit] = Φ

(
ĝ − glimit

ŝ

)
. (3.6)

Combining the expected improvement and probability of feasibility in this way will

gradually drive the improvement criteria towards zero in the transition between feasible

and infeasible regions, adaptively softening the sheer cliff landscape produced by a one

pass penalty function. This is illustrated in Figure 3.4(c) where there is no longer a

sheer cliff in the landscape of the modified improvement criterion.
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Figure 3.4: Constrained Forrester function. (a) Kriging prediction of the objective and
the expected improvement. (b) Kriging prediction of the constraint and the probability
of feasibility. (c) Modified improvement criteria. (d) Updated objective prediction.

In cases where more than one constraint is applied, the total probability of feasibility is a

product of all individual constraint probabilities of feasibility. Forrester et al. [2008] refer

to this method as constrained expected improvement. When dealing with complicated

constraints or deceptive constraint functions, this improvement criterion helps to balance
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exploration and exploitation without the use of arbitrary penalty functions. Throughout

this thesis this improvement criterion is denoted as EIPF.

3.2 Model Fitting and Search Algorithms

Surrogate-based optimization requires several sub optimizations at various stages. Firstly,

an initial sample is required that adequately represents the design space. As already

discussed it is common to use design of experiments and some search algorithm to opti-

mize these designs. For the 2D test problems used here, random Latin hypercubes are

used to encourage a diverse set of initial samples. For larger dimensional problems, such

as the aircraft wing design problem in Section 3.6, a set of optimized Latin hypercube

designs are used. It is then necessary to fit a surrogate model and find new updates to

be evaluated. Both processes can be considered as sub problems that require further

searches to be run.

3.2.1 Hyperparameter Tuning

Once an initial sample is selected and all designs evaluated, the next step is to fit the

surrogate models. Fitting a Kriging model requires sufficient hyperparameter tuning.

Different tuning strategies have been examined by Toal et al. [2008], concluding that

a so called ‘light tune’ strategy is adequate up to 12 variables, provided enough true

simulations are performed. The light tune consists of a hybrid search using a 1,000

evaluation GA and a 1,000 evaluation DHC to maximize the concentrated likelihood

function. The light tune strategy has been adopted for hyperparameter tuning for all

objective surrogates and all constraint surrogates studied here. The hyperparameters

are tuned after the initial sample stage and retuned after every update.

3.2.2 Finding Updates

To find update points of interest it is necessary to search an improvement criterion.

Some improvement criteria, such as expected improvement, can be highly multimodal

and searching for the optimum update can, in itself, be a tough optimization problem.

Fortunately the improvement criteria is usually cheap to compute and to ensure the

best location for the next update is consistently found, a heavy hybrid search is used,

consisting of a 10,000 evaluation GA and a 5,000 evaluation DHC. This search minimizes

YP or maximizes EIP and EIPF to find the next update point.
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3.3 Comparison Metrics

The performance of the improvement criteria can be assessed in a number of ways.

Here this performance is measured using the true sample data, the known outputs y =

{y(1), y(2), . . . , y(n)}T and the chosen set of inputs x(1),x(2), . . . ,x(n), where n includes

both the initial sample and all evaluated update points. If the true optimum is known,

an intuitive method of comparison is to find the error between the true feasible optimum,

y∗ at x∗, and the best feasible point sampled so far, ybest at xbest. Assuming we are

searching for a minimum, the error in the objective space is simply ybest − y∗.

The performance of each improvement criterion will depend on the placement of points

in the initial sample. In some cases, by pure luck, this sample will include a point close

to the global optimum, accelerating the search. For the artificial test problems, tests

are repeated for a set of 100 random Latin hypercube initial samples to iron out any

dependency on the initial sample. As the wing design problem is more time consuming,

this is repeated on 50 different optimized Latin hypercube initial samples.

Given a limited evaluation budget the designer will also be concerned about the efficiency

and reliability of each method. After repeating the search on a number of different initial

samples, the performance of each improvement criterion can be represented in terms of a

probability. This probability characterizes the consistency of each method in achieving

an optimal solution to a prescribed accuracy. For example, an improvement criterion

that finds an optimal solution within an accuracy of 0.01 of the true optimum, 90 times

out of 100, will have a probability of 90% at this accuracy. This metric is computed after

each update so the most efficient and reliable improvement criterion can be identified.

By decreasing the required accuracy, this metric will demonstrate both the efficiency

and reliability of each method in finding the region of the global optimum. Increasing

the accuracy will demonstrate which methods can identify the exact global optimum.

To check statistical significance between the different methods, a statistical resampling

method is used to compute a better representation of the average performance and 95%

confidence intervals. Here, bootstrapping is used [Chernick, 2008].

3.4 Artificial Test Problems

Throughout this thesis, different improvement criteria are tested on three artificial test

problems. In all cases the optimization strategy follows Figure 2.6. The process begins

with the generation of an initial sample, produced using a random Latin hypercube.

Based on this initial sample, the next step is to fit the Kriging models, tuning the

hyperparematers for the objective function and the constraint function(s). The chosen

improvement criterion is then searched to find the first update point. The selected
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point is evaluated and the models are retuned after adding the new point to the set

of samples. This process is repeated for a number of updates until the total number

of evaluations reaches a specified budget. The size of this initial sample and the total

number of updates has been catered individually for each problem. Note that all design

variables are normalized to [0, 1] to avoid any scaling issues when building and searching

surrogate models.

The first two test problems minimize a modified version of the Branin function, found in

Forrester et al. [2008]. This modification adapts the original Branin function to include

one global optimum, rather than three optima of equal value. The modified Branin

function is given by

f(x) =

(
a2 −

5.1

4π2
+

5

π
a1 − 6

)2

+ 10

[(
1− 1

8π

)
cos a1 + 1

]
+

5a1 + 25

15
, (3.7)

where a1 = 15x1 − 5, a2 = 15x2 and x1, x2 ∈ [0, 1]. Test problem 1 is concerned with

minimizing the Branin function subject to a simple inequality constraint,

g(x) = x1x2 ≥ 0.2, (3.8)

resulting in a global feasible optimum y∗ = 5.576. In test problem 2 the complexity

of the constraint in increased. The constraint function is a version of the Gomez#3

function [Sasena et al., 2002], with an additional sinewave to increase modality,

g(x) =

(
4− 2.1b21 +

1

3
b41

)
b21+b1b2+

(
−4 + 4b22

)
b22+3 sin [6 (1− b1)]+3 sin [6 (1− b2)] ≥ 6,

(3.9)

where b1 = 2x1−1 and b2 = 2x2−1, resulting in the global feasible optimum y∗ = 12.001.

The bounded feasible space and the location of the global optimum for both of these

problems are presented in Figure 3.5.

To investigate the performance of these methods when dealing with multiple constraints,

a third test problem is introduced. This deceptive test function, originally used by Sasena

[2002], has two active and one inactive constraint. Here the inactive constraint is ignored

and the minimization of the constrained problem is defined as,

f(x) = −(x1 − 1)2 − (x2 − 0.5)2, (3.10)

subject to,
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(a) (b)

Figure 3.5: Bounded feasible space with × - global optimum. (a) Test problem 1
g(x) ≥ 0.2 (b) Test problem 2 g(x) ≥ 6.

g1(x) = (x1 − 0.5)2 − (x2 − 0.5)2 ≤ 0.2, (3.11)

g2(x) =
(
(x1 − 3)2 + (x2 + 2)2

)
e(−x7

2) ≤ 12, (3.12)

where x1, x2 ∈ [0, 1] giving a global feasible optimum y∗ = −0.7483.

The bounded feasible space and the location of the global optimum for this problem are

presented in Figure 3.6.

Figure 3.6: Bounded feasible space and × - global optimum for test problem 3 g1(x) ≤
0.2 and g2(x) ≤ 12.

3.5 Results and Discussion

Test problem 1 uses an initial sample of eight points and 20 further updates whilst the

more complex test problem 2 and test problem 3 use an initial sample with ten points

and 30 further updates.
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Figure 3.7 shows the results obtained when the different improvement criteria are ap-

plied to test problem 1. As expected, due to the lack of exploration of the objective

space, YP performs poorly when compared to the other two approaches. YP tends to

converge towards the closest basin of attraction which incidentally, by luck, happens to

corresponds to the global optimum 50% of the time. Perhaps it is worth noting here

that although this method is less reliable, when it does find the global optimum it is

capable of converging towards accurate solutions, as shown by Figure 3.7(b).

Both methods based on the expected improvement reliably find the region of the global

optimum as shown by Figure 3.7(a). However, as the accuracy of the desired solution is

increased EIP becomes more efficient and a more reliable approach. Sasena [2002] goes

some way to explain why this is often the case when comparing the probabilistic and

penalty based methods. One concern is that combining the expected improvement with

the probability of feasibility impacts the value of the improvement criterion too strongly

at the constraint boundary. Since this is where the optimum lies, this can prevent

convergence towards accurate solutions. We can see from these results that using a

probabilistic approach offers little benefits over the penalty function when dealing with

a single simple constraint.
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Figure 3.7: Test problem 1 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.1 of the true optimum value and (b) 0.01 of the true

optimum value.

In test problem 2 the complexity of the constraint is increased and both YP and EIP

struggle to consistently identify the region of the global optimum, Figure 3.8(a). It is

clear that the search is now hindered by the constraint handling method and a proba-

bilistic approach better manages the constraint by relaxing the constraint boundaries.

This allows progression of both the objective and constraint approximations. This works

well for this problem since in the early stages of the search the feasible regions are poorly

modelled. The poor performance of EIP clearly suggests that the one pass penalty func-

tion is a poor method when dealing with complex constraints. What allowed us to find

accurate solutions in test problem 1 now prevents us from finding the global optimum

altogether. However, all these methods struggle to consistently find accurate solutions.
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Figure 3.8: Test problem 2 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.1 of the true optimum value and (b) 0.01 of the true

optimum value.

It is evident that although EIPF consistently finds the region of the global optimum,

converging towards accurate solutions remains difficult.

Figure 3.9 shows results for test problem 3. The global optimum of this problem is

identified consistently by all three methods, Figure 3.9(a). This is found with very

few updates since the objective and constraint functions can be easily modelled: pure

exploitation of the objective combined with a penalty approach works well. The difficulty

here lies with converging towards more accurate solutions since the optimum lies on the

boundary of two constraints. Although these constraints are relatively simple to model

they have to be very accurate at the boundaries for accurate solutions to be identified.

Figure 3.9(b) shows that all methods struggle to identify accurate solutions. In cases

where the constraint boundaries are difficult to approximate, adding updates in the ‘just’

infeasible region may help to build better approximations.
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Figure 3.9: Test problem 3 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.01 of the true optimum value and (b) 0.001 of the true

optimum value.
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Table 3.1 summarises the results in Figure 3.7(b), Figure 3.8(b) and Figure 3.9(b),

illustrating the best improvement criterion when finding the exact global optimum. This

highlights the poor reliability of all three improvement criteria on test problem 2 and

test problem 3.

Table 3.1: Summary of mean results for test problem 1, 2 and 3. Mean probability
of the best feasible point being within 0.01 on test problem 1 and 2 and 0.001 on test

problem 3.

Test problem 1 Test problem 2 Test problem 3

No. of updates No. of updates No. of updates
10 20 15 30 15 30

YP 25% 48% 8% 22% 18% 41%
EIP 32% 93% 7% 20% 7% 7%
EIPF 1% 61% 0% 3% 10% 14%

3.6 Aircraft Wing Design Problem

Next we turn to a real design problem that is dominated by constraints. Wing design

for transonic civil aircraft is a very complex task. It is common for such tasks to

incorporate aspects of strength, fuel capacity, operating costs and so on. Usually this

process is dominated by complicated simulations using expensive design tools. In early

design stages it is common for engineers to use less sophisticated tools in favour of

reduced analysis cost and time. In such cases, empirical codes are used which make no

attempt at solving the flow conditions over the wing or detailed structure analysis but

give rapid estimates of likely drag and strength values.

In this study the aircraft performance is computed using a light release of a former

Airbus conceptual design tool2. The optimization problem is simplified to a single low

wing drag objective. Here this is defined as the wing drag area D/q also known as the

drag per unit dynamic pressure. To retain some of the design complexity, limits are

placed on key geometry and constraints exist on the wing weight, fuel tank volume,

pitch-up margin and undercarriage bay length. Within the design tool, a wing weight

and structural sizing analysis is performed in an attempt to size structural components

sufficient for the required loading. Table 3.2 shows design parameter values, and limits,

for a transonic civil transport wing with 11 design variables. The table also includes the

low drag objective and constraint function values calculated using the design tool.

Full runs using the design tool are used for the construction of five surrogate models,

one for the low drag objective and one for each constraint. The initial sample consists

2This version of the Tadpole concept design tool [Cousin and Metcalfe, 1990] was developed by Airbus
for research at the University of Southampton.
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Table 3.2: Best known design variables, limits, constraint values, and objective value.

Lower limit Best design Upper limit Quantity

100 155 250 Wing area, m2

6 11.4 12 Aspect ratio
0.2 0.446 0.45 Kink position
25 28.5 45 Sweep angle, deg
0.4 0.526 0.7 Inboard taper ratio
0.2 0.201 0.6 Outboard taper ratio
0.1 0.160 0.18 Root t/c
0.06 0.107 0.14 Kink t/c
0.06 0.060 0.14 Tip t/c
4.0 5.0 5.0 Tip washout, deg
0.65 0.82 0.84 Kink washout fraction
—– 13,707 13,761 Wing weight, kg
40.0 40.02 —– Wing volume, m3

—– 5.392 5.4 Pitch-up margin
2.5 2.508 —– Undercarriage bay length, m
—– 2.757 —– D/q, m2

of 60 points and 90 further points are selected via an improvement criterion. In total,

the design tool is evaluated 150 times. As before the performance of each strategy is

compared using data collected over a number of different initial samples.

This is a real engineering problem and the exact location of the true optimum is un-

known. This makes comparison of the best found location and the true optimum location

an unreasonable metric for comparison. The error in the objective space can still act

as a good comparison but in this case, the true optimum y∗ is replaced with the best

known feasible solution. The best feasible solution known is D/q = 2.7568 m2, at a

point where all four constraints are active, see Table 3.2.

Figure 3.10 illustrates the reliability of each method when applied to this aircraft wing

design problem. When finding a solution within 0.05 of the best known solution, all

methods find reliable solutions before the evaluation budget is exhausted. When finding

solutions within a tighter accuracy of 0.01, only EIPF performs reliably. The poor

performance of YP and EIP clearly demonstrates that finding accurate solutions is

difficult to achieve when using simple penalty functions. This may be due to the fact

that in many constrained optimization problems the global solution often lies close to,

or on one or more constraint boundaries. In regions of multiple active constraints,

locating a feasible point can be very difficult to achieve. In the case of the one pass

penalty function, such regions are too easily discarded if any one of the constraints is

deceptive or poorly modelled. Using EIPF clearly copes much better since the constraint

boundaries have been relaxed and the impact of a poorly modelled constraint is not as

severe. Table 3.3 highlights the dominant performance in 3.10(b).
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Figure 3.10: Aircraft wing design problem mean probability and 95% confidence
intervals of the minimum feasible D/q being within (a) 0.05 of the best known solution

and (b) 0.01 of the best known solution.

Table 3.3: Summary of mean results for the aircraft wing design problem. Mean
probability of finding D/q within 0.01 of the best known solution.

No. of updates
45 90

YP 0% 2%
EIP 0% 2%
EIPF 89% 100%

3.7 Conclusions

Many engineering design problems require a large number of time consuming, high

fidelity computer simulations. In aid of reducing the total number of expensive eval-

uations, this chapter reviews the performance of three different improvement criteria

suitable for surrogate-based constrained optimization.

From the results gained on the artificial test problems, it appears that the correct choice

of improvement criteria is dependent on the problem being tackled. Exploiting the

surrogate prediction can work well on simple unimodal problems but is not guaranteed

to find global solutions when the objective is multimodal. Although less efficient on

very simple problems, using expected improvement generalizes better when the objective

becomes more complex. This can be modified to deal with constraints using either a

penalty of probabilistic method. A penalty will work well if constraints are simple to

approximate but can fail to find global solutions when the constraints become complex.

Instead, using the probability of feasibility relaxes constraint boundaries and is capable

of finding global solutions even on very complex problems but may prevent convergence

towards more accurate solutions.



48 Chapter 3 Surrogate-Based Constrained Optimization

In the presence of multiple constraints in the real aircraft design problem, the probabilis-

tic approach significantly outperformed the other two methods. Although EIPF appears

superior, further improvements may still be made as solutions may be discarded if a sin-

gle constraint gives a probability of feasibility close or equal to zero. In certain problems

it may be better to search directly for solutions which lay on constraint boundaries.

This is investigated further in the next chapter.

Choosing the correct improvement criteria for the task in hand may not always be

obvious without prior knowledge of the complexity of the objective and each constraint.

It is clear that in simply constrained problems, YP can perform well. If the objective is

complex but constraints are simple, EIP is likely to be the best method whilst if both

the objective and constraints are complex, EIPF is favoured. One way to achieve a more

generalized approach is to combine the advantages of the different methods discussed.

This can be achieved by hybridizing the methods. For example, it is possible to begin

the search using EIPF and towards the end of the search switch to YP. This encourages

exploration of the design space and relaxes the constraint boundaries early on in the

search and exploits the predictions once the region of the global feasible optimum is

identified. To explore this method further we would have to decide which methods to

hybridize and at what point in the search to make a switch between methods. This is

unlikely to generalize well and instead we investigate alternative approaches in the next

chapter.



Chapter 4

Enhancing Improvement Criteria

for Constraint Handling

Chapter 3 considers some basic approaches to constraint handling in surrogate-based

optimization. The findings discussed support the use of expected improvement to help

explore the objective function as opposed to purely exploiting the surrogate prediction.

Two approaches to constraint handling were also tested. This compared the addition of

a one pass penalty and multiplication by the probability of feasibility. Both approaches

transform the constrained problem into an unconstrained one, leading to an aggregated

search space. This can become difficult to search when dealing with complex or mul-

tiple constraints, which may lead to the selection of poor update points. Furthermore,

all update points are chosen on the basis that they are likely to be feasible and also

add value to the objective surrogate, showing no attempt at directly improving the

constraint surrogate. Since badly modelled constraints will mislead the chosen update

points, in certain cases it is better to update with the intention of explicitly improving

the constraint surrogate(s). This chapter investigates approaches to better handle con-

straints with the intention of improving the efficiency and reliability of surrogate-based

constrained optimization.

4.1 Enhanced Improvement Criteria

In most engineering design problems constraints tend to drive optimal designs towards

limits on performance and geometry. Therefore, the global optimum tends to be a tight

solution, lying on the boundary of many active constraints. When using surrogates,

locating a tight solution relies on an accurate representation of the constraint boundaries.

This can be difficult to achieve especially in the presence of complex, multiple constraints

or when the constraints are more complex or harder to model than the objective. In these

cases it becomes sensible to only construct surrogates for active constraints (if possible,

49
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all inactive ones are ignored) and attempt to reduce the predicted error explicitly along

the constraint boundaries. To this end, different improvement criteria can be used

that encourage updates to be placed in close proximity to the constraint boundaries,

better modelling these tight regions. As long as the global region of the optimum has

been identified, large errors in the constraint approximation away from the constraint

boundary become unimportant.

Several authors have investigated improvement criteria that seek a desired response

rather than finding a global optimum. Ranjan and Bingham [2008] provide an exten-

sion to the expected improvement for contour estimation, aiming to balance exploitation

of the region surrounding a contour and exploration of the design space in areas of un-

certainty. In a similar manner, Picheny et al. [2010] describe an improvement criterion

based on the integrated mean squared error that encourages updates in the vicinity of a

boundary and Bichon et al. [2008] introduces a formulation of the expected feasibility,

providing an indication of how well a response is expected to satisfy an equality con-

straint.

Here we investigate similar formulations to enhance improvement criteria, encourag-

ing updates to be selected along the constraint boundaries whilst efficiently converging

towards the feasible global optimum. Although we stick to dealing with inequality con-

straints, these enhanced approaches can also be used to deal with equality constraints

as demonstrated in Parr et al. [2012a].

4.1.1 Enhancing Probability of Feasibility

The probability of feasibility identifies regions of feasibility computed as a probability

of the constraint prediction being less (or greater) than a constraint limit. This can

perform well when dealing with inequality constraints but is less useful when trying to

satisfy an equality. In traditional optimization, active inequality constraints are often

treated as equality constraints. Keeping this in mind, sampling can be encouraged in the

region of the constraint boundary by integrating the PDF over a reduced interval that

surrounds the constraint limit. The enhanced probability of feasibility for an inequality

treated as an equality constraint h(x) = hlimit becomes

P [hlimit − τ ≤ h ≤ hlimit + τ ]τ =

∫ hlimit+τ

hlimit−τ
ϕ (h) dh, (4.1)

where τ reflects some required tolerance associated with meeting the constraint.

Treating the inequality as an equality in this way falsely suggests a region of feasibility

below the constraint limit. This may be useful to help model the constraint boundary

from both the feasible and infeasible directions and may offer advantages if the designer
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is happy with small constraint violations. Here the inequality constraint is assumed

to be a hard constraint and the enhanced probability of feasibility for g(x) ≤ glimit

becomes,

P [g ≤ glimit]δ =

∫ glimit

glimit−δ
ϕ (g) dg, (4.2)

and for an inequality constraint g(x) ≥ glimit the enhanced probability of feasibility is

expressed as

P [g ≥ glimit]δ =

∫ glimit+δ

glimit

ϕ (g) dg, (4.3)

where δ defines the width of the integral.

This encourages designs to be selected on the feasible side of the constraint limit and

retains the smoothing property associated with the probability of feasibility along the

constraint boundary. This approach also gives the user some flexibility between ex-

ploiting constraint boundaries and exploring feasible regions. The extent of exploitation

depends on the user defined value of δ.

Figure 4.1 illustrates the influence of the control parameter δ on a simple product con-

straint from test problem 1. It shows a low value of δ resulting in exploitation of the

constraint boundary prediction. At a higher value of δ, the enhanced probability of

feasibility is clearly more conservative and generalised towards the standard probability

of feasibility. When dealing with inequality constraints in this study, δ takes a value of

5% of the full range of constraint values, as suggested by Picheny et al. [2010]. Since the

range of true constraint values is unlikely to be known, δ is taken as 5% of the known

range of outputs, simply given by the difference between gmax and gmin, the maximum

and minimum constraint values sampled.

For an inequality constraint g(x) ≤ glimit, the enhanced probability of feasibility is

expressed analytically as,

P [g ≤ glimit]δ = Φ

(
glimit − ĝ

ŝ

)
−Φ

(
glimit − δ − ĝ

ŝ

)
, (4.4)

and for g(x) ≥ glimit,

P [g ≥ glimit]δ = Φ

(
glimit + δ − ĝ

ŝ

)
−Φ

(
glimit − ĝ

ŝ

)
, (4.5)

where δ = 0.05 |gmax − gmin|.
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Figure 4.1: Product inequality constraint g(x) ≥ 0.2, # – sample data. Enhanced
probability of feasibility when (a) δ = 1, (b) δ = 0.4, (c) δ = 0.1 and (d) δ = 0.01.

This constraint handling approach can be combined with the expected improvement in

the same manner as the standard probability of feasibility, denoted as EIPFδ.

4.1.2 Expected Feasibility

Ranjan and Bingham [2008] and Bichon et al. [2008] consider the extension of expected

improvement to encourage updates in the region of a contour or a constraint boundary.

Ranjan and Bingham [2008] consider the improvement function I(x) = ϵ− [hlimit − h]2

whilst Bichon et al. [2008] consider the improvement as a measure of feasibility given

as F (x) = ϵ − |hlimit − h|. Both of these approaches provide an indication of how well

a response is expected to satisfy an equality constraint. Here a similar approach is

taken for inequality constraints and the expected feasibility for an inequality constraint

g(x) ≤ glimit is given as,

E[F (x)] =

∫ glimit

glimit−ϵ

[
1− (glimit − g)

ϵ

]
ϕ (g) dg (4.6)
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and for an equality constraint g(x) ≥ glimit the expected feasibility is expressed as

E[F (x)] =

∫ glimit+ϵ

glimit

[
1− (g − glimit)

ϵ

]
ϕ (g) dg, (4.7)

where ϵ = gmax

ŝmax
ŝ.

Unlike the probability and enhanced probability of feasibility, this metric will be larger

closer to the constraint boundary. Setting ϵ to the maximum constraint output gmax

will scale the expected feasibility between zero and one with a maximum feasibility

expected along the constraint boundary, Figure 4.2(a). This gives a metric that exploits

the constraint boundary without the need to reduce the region of integration. Both

Ranjan and Bingham [2008] and Bichon et al. [2008] define ϵ as a factor of the standard

deviation of the prediction, ϵ = αŝ. This encourages an extra degree of exploration

determined by the value of α.
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Figure 4.2: Product inequality constraint with g(x) ≥ 0.2, # – sample data. The
expected feasibility when (a) ϵ = gmax, (b) ϵ = 2ŝ, (c) ϵ = 10ŝ and (d) ϵ = gmax

ŝmax
ŝ.

Figures 4.2(b) and 4.2(c) illustrates the expected feasibility for different values of α

on the simple product constraint. A small value of α results in a very narrow region
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of integration whilst a large value encourages wider ranging exploration. Basing the

measure of feasibility on the predicted variance has an intuitive appeal but the correct

choice of α is not obvious and largely problem dependent. To overcome this issue, it is

necessary to sensibly scale the value of predicted variance. Here, ϵ = gmax

ŝmax
ŝ where gmax

is the maximum constraint output and ŝmax is the maximum standard deviation. This

gives a maximum measure of feasibility when g → glimit and ŝ → ŝmax. Since gmax is

unknown it is taken as the maximum sampled constraint output whilst ŝmax requires an

additional search to find the maximum standard deviation.

For an inequality constraint g(x) ≤ glimit, the expected feasibility when ŝ > 0 is ex-

pressed analytically as,

E[F (x)] =

[
1− (glimit − ĝ)

ϵ

] [
Φ

(
glimit − ĝ

ŝ

)
−Φ

(
glimit − ϵ− ĝ

ŝ

)]
− ŝ

ϵ

[
ϕ

(
glimit − ĝ

ŝ

)
− ϕ

(
glimit − ϵ− ĝ

ŝ

)]
,

(4.8)

and for g(x) ≥ glimit,

E[F (x)] =

[
1− (ĝ − glimit)

ϵ

] [
Φ

(
glimit + ϵ− ĝ

ŝ

)
−Φ

(
glimit − ĝ

ŝ

)]
+
ŝ

ϵ

[
ϕ

(
glimit + ϵ− ĝ

ŝ

)
− ϕ

(
glimit − ĝ

ŝ

)]
,

(4.9)

where ϵ = gmax

ŝmax
ŝ.

Since this formulation of expected feasibility is scaled between zero and one, this metric

can be combined with the expected improvement in the same manner as the probability

of feasibility, denoted here as EIEF. Note that this improvement criterion does not

require any user defined parameters when dealing with inequality constraints and is

independent of the tolerance τ when dealing with equalities, however, this is at the

expense of an additional search to find ŝmax.

4.2 Using Multiobjective Optimization to Handle

Constraints

Another enhancement considered in this chapter is the use of multiobjective optimiza-

tion to handle constraints. So far, in both the penalty and probabilistic approaches

considered for constraint handling, the constrained problem is transformed into an un-

constrained one. This manipulation of the constrained problem may result in some
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misrepresentation, a concern considered by Audet et al. [2000] and more recently by

Regis [2011]. Furthermore, using improvement criteria such as expected improvement

tends to lead to multimodal landscapes, which in themselves can be difficult to search.

When the problem is transformed using the penalty or probabilistic approach, the search

space becomes riddled with cliffs, further increasing the difficulty of the search. This be-

comes even more of an issue when dealing with complex or multiple constraint functions.

This aggregation of the search space can be avoided by treating objective improvement

and constraint satisfaction as separate goals. This concept is explored in traditional

optimization using filters [Fletcher and Leyffer, 2002, Audet et al., 2000] and in evolu-

tionary algorithms using sub populations for each constraint [Coello Coello, 2000a] or

using nondominance to rank constraint violation [Angantyr et al., 2003, Ray et al., 2000,

Oyama et al., 2005]. Here multiobjective optimization is used to formulate a set of po-

tential update points that are all Pareto optimal and offer a trade-off between objective

improvement and constraint satisfaction.

-

6

c
c

c
c

c

E[I(x)]

P [F (x)]

6

-

Figure 4.3: Pareto front when maximizing both E[I(x)] and P [F (x)]: # – Pareto
set.

Figure 4.3 shows an example of two goals presented as a Pareto front. In this figure it is

obvious that any increase in expected improvement of the objective will be detrimental

to the probability of feasibility of the constraint. Conversely, any increase in probability

of feasibility leads to a smaller expected improvement.

Constructing a Pareto set gives the designer a flexible choice of update points. Since

every point in the Pareto set will lead to objective or constraint improvement, it is

intuitive to select more than one point from the Pareto set. This allows multiple designs

to be selected that can be evaluated in parallel, further accelerating the optimization

process. This is a very useful feature of this approach and is investigated further in the

next chapter. To remain consistent with selecting update points one at a time, only

single updates are considered in this chapter. Since we have a set of potential updates,
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it is therefore necessary to select one. Here we choose the individual point from the

Pareto set with the maximum product of E[I(x)] and P [F (x)]. When making use

of multiobjective optimization this method is denoted as EIvsPF. An important note

here is that in the single objective approach, EIPF can be considered as an unknown

weighted sum of E[I(x)] and P [F (x)]. Intuitively, by searching EIPF directly as a

single objective, the solution will be nondominated and expected to lie somewhere on

the Pareto front. Typically you would expect this solution to correspond to the optimum

point found using EIvsPF when the point from the Pareto set with maximum product

of E[I(x)] and P [F (x)] is selected. This is usually the case but when combining the

two goals as a single objective, the aggregation can cause the search space to become

severe and complex and in certain cases using a multiobjective approach can achieve

better solutions. This is a commonly observed phenomenon [Waldock and Corne, 2011,

Corne et al., 2003] and several authors have even reformulated single objective problems

so they can be solved using multiobjective methods, see Jensen [2003], Knowles et al.

[2001] and Neumann and Wegener [2008].

To clarify this point Figure 4.4 shows a comparison of the two approaches when finding

update points on test problem 2. This figure is drawn after a number of updates so the

feasible regions and areas of good objective values have already been identified. As hinted

earlier the search space for the expected improvement and probability of feasibility can

be far from simple and when combined as a single objective, E[I(x)] × P [F (x)], the

search space is multimodal with several local optima. Here, the global maximum of

E[I(x)] × P [F (x)] is very difficult to find, situated on top of a small peak with steep

edges, Figure 4.4(c). The single objective approach uses a hybrid search using a GA

and followed by a DHC. The multiobjective method uses a standard implementation

of NSGA-II1. Both these algorithms are run with a population size of 100 with 10,000

total evaluations. Figure 4.4(d) shows the best solution identified using each method.

The single objective search EIPF does not find the global solution. Perhaps this is as

expected since the global optimum lies in a very severe location. Using EIvsPF however,

approaches the problem in a different manner, searching from different directions which

are otherwise limited by the complex E[I(x)]× P [F (x)] design space. NSGA-II finds a

set of solutions clustered in different areas of the design space and selecting the solution

with the largest product of E[I(x)] and P [F (x)] corresponds to the global solution.

It is important to note that when using EIvsPF, further constraints will add additional

probability of feasibility objectives, increasing the dimensionality of the Pareto front.

Multiobjective problems with more than four objectives are classified as manyobjective

problems and are inherently difficult to solve [Khare et al., 2003, Praditwong and Yao,

2007, Schütze et al., 2010]. In problems with more than a few constraints, the probability

of feasibility of each constraint can be multiplied together. This reduces the problem to

two objectives, one for the objective improvement and the other for the satisfaction of

1Find this implementation at http://www.mathworks.com/matlabcentral/fileexchange/10429.
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(a) (b)

(c) (d)

Figure 4.4: Comparison of searching improvement criteria on test problem 2. Con-
tours show the true functions and # – is the sample data. (a) E[I(x)] search space.
(b) P [F (x)] search space. (c) E[I(x)]×P [F (x)] search space, × – global optimum. (d)
△ – EIPF the single objective search and � – EIvsPF the multiobjective search, + –

Pareto set.

all constraints. This is used on the aircraft wing design problem since treating the four

constraints individually would lead to a manyobjective problem.

4.3 Results and Discussion

The enhancements just discussed are now applied to the four problems investigated in

the previous chapter. For each constraint handling method discussed, P [F (x)], P [F (x)]δ

and E[F (x)], we compare a single objective and multiobjective approach. These meth-

ods include EIPF investigated in Chapter 3, the multiobjective alternative EIvsPF and

all enhanced variations, EIPFδ, EIvsPFδ, EIEF and EIvsEF. These abbreviations are

listed in Table 4.1 for reference. The single objective improvement criteria EIPF, EIPFδ

and EIEF are searched using a 10,000 iteration GA followed by a 5,000 iteration DHC, as

in Chapter 3. The multiobjective methods, EIvsPF, EIvsPFδ and EIvsEF are searched
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using NSGA-II with a population of 200 and 100 generations, producing a highly pop-

ulated Pareto set where a single individual is selected per update. For the aircraft wing

design problem, this is increased to 200 generations to deal with the larger number of

design variables.

Table 4.1: List of improvement criteria.

Improvement criteria Constraint handling Search method

EIPF Probability of feasibility GA+DHC
EIvsPF Probability of feasibility NSGA-II
EIPFδ Enhanced probability of feasibility GA+DHC
EIvsPFδ Enhanced probability of feasibility NSGA-II
EIEF Expected feasibility GA+DHC
EIvsEF Expected feasibility NSGA-II

4.3.1 Artificial Test Problems

Figure 4.5 shows the results obtained when the different improvement criteria are applied

to test problem 1. All these methods tested are able to find the region of the global opti-

mum, with little statistical significance between each approach. When finding the global

solution to a greater accuracy, the enhanced methods outperform the standard probabil-

ity of feasibility. The multiobjective search improves performance when using expected

feasibility but has little impact when using the enhanced probability of feasibility and

in fact degrades performance when using the standard formulation. Although the en-

hanced approaches have helped to improve the performance of the constraint handling,

for this simply constrained problem using a simple penalty function still performs better

than the enhanced methods tested, see Figure 3.7.
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Figure 4.5: Test problem 1 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.1 of the true optimum value and (b) 0.01 of the true

optimum value.
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Figure 4.6: Test problem 2 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.1 of the true optimum value and (b) 0.01 of the true

optimum value.

For test problem 2, all improvement criteria are able to identify a solution within the

global optimum. In Chapter 3 we noted that all methods tested struggled to consistently

find accurate solutions. In this problem combining the improvement of the objective and

feasibility of the constraint as a single objective results in a very difficult landscape to

search. Better updates are found by treating the objective and constraint separately.

This is highlighted in Figure 4.6(b) where it is clear that employing a multiobjective

search offers a significant enhancement over the single objective approach. All methods

that use a multiobjective search have a much better performance. Here, EIvsEF is the

most efficient and the most reliable improvement criterion tested.

Figure 4.7 shows results for test problem 3. As in Chapter 3, all methods consistently

identified the region of the global optimum. Although there is little difference between

the performance of each method, EIvsPF, EIEF and EIvsEF are slightly more efficient.

The methods tested in Chapter 3 struggled to consistently identify accurate solutions

due to the narrow region of feasibility at the global optimum. This is also the case

for EIPFδ but it does offer a small improvement over the standard approach. In this

problem, accurately predicting the constraint boundaries in the region of the global

optimum is paramount. Using the expected feasibility encourages points to be placed on

the constraint boundary, offering improved performance. Further performance gains are

achieved by using a multiobjective search. This approach finds better updates converging

towards more accurate solutions. This is due to the multiobjective approach avoiding

the aggregation of the design space in a narrow region dominated by constraints. Here,

EIvsPFδ is the most efficient and the most reliable improvement criterion tested.

Table 4.2 summarises the results in Figure 4.5(b), Figure 4.6(b) and Figure 4.7(b).

From this summary it is evident that a better performance is achieved when using the

enhanced improvement criteria but no one approach performs the best for all problems.
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Figure 4.7: Test problem 3 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.01 of the true optimum value and (b) 0.001 of the true

optimum value.

Table 4.2: Summary of mean results for test problem 1, 2 and 3. Mean probability
of the best feasible point being within 0.01 on test problem 1 and 2 and 0.001 on test

problem 3.

Test problem 1 Test problem 2 Test problem 3

No. of updates No. of updates No. of updates
10 20 15 30 15 30

EIPF 1% 61% 0% 3% 10% 14%
EIPFδ 15% 82% 0% 4% 21% 24%
EIEF 10% 68% 2% 9% 36% 96%
EIvsPF 1% 53% 11% 81% 77% 97%
EIvsPFδ 9% 88% 16% 81% 94% 100%
EIvsEF 5% 86% 35% 91% 78% 97%

4.3.2 Aircraft Wing Design Problem

Figure 4.8 shows the results of the enhanced methods on the aircraft wing design prob-

lem. All methods rapidly identify feasible solutions within 0.05 of the best known so-

lution. These methods offer improved performance when compared to the penalty ap-

proaches investigated in Chapter 3 but do not offer any improvements over the standard

constrained improvement criterion EIPF. This is highlighted in Table 4.3, a surprising

result since the optimal solution lies on the boundary of four active constraints. In this

case the enhanced probability of feasibility and expected feasibility exploit the constraint

boundaries too strongly, restricting the development of the constraint surrogates early

on in the search. This may be mitigated using a larger initial sample or reducing the

amount the constraints are exploited as the search progresses (i.e. reduce δ as we add

more updates). Here it is evident that using the multiobjective approach has a very

poor performance when compared to the single objective search. This poor performance
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is due to a lower density of solutions in the design space. At lower dimensions, the

number of solutions in the region of optimal updates is fairly dense due to a relatively

large population of Pareto solutions. With increasing dimensions, the density of Pareto

solutions in the design space can quickly become sparse. This is less of a problem for the

single objective approach as it aims to converge towards a single solution rather than a

Pareto set of solutions.

Dealing with a larger number of design variables is currently a major weakness of this

multiobjective approach. This may be alleviated by using a search with a larger popu-

lation as in [Parr et al., 2012b] but this can quickly become impractical and much more

time consuming than using a single objective search. An alternative is to concentrate

the multiobjective search on particular regions on the Pareto front, in turn focusing the

search on a particular region of the design space. As we will see in the next chapter,

good update points tend to lie on knee points of the Pareto front. By explicitly searching

for these regions the cost of applying a multiobjective search at higher dimensions can

be significantly reduced [Deb and Gupta, 2011]. Achieving similar performance gains as

seen in the other test problems and at a reasonable cost, requires further investigation

into the type of multiobjective search used, an area of future work suggested in the final

chapter.
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Figure 4.8: Aircraft wing design problem mean probability and 95% confidence in-
tervals of the minimum feasible D/q being within (a) 0.05 of the best known solution

and (b) 0.01 of the best known solution.

4.4 Conclusions

This chapter attempts to improve the performance of the improvement criteria inves-

tigated in Chapter 3. Enhanced performance is achieved in two main ways. Firstly,

updates are encouraged to lie along the constraint boundaries, better modelling tight

regions that constrain the global optimum. This is achieved through the formulation of

the enhanced probability of feasibility and expected feasibility. A second enhancement
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Table 4.3: Summary of mean results for the aircraft wing design problem. Mean
probability of finding D/q within 0.01 of the best known solution.

No. of updates
45 90

EIPF 89% 100%
EIPFδ 78% 92%
EIEF 84% 98%
EIvsPF 50% 90%
EIvsPFδ 6% 21%
EIvsEF 36% 56%

uses a multiobjective search to better balance the improvement of the objective and con-

straint feasibility. This avoids any aggregation of the design space and allows the search

for new update points to take different directions to a single objective approach. This

identifies better updates leading to better performance on the artificial test problems.

A major weakness of the multiobjective search is that it is more vulnerable to the curse

of dimensionality, performing poorly when applied to the 11 dimension aircraft wing

design problem. For good results to be achieved, the multiobjective search requires a

larger density of Pareto solutions in the region of good updates, requiring many more

evaluations of the improvement criteria when compared to the single objective approach.

The poor performance of the multiobjective search at higher dimensions may also be

improved by focusing the search on promising regions of the Pareto front rather than

searching for a full Pareto set of solutions.

Although the enhanced methods introduced here can offer improved performance, in

many cases they should be used with caution. Although these methods generalise well

to problems with complex constraints, a simple penalty function may prove to be the

most efficient if constraints are simple. It should also be noted that encouraging updates

to lie on the constraint boundaries may hinder the performance of the search if the global

solution is not tight. In many cases the designer may be aware of which constraints are

active and result in a tight solution. If uncertain, the designer should use the standard

probability of feasibility or simple penalty functions instead.



Chapter 5

Parallel Evaluations in

Surrogate-Based Constrained

Optimization

Chapter 3 considers surrogate-based constrained optimization using a conventional two

stage approach. The surrogate is first built based on a sample of evaluated points fol-

lowed by a search of an improvement criterion to find update points that offer model

improvement. This process is repeated until a time limit, evaluation budget or model

accuracy is reached. Rather than finding single updates sequentially, distributing the

evaluation of multiple update points on several processers is an attractive concept. This

will have a clear benefit on the rate that surrogate models are developed, further accel-

erating convergence towards optimal solutions.

5.1 Multiple Update Strategies

The idea of multiple updates is far from new, having been explored over a decade ago

by Schonlau [1997]. With the availability of parallel computing becoming common-

place, formulation of improvement criteria to select multiple updates has received fur-

ther attention in recent years [Henkenjohann and Kunert, 2007, Ponweiser et al., 2008b,

Loeppky et al., 2010, Viana and Haftka, 2010b]. Recently Ginsbourger et al. [2010] pro-

vide an extension to Schonlau’s early work by providing a sound analytical expression

for finding multiple updates based on the expected improvement. Unfortunately this

relies on multivariate integrals and the expressions become mathematically challenging

beyond selecting two update points. Viana and Haftka [2010a] alleviate this problem by

selecting target values and computing the probability of improving upon these targets,

assuming the probability of improvement at a point is independent from all other points.

By selecting multiple targets, different interpretations of the probability of improvement
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can be search simultaneously. This is a simple approach to finding multiple updates

but requires a suitable selection of target values and looses any benefits associated with

employing expected improvement.

Although some progress has been made towards developing improvement criteria suitable

for selecting multiple updates, little effort has been made to apply these algorithms to

constrained problems. Here a new method is introduced that addresses this issue and

is compared against existing methods with added constraint handling. As mentioned

in the previous chapter, this alternative method is based on selecting multiple updates

from a Pareto set of solutions.

5.1.1 Sequential Designs in Stages

Conventionally, expected improvement describes a sequential process, searching for one

update point at a time. This can be very time consuming and cost savings may be

made by sampling multiple points at once rather than sampling at multiple stages.

Ideally, when selecting q updates, the new designs, x(n+1), ...,x(n+q), are found by max-

imizing E[I(x(n+1), ...,x(n+q))]. Unfortunately this involves multiple integrals with q-

dimensional Gaussian distribution functions. Although an analytical expression for the

so called ‘multipoints expected improvement’ when q = 2 is provided by Ginsbourger et al.

[2010], solving this problem numerically when q > 2 requires expensive statistical esti-

mate techniques such as Monte-Carlo simulations. Schonlau simplifies this approach by

computing the multipoint expected improvement sequentially. The so called ‘sequen-

tial design in stages’ approach finds q updates using an adapted expected improvement

algorithm. The expected improvement at the (n+ i)th step when ŝ(n+i) > 0 is given as

E(n+i)[I(x)] =ŝ(n+i)

(
y
(n)
minfeas − ŷ(n)

)
ŝ(n)

Φ

y
(n)
minfeas − ŷ(n)

ŝ(n)


+ŝ(n+i)ϕ

y
(n)
minfeas − ŷ(n)

ŝ(n)

 ,

(5.1)

where i = 1, ..., q. In this formulation ŝ(n+i) is the estimated error of prediction at

x(n+i). This estimate depends only on x(n+i) and the updated correlation parameters,

not the unknown response y(n+i). This permits multiple regions for update points to

be identified before any expensive evaluations are made. Schonlau suggested that it

is important to retain ŝ(n) in the formulation otherwise the certainty of the difference

y
(n)
minfeas − ŷ(n) is falsely predicted.
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As with the single update approach, this method is repeated for a number of stages

until a total evaluation budget or time limit is reached. In cases where designs are time

consuming to evaluate, sequential design in stages offers a major advantage since the

evaluation of multiple designs at each stage lends itself to parallelization.

5.1.2 Kriging Believer and Constant Liar

To overcome the limitations of calculating analytical solutions for multiple updates,

Ginsbourger et al. [2010], introduced two strategies to approximate the multipoints ex-

pected improvement when q > 2, referred to as the ‘Kriging believer’ and the ‘constant

liar’. Rather than simultaneously searching for multiple updates, both these methods

find a set of solutions sequentially in a similar manner to Schonlau’s sequential design in

stages. Whilst the original sequential design in stages simply updates the estimated er-

ror in the model, the Kriging believer and constant liar also update the mean prediction.

This requires the updated response y(n+i) which is unknown. In order to find a set of

update points without evaluating the true response, the Kriging believer substitutes the

unknown response with a dummy value given by the current Kriging prediction. This

enables a set of updates to be identified, again in a sequential process.

Believing the surrogate model for several iterations comes with an element of risk and the

search can be easily misled. This may be a concern if the Kriging prediction overshoots

the true function, potentially leading to a cluster of points in optimistic regions. Perhaps

a more logical approach is to encourage the search towards exploitation or exploration.

This can be achieved by forcing a lie for the unknown responses. In the case of the

constant liar, this dummy value or lie is fixed by the user. Ginsbourger et al. considered

three values for the lie, ymin, ymax and ymean. The most exploitative of the three, ymin,

was demonstrated to be a promising strategy when predicting multiple updates on the

Branin-Hoo test function.

5.1.3 Expected Improvement with Cluster Analysis

Rather than adopting a sequential approach to finding multiple updates, the history

of a single search can be examined for multiple local minima. Since the expected im-

provement metric is typically highly multimodal, selecting a single update from q local

basins of attraction offers an intuitive approach for choosing multiple updates. This

is an approach taken by Sóbester et al. [2004] and Toal [2009]. Here, a heavy hybrid

search consisting of a GA and a DHC is used to search the improvement criterion. The

full history of the search is grouped into q clusters in the design vector space using k-

means clustering [Anderberg, 1973]. The designs that offer greatest improvement from

each cluster are then selected for the set of multiple updates. Unlike the other methods

discussed, this approach only requires a single search to identify multiple update points.
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This may offer an advantage if searching the improvement criterion multiple times at

each update stage becomes expensive. An obvious drawback of this method is that there

is no guarantee that q good updates will be identified from q local basins of attraction

and may lead to some updates being located well away from areas of interest.

5.1.4 Handling Constraints

A probabilistic approach is adopted here for the modification of the multiple update

improvement criteria. We assume that the designer is unaware of the activity of any

constraints and use the standard probability of feasibility for constraint handling. When

using the expected improvement with cluster analysis, this is a straightforward modifica-

tion and denoted here as EIPFq. The modified version of Schonlau’s sequential design in

stages, denoted as EIPFs, does not permit the constraint approximation to be updated

when sequentially finding q updates. Therefore the constraint approximation and the

probability of feasibility remain unaltered during each update stage. This is also the

case in the modified Kriging believer and constant liar methods denoted as EIPFkb and

EIPFcl. It is possible to update both the mean prediction of the objective and constraint

approximations sequentially during each stage with dummy values evaluated from the

current Kriging predictions but updating constraints with a poor prediction may falsely

identify feasible solutions.

5.2 Expected Improvement versus Probability of Feasibility

As pointed out in Chapter 4, using multiobjective optimization to find a Pareto set of

potential updates lends itself to the selection of multiple update points. It is possible

to select multiple updates in a number of ways. The designer may make a weighted

judgment depending on the complexity of the objective and constraint functions. For

example, this may lead to the selection of points at the end points of the Pareto set.

Here, the selection of q updates is performed in a two step process. First the Pareto set

is grouped into q clusters in the design space using k-means clustering. Next, the indi-

vidual with the highest product of expected improvement and probability of feasibility

is selected from each cluster. This gives q update points that tend to be diverse when

clusters are sparse and exploit interesting regions when clusters are dense. It is also pos-

sible to cluster the designs in the objective space. Although this is not investigated here

this is likely to offer advantages when dealing with a large number of design variables.

Figure 5.1 provides some insight into this approach for selecting multiple updates on

test problem 2. Due to the small values of both expected improvement and probability

of feasibility at optimal update locations, the Pareto set is presented using natural

logarithms. Interestingly, selected updates gravitate towards the knee points of the
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Pareto front. At these locations a small gain in the expected improvement results in a

‘more’ significant sacrifice in the probability of feasibility and vice versa.
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Figure 5.1: Expected improvement and probability of feasibility example for test
problem 2. (a) E[I(x)]. (b) P [F (x)]. (c) E[I(x)]vsP [F (x)] + – Pareto set in objective
space. (d) E[I(x)]vsP [F (x)] + – Pareto set in design space including # – previous

samples and � – selected updates with q = 4.

This approach offers a better balance between selecting updates that improve both the

objective and constraint surrogates and identifies multiple update points using a single

multiobjective search. Weaknesses of using a multiobjective search was discussed in

Chapter 4 and the current implementation remains suitable only on problems with a

relatively low number of design variables.

5.3 Results and Discussion

We now present some results on the three test problems introduced in Chapter 3. Test

problem 1 uses an initial sample of eight points and selects four updates (q = 4) in
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ten update stages. Test problem 2 and test problem 3 use an initial sample of ten

points, q = 4 and 15 update stages. Assuming resources exists (four separate machines)

that allow new update points to be evaluated in parallel, the time spent evaluating

new designs (referred to as the evaluation wall clock time) equates to half of the total

evaluation time required using single updates in Chapter 3 and Chapter 4. Although the

evaluation wall clock time is halved, the total CPU time (or total number of evaluations)

is doubled. A dashed line is included that represents the equivalent CPU time required

when using methods discussed in previous chapters.

In Figure 5.2 it is clear that EIPFs, EIPFkb and EIPFcl all converge towards the region

of the global optimum very efficiently. When compared to using single updates, Figure

3.7 and 4.5, this is achieved in an equivalent CPU time and 25% of the evaluation wall

clock time. Here, EIvsPF is slightly less efficient and EIPFq performs poorly compared

to the other multiple update strategies. Other than EIPFq, all methods are able to find

accurate solutions reliably after ten update stages and more efficiently than using single

updates.

Similar results are presented in Figure 5.3 for test problem 2. Here all methods converge

towards the region of the global optimum quickly with EIPFkb being the most efficient.

When finding more accurate solutions, EIvsPF is the only approach that performs re-

liably due to its ability to better handle the complex constraint. Selecting multiple

updates from a Pareto set of solutions performs well, retaining the desirable properties

of this multiobjective approach.
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Figure 5.2: Test problem 1 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.1 of the true optimum value and (b) 0.01 of the true

optimum value.

Figure 5.4 illustrates results obtained on test problem 3. EIPFkb, EIPFcl and EIvsPF all

perform very efficiently when finding solutions within 0.01 of the global optimum. Both

EIPFq and EIPFs are less reliable on this test problem. When finding more accurate

solutions, EIvsPF is again the most reliable approach but is only slightly more efficient

than using single updates in Chapter 4. In fact, using EIvsPF with multiple updates is
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Figure 5.3: Test problem 2 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.1 of the true optimum value and (b) 0.01 of the true

optimum value.

less efficient that using EIvsPFδ with single updates, see Figure 4.7. This highlights that

on some problems, adding update points one at a time using a more suitable improvement

criterion can outperform a less sophisticated approach with multiple updates.
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Figure 5.4: Test problem 3 mean probability and 95% confidence intervals of the best
feasible point being within (a) 0.01 of the true optimum value and (b) 0.001 of the true

optimum value.

Table 5.1 summarises the results in Figure 5.2(b), Figure 5.3(b) and Figure 5.4(b). Out

of the multiple update improvement criteria, EIvsPF offers the best performance on test

problem 2 and test problem 3 and very competitive on test problem 1.
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Table 5.1: Summary of mean results for test problem 1, 2 and 3. Mean probability
of the best feasible point being within 0.01 on test problem 1 and 2 and 0.001 on test

problem 3.

Test problem 1 Test problem 2 Test problem 3

No. of update stages No. of update stages No. of update stages
5 10 8 15 8 15

EIPFq 0% 18% 0% 1% 5% 5%
EIPFs 27% 92% 2% 9% 3% 8%
EIPFkb 43% 100% 5% 17% 6% 7%
EIPFcl 30% 97% 4% 15% 9% 13%
EIvsPF 31% 98% 34% 97% 65% 86%

5.4 Wingbox Structure Design Problem

Next we demonstrate the performance of these improvement criteria on a realistic engi-

neering design problem. We aim to minimize the structural weight of a transonic wing

based on a 150 seat passenger aircraft. Minimizing aircraft structural weight plays a

key role in cost effective aircraft design. Essentially, any reduction in structural weight

allows an increase in payload or aircraft range, directly impacting the costs of operating

airlines. In Chapter 3 we introduced an empirical-based analysis tool used in concep-

tual wing design, relying on statistical data from previously designed aircraft. In this

chapter we use physics-based analysis tools to directly measure the performance of each

evaluated design.

For a fixed planform, the optimization problem involves minimizing the structural weight

of a simplified wingbox structure, Figure 5.5. The wingbox structure comprises of two

spars, ribs and upper and lower surface skins. The design variables to be optimized

are the spar, rib and skin thickness as well as the rib pitch (the distance between each

rib). This results in a modest four variable design problem with constraints placed on

the maximum allowable stress (stress safety factor), the wingbox tip displacement and

structural buckling.

Aerodynamic loads are computed for the wing at a cruise speed of Mach 0.8 using a CFD

tool based on full potential (FP) flow theory with a viscous drag correction. An overview

of aerodynamic analysis and the FP method used is provided in Appendix C. These

aerodynamic loads are applied to the wingbox structure simulating steady level flight at

an altitude of 11,000 m. For each wingbox design, structural stresses and displacements

are computed using a linear elastic stress analysis based on the finite element method.

An eigenvalue buckling prediction is also performed to compute the buckling criteria.

More information on this structural analysis is presented in Appendix D and a detailed
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Figure 5.5: Wing planform and wingbox section.

description of the wingbox model, including geometry and mesh generation is provided

in Appendix E.

Full runs using the analysis tools are used for the construction of four surrogate models,

one for the wingbox weight objective and one for each constraint. The initial sample

consists of 20 points spanning the four design variables generated by optimizing a Latin

hypercube. A multiple update improvement criterion is used to select four updates for

each of 20 update stages, totalling a further 80 evaluations. As in previous test cases,

the performance of each strategy is computed using data collected from different initial

samples. Due to higher computational demands of this design problem, a smaller set of

30 initial samples is used.

Since this test case is simulating a real engineering design problem, the exact location

of the true optimum is unknown. The true optimum is replaced with the best found

solution over all the runs performed. This is a value of 11,798 kg identified using the

EIvsPF improvement criterion.

The wing planform and the best found wingbox design variables are listed in Table 5.2.

Figure 5.6 shows the optimization history for this particular case as a parallel axis plot.

This is a simple line plot mapping out the normalized design variables, objective and

constraint values of the 100 designs evaluated. A major challenge in this problem is to

find feasible designs. In this example, only 11 wing designs out of the 100 evaluated are

feasible and it is clear that the optimization drives the design variables towards both

geometry and structural constraints. In particular, the skin thickness is driven to a

maximum value and the rib pitch is low to resist buckling. A thicker skin and more

ribs results in a heavier design but in this case, this is necessary to satisfy the buckling

constraint. The spar thickness is high to resist tip deflection and the rib thickness is low

to reduce the structural weight.

Figure 5.7 illustrates the reliability of each method when applied to this wingbox design

problem. Due to the poor performance of EIPFq in previous problems, this improvement
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Table 5.2: Design variables, constraint values, and objective value.

Lower limit Best design Upper limit Quantity

—– 7.5 —— Root chord, m
—– 17.5 —— Span, m
—– 0.5 —– Taper ratio
—– 25 —– Quarter chord sweep angle, deg
0.010 0.035 0.050 Spar thickness, m
0.010 0.016 0.050 Rib thickness, m
0.010 0.030 0.030 Skin thickness, m
0.020 0.040 0.200 Rib pitch, m
1.50 1.77 —– Stress safety factor
—– 1.49 1.50 Tip displacement, m
1.00 1.01 —– Buckling eigenvalue
—– 11,798 —– Wingbox weight, kg

Spar thickness Rib thickness Skin thickness Rib pitch Wingbox weight Stress safety factor Tip displacement Buckling eigenvalue
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Figure 5.6: Parallel axis plot of the optimization history when finding the best known
wingbox design with a structural weight of 11,798 kg.

criterion is not considered in this problem. Figure 5.7(a) identifies which methods are

capable of consistently finding a feasible wingbox weight within 500 kg of the best known

design. In this problem it is clear EIPFcl is the most efficient and identifies the solution

on every occasion. The performance of EIPFkb and EIvsPF are comparable with little

statistical significance between them but these methods are significantly less reliable

and less efficient when identifying the optimum value within 100 kg. For this design

problem, using EIvsPF does not perform as well as hoped (although it does find the

best design) and EIPFcl is the most reliable and efficient approach, highlighted in 5.3.

Here, EIPFcl performs well as it tends to exploit regions of good designs, working well

in this problem as the objective and constraint functions are relatively well behaved and

simple to model (both the stress and displacement constraints happen to be unimodal

in this case). EIPFcl tends to identify more feasible designs than the other methods

tested, resulting in better designs. If we consider planform changes or different loading

conditions, the constraint functions may be less well behaved and EIPFcl may no longer
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be the best improvement criteria on this problem.
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Figure 5.7: Wingbox design problem mean probability and 95% confidence intervals
of the best feasible design within (a) 500 kg of the best known value and (b) 100 kg of

the best known value.

Table 5.3: Summary of mean results for the wingbox design problem. Mean proba-
bility of finding the best feasible design within 100 kg of the best known solution.

No. of update stages
10 20

EIPFs 13% 51%
EIPFkb 0% 47%
EIPFcl 31% 87%
EIvsPF 28% 61%

5.4.1 A Note on Computational Cost

An important consideration in this test problem is not only the accuracy and efficiency of

each method but also the cost of searching each improvement criterion. In most problems

tested so far, the cost of searching the improvement criteria to find updates is considered

insignificant when compared to the cost of evaluating expensive analysis codes. In

reality, the cost of searching for updates themselves may become significant, especially

when searching for multiple updates. Since EIPFs, EIPFkb and EIPFcl all find multiple

updates sequentially, using q single objective searches, this may be considered more

expensive than using a single multiobjective search to identify multiple updates. This is

shown in Table 5.4 where we give the average CPU cost associated with finding multiple

updates on this wingbox design problem. This assumes each single objective search is

run using a 10,000 iteration GA followed by a 5,000 iteration DHC. The multiobjective

search is run using NSGA-II with a population of 200 for 100 generations.
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Table 5.4: Improvement criteria computational cost.

Improvement criterion q = 1 q = 2 q = 3 q = 4

EIPFs 40 sec 80 sec 121 sec 162 sec
EIPFkb 39 sec 79 sec 119 sec 159 sec
EIPFcl 40 sec 79 sec 120 sec 158 sec
EIvsPF 72 sec 72 sec 72 sec 72 sec

Clearly, when searching for a single update, running a single objective search is less time

consuming than a multiobjective search. The difference in CPU cost becomes more

significant when selecting more updates and running a single multiobjective search is

less expensive. In this particular problem when q = 4, running multiple single objec-

tive searches is double the expense of a single multiobjective search. This makes little

difference to the complete optimization (roughly 30 minutes), however, in Chapter 8 we

use EIPFkb and EIvsPF to optimize the wingbox weight of many different wing designs

and we see that the extra cost of employing EIPFkb over a large number of runs can

become significant.

5.5 Conclusions

This chapter investigates different improvement criteria suitable for selecting multiple

updates to be evaluated in parallel. Existing multiple update strategies, including Schon-

lau’s sequential design in stages and Ginsbourger’s Kriging believer and constant liar,

are extended to handle constrained problems using the probability of feasibility intro-

duced in Chapter 3. Two alternative improvement criteria that select multiple updates

based on a single search are also tested. The first of these methods uses clustering to

select multiple updates from a full history of a global search. The other uses a multiob-

jective approach introduced in Chapter 4, selecting multiple updates from a Pareto set

of solutions.

On the three artificial test problems, EIPFkb, EIPFcl and EIvsPF prove to be the most

promising methods and are capable of identifying the region of the global optimum very

efficiently. Based on evaluating four updates in parallel, these methods find the region of

the global optimum with a significant reduction in the total evaluation wall clock time,

when compared to using single updates. Significant time saving can also be made when

finding more accurate solutions, but at the expense of a significant increase in CPU cost.

In some cases, the requirement for additional computational resources may not justify

the use of multiple updates. This is likely to be the case if there is a budget on the total

CPU time used. We also found that in test problem 3, using multiple updates offered

very little gain over using the single update methods investigated in previous chapters.
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This is an important consideration and the designer may indeed find adequate results

using single updates even if resources for parallel updates exist, however, this is less

likely to be the case when tackling larger problems.

The importance of selecting the correct improvement criteria is highlighted on the wing-

box design problem where EIPFcl proved to be the most efficient and reliable method.

Although the EIvsPF is expected to generalise well to different design problems with

a modest number of design variables, this method remains relatively undeveloped and

further improvements may yet be made. This may include some of the enhancements

discussed in Chapter 4 but may also concentrate on different strategies for selecting

multiple updates from the Pareto front.





Chapter 6

Surrogate-Based Multiobjective

Optimization

In the last three chapters we have investigated different improvement criteria suitable

for handling design constraint in surrogate-based optimization. In many real design

problems the designer is also concerned about handling multiple, conflicting objectives

and seeks a set of optimal designs that all offer some trade-off between the different goals.

In aid of extending surrogate-based methods further, this chapter reviews some useful

improvement criteria that can be used to handle multiple objectives in surrogate-based

optimization.

6.1 Dealing with Multiple Objectives

A number of authors have used surrogate models to aid multiobjective optimization in a

variety of ways, see Santana-Quintero et al. [2010] and Knowles and Nakayama [2008].

Different levels of approximation can be related to the associated cost of the true function

evaluation [Jin, 2005]. For example, if the run time of an individual simulation is only a

few seconds, it may still be considered expensive since directly solving the problem using

evolutionary algorithms will typically need tens of thousands of function evaluations.

Conversely, the cost of updating and retuning a number of global surrogates may be

equally great. For function evaluations with this associated cost a common approach is

to periodically use surrogates to assist evolutionary algorithms as a way to screen out

poor individuals in the population [Ray et al., 2009, Emmerich, 2005].

In problems that incur function evaluation times in the order of hours, or sometimes

days, the fitting costs of surrogate models is small compared to the overall cost of a

large number of function evaluations. For function evaluations with this magnitude of

cost, it is necessary to use surrogate models as a replacement to the true simulations for

77
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further function evaluations. A simple approach is to replace the true objective functions

using the surrogate models and proceed using a multiobjective evolutionary algorithm.

This is the approach taken by Voutchkov and Keane [2006] where NSGA-II is used to

construct a Pareto set of solutions and updated using one or more points from the

current set of solutions. This method converges towards an accurate Pareto set in very

few true function evaluations but the update strategy is equivalent to updating using

the predicted optimum in the single objective case and does not guaranteed convergence

towards the global Pareto set.

To encourage convergence towards a global set of solutions, Jeong and Obayashi [2005]

compute the expected improvement of each individual objective. This results in multiple

improvement criteria that can be searched inexpensively using a multiobjective algorithm

to obtain nondominated solutions in terms of the expected improvements. Using one

or more of these solutions as update points is expected to offer improvement to one or

more of the objectives. As long as these updates improve on the current points in the

Pareto set, a new design will be nondominated offering refinement of the Pareto front.

Voutchkov and Keane [2010] share further experience in tackling multiobjective prob-

lems and examine six different update strategies for finding good quality global Pareto

sets. One strategy includes the selection of random updates to help escape local Pareto

fronts whilst other strategies are based on the expected improvement and variance in

the Kriging prediction of each objective. The remaining strategies use search algorithms

in various ways to find suitable update points. In summary, the correct choice of up-

date strategy was found to be highly problem dependent and spreading the evaluation

budget over a combination or two or more update strategies is recommended. Other

methods include those introduced by Knowles [2006] and Zhang et al. [2009] which also

incorporate the expected improvement criteria. These methods are based on traditional

weighted aggregation approaches which require normalization of the objectives being

dealt with.

Rather than searching for a trade-off between improvement in each objective using a

multiobjective search or weighted aggregation, an alternative is to seek designs that

explicitly offer improvement over the current Pareto set. In the following sections we

introduce current state of the art approaches that combine the improvements of each

objective as a single improvement criterion. These methods are considered as the most

efficient (in terms of the total number of function evaluations) and analogous to EGO.

6.2 Improvement Criteria for Multiobjective Optimization

Following the same surrogate-based approach introduced in Chapter 2, the first stage

makes use of an initial sample of evaluated designs (since we have multiple objectives

this may involve some multidisciplinary analysis) to build a Kriging approximation of
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each objective. Next the surrogates are updated with new designs found by searching

some multiobjective improvement criterion. This improvement criterion should aim to

update the surrogates in regions that refine the Pareto set. As before, it is important to

retain a balance between exploration of the design space and exploitation of the Kriging

predictions. Although the following improvement criteria can be generalized for many

objectives, we limit our discussion to problems with two objectives. In this chapter we

also limit the discussion to single updates. Multiple updates are discussed in more detail

in the next chapter.

6.2.1 Multiobjective Probability of Improvement

One way to achieve a balance between exploiting the surrogate to improve on the current

Pareto set and exploring the design space is by maximizing the multiobjective probability

of improvement. For multiple objectives, the probability of a new design being an

improvement is simply P [y1 ≤ y∗1 ∪ y2 ≤ y∗2∪, ...,∪ym ≤ y∗m], where y∗i is a set of

Pareto solutions and m is the number of objectives. This is given by integrating the

volume under the multivariate PDF. Since the goal is to converge towards a global set of

Pareto solutions, the limits of integration can be set to consider points that dominate or

augment the current Pareto set. These regions are visualized for two objectives (m = 2)

in Figure 6.1.

-
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?

�

Figure 6.1: A Pareto set with two objectives and regions of integration. – Regions

that augment the Pareto set. – Regions that dominate the Pareto set.

Keane [2006] derives both the augmenting and dominating multiobjective probability of

improvement for two objectives. To encourage the development of well populated Pareto

set and to help eliminate any gaps, regions that augment the set are considered as an

improvement in this study. Generalizing for two objectives the set of Pareto solutions

is,
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y∗1,2 =
[
(y11, y

1
2), ..., (y

k
1 , y

k
2 )
]
, (6.1)

where k is the number of Pareto solutions. Integrating over the regions that augment

the current set, the multiobjective probability of improvement can be expressed as

P [y1 ≤ y∗1 ∪ y2 ≤ y∗2] =
∫ y11

−∞

∫ ∞

−∞
ϕ (y1, y2) dy2dy1

+

k−1∑
i=1

∫ yi+1
1

yi1

∫ yi2

−∞
ϕ (y1, y2) dy2dy1

+

∫ ∞

yk1

∫ yk2

−∞
ϕ (y1, y2) dy2dy1.

(6.2)

Despite multiobjective problems having inherently correlated (mostly conflicting) ob-

jectives, here the objectives are assumed to be independent which tends to be common

practice [Wagner et al., 2010]. Recent work by Svenson [2011] demonstrates little or no

gain when using dependence models. Assuming independence, the multivariate PDF is

simply,

ϕ (y1, ..., ym) =

m∏
i=1

ϕ (yi) (6.3)

and for two objectives the multivariate PDF is given as

ϕ (y1, y2) =
1

ŝ1
√
2π

exp

[
−1

2

(
y1 − ŷ1

ŝ1

)2
]

1

ŝ2
√
2π

exp

[
−1

2

(
y2 − ŷ2

ŝ2

)2
]
. (6.4)

The multiobjective probability of improvement can therefore be expressed analytically

as

P [y1 ≤ y∗1 ∪ y2 ≤ y∗2] = Φ

(
y11 − ŷ1

ŝ1

)
+

k−1∑
i=1

{[
Φ

(
yi+1
1 − ŷ1

ŝ1

)
−Φ

(
yi1 − ŷ1

ŝ1

)]
×Φ

(
yi2 − ŷ2

ŝ2

)}
+Φ

(
yk2 − ŷ2

ŝ2

)[
1−Φ

(
yk1 − ŷ1

ŝ1

)]
.

(6.5)
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The multiobjective probability of improvement is a concept that can be easily under-

stood when considering the individual regions below the Pareto front. Throughout the

remainder of this thesis this method is denoted as PI. As in the single objective case,

the probability of improvement returns values between zero and one, so a criterion that

additionally expresses the magnitude of improvement is desirable. The extension of ex-

pected improvement to multiple objectives is less intuitive and a suitable measure of

improvement is less obvious. This has lead to several interpretations of the multiobjec-

tive expected improvement.

6.2.2 Euclidean-Based Expected Improvement

Keane [2006] derives the expected improvement for two objectives, where it is expressed

as the first moment of the multivariate PDF integral. This is the same integral considered

in the derivation of the probability of improvement and the moment arm around the

current Pareto set is taken as the Euclidean distance between the centroid of this integral

(ȳ1, ȳ2) and the closest point on the current Pareto set (y∗1, y
∗
2). This leads to the following

definition of the multiobjective expected improvement,

E[IE(x)] = P [y1 ≤ y∗1 ∪ y2 ≤ y∗2]
√

(ȳ1 − y∗1)
2 + (ȳ2 − y∗2)

2, (6.6)

where

ȳ1P [y1 ≤ y∗1 ∪ y2 ≤ y∗2] =
∫ y11

−∞

∫ ∞

−∞
y1ϕ (y1, y2) dy2dy1

+
k−1∑
i=1

∫ yi+1
1

yi1

∫ yi2

−∞
y1ϕ (y1, y2) dy2dy1

+

∫ ∞

yk1

∫ yk2

−∞
y1ϕ (y1, y2) dy2dy1,

(6.7)

and

ȳ2P [y1 ≤ y∗1 ∪ y2 ≤ y∗2] =
∫ y11

−∞

∫ ∞

−∞
y2ϕ (y1, y2) dy2dy1

+
k−1∑
i=1

∫ yi+1
1

yi1

∫ yi2

−∞
y2ϕ (y1, y2) dy2dy1

+

∫ ∞

yk1

∫ yk2

−∞
y2ϕ (y1, y2) dy2dy1.

(6.8)
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Analytical expressions for the Euclidean-based expected improvement can be found in

Keane [2006]. Although an improvement function is not explicitly given, the Euclidean-

based improvement can be considered equivalent to,

IE = min
j=1,...,k

√(
y1 − yj1

)2
+
(
y2 − yj2

)2
. (6.9)

where j = 1, . . . , k and k is equal to the number of solutions in the current Pareto set

y∗1,2.
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Figure 6.2: The Euclidean-based improvement.

Figure 6.2 illustrates the Euclidean-based improvement for an example Pareto set with

two objectives. In this interpretation of the multiobjective expected improvement, the

further the predicted update point lies from points in the current Pareto set, the further

the centroid will lie from the front. This gives a larger expected improvement for points

that are predicted to dominate the front the most. It also rewards points that lie in

significant gaps in the Pareto front. Basing the improvement criterion on domination

will drive both objectives to be improved irrespective of scaling but when calculating

which Pareto set member lies closest to the front, scaling of the objectives becomes

important. This improvement criterion is denoted as EIe for the remainder of this

thesis.

6.2.3 Hypervolume-Based Expected Improvement

Since the main goal of multiobjective optimization is to converge towards a Pareto set,

it is sensible to base the improvement criterion on some Pareto set quality indicator.

Calculating the hypervolume is a popular method to assess the quality of a Pareto set

[Deb, 2001, Coello Coello et al., 2007]. The hypervolume is the volume in the objective

space dominated by the Pareto set, illustrated in Figure 6.3 for a Pareto set y∗1,2. A
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larger hypervolume suggests a greater convergence to the global set but also favours well

spread Pareto sets that are highly populated.

-

6 b b b b
b b

r

?

�

y1(x)

y2(x)
(r1, r2)

H(y∗1,2)

Figure 6.3: The hypervolume indicator. – hypervolume given the Pareto set y∗
1,2.

Several methods have generalised expected improvement to multiple objectives using the

hypervolume indicator, see Ponweiser et al. [2008a] and M. Emmerich [2006]. For two

objectives, the hypervolume-based expected improvement is defined as

E[IH(x)] =

∫
R
IHϕ (y1, y2) dy1dy2. (6.10)

where R is the region of integration and IH is the improvement in hypervolume given

as,

IH = H
(
y∗1,2 ∪ y1,2

)
−H

(
y∗1,2

)
. (6.11)

Figure 6.4 illustrates the hypervolume-based improvement for an example Pareto set

with two objectives. Clearly, a larger improvement is achieved in regions further from

the Pareto set, encouraging new updates that are nondominated. One concern is that

this improvement may not prioritize points at either end of the Pareto set, making it

difficult to find a full spread of Pareto solutions. This is highlighted in Figure 6.4 where

there is little improvement at each end of the Pareto set.

In recent work Emmerich et al. [2011] provide an analytical expression for the exact

computation of the hypervolume-based expected improvement. The calculation of the

hypervolume requires a suitable reference point (r1, r2) and is also sensitive to the relative

scaling of the objectives. In comparison to the Euclidean-based improvement there is a

computational burden associated with computing the hypervolume, becoming a practical

concern depending on the problem being tackled. In this study the hypervolume-based

expected improvement is denoted as EIh.
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Figure 6.4: The hypervolume-based improvement.

6.2.4 Maximin Expected Improvement

Another interpretation of multiobjective expected improvement is the maximin expected

improvement. This was first considered by Bautista [2009] and revisited by Svenson

[2011] who provides an analytical expression for its computation. The maximin expected

improvement is defined as

E[IM (x)] =

∫
R
IMϕ (y1, y2) dy1dy2, (6.12)

which uses the maximin improvement function

IM = − max
j=1,...,k

(wj) . (6.13)

Here, wj is a vector containing the minimum distances between (y1, y2) and the current

Pareto set, given as

wj = min
j=1,...,k

[
(y1 − yj1)

(y2 − yj2)

]
. (6.14)

Figure 6.5 illustrates the maximin improvement for an example Pareto set with two

objectives.

This maximin improvement can be quickly computed and is directly related to Pareto

dominance. This provides a simple indication of improvement where dominance is ex-

pected when IM > 0. This is free from any external parameters and computing the

expected improvement does not require any heavy computation. Since this is essentially
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Figure 6.5: The maximin improvement.

a distance based metric, the relative scaling of objectives remains important. Here, the

maximin expected improvement is denoted as EIm.

6.3 Scale Dependence

Scaling of the objectives is often unavoidable when considering improvement metrics

based on multiple objectives. When dealing with real design problems, this necessary

scaling is undesirable since the limits of the objective outputs are unknown. In such cases

it is necessary to use some form of empirical scaling based on information gained from

previous samples. Svenson [2011] considers scale invariance as an important property

of improvement criteria. Scale dependence becomes more of an issue when dealing with

constraints as objectives may be empirically scaled between all observed responses or all

observed feasible responses. For some problems this scale dependence can make scale

invariant methods advantageous.

In this study, all test problems are treated as real engineering design problems where

the limits of outputs are unknown and scaling can only be based on previously observed

samples. Scaling objectives in this way can poorly represent the limits of the design

space. This may be mitigated by using a good initial sample but there is still a risk

that the scaling misrepresents the problem if the sample space is highly multimodal.

Nonetheless, this is a necessary step to extend many of these methods to deal with real

engineering design problems. Here, all scale dependent methods are scaled between zero

and one using the maximum and minimum output values observed so far.

The scale dependent methods tested include the Euclidean-based expected improvement,

hypervolume-based expected improvement and the maximin expected improvement. For

the hypervolume-based expected improvement the reference point on each iteration will

be represented by the scaled values [1, 1]. The improvement based on the hypervolume
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will change as the reference point changes with its relative scaling. Having a high

dependence on this reference point is one drawback of the hypervolume-based approach.

When dealing with constraints, all objective values for these three methods are scaled

between zero and one, regardless of feasibility.

6.4 Comparison Metrics

The performance of a multiobjective search can be measured in a number of ways. The

goal is to find a global set of Pareto solutions but these should also be well populated,

have a good spread and be well spaced out. Due to these various goals, it is not ob-

vious how Pareto sets should be compared. There are a number of Pareto set quality

indicators in the literature, all with their merits and disadvantages, see Deb [2001] or

Coello Coello et al. [2007]. A Pareto set quality indictor already introduced is the hy-

pervolume indicator which has been found to be a reliable base to measure the quality

of Pareto sets considered in this study.

Although the problems tested are treated as expensive, for testing purposes they are in

fact quick to compute. This enables the true Pareto set to be identified and a suitable

reference point to compute the hypervolume can also be found. Here, the true Pareto

set for each problem is computed based on a grid of 100×100 evaluated designs. A

baseline hypervolume can then be computed for the true Pareto set. An improvement

criterion with good performance will be indicated by a measured hypervolume that

is close to the baseline hypervolume. Here, the difference between the measured and

baseline hypervolume is referred to as the hypervolume error or Herr.

When comparing the performance based on the hypervolume, it is expected that this

will favour EIh. To help avoid any bias between EIh and the hypervolume performance

indictor, the performance is also measured based on another Pareto set quality indicator.

In this study we use the ϵ-indicator introduced by Zitzler et al. [2003]. Given a Pareto

set B that is an approximation of the Pareto set A, the ϵ-indicator or ϵerr is simply

the smallest value that must be added to all elements of A so that it is dominated by

the approximation set B. This can be thought of the error or the distance between

the approximation set and the true Pareto front. A good approximation of the true

Pareto set is indicated by a small value given by the ϵ-indicator. Svenson documents

an interesting relationship between EIm and the ϵ-indicator so a bias may be expected

between this improvement criterion and the ϵ-indicator.

When comparing different methods, the designer will also be concerned about the relia-

bility and efficiency of each method. Each improvement criterion is therefore tested 100

times, each time initiated with a different initial sample (a random Latin hypercube).

As a result, the reliability of each approach can be represented in terms of a probability.

This probability characterizes the consistency of each method in achieving a value, given
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by the Pareto set quality indicator, to a prescribed accuracy. For example, a Pareto set

that gives a hypervolume error below 0.01, 90 times out of 100, will have a probability of

90% at this level. This performance indicator can be computed after every update so the

most efficient improvement criteria can be identified. To check statistical significance

between methods, bootstrapping is used to compute an accurate representation of the

mean performance and 95% confidence intervals.

An example Pareto set for each improvement criterion is also illustrated. This provides

a visual comparison of each method based on a single run initiated with an optimized

Latin hypercube. These figures are referenced in the main text but found in Appendix

A in favour of space.

6.5 Artificial Test Problems

We now introduce two further artificial test problems suitable for comparison in multiob-

jective optimization. As mentioned previously, these problems are treated as expensive

but for testing purposes these are quick to compute. This allows an insight into the

design space and a good approximation of the true Pareto set. To avoid any multidi-

mensional scaling issues when constructing and searching the surrogates, in all cases

the design space is scaled into the unit cube [0, 1]d, where d is the number of design

variables.

Test problem 4 is a modified version of the multimodal, multiobjective test problem

found in Deb [1999]. Given here as,

Minimize f1(x) = a1,

Minimize f2(x) =
2

a1
− 1

a1
exp

[
−
(
a2 − 0.2

0.06

)2
]
− 0.8

a1
exp

[
−
(
a2 − 0.6

0.4

)2
]
,

(6.15)

where a1 = 0.9x1 + 0.1, a2 = 0.9x2 + 0.1 and x1, x2 ∈ [0, 1].

This test problem has both a local and global front caused by the multimodal properties

of f2, see Figure 6.6. This is a challenging problem to optimize using surrogates and the

improvement criteria are required to explore the design space sufficiently to ensure this

global region is identified. The global Pareto set is illustrated in Figure 6.7. The dense

region of points away from the global set is the local Pareto set.

Test problem 5 is based on the WSNL problem introduced in Williams et al. [2010].

This is modified to give the multiobjective problem,
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Figure 6.6: Test problem 4 design space for (a) f1(x) and (b) f2(x).
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Figure 6.7: Test problem 4 100×100 grid of evaluated points with  – global Pareto
set.

Minimize f1(x) =

(
b2 −

5.1

4π2
b21 +

5

π
b1 − 6

)2

+ 10

[(
1− 1

8π

)
cos (b1) + 1

]
,

Minimize f2(x) = −
√

(10.5− b1) (b1 + 5.5) (b2 + 0.5)− 1

30

(
b2 −

5.1

4π2
b21 − 6

)2

− 1

3

[(
1− 1

8π

)
cos (b1) + 1

]
,

(6.16)

where b1 = 15x1 − 5, b2 = 15x2 and x1, x2 ∈ [0, 1].

This problem demonstrates a different challenge since the multimodality of f1 makes it

difficult to find a Pareto set with a full spread of points. Figure 6.8 and Figure 6.9 show

the design space and the resulting Pareto set for this test problem.
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Figure 6.8: Test problem 5 design space for (a) f1(x) and (b) f2(x).
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Figure 6.9: Test problem 5 100×100 grid of evaluated points with  – global Pareto
set.

6.6 Nowacki Beam Design Problem

The first of engineering test problems considers the design of a tip-loaded encastre can-

tilever beam with breadth b and height h. This design problem originally introduced

by Nowacki [1980] has been previously studied as a multiobjective design problem by

Keane [2006] and more recently by Svenson [2011]. The beam has a fixed length l = 1.5

m with a tip load F = 5 kN. The beam is made from a mild steel with yield stress

σY = 240 MPa, Young’s modulus E = 216.62 GPa, Poisson ratio v = 0.27 and shear

modulus calculated as G = 86.65 GPa. The multiobjective problem aims to minimize

both the cross sectional area and the bending stress subject to a number of constraints,

see Table 6.1.

The design space for this problem and the resulting Pareto set is pictured in Figure 6.10

and Figure 6.11, demonstrating a clear trade-off between minimum cross sectional area
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Table 6.1: Design variables, objectives and constraints for Nowacki beam design prob-
lem.

Lower limit Upper limit Units Type Quantity

0.005 0.05 m Variable Breadth b
0.02 0.25 m Variable Height h
—– —– m2 Objective Cross-sectional area A = bh
—– 240 MPa Objective/constraint Bending stress σB = 6Fl/(bh2)
—– 0.005 m Constraint Tip deflection δ = Fl3/(3EIY ),

where IY = bh3/12
—– 10 —– Constraint Height to breadth ratio.
—– 120 MPa Constraint Shear stress τ = 3F/(2bh)
10000 —– N Constraint Critical force for twist buckling,

FCRIT = (4/l2)
√
GITEIZ/(1− v2),

where IT = (b3h+ bh3)/12
and IZ = b3h/12

and minimum bending stress. Since the design space is bounded by constraints, the

improvement criteria are required to converge towards feasible designs.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b (normalized)

h
 (

n
o

rm
al

iz
ed

)

 

 

2

3

4

5

6

7

8

9

10

11

12
x 10

−3

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b (normalized)

h
 (

n
o

rm
al

iz
ed

)

 

 

0

1

2

3

4

5

6

7

8

9

10

11
x 10

7

(b)

Figure 6.10: Nowacki beam design space for (a) cross-sectional area, m2 and (b)
bending stress, MPa.

Handling constraints adds further challenges to the optimization since the improvement

criteria are required to balance exploration and exploitation of both the objectives and

all the constraints surrogates. Here the constraints are assumed to be expensive to eval-

uate and also replaced with surrogates. The constraints are handled by modifying the

multiobjective improvement criteria using the probability of feasibility. This can be mul-

tiplied with the multiobjective probability of improvement or the different formulations

of multiobjective expected improvement in the same manner as the single objective case.
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Figure 6.11: Nowacki beam design problem 100 × 100 grid of evaluated points with – global Pareto set.

6.7 Satellite Boom Design Problem

The final design problem is based on a simplified satellite boom structure pictured in

Figure 6.12, originally introduced in Keane and Bright [1996].
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Figure 6.12: Baseline satellite boom geometry. •- encastre nodes,› - excited node

and� - bounds on node 9.

The aim of this design problem is to maximize the vibration attenuation at the tip of

the boom whilst minimizing the boom weight. This can be achieved by manipulating

the geometry of the structure, controlled by the x- and y-coordinates of the nodes 1-

20. Here, only node 9 is varied, resulting in two design variables. The analysis of the

structure uses 42 Euler-Bernoulli beams, with three finite elements per beam and a mass

per unit length of 2.74 kgm−1. Figure 6.13 shows the band-averaged attenuation and

boom weight for different coordinates of node 9, bounded by the box shown in Figure

6.12.

This clearly demonstrates a difficult real design problem where significant differences

between global and local fronts exist. Figure 6.14 shows objective values evaluated us-

ing a grid of 100×100 points. For simplicity, rather than maximizing the attenuation,

the negative attenuation in minimized. The Pareto points with minimum negative at-

tenuation are particularly hard to find and correspond to the global maximum in Figure

6.13(a).
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Figure 6.13: Satellite boom design space (a) band averaged attenuation and (b) boom
weight, kg.
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Figure 6.14: Satellite boom design problem 100×100 grid of evaluated points with  
– global Pareto set.

6.8 Results and Discussion

As pointed out in Chapter 3, some improvement criteria for single objective problems can

be highly multimodal and difficult to search. Maximizing improvement criteria based on

multiple objectives is no exception and often requires an exhaustive global search. To

ensure the maximum improvement is found on every iteration, a heavy hybrid search is

used. With the exception of the hypervolume-based expected improvement, all the im-

provement criteria are maximized using a 10,000 iteration GA followed by 5,000 iteration

DHC. Due to the hypervolume-based expected improvement being more computation-

ally expensive to search, the search effort is halved using a 5,000 iteration GA and 2,500

iteration DHC. Although the search effort is reduced, this is still substantial and yields

a similar run time to the other searches on most problems, providing a fair comparison.
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6.8.1 Artificial Test Problems

Test problem 4 uses an initial sample of 20 points and 20 further updates whilst the

more complex test problem 5 uses an initial sample with 20 points and 40 further up-

dates. Figure 6.15 shows the results obtained when the different improvement criteria

are applied to test problem 4. When comparing the hypervolume error, Figure 6.15(a),

all the improvement criteria tested share a similar performance. The performance of

each method is supported when also comparing the ϵ-indicator, accept EIe which has a

poorer performance.

Figure A.1 illustrates some example Pareto sets obtained when initiating the search using

an optimized Latin hypercube. In this particular example, both PI and EIh struggle

to converge towards the global Pareto set. PI tends to over exploit good designs and

leads to the clustering of points along the Pareto front. Visually, EIe identifies the best

Pareto set with a good spread of solutions that are well spaced out.

In test problem 5, Figure 6.16, the performance of each improvement criterion becomes

more distinguished. Both the hypervolume error and the ϵ-indicator suggest EIh is the

most efficient and reliable method tested. Although less efficient, EIm also proves to

be a reliable improvement criterion. Both EIh and EIm are superior to PI and EIe

which are unable to identify Pareto sets with a hypervolume error less than 0.02. This

poor performance is supported by the ϵ-indicator and also documented by Svenson on an

(almost) identical test problem. Whilst PI is expected to have a poorer performance, the

reasons for EIe performing so poorly are uncertain. Wagner et al. [2010] and Svenson

[2011] suggest that EIe is not monotonic with respect to Pareto dominance. This suggests

that, in special cases, less dominating regions of the design space can offer a larger

improvement. This theoretical property may account for the poor performance on some

problems.

Figure A.4 shows some example Pareto sets for this problem. Visually, EIh and EIm

both provide a good set of solutions and the poor performance of PI on this problem is

clear. In this particular example EIe performs well but does not have a full set of global

solutions.

Table 6.2 provides a summary of the best improvement criteria investigated on test

problem 4 and test problem 5 with EIhg and EImg being the most promising.

6.8.2 Nowacki Beam Design Problem

The Nowacki beam design problem uses an initial sample of 20 points with 40 further

updates. Figure 6.17 shows the performance of each improvement criteria on this engi-

neering design problem. Unlike test problem 5, EIe now performs very well, supported by
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Figure 6.15: Test problem 4 mean probability and 95% confidence intervals of the (a)
hypervolume error being less than 0.07 and (b) the ϵ-indicator less than 0.08.
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Figure 6.16: Test problem 5 mean probability and 95% confidence intervals of the (a)
hypervolume error being less than 0.02 and (b) the ϵ-indicator less than 0.04.

Table 6.2: Summary of mean results for test problem 4 and 5 with the hypervolume
error, Herr, and ϵ-indicator, ϵerr.

Test problem 4 Test problem 5

H0.07 ϵ0.08 H0.02 ϵ0.04

No. of updates No. of updates No. of updates No. of updates
30 60 30 60 20 40 20 40

PI 77% 97% 58% 94% 0% 0% 0% 0%
EIe 61% 93% 37% 81% 0% 0% 0% 35%
EIh 55% 99% 42% 98% 0% 100% 68% 98%
EIm 57% 98% 41% 98% 0% 65% 29% 98%
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both quality indicators. The performance of PI remains poor whilst EIh and EIm share

a very similar performance, although less reliable than EIe on this particular problem.

Figure A.7 illustrates some example Pareto sets for this problem. Both PI and EIm

have over exploited regions close to the centre of the Pareto front. EIh provides a good

set of optimal solutions but the Pareto set is poorly populated. EIe provides a set of

solutions with a good spread and are well spaced. In this problem, solutions that lie

along the Pareto front also lie on constraint boundaries. Better constraint handling is

likely to result in a better convergence of all the improvement criteria tested.

Table 7.2 provides a summary for the results illustrated in Figure 6.17. In this problem

EIe is clearly the most efficient and reliable method tested but performance enhance-

ments can still be made.
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Figure 6.17: Nowacki beam problem mean probability and 95% confidence intervals
of the (a) hypervolume error being less than 0.07 and (b) the ϵ-indicator less than 0.11.

Table 6.3: Summary of mean results for the Nowacki beam design problem with the
hypervolume error, Herr, and ϵ-indicator, ϵerr.

H0.07 ϵ0.11

No. of updates No. of updates
20 40 20 40

PI 3% 19% 14% 41%
EIe 57% 98% 91% 99%
EIh 29% 80% 41% 85%
EIm 39% 81% 39% 83%
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6.8.3 Satellite Boom Design Problem

The satellite boom design problem is optimized based on an initial sample of 20 points

with 60 updates. In this problem, EIh again appears superior to the other methods

tested and supported by both quality indicators, Figure 6.18. The performance of PI

remains poor whilst the performance of EIe and EIm appear to be dependent on the

quality indicator. This highlights the importance of choosing an appropriate comparison

metric when comparing the performance of the improvement criteria.

Figure A.10 illustrates some example Pareto sets for this problem. All methods are

capable of finding a global set of Pareto solutions but in this case, PI results in a poor

spread of points. EIh and EIe both provide a visually good set of solutions but based

on the performance indicators used, EIh offers the best performance and highlighted in

Table 7.3.
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Figure 6.18: Satellite boom problem mean probability and 95% confidence intervals
of the (a) hypervolume error being less than 0.008 and (b) the ϵ-indicator less than

0.04.

Table 6.4: Summary of mean results for the satellite boom design problem with the
hypervolume error, Herr, and ϵ-indicator, ϵerr.

H0.008 ϵ0.04

No. of updates No. of updates
30 60 30 60

PI 0% 0% 0% 0%
EIe 0% 73% 10% 87%
EIh 11% 97% 66% 99%
EIm 0% 93% 1% 73%
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6.9 Conclusions

In aid of reducing the total number of expensive evaluations in surrogate-based multi-

objective optimization, this chapter reviews the performance of four existing multiob-

jective improvement criteria on a selection of test problems. In general, PI performs

poorly and significant enhancements in both efficiency and reliability can be achieved

by an improvement criterion based on expected improvement. Perhaps the best vari-

ant of expected improvement is unclear but EIh appears promising having a dominant

performance on two of the four problems investigated. In cases where computing the

expected improvement based on the hypervolume becomes expensive, EIm offers a suit-

able alternative having a reasonable performance on all four test problems. Although

EIe exhibits some poor theoretical properties, this was the best improvement criterion

tested on the Nowacki beam design problem but its inconsistent performance on the

other problems may cause concern.

Although a constrained problem has been investigated in this chapter, little emphasis has

been placed on constraint handling in multiobjective optimization. In the Nowacki beam

design problem, all Pareto optimal solutions lie on the constraint boundaries. As demon-

strated in previous chapters, the modification of the improvement criteria for constraint

handling can have a big influence on the efficiency and reliability of the improvement

criteria. These improvements are expected to translate to handling constraints in multi-

objective optimization and an investigation into different constraint handling strategies

is an area recommended for future work.

This study has been limited to design problems with only two variables and two objec-

tives but all these methods can be extended to deal with larger problems. Formulating

an analytical expression for the improvement criteria above two objectives is likely to be

challenging and other methods may need to be adopted. Svenson [2011] use Monte-Carlo

methods to extend the four improvement criteria discussed to deal with test problems

with up to six design variables and six objectives.





Chapter 7

Parallel Evaluations in

Surrogate-Based Multiobjective

Optimization

Chapter 6 introduces some useful improvement criteria for surrogate-based multiobjec-

tive optimization. These improvement criteria have been formulated with single sequen-

tial updates in mind, limiting the rate of surrogate improvement. Clear benefits are

associated with evaluating several designs in parallel, taking advantage of any addi-

tional computing resources. In this chapter we extend the existing improvement criteria

discussed in Chapter 6 to select multiple updates using the Kriging believer strategy

and introduce an alternative goal-based approach.

7.1 Multiple Update Strategies

The four multiobjective improvement criteria PI, EIe, EIh and EIm, discussed in Chap-

ter 6 can be extended to select multiple updates in a number of ways. The fact that most

improvement criteria tend to be multimodal means it is relatively easy to find multiple

updates by utilizing several local optima. This approach is taken by Keane and Scanlan

[2007], finding multiple updates based on the multiobjective probability of improve-

ment. The authors exploited available computing resources and software licenses by

evaluating ten designs in parallel at each update stage. Svenson [2011] proposes a batch

hypervolume improvement function, essentially maximizing the expected improvement

in the hypervolume based on multiple points. This however leads to a complex sub

optimization problem with q × d dimensions.

In this study, multiple updates are selected using the Kriging believer strategy discussed

in Chapter 5. This method substitutes a dummy value into the set of observed responses

99



100 Chapter 7 Parallel Evaluations in Surrogate-Based Multiobjective Optimization

once the first update has been found. By doing so, the correlation matrix is updated and

the predicted variance at the location of the dummy value goes to zero. Without eval-

uating the first update and without retuning, the improvement criteria can be searched

again for a second update point. Since the predicted variance at the previous update

is zero, maximum improvement will lie elsewhere in the design space. This is repeated

until the required number of multiple updates is found.

Using the Kriging believer is easy to implement but relies on sequential searches on

the surrogate to find multiple updates. This prevents the search for multiple updates

themselves to be performed in parallel. As noted in Section 5.4.1, whilst the search for

update points is cheap this is unlikely to raise concern but when dealing with problems

with more than a few design variables or heavily populated Pareto sets, searching for

multiple updates sequentially may become an issue. The four improvement criteria

modified to select multiple updates using the Kriging believer are denoted as PIkb,

EIekb, EIhkb and EImkb respectively. Next, an alternative goal-based approach is

introduced that can be used to find multiple updates without the need for sequential

searches.

7.2 Goal-Based Improvement

A key advantage of selecting multiple updates is that they allow different regions of the

Pareto set to be developed simultaneously, accelerating convergence towards a global

Pareto set. To achieve this, the goal-based approach considers improvement in a par-

ticular region of the Pareto front. The user first specifies a goal point yg, and the

improvement criterion aims to improve upon this goal. This is a much simpler approach

than considering the improvement associated with the entire Pareto set and lends itself

to selecting multiple updates since the improvement over different goals can be evaluated

independently and in parallel. Furthermore, selecting goal points provides an opportu-

nity for design preferences to be incorporated into the search. This may occur when

the designer is interested in a particular region of the Pareto front or if one region looks

more promising than another. In this study it is assumed that no design preferences are

available and the choice of goal points is automated.

When selecting goal points automatically, it is possible to select them based on a Pareto

set quality indicator, the spacing of the Pareto set or based on under sampled regions of

the design space. Whichever goal points are selected, it is intuitive to encourage updates

to augment or dominate the current Pareto set.

Figure 7.1 illustrates a set of postulated goal points based on the spacing of existing

solutions. Selecting one or more of these goals will encourage convergence to a well

spaced set of Pareto solutions. To find the most suitable of these goals, they are ranked

according to the area that augments the Pareto set,
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Ai =
(
yi+1
1 − yi1

) (
yi2 − yi+1

2

)
, (7.1)

where i = 1 . . . (k − 1).

This is simply a product of the distance between neighbouring solutions. This is quick

to compute and ranks the goals regardless of scaling. In this example the goal points

are ranked (yg41 , yg42 ),(yg21 , yg22 ), (yg51 , yg52 ),(yg31 , yg32 ) and (yg11 , yg12 ) respectively. From these

ranked solutions, it is then possible to select one or more of these goals depending on

the required number of updates. If the required number of updates exceeds the number

of postulated goals, it may be necessary to select additional goals. In this study, the

Pareto solutions themselves are used as goals if additional goal points are required.

7.2.1 Goal-Based Probability of Improvement

The goal-based probability of improvement considers the integral under the multivariate

PDF, with limits based on the region pictured in Figure 7.2. These limits bound the

region of improvement made over the single goal point (yg1 , y
g
2).

For two objectives, the goal-based probability of improvement is given by

P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
ϕ (y1, y2) dy2dy1, (7.2)
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Figure 7.2: Region of goal-based improvement. – Region that offers improvement
over a single goal point where ›– current Pareto set and •– goal point (yg1 , y

g
2).

or given analytically as,

P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] = Φ

(
yg1 − ŷ1

ŝ1

)
Φ

(
yg2 − ŷ2

ŝ2

)
. (7.3)

Defining the region of integration in this way achieves a simple formulation of the multi-

objective probability of improvement that exploits a specific region of the Pareto front.

Note that exploiting the Pareto set by using this goal-based improvement may hinder

the addition of points at either end of the Pareto set. This can be easily dealt with by

including an additional region that improves over the end points of the Pareto set. This

is included when a goal point is chosen that lies next to an end point, shown in Figure

7.3. The goal-based probability of improvement for Figure 7.3(a) is given as

P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
ϕ (y1, y2) dy2dy1

+

∫ y11

−∞

∫ ∞

yg2

ϕ (y1, y2) dy2dy1,

(7.4)

and for Figure 7.3(b)

P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
ϕ (y1, y2) dy2dy1

+

∫ ∞

yg1

∫ ye2

−∞
ϕ (y1, y2) dy2dy1.

(7.5)



Chapter 7 Parallel Evaluations in Surrogate-Based Multiobjective Optimization 103

-

6 b b b b
b b

r

y1(x)

y2(x) (y11, y
1
2)

(a)

-

6 b b b b
b br

y1(x)

y2(x)

(ye1, y
e
2)

(b)

Figure 7.3: End point regions. – Region that offers improvement over the goal
point (yg1 , y

g
2) which lies next to the end point (a) (y11 , y

1
2) and (b) (ye1, y

e
1).

Analytic expressions for these formulations are given in Appendix B. Adding updates

based on this goal-based probability of improvement is well suited to selecting multiple

updates as it is can be searched independently several times with different goal points.

This allows different regions of the Pareto front to be exploited simultaneously. The

goal-based probability of improvement is denoted as PIg.

7.2.2 Goal-Based Expected Improvement

This goal-based approach can be extending to the formulation of expected improvement

considered next. It is possible to formulate the goal-based expected improvement in a

number of ways. Here we limit ourselves to formulations that are considered analogous

to the improvement criteria introduced in Chapter 6.

7.2.2.1 Euclidean-Based

In a similar manner to the goal-based probability of improvement, it is possible to

extend the goal-based approach to the Euclidean-based expected improvement. By

considering the improvement over a given point, the goal-based expected improvement

can be expressed as

E[IE(x)] = P [y1 ≤ yg1 ∪ y2 ≤ yg2 ]

√
(ȳ1 − yg1)

2
+ (ȳ2 − yg2)

2
, (7.6)

where

ȳ1P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
y1ϕ (y1, y2) dy2dy1, (7.7)
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and

ȳ2P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
y2ϕ (y1, y2) dy2dy1, (7.8)

Here the goal-based improvement function is not given explicitly but can be considered

equivalent to,

IE =

√
(y1 − yg1)

2
+ (y2 − yg2)

2
. (7.9)
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Figure 7.4: Euclidean goal-based improvement.

Figure 7.4 illustrates the Euclidean goal-based improvement for an example Pareto set.

This rewards the most dominating regions but does not consider any improvement at

either end of the Pareto set. End regions are included when the goal point lies close to

the end point (y11, y
1
2) where P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] is given by equation (7.4) and

ȳ1P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
y1ϕ (y1, y2) dy2dy1 +

∫ y11

−∞

∫ ∞

yg2

y1ϕ (y1, y2) dy2dy1,

ȳ2P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
y2ϕ (y1, y2) dy2dy1 +

∫ y11

−∞

∫ ∞

yg2

y2ϕ (y1, y2) dy2dy1.

(7.10)

When the goal point lies close to the end point (ye1, y
e
2), P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] is given by

equation (7.5) and
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ȳ1P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
y1ϕ (y1, y2) dy2dy1 +

∫ ∞

yg1

∫ ye2

−∞
y1ϕ (y1, y2) dy2dy1,

ȳ2P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] =

∫ yg1

−∞

∫ yg2

−∞
y2ϕ (y1, y2) dy2dy1 +

∫ ∞

yg1

∫ ye2

−∞
y2ϕ (y1, y2) dy2dy1.

(7.11)

Analytic expressions for these formulations are given in Appendix B. Figure 7.5 shows

the Euclidean goal-based improvement for these end regions, encouraging the selection

of new samples at either end of the Pareto set. Since this formulation still requires cal-

culation of the Euclidean distance, relative scaling of the objectives remains important.

The Euclidean goal-based expected improvement is termed as EIeg for the remainder of

this thesis.
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Figure 7.5: Euclidean goal-based improvement with end regions.

7.2.2.2 Hypervolume-Based

When considering the improvement over a goal point, the hypervolume-based improve-

ment is heavily simplified. In this study this improvement is given quite simply by

IH = (yg1 − y1) (y
g
2 − y2) . (7.12)

This can be viewed as the product of individual improvements in each objective. Figure

7.6 illustrates this improvement given a Pareto set and goal point. This improvement

increases as (y1, y2) moves down and to the left of the goal point, thus favouring points

that are the most dominating. This avoids any computational burden associated with
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computing the improvement in the hypervolume based on the entire Pareto set. Fur-

thermore, this goal-based improvement is advantageous as it can be used regardless of

objective scaling.
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Figure 7.6: Goal-based improvement in hypervolume.

The goal-based expected improvement for two objectives is given as,

E[IH(x)]G =

∫ yg1

−∞

∫ yg2

−∞
(yg1 − y1)(y

g
2 − y2)ϕ (y1, y2) dy2dy1, (7.13)

or given analytically as

E[IH(x)]G = yg1Φ

(
yg1 − ŷ1

ŝ1

)
yg2Φ

(
yg2 − ŷ2

ŝ2

)
− yg1Φ

(
yg1 − ŷ1

ŝ1

)[
ŷ2Φ

(
yg2 − ŷ2

ŝ2

)
− ŝ2ϕ

(
yg2 − ŷ2

ŝ2

)]
− yg2Φ

(
yg2 − ŷ2

ŝ2

)[
ŷ1Φ

(
yg1 − ŷ1

ŝ1

)
− ŝ1ϕ

(
yg1 − ŷ1

ŝ1

)]
+

{[
ŷ1Φ

(
yg1 − ŷ1

ŝ1

)
− ŝ1ϕ

(
yg1 − ŷ1

ŝ1

)]
×
[
ŷ2Φ

(
yg2 − ŷ2

ŝ2

)
− ŝ2ϕ

(
yg2 − ŷ2

ŝ2

)]}
.

(7.14)

Again it is important to consider the regions that offer improvement at either end of the

Pareto set. If a goal is selected next to (y11, y
1
2), the goal-based expected improvement

is given as
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E[IH(x)]G =

∫ yg1

−∞

∫ yg2

−∞
(yg1 − y1)(y

max
2 − y2)ϕ (y1, y2) dy2dy1

+

∫ y11

−∞

∫ ymax
2

yg2

(yg1 − y1)(y
max
2 − y2)ϕ (y1, y2) dy2dy1,

(7.15)

where ymax
2 is the maximum value samples so far. If a goal is selected next to (ye1, y

e
2),

E[IH(x)]G =

∫ yg1

−∞

∫ yg2

−∞
(ymax

1 − y1)(y
g
2 − y2)ϕ (y1, y2) dy2dy1

+

∫ ymax
1

yg1

∫ ye2

−∞
(ymax

1 − y1)(y
g
2 − y2)ϕ (y1, y2) dy2dy1,

(7.16)

where ymax
1 is the maximum value sampled so far. Analytical expressions for equation

(7.15) and equation (7.16) is provided in Appendix B.

Figure 7.7 illustrates the goal-based improvement when selecting goals close to these

end points. Note that this formulation requires suitable values of ymax
1 and ymax

2 which

depend on previously sampled points. The goal-based expected improvement in hyper-

volume is termed EIhg.
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Figure 7.7: Goal-based improvement in hypervolume with end regions.

7.2.2.3 Maximin

The final goal-based improvement criterion considered the maximin improvement func-

tion. Figure 7.8 shows two regions that offer improvement over a goal point (yg1 , y
g
2).
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Figure 7.8: Regions of goal-based maximin improvement with a single goal point
(yg1 , y

g
2).

Based on the maximin improvement, equation (6.13), the improvement in R1 is simply

yg1 − y1 and in R2 the improvement is given as yg2 − y2. This leads to the improvement

shown in Figure 7.9.
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Figure 7.9: Goal-based maximin improvement.

Based on this improvement function, the goal-based expected improvement is given as

E[IM (x)]G =

∫ yg1

−∞

∫ yg2

yg2−yg1+y1

(yg1 − y1)ϕ (y1, y2) dy2dy1

+

∫ yg2

−∞

∫ yg1

yg1−yg2+y2

(yg2 − y2)ϕ (y1, y2) dy1dy2.

(7.17)

Following a similar approach to Svenson [2011], the goal-based maximin expected im-

provement can be expressed analytically as,
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E[IM (x)]G = ŝ1Φ

(
ŷ1 − yg1

ŝ1

)
ϕ

(
yg1 − ŷ1

ŝ1

)
+ ŝ2Φ

(
ŷ2 − yg2

ŝ2

)
ϕ

(
yg2 − ŷ2

ŝ2

)
+Φ

(
ŷ2 − yg2

ŝ2

)[
(yg1 − ŷ1)Φ

(
ŷ1 − yg1

ŝ1

)
+ ŝ1ϕ

(
yg1 − ŷ1

ŝ1

)]
+Φ

(
ŷ1 − yg1

ŝ1

)[
(yg2 − ŷ2)Φ

(
ŷ2 − yg2

ŝ2

)
+ ŝ2ϕ

(
yg2 − ŷ2

ŝ2

)]
+

√
A

ŝ1

ŝ2
√
2π

exp

{
−1

2

[
ŷ21
ŝ21

+
(yg1 − yg2 + ŷ2)

2

ŝ2

]}
exp

(
1

2
Av21

)
Φ

(
yg1 −Av1√

A

)

+
√
A

ŝ2

ŝ1
√
2π

exp

{
−1

2

[
ŷ22
ŝ22

+
(yg2 − yg1 + ŷ1)

2

ŝ1

]}
exp

(
1

2
Av22

)
Φ

(
yg2 −Av2√

A

)

+ (yg1 − ŷ1)

∫ Φ

(
y
g
1−ŷ1
ŝ1

)
0

Φ

(
yg1 − yg2 − ŷ1 + ŷ2 − ŝ1Φ (w)−1

ŝ2

)
dw

+ (yg2 − ŷ2)

∫ Φ

(
y
g
2−ŷ2
ŝ2

)
0

Φ

(
yg2 − yg1 − ŷ2 + ŷ1 − ŝ2Φ (w)−1

ŝ1

)
dw.

(7.18)

where

A =
ŝ21ŝ

2
2

ŝ21 + ŝ22
(7.19)

v1 =
ŷ1
ŝ21

+
yg1 − yg2 + ŷ2

ŝ2
(7.20)

and

v2 =
ŷ2
ŝ22

+
yg2 − yg1 + ŷ1

ŝ1
. (7.21)

Note that due to the non-rectangular regions of integration, the analytical expression is

more complex and the last two terms must be computed using numerical quadrature.

Since this is still based on the distance between a goal point and a new sample location,

relative scaling of the objectives remains important.

As with the other goal-based methods it is important to consider regions close to the

end points. If a goal is selected next to (y11, y
1
2), the goal-based expected improvement

is given as
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E[IM (x)]G =

∫ yg1

−∞

∫ yg2

yg2−yg1+y1

(yg1 − y1)ϕ (y1, y2) dy2dy1

+

∫ yg2

−∞

∫ yg1

yg1−yg2+y2

(yg2 − y2)ϕ (y1, y2) dy1dy2

+

∫ y11

−∞

∫ ∞

yg2

(yg1 − y1)ϕ (y1, y2) dy2dy1.

(7.22)

If a goal is selected next to (ye1, y
e
2),

E[IM (x)]G =

∫ yg1

−∞

∫ yg2

yg2−yg1+y1

(yg1 − y1)ϕ (y1, y2) dy2dy1

+

∫ yg2

−∞

∫ yg1

yg1−yg2+y2

(yg2 − y2)ϕ (y1, y2) dy1dy2

+

∫ ye2

−∞

∫ ∞

yg1

(yg2 − y2)ϕ (y1, y2) dy1dy2.

(7.23)

Figure 7.10 illustrates the maximin improvement when selecting end points and ana-

lytical expressions are provided in Appendix B. Here the goal-based maximin expected

improvement is termed EImg.

y1

y2

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

y1

y2

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 7.10: Goal-based maximin improvement with end regions.

7.3 Results and Discussion

Test problem 4 and the satellite boom design problem use an initial sample of 20 points

and selects four updates (q = 4) at each of 30 update stages. Test problem 5 and the
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Nowacki beam design problem use an initial sample of 20 points, q = 4 and 20 update

stages. Assuming resources exists that allow new update points to be evaluated in

parallel, the time spent evaluating new designs (again referred to as the evaluation wall

clock time) equates to half of the total evaluation time required using single updates in

Chapter 6. Although the evaluation walk clock time is halved, the total CPU cost (or

total number of evaluations) is doubled. A dashed line is included that represents the

equivalent CPU cost as the methods tested in Chapter 6.

The performance of each multiple update improvement criterion is assessed on the same

hypervolume error and ϵ-indicator presented in the single update case. The reader should

note that by using multiple updates, many more designs are evaluated. This causes the

design space to become more populated, often resulting in more populated and better

quality Pareto sets. The following results do not illustrate any increase in the Pareto

set quality but instead provide a direct comparison to the quality achieved when using

single updates. Some example Pareto sets are included in Appendix A, providing a

visual comparison of each method.

7.3.1 Artificial Test Problems

In Figure 7.11 we show the efficiency and reliability of the multiple update improvement

criteria when applied to test problem 4. When finding a hypervolume error less than

0.07, all methods based on the Kriging believer perform well. Although there is little

statistical significance between methods, EImkb offers the best performance in Figure

7.11(a) and Figure 7.11(b). EImkb finds good quality Pareto sets equivalent to those

found using single updates in less than a third of the total wall clock time, demonstrating

significant improvements in efficiency. The example Pareto sets in Figure A.2 show

similarities with those found using single updates. In this particular example, EIhkb

achieves the best Pareto set visually and offers significant improvements over EIh when

using single updates in Figure A.1.

In Figure 7.11(c) and Figure 7.11(d) we see that two of the goal-based methods match

the performance of EImkb. The poor performance of the scale dependent goal-based

methods, EIeg and EImg, suggest that the goal-based approach does not generalise well

to all improvement criteria. Based on both the hypervolume error and ϵ-indictor, EIhg

is the most efficient and reliable method tested, finding good quality Pareto sets with

an equivalent CPU cost and 25% of the total wall clock time when compared with single

updates.

The scale dependent goal-based improvement criteria continue to perform poorly in test

problem 5, Figure 7.12. In this problem EIkb and EIekb also fail to find good quality

Pareto sets reliably, reflecting the poor performance of these methods in Chapter 6.

As in the single update case, EIhkb and EImkb are the most reliable methods when
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Figure 7.11: Test problem 4 mean probability and 95% confidence intervals of the
hypervolume error being less than 0.07 and ϵ-indicator less than 0.08. (a) Hypervolume
error when using Kriging believer, (b) ϵ-indicator when using Kriging believer, (c)
hypervolume error when using goal-based improvement and (d) ϵ-indicator when using

goal-based improvement.

selecting multiple updates using the Kriging believer. In this problem, EIhg proves to

be the most promising method showing a significant improvement in efficiency over the

other methods tested.

In both test problems tested here, an interesting observation is that the probability of

improvement performs better when formulated based on goal points. Defining goal points

introduces some forced exploration into the search and helps to reduce the clustering of

update points. This is observed particularly well in Figure A.6. Although both PIkb

and PIg are often inferior to the other methods tested, the results go some way to

demonstrate that better updates can be selected by reducing the region of integration

and explicitly improving on particular regions of the Pareto front.

Table 7.1 summarizes the performance of each improvement criterion on test problem 4

and test problem 5. EIhg performs very well in comparison to the other improvement

criteria tested, especially at fewer update stages.
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Figure 7.12: Test problem 5 mean probability and 95% confidence intervals of the
hypervolume error less being than 0.02 and ϵ-indicator less than 0.04. (a) Hypervolume
error when using Kriging believer, (b) ϵ-indicator when using Kriging believer, (c)
hypervolume error when using goal-based improvement and (d) ϵ-indicator when using

goal-based improvement.

7.3.2 Nowacki Beam Design Problem

In the Nowacki beam design problem, the most reliable and efficient method is again

EIhg, highlighted in Table 7.2. This improvement criteria is able to find Pareto sets

with an equivalent hypervolume error as Figure 6.17 in 25% of the total evaluation

wall clock time and at the same CPU cost. This increase in efficiency is less dramatic

when comparing the ϵ-indictor but still offers significant improvements over the other

methods tested. Out of the remaining methods, EIekb, EIhkb, EIeg and EImg all offer

a good performance. The improvement criteria using the Kriging believer are much less

efficient when compared to EIhg and require further update stages to consistently find

good quality Pareto sets. This is seen clearly when comparing the example Pareto sets

in Figure A.8 and A.9.
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Table 7.1: Summary of mean results for test problem 4 and 5 with the hypervolume
error, Herr, and ϵ-indicator, ϵerr.

Test problem 4 Test problem 5

H0.07 ϵ0.08 H0.02 ϵ0.04

No. of update No. of update No. of update No. of update
stages stages stages stages

15 30 15 30 10 20 10 20

PIkb 85% 97% 68% 93% 0% 0% 0% 0%
EIekb 87% 98% 65% 93% 0% 0% 0% 1%
EIhkb 88% 100% 69% 99% 0% 98% 0% 96%
EImkb 97% 100% 92% 100% 0% 93% 0% 97%

PIg 98% 99% 84% 99% 0% 32% 0% 61%
EIeg 75% 80% 65% 74% 0% 0% 0% 0%
EIhg 96% 100% 98% 100% 95% 100% 84% 95%
EImg 80% 82% 64% 76% 0% 0% 0% 0%

Table 7.2: Summary of mean results for the Nowacki beam design problem with the
hypervolume error, Herr, and ϵ-indicator, ϵerr.

H0.07 ϵ0.11

No. of update No. of update
stages stages

10 20 10 20

PIkb 7% 23% 13% 42%
EIekb 22% 77% 59% 90%
EIhkb 28% 89% 39% 86%
EImkb 15% 60% 19% 58%

PIg 10% 21% 17% 27%
EIeg 79% 94% 69% 75%
EIhg 98% 100% 85% 91%
EImg 74% 89% 65% 74%

7.3.3 Satellite Boom Design Problem

Figure 7.14 compares the performance of each improvement criteria on the satellite boom

design problem. Due to the nature of this problem having a distinct set of global solu-

tions, the Pareto set becomes highly populated once the global region of the attenuation

function is identified, see Figure 6.13(a). Due the expense of computing the hypervolume

over the entire Pareto set, EIhkb becomes more computationally expensive to search as

the Pareto set becomes more populated. In this particular problem, the expense of this



Chapter 7 Parallel Evaluations in Surrogate-Based Multiobjective Optimization 115

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

update stages

P
ro

b
ab

ili
ty

 [
%

]

 

 

PIkb EIekb EIhkb EImkb

(a)

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

update stages

P
ro

b
ab

ili
ty

 [
%

]

 

 

PIkb EIekb EIhkb EImkb

(b)

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

update stages

P
ro

b
ab

ili
ty

 [
%

]

 

 

PIg EIeg EIhg EImg

(c)

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

update stages

P
ro

b
ab

ili
ty

 [
%

]

 

 

PIg EIeg EIhg EImg

(d)

Figure 7.13: Nowacki beam design problem mean probability and 95% confidence
intervals of the hypervolume error being less than 0.07 and ϵ-indicator less than 0.11.
(a) Hypervolume error when using Kriging believer, (b) ϵ-indicator when using Kriging
believer, (c) hypervolume error when using goal-based improvement and (d) ϵ-indicator

when using goal-based improvement.

search is significant when compared to the other methods tested. To keep retain a simi-

lar overall run time achieved using the other improvement criteria, EIhkb is only tested

up to 20 update stages. Due to the reduced number of update stages, EIhkb performs

relatively poorly when finding a small hypervolume error, highlighting the drawback of

this computational burden. Out of the remaining methods using the Kriging believer,

EImkb offers the best performance. Out of all the methods tested, EIhg is again the

most promising method, offering significant gains in performance and supported by both

quality indicators, highlighted in Table 7.3. Figure A.11 and Figure A.12 show some

example Pareto sets, illustrating a highly populated and well spread Pareto set when

using EIhg.
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Figure 7.14: Satellite boom design problem mean probability and 95% confidence
intervals of the hypervolume error being less than 0.008 and ϵ-indicator less than 0.04.
(a) Hypervolume error when using Kriging believer, (b) ϵ-indicator when using Kriging
believer, (c) hypervolume error when using goal-based improvement and (d) ϵ-indicator

when using goal-based improvement.

7.4 A Note on Single Updates

Although the goal based approach has been developed to select multiple updates, it

can also be used to select single updates. This is highlighted here to demonstrate the

applicability of the goal-based approach even when resources to run multiple updates

do not exist. To briefly demonstrate the selection of single updates, we compare the

most promising method EIhg with the four improvement criteria tested in Chapter 5.

When using EIhg, a single update is selected based on the postulated goal with maximum

augmented area, equation (7.1). We limit the comparison to the hypervolume error given

in Figure 7.15. These results show a competitive performance of EIhg when selecting

single updates, offering performance gains on three out of the four test problems.



Chapter 7 Parallel Evaluations in Surrogate-Based Multiobjective Optimization 117

Table 7.3: Summary of mean results for the satellite boom design problem with the
hypervolume error, Herr, and ϵ-indicator, ϵerr.

H0.008 ϵ0.04

No. of update No. of update
stages stages

15 30 15 30

PIkb 0% 0% 0% 3%
EIekb 0% 33% 1% 73%
EIhkb 0% —% 15% —%
EImkb 0% 100% 1% 85%

PIg 0% 27% 14% 59%
EIeg 0% 9% 0% 1%
EIhg 98% 99% 65% 99%
EImg 0% 6% 0% 0%

7.5 Conclusions

This chapter extends four multiobjective improvement criteria to select multiple updates

at each update stage. The improvement criteria are first modified based on the Kriging

believer strategy introduced in Chapter 5. This is an effective approach to selecting mul-

tiple updates, identifying better Pareto sets whilst significantly reducing the evaluation

wall clock time when compared to selecting single updates. EIhkb and EImkb appear to

be the most promising methods when using the Kriging believer but in certain problems,

adding multiple updates can quickly increase the computation burden of EIhkb. A goal-

based strategy is also introduced that exploits particular regions of the Pareto set. Each

of the four improvement criteria are formulated using some goal-based improvement and

compared with those results obtained using the Kriging believer. Whilst the two scale

dependent methods, EIeg and EImg, did not offer any improvements over the Kriging

believer on three out of the four problems, the scale invariant methods, PIg and EIhg,

offers some significant enhancements in performance. In particular, EIhg offers some

advantageous properties being considerably more efficient and more reliable than the

other improvement criteria tested on all four test problems. In certain cases, good qual-

ity Pareto sets are found at similar CPU cost and 25% of the evaluation wall clock time

when compared to selecting single updates. This supports the use of multiple updates

even if a budget on total CPU effort exists. EIhg has also been shown to generalize well

when selecting single updates and compared directly with results obtained in Chapter 6

and furthermore, is the only improvement criteria based on expected improvement that

is scale invariant.

Improvement criteria based on selecting goal points can be computed cheaply and do not
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Figure 7.15: Mean probability and 95% confidence intervals of the hypervolume error
in (a) test problem 4 (hypervolume error = 0.07), (b) test problem 5 (hypervolume
error = 0.02), (c) Nowacki beam design problem (hypervolume error = 0.07) and (d)

satellite boom design problem (hypervolume error = 0.008).

rely on sequential searches to indentify multiple updates. Here, goal-points are selected

based on the spacing between Pareto solutions but many other approaches should be

investigated. In particular, these methods can easily incorporate user preferences. This

may be advantageous on problems where the designer has identified a region of the

Pareto front that is more appealing. This is often the case when some trade-off is not

modelled in the design problem, or when an already optimal baseline design exists.

If a particular design looks promising, the designer may wish concentrate updates in

this region of Pareto front. Incorporating user preferences will allow the multiobjective

optimization to be accelerated further by converging towards designs of interest rather

than refining the entire Pareto set. This is an area recommended for future work.



Chapter 8

Multiobjective Wing Design

Having investigated a number of improvement criteria suitable for surrogate-based opti-

mization, this chapter aims to demonstrate their use on a typical aircraft design problem

that uses expensive analysis. This makes use of multiobjective improvement criteria to

optimize a transonic wing with two objectives and incorporates a constrained optimiza-

tion for wingbox sizing. To achieve optimization efficiency, multiple updates are used to

accelerating convergence towards optimal designs.

8.1 Wing Design Problem

At transonic speeds, the geometry of a low drag wing tends to be heavily swept with

a high aspect ratio (long and slender). This is typically in tension with a light weight

structure that favours a tapered wing with a large inboard section. Essentially, mini-

mizing wing drag results in a heavy wing structure and minimizing weight will hinder

aerodynamic performance. Considering both aerodynamic performance and structural

weight simultaneously is essential when making decisions on the most cost effective

aircraft designs. This naturally leads to a multidisciplinary problem with the aim

of seeking trade-offs between aerodynamic performance and structural weight, a typ-

ical problem in aerospace design, see Keane and Scanlan [2007], Lam et al. [2009] and

Vicini and Quagliarella [1998].

Here we investigate a wing design problem based on a 150 seat passenger aircraft flying

at a cruise speed of Mach 0.8 and an altitude of 11,000 m. The wing is based on the

ONERA-D airfoil section and is required to produce enough lift for a maximum cruise

weight of 60,000 kg. The optimization aims to minimize the wing drag area D/q and

the wingbox structural weight. To ensure the wing can carry enough fuel, a constraint

also exists on the wing volume.
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The wing is characterized by four design variables listed in Table 8.1. Each wing is first

evaluated at several angles of incidence using the FP flow solver. Based on a linear

increase in lift with increasing angle of incidence, wing drag and aerodynamic loads are

computed at the angle of incidence needed to achieve the required lift (see Appendix C

for more details on aerodynamic analysis and FP). Computing this drag objective for

each wing design typically takes 30 minutes on a single processor.

Table 8.1: Wing design variables.

Lower limit Baseline design Upper limit Quantity

6 7.5 9 Root chord, m
15 17.5 20 Span, m
0.2 0.5 0.8 Taper ratio
10 25 30 Quarter chord sweep angle, deg

Figure 8.1 illustrates the predicted pressure distribution over the upper surface of the

baseline wing design. To achieve the required lift at cruise conditions, this wing has an

angle of incidence of 2.75 degrees resulting in a wing drag area D/q= 1.988 m2. The

sharp changes in pressure illustrate the presence of shock waves, a typical feature of

transonic flow and a large contributor to drag.

Figure 8.1: Upper surface pressure distribution for the baseline wing design.

Once the drag objective is computed, the resulting aerodynamic loads are used to size

the wingbox structural components. In early stages of aircraft design, structural sizing

is typically performed using some iterative dimensioning process to find a wingbox struc-

ture that withstands the aerodynamic loading. Instead of sizing structural components

iteratively, we perform a sub-optimization to find a wingbox structure with minimum
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weight and that satisfies structural stress, displacement and buckling constraints. Since

structural analysis is typically expensive, this sub-optimization is also performed using

surrogates and this wingbox sizing is analogous to the wingbox structure design prob-

lem investigated in Chapter 5. Therefore, for each wing design evaluated during the

multiobjective optimization, a full surrogate-based constrained optimization is required

to suitably size the wingbox structure.

In this chapter, the limits placed on the wingbox geometry differ to those in Chapter 5.

To help ensure a feasible wingbox structure is found for each wing, the upper limits of

the spar, rib and skin thickness are increased. This makes the structural displacement

and buckling constraints easier to satisfy, increasing feasible design space. The design

variables and constraint limits used during the wingbox sizing are given in Table 8.2.

Table 8.2: Wingbox sizing design variables and constraint limits.

Lower limit Upper limit Quantity

0.010 0.080 Spar thickness, m
0.010 0.080 Rib thickness, m
0.010 0.060 Skin thickness, m
0.020 0.200 Rib pitch, m
1.50 —– Stress safety factor
—– 1.50 Tip displacement, m
1.00 —– Buckling eigenvalue

The time taken to evaluate the wingbox weight depends on the choice of improvement

criteria used during the sub-optimization. Here, the wingbox sizing makes use of several

computers using the multiple update improvement criteria for constrained problems

introduced in Chapter 5. Here we use either EIPFkb or EIvsPF when selecting multiple

updates. Using an initial sample of 20 and 20 update stages each with four updates (100

total evaluations), a wingbox structure is sized in roughly 75 minutes using EIPFkb and

45 minutes when using EIvsPF (CPU costs extrapolated from Table 5.4 in Chapter 5).

A comparison of EIPFkb and EIvsPF when optimizing the wingbox structure for the

baseline wing is given in Table 8.3. This includes the optimized wingbox design variables,

final wingbox weights and the resulting wing volume. In this particular example, EIPFkb

converges towards a design with a smaller rib thickness, resulting in a slightly reduced

wingbox weight and a small increase in wing volume.

To summarize the evaluation of a single wing, the wing drag and aerodynamic loads are

first computed using FP based on a fixed aircraft cruise weight of 60,000 kg. Next, the

wingbox is sized according to the aerodynamic loads using a surrogate-based constrained

sub-optimization. Combining the overall evaluation time of the drag prediction and the

wingbox sizing, evaluating a single wing using EIPFkb during the wingbox sizing takes

1.75 hours. This reduces to 1.25 hours when using EIvsPF during the wingbox sizing.
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Table 8.3: Baseline wingbox design variables using two different improvement criteria.

EIPFkb EIvsPF Quantity

0.010 0.010 Spar thickness, m
0.015 0.017 Rib thickness, m
0.032 0.032 Skin thickness, m
0.041 0.040 Rib pitch, m
1.78 1.78 Stress safety factor
1.50 1.51 Tip displacement, m
1.10 1.14 Buckling eigenvalue
10,958 11,203 Wingbox weight, kg
35.77 35.68 Wing volume, m3

Based on the wing planform and the final wingbox structure, the wing volume can be

quickly computed. Since this depends on the computation of the wingbox structure, this

constraint is also expensive to compute and modelled using a surrogate model. Figure

8.2 provides an overview for the constrained multiobjective optimization and Figure 8.3

illustrates the constrained sub-optimization used for the wingbox sizing.

8.2 Optimization Comparison

Due to the expense of this optimization problem, we limit our comparison to two different

methods. Method 1 utilizes improvement criteria proposed elsewhere. This uses EIhkb

for the multiobjective optimization and EIPFkb for the selection of multiple updates

during the wingbox sizing. Method 2 uses new improvement criteria discussed within

this thesis. This uses the goal-based improvement criteria, EIhg, for multiobjective

optimization and EIvsPF for the wingbox sizing. In both methods, four designs are

evaluated in parallel. Since four processors are required for the wingbox sizing, this

optimization is based on 16 parallel processes. The optimization is initiated with an

optimized Latin hypercube with 40 designs, plus the baseline design, and updated for

10 update stages. This results in a total of 81 evaluations using the drag prediction

and wingbox sizing analysis (each of which requires 100 evaluations of the structural

analysis).

An initial comparison of each method is based on the hypervolume indicator. This is

used to illustrate the performance of each method after each update stage, allowing the

most efficient method to be identified. The expense of each method is also an important

consideration and illustrated to highlight some key advantages when using method 2.

Finally, we provide a visual comparison of the final Pareto sets and briefly discuss some

of the optimized designs.
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Figure 8.2: Constrained multiobjective wing design optimization.

The reader should note that in this test problem, averaging of results is intractable and

each method has only been tested once. The following comparison is therefore unlikely

to reflect the overall ability of each method but highlights key advantages and provides

an example of how surrogate-based optimization can be used on a real engineering design

problem.

8.2.1 Hypervolume Indicator

In a similar manner to previous chapters, the hypervolume indicator is used to measure

the performance of each method. The hypervolume for each method is illustrated after

each update stage in Figure 8.4. Before any updates are added, the hypervolume is

based solely on the initial sample of evaluated designs. This suggests that, in terms of

the hypervolume, there is little difference between using EIPFkb or EIvsPF during the

wingbox sizing. This is better illustrated in Figure 8.6, showing equivalent Pareto sets



124 Chapter 8 Multiobjective Wing Design

Initial sample
(20 designs)

?
Run structural

analysis

?
Build surrogates
– wingbox weight

– stress safety factor
– tip displacement

– buckling eigenvalue

?
Search constrained

improvement
criterion

?

Update?

����
HHHH
HHHH

����

?
Best wingbox

weight

Add four
updates

6

�

Figure 8.3: Wingbox sizing constrained optimization.

before any updates are added. Once updates are added, both methods select designs that

contribute towards a better Pareto set and increase the hypervolume. In this problem,

selecting new updates using the goal-based approach works well and method 2 rapidly

identifies new designs that increase the hypervolume. This leads to a better Pareto

set much earlier on in the optimization. Method 1 is clearly less efficient and requires

many more updates to achieve a similar hypervolume. This reflects a similar comparison

between the performance of EIhkb and EIhg given in Chapter 7.

8.2.2 Optimization Cost

Next we consider the optimization cost of each method. Since each method uses different

improvement criteria to select new updates, each method has different computational de-

mands. The most significant difference between each method exists during the wingbox

sizing. Using EIvsPF in method 2 reduces the computational demands when searching

for multiple updates. This makes evaluating the wingbox weight cheaper compared to

EIPFkb and the savings become significant when sizing many wing designs. Over the
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Figure 8.4: Comparison of method 1 and method 2 on the wing design problem:
Hypervolume indicator after each update stage.

entire optimization (81 designs based on four parallel runs) a 30% saving in evaluation

time is achieved using EIvsPF. Method 2 also reduces the computational burden (al-

though insignificant in this case) when searching for multiple updates using EIhg. This

is because multiple updates can be computed in parallel and the goal-based hypervolume

is less computationally expensive to compute, see Section 7.2.2.2.

To illustrate differences between each method, an estimation of the optimization run

time is given in Figure 8.5. This includes the wing evaluation time (including drag

analysis and wingbox sizing), time spent searching the improvement criteria (EIhkb or

EIhg) and the total tuning costs. It is clear that the tuning costs and searching the

two improvement criteria is insignificant compared to the wing evaluations. This is

typical of an expensive optimization problem and clearly warrants the use of surrogate

models. Overall, the optimization using method 1 takes approximately 36 hours whilst

method 2 takes 25 hours. These time savings are exaggerated when evaluating more

designs in parallel and for further update stages, highlighting the benefits associated

with employing the improvement criteria used in method 2.

The reader should note that both method 1 and method 2 offer significant time saving

over a conventional approach by utilizing multiple updates. Although we do not provide

a direct comparison between single and multiple updates on this wing design problem,

the author suggests the entire optimization would take, at best, one week to converge

towards an equivalent Pareto set when using single updates.



126 Chapter 8 Multiobjective Wing Design

0 2 4 6 8 10
0

10

20

30

40

50

60

update stages

R
u

n
 t

im
e 

(h
o

u
rs

)

 

 

Wing evaluation
EIhkb search
Tuning
Total

(a)

0 2 4 6 8 10
0

10

20

30

40

50

60

update stages

R
u

n
 t

im
e 

(h
o

u
rs

)

 

 

Wing evaluation
EIhg search
Tuning
Total

(b)

Figure 8.5: Comparison of method 1 and method 2 on the wing design problem:
Optimization run time using (a) method 1 and (b) method 2.

8.2.3 Final Pareto Set

Our final comparison is of the final Pareto sets achieved after all ten update stages.

For each method, Figure 8.6 illustrates all evaluated designs and the final Pareto sets.

Both methods select new designs that are below and to the left of all feasible initial

sample points, contributing towards a better Pareto set. Furthermore, designs have

been identified that improve on the baseline design to simultaneously reduce the wing

drag area and the wingbox weight.

The final hypervolume achieved by each method is very similar (0.947 and 0.950, respec-

tively) but the appearance of each Pareto set is quite different. Method 2 finds a Pareto

set that is more populated and has a larger spread of designs. This gives the designer

a wide choice of designs, with four explicitly improving on the baseline design in both

objectives. Method 1 finds a Pareto set with a poorer spread and is less well populated

but benefits from a design that dominates others identified using method 2. A better

comparison of the final Pareto sets is given in Figure 8.7.

From a designer’s point of view, method 1 is less efficient and computationally more

expensive than method 2. On the other hand, method 1 finds a dominating design

that method 2 does not. This particular design improves on the baseline design quite

significantly and is a likely choice for further analysis.

8.3 Further Discussion

Since the final Pareto sets include a range of designs, it is interesting to look at some

selected designs in more detail. Figure 8.8 illustrates the wing planform and wingbox

design for the baseline design and three Pareto optimal wing designs. Design 1 is a

low drag design, located at the far end of the Pareto set in Figure 8.6(b). Design 2
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Figure 8.6: Comparison of method 1 and method 2 on the wing design problem:
Evaluated designs and final Pareto set after 10 update stages using (a) method 1 and

(b) method 2.

is a low wingbox weight design found on the far right and design 3 offers a reasonable

trade-off between low drag and low wingbox weight. This is the design that dominates

the baseline design in both objectives in Figure 8.6(a).

Table 8.4 examines the design variables, objective values and some derived parameters

in more detail. As expected, a low drag wing favours a heavy sweep and large aspect

ratio. This geometry helps to reduce shock wave and lift induced components of drag

but leads to a large wing structure with a significant weight penalty. In contrast, design

2 achieves minimum wingbox weight by increasing the root section, reducing the aspect

ratio and reducing the taper ratio. This helps to resist deformation of the wing and
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Figure 8.7: Final Pareto set comparison.

(a) (b)

(c) (d)

Figure 8.8: Planform and wingbox design with upper surface pressure distribution
for the (a) baseline design, (b) design 1, (c) design 2 and (d) design 3.

reduces stresses at the wing root. As a consequence, a large angle of incidence is needed

to achieve the required lift, resulting in strong shocks and high drag. Unsurprisingly,

design 3 offers a sensible compromise between low drag and low weight. This wing is

likely to be the most promising, sharing similarities with typical wings used on most

transonic wide body airliners currently in operation. This design has a large sweep
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for low drag at transonic flight conditions and a large root cord and taper to better

distribute the aerodynamic loading. When compared to the baseline design, a larger

sweep helps to reduce the component of wave drag due to shocks whilst a balance of

span, taper ratio and root chord reduce the wingbox weight and drive the design towards

the wing volume constraint.

Table 8.4: Design variables and objective function values for the baseline wing and
three Pareto optimal designs.

Baseline design Design 1 Design 2 Design 3 Quantity

7.5 6.5 7.9 7.4 Root chord, m
17.5 19.1 15.0 17.2 Span, m
0.50 0.57 0.21 0.21 Taper ratio
25.0 26.4 23.7 27.3 Quarter chord sweep angle, deg
98.4 96.8 71.4 76.4 Wing area, m2

6.93 8.32 7.15 8.61 Aspect ratio
2.75 2.63 3.60 3.21 Angle of incidence, deg
1.988 1.650 3.56 1.865 D/q, m2

10,958 20,130 6,823 7,402 Wingbox weight, kg
35.8 27.6 24.4 24.3 Wing volume, m3

In reality, the weight penalty associated with design 1 is likely to deem it impractical.

Design 3 may also be problematic due to its high drag, penalizing aircraft range and

operational costs. Although it is a good idea to find a broad range of designs, spanning

the entire Pareto front, when evaluations are expensive searching for designs that are

clearly impractical becomes an inefficient use of resources. It may be possible to narrow

the design space or incorporate more constraints to avoid the inclusion of impractical

designs, however, this is likely to limit the optimization to only small design changes and

may exclude promising designs. In this particular problem, more practical designs are

achievable by introducing additional wing design parameters. Introducing wing camber

for example, is likely to reduce the wing drag and increase lift at smaller angles of

attack. Similarly, introducing wing twist will allow better distribution of aerodynamic

loads, helping to reduce wingbox weight.

More realistic results are also achievable through more detailed analysis. This may in-

corporate more sophisticated CFD codes or nonlinear structural analysis but also better

treatment of aerodynamic loads and coupling effects. This usually requires an iterative

process and should account of aeroelasticity. The reader is directed to Hürlimann [2010]

for an example of more detailed analysis that can be incorporated in to a similar study

performed here.

To help reduce the cost of multiobjective optimization further, it may be sensible to

incorporate user preferences into the search. This can help to focus the search on

regions of the Pareto front that are of particular interest, the region around a baseline
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design for example. This is becoming a popular approach and has been recently applied

aerodynamic problems by Carrese et al. [2011, 2012]. Although not considered further in

this thesis, this can be achieved quite simply using the goal-based approach by specifying

goal points based on user preferences.

8.4 Conclusions

In this chapter we have demonstrated the use of surrogate-based multiobjective optimiza-

tion on a wing design problem incorporating a surrogate-based constrained optimization

for wingbox sizing. This compares the performance of two methods that make use of 16

parallel processes to accelerate convergence towards a set of optimal trade-offs. Method

1 is based on improvement criteria proposed elsewhere, using the hypervolume-based

expected improvement for multiobjective optimization and expected improvement and

probability of feasibility for wing box sizing. In method 1, both improvement criteria use

the Kriging believer strategy to select multiple updates. Method 2 uses the goal-based

expected improvement for multiobjective optimization and a multiobjective search to

select multiple updates during the wingbox sizing. Method 2 is based on improvement

criteria introduced within this thesis.

Both methods converge towards a Pareto set of designs within a reasonable time frame,

offering significant improvements over an existing baseline design. When basing the

performance of each method on the hypervolume, method 2 is clearly more efficient,

supporting the use of the goal-based improvement criterion to select multiple updates.

By using a multiobjective search to select multiple updates during the wingbox sizing,

method 2 also reduces the overall run time by 30%. When comparing the final Pareto

sets, method 2 offers a wide choice of designs but method 1 benefits from a single

dominating design, unidentified by method 2.

A number of simplifications in the analysis of each wing design has led to some optimal

designs being impractical in some sense. More realistic designs require a more detailed

analysis incorporating aeroelastic effects, and iterative calculations to compute the re-

quired lift, aircraft range and fuel payload. Nonetheless, the methods tested here have

demonstrated their practical use on an aircraft design problem incorporating expensive

analysis.



Chapter 9

Conclusions and Future Work

In engineering design, the designer is often faced with a number of decisions when

seeking new and improved designs. When the design process involves time consuming

simulations, surrogate models can be used to emulate the expensive analysis and used for

automated and wide ranging design search and optimization. By reducing the number

of designs evaluated using the expensive analysis, surrogate-based optimization offers a

realistic alternative to direct optimization using traditional methods. The efficiency and

reliability of surrogate-based methods depends heavily on the choice of improvement

criterion used to select model update points, the new designs to be evaluated. The

research within this thesis has focused on developing efficient improvement criteria for

constrained and multiobjective problems, leading to several contributions to the field of

surrogate-based optimization. These contributions include:

• Enhanced improvement criteria for constrained problems have been investigated,

demonstrating an increase in efficiency when selecting updates along constraint

boundaries.

• Dealing with constraints in surrogate-based optimization using a multiobjective

search has demonstrated improvements in reliability and efficiency and well suited

for selecting multiple updates to further accelerate convergence towards global

solutions.

• Multiobjective improvement criteria have been extended to select multiple updates,

further accelerating convergence towards Pareto optimal solutions.

• A novel goal-based approach to surrogate-based multiobjective optimization has

been introduced, suitable for selecting both single and multiple updates, offering

improved performance over the other approaches tested.

In Chapter 3 different improvement criteria useful for handling inequality constraints

in surrogate-based optimization were reviewed and tested on different test problems.
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Exploiting the surrogate prediction works well when optimizing simple, unimodal prob-

lems but is not guaranteed to find global solutions when the objective is more complex

and multimodal. Although less efficient on very simple problems, expected improvement

performs better when optimizing more complex objective functions. This is combined

with a penalty or probabilistic approach for constraint handling. A simple penalty per-

forms well when the constraints are simple to approximate but fails to find the best

feasible design when the constraints become more complex. Using the probability of

feasibility relaxes constraint boundaries, identifying the region of the global optimum

on even very complex and multimodal problems but prevents convergence to the most

accurate solutions. Although the correct choice of improvement criterion suitable for

constraint handling appears problem dependent, combining expected improvement of

the objective and probability of feasibility of the constraints generalized well to an air-

craft wing design problem, providing motivation in Chapter 4 to develop probabilistic

approaches further.

The performance of the improvement criteria suitable for constrained optimization was

enhanced in two main ways. Firstly, the enhanced probability of feasibility and expected

feasibility were formulated to encourage updates to be selected along constraint bound-

aries. Handling constraints based on the enhanced improvement criteria better models

likely regions of optimal designs but is only suitable when global solutions are tight.

The second enhancement uses a multiobjective search to better balance the improve-

ment of the objective and feasibility of the constraints. This approaches the problem

differently by avoiding an aggregated search space. This identified better updates lead-

ing to significant improvements in performance when dealing with complex or multiple

constraints.

Using a multiobjective search leads to a Pareto set of solutions that are all optimal in

some sense. In the case of constrained optimization, this leads to a trade-off between

solutions with a high predicted objective improvement but low constraint feasibility and

vice versa. This lends itself to the selection of multiple updates that can be evalu-

ated in parallel, making use of any additional computing resources available. This is

investigated further in Chapter 5 and compared with other multiple update improve-

ment criteria. Assuming four designs can be evaluated in parallel, it was found that a

significant reduction in the overall wall clock time can be achieved when selecting mul-

tiple updates. These improvement criteria were further tested on a wingbox structure

problem, evaluating designs based on a finite element method.

In Chapter 6 we moved away from constrained optimization and investigated improve-

ment criteria suitable for multiobjective problems. This included the multiobjective

probability of improvement and three variations of multiobjective expected improve-

ment. In general, the probability of improvement performed poorly and clear benefits

are associated with formulating multiobjective expected improvement. The best formu-

lation of expected improvement is unclear but basing the improvement on the change
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in hypervolume offered significant enhancements in performance on two of the four

problems tested but with the drawback of a higher computational burden. Chapter 7

extended the multiobjective improvement criteria to select multiple updates. In addition

to extending existing methods, Chapter 7 also introduced a new goal-based approach

suitable for selecting multiple updates in multiobjective optimization. This goal-based

approach was applied to existing improvement criteria, offering very promising results

when formulating the expected improvement using the goal-based improvement in hy-

pervolume. Although this goal-based approach was developed with the intention of

selecting multiple updates, it has also been used successfully to select single updates,

offering a competitive performance with other methods investigated in Chapter 6.

The applicability of the surrogate-based methods to an expensive design problem was

demonstrated in Chapter 8 on a constrained multiobjective wing design problem. Perfor-

mance enhancements associated with the handling of constraints using a multiobjective

search and dealing with multiple objectives using a goal-based approach was demon-

strated and compared with another method using improvement criteria available outside

of this thesis. Both methods utilize the selection of multiple updates, taking advantage

of 16 parallel processes. The best quality Pareto set was found using methods developed

during this research and demonstrates a reduced computational burden.

From this research a number of areas have been identified suitable for further research. In

Chapter 3 we pointed out the potential to hybridize different improvement criteria. This

may provide particularly useful in constrained problems where the development of con-

straint surrogates is vital for good results to be achieved. This may involve using some of

the enhanced improvement criteria discussed in Chapter 4 to exploit constraint bound-

aries towards the end of an optimization. Another avenue for potential research in this

area is to utilize the conditional likelihood discussed in Jones [2001] and Forrester et al.

[2008] for exploiting constraint boundaries.

Chapter 4 discussed some current weaknesses when dealing with constraints using a

multiobjective search. Although this approach provided some significant performance

gains when dealing with problems with only two design variables, the cost of finding

good updates based on a Pareto set of solutions proved impractical on the 11 dimen-

sional aircraft design problem. Further development of this method should concentrate

on testing different multiobjective algorithms suitable for larger dimensions. Further

enhancements may also be achieved by investigating other approaches for selecting a set

of multiple updates from a Pareto set of solutions. This may involve explicitly searching

for knee points, reducing the computational burden of searching multiple objectives.

Coevolution may also provide an alternative approach to finding updates that offer

both objective improvement and constraint feasibility and has frequently been used as

an alternative to multiobjective optimization in the evolutionary computing literature

[Coello Coello et al., 2007].
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Many of the improvement criteria investigated in this thesis that are suitable for con-

straint handling in single objective problems can also be used to handle constraints when

dealing with multiple objectives. It is expected that some of the performance enhance-

ments found in Chapter 4 will translate to multiobjective problems when the Pareto set

lies on constraint boundaries. It is also possible to find a Pareto set of solutions based

on maximizing a multiobjective improvement criteria and maximizing the probability

of feasibility providing an alternative approach to find multiple updates in constrained

multiobjective problems.

We have demonstrated that formulating goal-based improvement can reduce the com-

plexity of multiobjective improvement criteria and lends itself to the selection of multiple

updates. Many potential formulations for goal-based improvement exist and the choice

of suitable goal points is endless, providing a large scope for further development. The

selection of goal points may be combined with the idea of goal-seeking and the condi-

tional likelihood to locally refine Pareto sets or to incorporate user preferences.

Although problems have not been tackled beyond two objectives, it is possible to extend

the goal-based improvement criteria to tackle larger problems. Difficulties are likely to

occur when extending these methods to deal with manyobjective problems but efficiently

solving three and four objective problems is thought to be achievable.

Throughout this thesis, multiple updates have been selected based on the ability to

evaluate four designs in parallel. Choosing four updates is somewhat arbitrary, chosen

here to match available resources on a typical modern desktop machine. In reality

designers are likely to have many processors available and will have to make a decision

on how many designs should be evaluated. Further research into the optimum number of

updates for different test problems would provide some valuable information to designers

that wish to better manage their computational resources.
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Figure A.1: Example Pareto sets for test problem 4 after 60 updates using (a) multi-
objective probability of improvement, (b) Euclidean-based expected improvement, (c)
hypervolume-based expected improvement and (d) maximin expected improvement.

135



136 Appendix A Example Pareto Sets

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

f1

f2

 

 

Pareto front PIkb

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

f1

f2

 

 

Pareto front EIekb

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

f1

f2

 

 

Pareto front EIhkb

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

f1

f2

 

 

Pareto front EImkb

(d)

Figure A.2: Example Pareto sets for test problem 4 after 30 update stages using the
Kriging believer strategy. (a) Multiobjective probability of improvement, (b) Euclidean-
based expected improvement, (c) hypervolume-based expected improvement and (d)

maximin expected improvement.
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Figure A.3: Example Pareto sets for test problem 4 after 30 update stages using
(a) goal-based multiobjective probability of improvement, (b) Euclidean goal-based
expected improvement, (c) goal-based expected improvement in hypervolume and (d)

goal-based maximin expected improvement.
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Figure A.4: Example Pareto sets for test problem 5 after 40 updates using (a) multi-
objective probability of improvement, (b) Euclidean-based expected improvement, (c)
hypervolume-based expected improvement and (d) maximin expected improvement.
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Figure A.5: Example Pareto sets for test problem 5 after 20 update stages using the
Kriging believer strategy. (a) Multiobjective probability of improvement, (b) Euclidean-
based expected improvement, (c) hypervolume-based expected improvement and (d)

maximin expected improvement.
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Figure A.6: Example Pareto sets for test problem 5 after 20 update stages using
(a) goal-based multiobjective probability of improvement, (b) Euclidean goal-based
expected improvement, (c) goal-based expected improvement in hypervolume and (d)

goal-based maximin expected improvement.
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Figure A.7: Example Pareto sets for the Nowacki beam design problem after 40
updates using (a) multiobjective probability of improvement, (b) Euclidean-based ex-
pected improvement, (c) hypervolume-based expected improvement and (d) maximin

expected improvement.
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Figure A.8: Example Pareto sets for the Nowacki beam design problem after 20
update stages using the Kriging beliver strategy. (a) Multiobjective probability of
improvement, (b) Euclidean-based expected improvement, (c) hypervolume-based ex-

pected improvement and (d) maximin expected improvement.
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Figure A.9: Example Pareto sets for the Nowacki beam design problem after 20
update stages using (a) goal-based multiobjective probability of improvement, (b) Eu-
clidean goal-based expected improvement, (c) goal-based expected improvement in hy-

pervolume and (d) goal-based maximin expected improvement.
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Figure A.10: Example Pareto sets for the satellite boom design problem after 60
updates using (a) multiobjective probability of improvement, (b) Euclidean-based ex-
pected improvement, (c) hypervolume-based expected improvement and (d) maximin

expected improvement.
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Figure A.11: Example Pareto sets for the satellite boom design problem after 30
update stages using the Kriging believer strategy. (a) Multiobjective probability of
improvement, (b) Euclidean-based expected improvement, (c) hypervolume-based ex-

pected improvement and (d) maximin expected improvement.
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Figure A.12: Example Pareto sets for the satellite boom design problem after 30
update stages using (a) goal-based multiobjective probability of improvement, (b) Eu-
clidean goal-based expected improvement, (c) goal-based expected improvement in hy-

pervolume and (d) goal-based maximin expected improvement.
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Analytical Expressions for

Goal-Based Improvement Criteria

For a goal point next to an end point (y11, y
1
2) the goal-based probability of improvement

can be expressed as,

P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] = Φ

(
yg1 − ŷ1

ŝ1

)
Φ

(
yg2 − ŷ2

ŝ2

)
+Φ

(
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ŝ1

)[
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(
yg2 − ŷ2

ŝ2

)]
,

(B.1)

and for a goal point next to an end point (ye1, y
e
2),

P [y1 ≤ yg1 ∪ y2 ≤ yg2 ] = Φ

(
yg1 − ŷ1
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)
Φ
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)
+Φ

(
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ŝ2

)[
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ŝ1

)]
.

(B.2)

B.0.1 Euclidean-Based

The Euclidean goal-based expected improvement is given as,

E[IE(x)]G = P [y1 ≤ yg1 ∪ y2 ≤ yg2 ]

√
(ȳ1 − yg1)

2
+ (ȳ2 − yg2)

2
. (B.3)

For a goal point next to an end point (y11, y
1
2)
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ŝ2

)[
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ŷ2Φ

(
yg2 − ŷ2
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For a goal point next to an end point (ye1, y
e
2)
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and
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ŝ2

)
− ŝ2ϕ
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B.0.2 Hypervolume-Based

For a goal point next to an end point (y11, y
1
2) the goal-based expected improvement in

hypervolume can be expressed as,
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ŝ1
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ŝ2

)]
− ymax

2

[
Φ

(
ymax
2 − ŷ2
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ŝ1
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ŝ2
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and for a goal point next to an end point (ye1, y
e
2),
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− ŝ1ϕ

(
yg1 − ŷ1
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ŷ2Φ

(
yg2 − ŷ2
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ŷ1Φ

(
ymax
1 − ŷ1
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− ŷ1Φ

(
yg1 − ŷ1
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B.0.3 Maximin

Given the goal-based maximin expected improvement E[IM (x)]G, equation (7.18), the

goal-based maximin expected improvement for a goal point next to an end point (y11, y
1
2)

can be expressed as,
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and for a goal point next to an end point (ye1, y
e
2),

E[IM (x)]G = E[IM (x)]G +Φ

(
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Appendix C

Aerodynamic Analysis

Using computational tools to analyse aerodynamic performance has become common-

place in engineering design. Fluid flow can usually be described using the Navier-Stokes

equations but since fluid flow is highly nonlinear in nature, using full Navier-Stokes

solvers leads to very large and unrealistic computational demands. A popular approach

to reduce the complexity of the full Navier-Stokes is by using Reynolds averaged Navier-

Stokes (RANS). This approach still allows for compressibility and viscosity effects, but

predicts components of turbulent flow. Assuming the turbulent components are well

modelled, using RANS gives a high fidelity but requires fine and often complex grids,

resulting in a large computational expense and long run times.

It is possible to simplify the governing equations by treating the flow as inviscid. This

assumption leads to the Euler equations. This removes the influence of boundary layers

allowing much coarser grids to be used. Although this reduces computational demands

considerably, removing the boundary layer often results in a lower fidelity prediction of

the fluid flow. Assuming the effects of viscosity can be predicted separately, it is possible

to generate viscous-coupled models that can be used to correct the Euler equations

to include the effects of viscosity. These approaches tend to be less computationally

demanding than RANS but still capable of providing a high level of fidelity.

Lower fidelity approaches can be formed by introducing further assumptions. If in

addition to viscosity, rotation in the flow is also ignored, the flow can be modelled using

the full nonlinear potential method. If also incompressible, this results in the linearized

potential method. The correct choice of CFD solver depends on the application and

must take into account the type of flow, the complexity of geometry, computational

resources and time constraints. In many applications, providing high fidelity analysis

with reasonable computational resources is still a challenge.

Here we consider the application of CFD to transonic wing design. Flight at transonic

speeds incorporates local regions of both subsonic and supersonic flow. Since we are
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concerned with optimization it is necessary to evaluate hundreds of wing designs. Run-

ning a high fidelity solver such as RANS is simply intractable for this kind of study and

the accuracy of flow prediction is sacrificed using a cheaper analysis. Here an inviscid

full potential (FP) method is used with a viscous drag correction.

C.1 Overview of FP and Viscous Drag Correction

The flow solver used is based on the FP algorithm for three dimensional wings developed

and made available by ESDU in 2002. This package includes grid generation, flow

solution and post processing for isolated wings and wing-body combinations [ESDU,

2002]. This algorithm has been extended to include a viscous drag correction and used

for optimization of transonic wing design by Toal [2009].

For a given wing geometry, FP first generates an appropriate mesh and then, by finite

differencing, computes a solution to the full potential equation of inviscid compress-

ible flow in three dimensions. The computed pressure coefficients can then be used to

calculate aerodynamic coefficients for inviscid flow.

To incorporate viscous effects on the drag prediction, the method documented in ESDU

[2008a,b] is used. This includes the computation of several components of viscous drag

using a second flow solver VGK [ESDU, 1996].

Toal [2009] concluded that the FP method is a fast and reliable method for computing

inviscid flow over simple wings, showing very good results on the ONERA-M6 test case.

However, due to the limited number of validation test cases, results should be considered

with care, especially for high speed flows and unusual geometries.

The viscous correction is much more limited, unable to handle complex geometries and

only reliable on shock free attached flow. Nonetheless, the FP method coupled with VGK

viscous prediction is an affordable approach of evaluating the performance of transonic

wing designs and useful for the comparison of optimization techniques.

C.2 ONERA-M6 Test Case

Here we demonstrate the use of FP on the ONERA-M6 wing shown in Figure C.1.

This wing is based on the ONERA-D symmetrical airfoil section with no dihedral and

no twist. This is a classic test case for CFD validation at transonic speeds and high

Reynolds numbers due to its simple geometry and availability of experimental test data.

The pressure distribution computed using FP at a Mach number 0.84 and an angle of

attack of 2°is illustrated in Figure C.2. This shows that FP is capable of capturing the
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8.06 m

11.96 m

30.0°

Figure C.1: ONERA-M6 wing planform.

main transonic flow features, including the ‘λ’ shock wave on the upper surface of the

wing.

(a) (b)

Figure C.2: ONERA-M6 pressure distribution computed using FP. (a) Upper surface.
(b) Lower surface.

Figure C.3 compares the pressure distribution at different spanwise sections with the

experimental test data found in Schmitt and Charpin [1976]. As pointed out in Toal

[2009], it is clear FP is capable of capturing major flow features identified in experiments.

The pressure distribution along the lower surface is accurately predicted along the length

of the span whilst the pressure distribution on the upper surface is less accurate but does

capture the location of leading edge suction and the location of shocks along the span.
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Figure C.3: Comparison of experimental data and computed pressure distribution
using FP at spanwise positions (a) 0.2, (b) 0.44, (c) 0.8 and (d) 0.95.
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Structural Analysis

The most common tool used in structural analysis is the finite element method (FEM).

For simple linear elastic problems with well defined boundary conditions, finite elements

are easy to use and can achieve exact solutions. As the problem becomes harder due to

geometry or becomes nonlinear due to material properties, contact and friction, using

finite elements becomes more complex. Nonetheless, with the correct set up, FEM can

achieve very accurate solutions.

In its simplest form, FEM first discretizes the geometry into many elements with shared

nodal points. The aim is to then predict the response of the structure at each node after

some loads and boundary conditions have been applied. For a linear elastic stress/dis-

placement problem, the deflection of the structure is linearly related to its stiffness and

the displacement at each node can be predicted solving the equations of equilibrium

using matrix methods. Once the displacements have been found, stress and strains can

be easily computed.

In most real design problems, structures are loaded dynamically and materials tend to

have nonlinear stiffness. In these problems it is necessary to solve systems of equations

iteratively, becoming much more computationally expensive. In all cases, the accuracy

of the results depends of the element type, shape and size. As the mesh density in-

creases, the results usually converge towards better solutions but the time to compute

the solution increases.

In this study it is necessary to analyse hundreds of wing designs and using a high fidelity

analysis based on nonlinear equations under dynamic load cases is simply intractable.

To ensure optimization is a feasible task, all structures are assumed to be linear elastic

and buckling loads are computed using an eigenvalue analysis.
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D.1 Overview of Abaqus

Abaqus/Standard is used to analyse the wingbox structure studied in Chapter 5 and

Chapter 8. Based on FEM, Abaqus/Standard provides a library of different elements

that can be used to solve a range of linear and nonlinear structural problems under

different static and dynamic loading conditions. Abaqus/CAE provides functionality

for model generation, submission of jobs and analysis of results. This functionality can

be accessed using a graphical interface or alternatively using Python scripts.

Two analysis procedures are used. The first uses a linear static stress analysis to find the

displacements and stresses through the structure. This procedure solves the linear equi-

librium equations and requires specification of initial conditions, boundary conditions,

material options, elements and loads. For the wingbox structure, initial conditions,

boundary conditions and material options are known and the loads are determined by

the FP flow solver. The effect of the element type and size is investigated on a simple

cantilever beam in the next section.

The second procedure uses an eigenvalue buckling prediction to find critical loads.

Abaqus looks for the loads which cause the structure stiffness matrix to become zero.

This procedure requires specification of a base state, boundary conditions, material op-

tions, loads, elements and an eigenvalue extraction method. As in the stress analysis,

the base state, boundary conditions material and loads are known. In all cases the eigen-

value extraction uses the Lanczos method to find the first eigenvalue λ1. This eigenvalue

indicates the critical buckling load as a factor of the applied load, therefore a λ1 ≤ 1

indicates buckling at the applied load. The effect the choice of element type and size

has on the buckling prediction is investigated in the next section.

D.2 Element Comparison

The selection of the correct element type has a large impact on the quality of results ob-

tained using FEM. It is important to consider the element type but also properties of the

mesh. Throughout this study, unstructured meshing is used. In many cases a structured

mesh will provide better results but is much more difficult to generate automatically,

especially on complex geometry. Using free meshing in Abaqus reliably generates meshes

on all types of geometry being more suitable for automated optimization.

Here three types of conventional homogeneous shell elements are tested. This includes

a general purpose four node shell element S4 suitable for both thin and thick shell

elements. A reduced integration four node shell element S4R and a quadratic eight

node shell element S8R suitable for thick shell elements. All these shell elements assume

the thickness of the structure is significantly smaller than the other dimensions. This
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is considered to be the case for all components in the wingbox structure modelled, a

common assumption in conceptual and preliminary wingbox design [Giles, 1986].

D.2.1 Linear Static Stress Analysis

The performance of different elements and mesh sizes using the linear static stress anal-

ysis is compared using a simple cantilever design problem, Figure D.1. This considers

a beam of length l = 20 m, depth d = 1 m and thickness t = 0.01 m with a tip load

F = 10 kN, made from Aluminium with Young’s modulus E = 71.7 GPa.

The tip displacement computed by Abaqus is compared with that given by simple beam

theory as δ = 0.4463 m. Given the Airy stress function ϕ = Ay3+By3x+Cyx, satisfying

equilibrium and compatibility equations, the stress in a cantilever beam with tip load is

given analytically as

σx =
Fy

I
(l − x) . (D.1)

This assumes that the constrained end of the beam is free to distort which is not true in

practice. Nonetheless, by virtue of St. Venant’s principle this solution can be considered

exact away from the constrained end. A comparison of stress is made at mid span and

on the top face (x = 10, y = 0.5). Following the above formulae the stress at this point

is given as σx = 60 MPa.
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Figure D.1: Beam.

Table D.1 demonstrates the error in the displacement and stress prediction when using

different element types and mesh seed sizes. Due to additional nodes in the quadratic

S8R element, this provides the most accurate prediction, even at larger seed sizes. The

less computationally demanding S4 and S4R elements provide a reasonable accuracy

when using a finer mesh (smaller seed size). The S4 element also performs well with

a seed size of 0.5, resulting in a relatively coarse mesh. This is due to the free mesh

tool generating a well structured mesh. However, this is not guaranteed to be the case
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in practise when the geometry in more complex and the mesh is unlikely to be so well

structured.

Table D.1: Error in tip displacement and stress prediction.

S4 S4R S8R

Seed size Displacement Stress Displacement Stress Displacement Stress
error (%) error (%) error (%) error (%) error (%) error (%)

0.5 0.32 0.38 33.31 32.84 0.03 0.00
0.4 2.97 8.38 21.13 15.28 0.02 0.02
0.3 2.06 4.22 6.76 20.04 0.03 0.07
0.2 0.34 0.48 2.95 14.19 0.06 0.00
0.1 0.07 1.14 0.68 8.47 0.08 0.00

D.2.2 Eigenvalue Buckling Prediction

The behaviour of the eigenvalue buckling prediction is investigated using a simply sup-

ported square plate with sides b = 2 m, thickness t = 0.01 m, Young’s modulus E = 71.7

GPa and a Poisson ratio ν = 0.33. With a compressive load is applied to opposite ends

of the plate, the analytical solution for the critical buckling load is given as

NCR =
4π2Et3

12b2 (1− ν2)
. (D.2)

Given a uniform load of N = 2.5 kNm−1 this is gives an expected eigenvalue λ1 = 6.6178.
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Figure D.2: Plate.

Table D.2 shows the influence of the element type and mesh seed size on the eigenvalue

buckling prediction. Again the S8R element provides an accurate buckling prediction
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for all the mesh seed sizes tested. Although less accurate, both the S4 and S4R elements

are capable of predicting λ1 within a reasonable accuracy and becomes more accurate

when using a finer mesh.

Table D.2: Error in buckling prediction.

S4 S4R S8R

Seed size Eigenvalue Eigenvalue Eigenvalue
error (%) error (%) error (%)

0.5 2.18 2.68 0.07
0.4 1.39 1.70 0.01
0.3 0.70 0.86 0.00
0.2 0.35 0.42 0.03
0.1 0.08 0.09 0.03





Appendix E

Wing Design Example

In both Chapter 5 and Chapter 8 we optimize the design of a wingbox structure. In

Chapter 5 the structural weight is minimized for a fixed planform whilst in Chapter 8 we

allow the planform to vary and optimize for both minimum drag and minimum wingbox

weight.

Each wing design is based on a 150 seat passenger aircraft flying at a cruise speed of

Mach 0.8 at 11,000 m. The wing is based on the ONERA-D airfoil section and is required

to produce enough lift for a maximum cruise weight of 60,000 kg. The following sections

contain further details on the drag calculation, the wingbox design and the application

of aerodynamic loads.

E.1 Drag Calculation

To achieve the required CL, each planform design is evaluated up to four times using the

FP design tool. The first two simulations are used to compute the wings lift curve slope.

A third simulation is then run at the angle of incidence that is predicted to achieve

the required CL. If the resulting CL from the third simulation is within 0.0025 of the

required CL, this is taken to be the correct angle of incidence for that particular wing

planform. If required, a fourth simulation is run to find a new CL closer to what is

required. The final simulation is followed by the VGK based drag correction to compute

the contribution of drag due to viscous effects. The final drag is taken as a combination

of the wave and vortex drag computed using FP and the viscous drag computed using

VGK. This process provides the wing drag and pressure distribution for the upper and

lower wing surfaces, taking up to 30 minutes to run on a single processor.

The wing planform is based on four design variables consisting of the root chord, span,

taper ratio and quarter chord sweep angle.
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E.2 Wingbox Design

The design of the wingbox has been simplified in a number of ways, resulting in a model

that deviates from an actual wing structure but provides a model that can be easily

parameterized and gives representative results in a convenient time frame. The wingbox

is simplified assuming the following:

1. Wing control surfaces (flaps, slats, ailerons etc) are not considered and the wing is

taken as a single structure.

2. Any minor structural details are ignored. This may include fillets, rivets, fasteners

and small elements of reinforcement.

3. The wing skin, spars and ribs are all considered as solid thin shells with constant

thickness.

4. Aluminium alloy 7050-T7451 is used throughout the structure and assumed to be

homogenous.

A wing model based on these simplifications is expected to be different from an actual

wing structure but for the overall aims of this research these simplification are sufficient.

The front and rear spar are positioned at 15% and 65% chord respectively and the

wingbox structure is defined by a further four design variables, the spar thickness, rib

thickness, skin thickness and the rib pitch (the spacing between each rib).

E.3 Wing Loading

For each wing planform, aerodynamic loads are computed and applied to the wingbox

structure. FP provides a distribution of pressure loads over the entire planform of the

wing. To transfer these loads to the wingbox model, the chordwise pressure distribution

is integrated at each spanwise position. This spanwise distribution is then applied to the

wingbox assuming a uniform pressure along the chord. Note that by assuming a uniform

pressure, we simplify the loading distribution and reduce the influence of any chordwise

bending moment. This is a consequence of only modelling the structure of the wingbox

section rather than the entire wing and likely to be a limited approximation for detailed

analysis. Although the approach taken here is unlikely to capture all the applied loads

accurately, we consider this simplification reasonable for the overall aims of this study.

See Hürlimann [2010] for a more sophisticated approach, applying aerodynamic loads as

nodal forces. Figures E.1 and E.2 demonstrate the transformation of loading between

the entire wing section to just that of the wingbox. The loading profile is modelled

using a high order polynomial and applied in Abaqus expressed as an equation defined

pressure field.
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(a) (b)

Figure E.1: Pressure distribution over wing planform computed using FP. (a) Upper
surface. (b) Lower surface.

(a) (b)

Figure E.2: Integrated pressure distribution over wingbox section. (a) Upper surface.
(b) Lower surface.

E.4 Wingbox Constraints

In conceptual design, it is a common approach to treat an aircraft wing as a simple

cantilever beam. In practise, the stresses at the root of an aircraft wing are not as severe

as predicted by a cantilever due to the deformation of the fuselage. To accommodate

these effects, an encastre boundary condition is placed on a section away from the main

wingbox structure. This avoids an unrealistic concentration of forces at the wing root.

The main wingbox section and additional encastre section is pictured in Figure E.3.

To ensure the wingbox design is feasible, design constraints exist on structural stresses,

deformation and buckling. A full analysis would consider stress constraints on every

element of the model, displacement constraints on every node and a buckling prediction

for several wing sections. To keep this problem manageable and suitable for optimization,

only the maximum stress at the root of the wingbox and the maximum displacement

at the wing tip are constrained. The buckling prediction is performed over the whole
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Figure E.3: Constrained wingbox section. –Constrained box section. –Main
wingbox section.

wing as a single section. Although this may not accurately represent the location of

maximum stress and maximum deformation on every design iteration, this is considered

to be representative and suitable for the aims of this study.

Table E.1 shows all design variables, limits, objective and constraint values. In this

study the maximum allowable stress is represented in terms of a safety factor equivalent

to the material yield stress σy = 469 MPa divided by the maximum Von-Mises stress

at the wingbox root. The optimized structure for this particular planform are those

documented in Chapter 5, Table 5.2.

Table E.1: Baseline design variables, limits, constraint values, and objective value.

Lower limit Baseline value Upper limit Type Quantity

6 7.5 9 Variable Root chord, m
15 17.5 20 Variable Span, m
0.2 0.5 0.8 Variable Taper ratio
10 25 40 Variable Quarter chord

sweep angle, deg
0.010 0.034 0.050 Variable Spar thickness, m
0.010 0.050 0.050 Variable Rib thickness, m
0.010 0.030 0.030 Variable Skin thickness, m
0.020 0.034 0.200 Variable Rib pitch, m
1.50 1.67 —– Constraint Stress safety factor
—– 1.48 1.50 Constraint Tip displacement, m
1.00 1.71 —– Constraint Buckling eigenvalue
—– 16458 —– Objective Wingbox weight, kg
—– 0.020 —– Objective Wing drag coefficient
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E.5 Wingbox Mesh

To determine the most suitable element type and mesh seed size for the structural

analysis of the wingbox design, a mesh dependency study is performed, see Table E.2,

E.3 and E.4. Here we compare the stress, displacement and buckling prediction based

on the baseline wingbox design with design variables listed in Table E.1. Since we aim

to optimize the structural weight of the wingbox design, the runtime of each analysis is

an important consideration.

Based on this baseline design, the S8R element is the most accurate but suffers from

longer run times when compared to the other elements. The S8R element is also much

more unreliable and fails to find solutions when using finer meshes due to distorted

elements, E.4. Using S4 elements provides more consistent solutions when compared to

the S4R element but has a longer run time when using finer meshes. The difference in

this run time is small in this baseline design example but becomes more significant on

wings with a larger chord, span and smaller rib pitch. In favour of reducing the overall

runtime when evaluating many wings, the less computational expensive S4R elements

are used in this study. We select a seed size of 0.25 as a compromise between runtime

and accuracy but also since this seed size ensures a minimum of two elements along the

smallest dimension of the wingbox structure.

Figure E.4 demonstrates the mesh based on this seed size, stress and displacement

prediction for the baseline design variables in Table E.1.
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Table E.2: S4 element.

Seed size Node count Displacement (m) Safety Factor Eigenvalue Run time (sec)

0.5 1342 1.82 1.48 0.55 30.7
0.4 1926 1.81 1.46 3.59 34.9
0.3 3213 1.73 1.47 1.32 41.7
0.2 6488 1.69 1.47 1.82 59.9
0.1 23840 1.63 1.46 1.61 198.4

Table E.3: S4R element.

Seed size Node count Displacement (m) Safety Factor Eigenvalue Run time (sec)

0.5 1342 1.76 1.56 0.52 28.4
0.4 1926 1.67 1.52 3.31 35.0
0.3 3213 1.72 1.49 1.29 39.3
0.2 6488 1.69 1.48 1.81 51.3
0.1 23840 1.63 1.47 1.60 126.8

Table E.4: S8R element (blanks indicate failed analysis due to distortion).

Seed size Node count Displacement (m) Safety Factor Eigenvalue Run time (sec)

0.5 3491 1.72 1.46 1.97 38.6
0.4 5151 1.70 1.46 1.84 50.9
0.3 3328 – – – –
0.2 18307 – – – –
0.1 69352 – – – –
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(a)

(b)

(c)

Figure E.4: Structural analysis on baseline wing design. (a) Mesh with seed size
0.25. (b) Deflection and Von-Mises stress prediction. (c) Deflection and displacement

prediction.
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R. Carrese, A. Sóbester, H. Winarto, and X. Li. Swarm heuristic for identifying preferred

solutions in surrogate-based multi-objective engineering design. AIAA Journal, 49(7):

1473–1449, 2011.
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