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We propose an exciton-polariton-mediated self-organization effect in transparent SiO2 glass under

intense femtosecond light irradiation. Interference and dipole-dipole interaction of polaritons

causes formation of gratings of dielectric polarization. Due to an ultrafast exciton self-localization

into a quasicrystal structure, the polariton gratings remain frozen in glass and a permanent

three-dimensional image of exciton-polariton gas is created. We show that coherent effects in

propagation of exciton-polaritons can serve as a tool for nanostructuring and fabrication of

5-dimensional optical memories in glass, opening new horizons for polaritronics. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4742899]

Progress in high power ultrashort pulse lasers has opened

new frontiers in physics of light-matter interaction ranging

from microsurgery to non-reciprocal writing.1–3 One of the

unsolved puzzles in this field is the observation of self-

assembled periodic structures in variety of optical materials

subjected to intense laser irradiation.4 A decade ago, highly

ordered subwavelength structures with features smaller than

20 nm were discovered in the ultrafast laser irradiated volume

of SiO2 glass,5 which were found to be responsible6 for the

induced optical anisotropy reported earlier.7,8 Despite several

attempts to explain the peculiar self-organization process, the

formation of these nanostructures still remains debatable.5,9

The effect of nanograting formation has already found numer-

ous applications for polarization control devices10–12 and

microfluidics.13 More recently, the subwavelength nanostruc-

tures were also proposed for rewritable polarization multi-

plexed optical memory,14 where the information encoding

would be realized by means of two birefringence parameters,

i.e. the slow axis orientation (4th dimension) and strength of

retardance (5th dimension), in addition to three spatial coordi-

nates. However, the implementation of the independent

manipulation in 4th and 5th dimensions has not been demon-

strated. In this letter, we demonstrate the crucial role of coher-

ent light-exciton waves in ultrafast laser writing. We explain

the observed self-assembling process by the interference of

coherent exciton-polariton modes induced in a wide band-gap

amorphous material and demonstrate harnessing of this effect

for independent multidimensional access for optical data

recording.

In our experiments, we used two femtosecond pulse

sources. The first laser source was a fibre laser system

(IMRA America FCPA lJewel D-400) with a variable repe-

tition rate from 200 kHz to 1 MHz, pulse duration of 400 fs

1045 nm. The implementation of 5-dimensional memory was

performed on a regeneratively amplified mode-locked sys-

tem based on a Yb:KGW crystal operating at 1030 nm and

emitting pulses of 300 fs at 200 kHz repetition rate. Pulse

energy during the experiment was set to 1.3 lJ.

The irradiated sample was lapped with aluminium oxide

and then polished with Syton. Sample was imaged with back-

scattering scanning electron microscope without subsequent

chemical etching, which is normally used imaging such struc-

tures. The images revealed periodic nanostructures due to the

material density variation created during laser irradiation

(Fig. 1). An evident abrupt change of the density suggests

that the mechanism leading to the periodic nanostructuring is

highly nonlinear. Backscattered electron analysis reveals that

the nanogratings consist of a periodic distribution of oxygen-

deficient regions (SiO2-x).5 The main observed features of the

nanogratings: (i) the period in the propagation direction

increases with the distance from the front of the laser induced

structure, starting from a value close to the laser radiation

wavelength; (ii) the transverse grating appears in the direction

of the polarization vector and has a period less than the wave-

length of light (Fig. 1).

The earlier attempts to explain the ultrafast laser

induced nanogratings inside transparent materials were made

by two different models based on a laser generated electron

plasma.5,9 One, adopted from the conventional theory of

laser induced surface ripples formation, relies on the interfer-

ence of bulk electron plasma waves with the incident light,5

while the other attempts to explain the subwavelength struc-

ture formation by nanoplasmas.9 However, none of these

mechanisms can explain all peculiar features of the ultrafast

laser induced nanogratings. We note that in the conditions of

our experiments the silica glass remains below the critical

FIG. 1. Self-assembled nanograting induced by femtosecond laser irradia-

tion (k¼ 1045 nm) inside fused silica. SEM image with backscattered elec-

trons is taken of not chemically etched sample. Two periodicities (along the

light propagation and electric field directions) can be clearly seen. The

arrows indicate light propagation and electric field E polarization directions,

n¼ 1.45 is the refractive index of fused silica.
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plasma concentration,16 so that one can hardly expect signifi-

cant plasmon features. The plasma frequency cannot be

defined as it depends on the concentration of free carriers,

which is nearly zero in the absence of light and strongly varies

as a function of time when the sample is illuminated with a

light pulse. It is also unclear how plasmons may be responsi-

ble for the formation of a grating in the propagation direction.

We rule out the plasmon scenario, and show here that the

nanograting is formed due to interference, attractive interac-

tion and self-trapping of exciton-polaritons.17 Exciton-

polaritons are mixed light-matter quasiparticles responsible

for fascinating non-linear optical effects in semiconductors

including polariton lasing, Bose-Einstein condensation and

are promising for applications in so-called polaritronics.18

Exciton-polaritons in amorphous dielectrics have not been

studied experimentally until now, while, theoretically, noth-

ing prevents their formation and propagation in glasses. Prop-

agation of exciton-polaritons can be understood as a chain of

virtual absorption-emission acts, and it does not imply motion

of individual excitons, in general. This is why exciton-

polaritons may spread even in strongly localised systems,

e.g., arrays of quantum dots.

It is well-known that the absorption spectrum of SiO2

is characterised by a strong exciton peak at about �hx0

¼ 10.4 eV.19,20 The binding energy and oscillator strength of

excitons in SiO2 are expected to exceed by orders of magni-

tude those in GaAs, where excitonic effects are studied in

detail. In striking similarity to our observation of nanostruc-

tures in fused silica, formation of a polarization grating in

the direction of propagation of light due to interference of

exciton-polariton modes in GaAs was predicted more than

11 years ago.21 The period of this grating was found to grad-

ually increase as a function of the distance from the front

edge of the sample due to the dependence of the splitting

between two interfering exciton-polariton modes on the

group velocity of the exciton-polaritons. In our case, the two

dispersion branches of exciton-polaritons (Fig. 2(a)) may be

excited simultaneously by multiphoton absorption. The inter-

ference of propagating exciton-polaritons results in forma-

tion of the polarization grating shown in Fig. 2(b).

Within the polariton model, we simulated the nanograt-

ing using a linear semiclassical approach. The dielectric

polarization in the direction of propagation is calculated as

Pexcðz; tÞ ¼
1

2p

ð1

�1

dz0gðz� z0Þ
ð1

�1

dx½veðxÞEðz0;xÞe�ixt�;

(1)

where E(z, x) are solutions of Maxwell’s equations in the

frequency domain, gðzÞ ¼ INðzÞ where IðzÞ is the spatial

shape of the incident pulse, N is a number of photons partici-

pating in the multiphoton absorption process (typically, 7

Ti:Sapphire photons are needed to excite one exciton in

silica glass). The dielectric susceptibility is given by,

ve ¼
ebxLT

x0 � x� ic
; (2)

x0 and xLT denote the exciton resonance frequency and the

exciton longitudinal-transverse splitting respectively, c is the

exciton non-radiative broadening, and eb is the background

dielectric constant. The scattering states can be found using

the transfer matrix method, however in our case we are deal-

ing with a single layer (i.e., a bulk structure), in which case

the scattering state reduces to a plane wave Eðz;xÞ ¼ eikðxÞz.
We underline that the inevitable exciton inhomogeneous

broadening does not qualitatively change the effect of gra-

ting formation.21 The splitting of exciton-polariton modes in

SiO2 is more than 100 meV, which exceeds the inhomogene-

ous broadening of the free exciton resonance. Also note that

the first period of the polariton grating shown in Fig. 2(b) is

very close to the wavelength of light. Then the period

increases as a square root of the distance from the sample

edge, approximately. These two features are in excellent

agreement with the experiment which confirms the validity

of the model.

To obtain the distribution of the exciton density in the

direction of light polarization, we resolve a one-dimensional

Gross-Pitaevskii equation describing propagation and attrac-

tive dipole-dipole interaction between coherent exciton-

polaritons,

H ¼ � �h2

2m

@2

@x2
þ ajwj2; (3)

where m is the mass of an exciton and a is the negative

(attraction) exciton-exciton interaction constant. The equa-

tion is solved variationally using the following trial function:

FIG. 2. Theoretical simulation of the forma-

tion of the nanograting. (a) A schematic of

the exciton-polariton dispersion, showing a

point on the upper polariton branch (UP)

and a point on the lower polariton branch

(LP) with the same group velocity, and their

splitting in energy DE (not to scale). (c)

shows the grating in x and in z, while (b)

shows a zoom of the grating in the z-

direction. In (c) the exciton mean free path is

taken as d¼ 300 nm and the exciton mass

equal to the free electron mass. Time,

t¼ 300 fs relative to the arrival of the light

pulse at z¼ 0. �hxLT¼ 0.5 meV, �hc¼ 1 meV,

ne¼ 105 cm�1, and eb¼ 3.
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w ¼
ffiffiffiffi
N

a

r
2

p

� �1
4

e�x2=a2

; (4)

where N¼ nd is the number of excitons, d is the exciton

mean free path and a defines the width of the Gaussian. We

then may find the energy and minimise with respect to a
using only two fitting parameters: interaction constant a and

exciton free mean path d. The best fits were obtained with

a¼ 2.25� 10�7 meV�cm and d¼ 300 nm. The calculation

with only two fitting parameters (the interaction constant and

exciton mean free path in the polarization direction) yields

an excellent qualitative agreement with the experiment. We

estimate that critical concentration for periodic exciton-

polariton grating formation is about 1015 cm�3. If exciton-

polariton concentration is below this value the grating is not

formed and induced modification does not exhibit anisot-

ropy. This could explain phase transition from isotropic re-

fractive index increase to birefringent modification reported

by several groups.22,23

Self-organization of exciton-polaritons is qualitatively

similar to the exciton pattern formation effect observed in

cold exciton gases:24 in both cases the instability in the exci-

ton (exciton-polariton) gas appears due to dipole-dipole

interactions between its constituents. The difference is in the

sign of interaction, which is repulsive in Ref. 24 and attrac-

tive in our case. We note that exciton-polaritons form a dy-

namical grating which evolves in time. However, the

lifetime of exciton-polaritons is limited to a fraction of a

picosecond by their phonon assisted relaxation to indirect

exciton states decoupled from light.25 These indirect exci-

tons are essentially immobile. They are easily self-trapped

and live for several microseconds or even longer.17 Excitons

generated by subsequently arriving pulses of light are accu-

mulated in significant concentrations in the specific sites of

the sample corresponding to the peaks of the exciton-

polariton density in the polariton grating that is generated in

the same fashion by all pulses. Recombination of self-

trapped excitons is accompanied by generation of molecular

oxygen26,27 due to the photosynthesis-like reaction,

SiO2 þ X! Siþ O2; (5)

where X denotes an exciton. Nanopores of silica filled by oxy-

gen27 are formed in the locations of high concentrations of

self-trapped excitons. Formation of pores in fused silica was

recently confirmed by another group investigating volume

expansion induced by femtosecond laser irradiation.28

Agglomerations of these nanopores form the grating seen in

the SEM images (Fig. 1). They are responsible for the freezing

of the polariton-induced polarisation grating in silica glasses.

The described nanogratings are responsible for strong

birefringence, which can be described by two independent

parameters: retardance and slow axis direction. The ability

of independent control of these two parameters with expo-

sure and polarization of irradiation was demonstrated by

simultaneously recording of two data sets represented by

portraits of I. Newton and J. C. Maxwell (Fig. 3) inside fused

quartz. The 4th dimension of optical data storage, which is

as an orientation of slow axis, could be recorded with a reso-

lution of several degrees in the range from 0 to 180�. The

best results were achieved when the experimental conditions

were chosen to avoid retardance saturation over a certain

number of pulses. As a result we were able to expand the

retardance range over 100 nm and determine eight discrete

levels, which were used to record data in the 5th dimension.

The reading of the polarization information was imple-

mented with a quantitative birefringence measurement sys-

tem based on a liquid crystal polarization compensator and a

conventional optical microscope. Both dimensions were

read-out with a high degree of distinction and negligible

cross-talk. The demonstrated method of information encod-

ing by means of birefringence can be implemented not only

in optical storage, but also as a counterfeiting marking tech-

nology. As a result we are able to validate the possibility of

producing optical memory with five independent parameters

by using monochromatic illumination for recording and

reading—as opposed to the previously suggested plasmonic

multidimensional optical storage.15

In conclusion, we show that coherent polariton fluid,

exited by multiphoton absorption, can play an important role

in a wide bandgap amorphous material. The coherence time

of polaritons in the glass is extremely short, less than a fraction

of picoseconds. However, an ultrafast exciton self-trapping

mechanism imprints the permanent image of a polariton gra-

ting. The effect gives a deep insight into the exciton-polariton

dynamics during the first picoseconds of their life. The rapid

transformation of free exciton-polaritons to immobile self-

trapped indirect excitons freezes the exciton-polariton polar-

ization grating in glass. Recombination of the self-trapped

excitons induces the synthesis of molecular oxygen and

FIG. 3. Ultrafast optical recording via self-

assembled nanograting induced birefringence

in fused silica. Maxwell and Newton are

recorded in one image (left, in pseudo col-

ors), however, they can be easily decoupled

as Maxwell is recorded in strength of retard-

ance (center) and Newton in azimuth of the

slow axis (right). Size is 1.5� 2 mm.
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creates nanopores in silica, which modify the refractive index

and induce birefringence in the glass. In addition, we demon-

strated five-dimensional optical memory based on the effect of

polaritonic self-assembly. The reported effect of polaritonic

self-assembly will open new opportunities for material struc-

turing and control at subwavelength scales and shows the high

potentiality of polaritronics.18
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