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Abstract This paper presents a methodology for fusing data from multiple sensors, including
wireless devices, to make an estimation of the state of an urban traffic network. An extended
Kalman filter is employed along with a state evolution model to make estimates of the state in
a discretized network. Results are presented from simulation tests of signal controllers on a
network with three signalized junctions. Two signal control methods are tested: SCOOT and a
machine learning junction control algorithm that employs the discretized state structure
described in this paper. These tests represent lower and upper performance benchmarks and
present a significant difference. The tests also demonstrate a framework for the future

evaluation of the proposed methodology.
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Introduction

The number of wireless devices in the transport network is growing rapidly. This includes
smart-phones carried by drivers and passengers, in-car blue-tooth systems (for example in the
radio) and, increasingly in-car WiFi. Chrysler, BMW and Toyota are all currently developing
and/or marketing in car WiFi systems for information, entertainment and ITS (Intelligent
Transportation Systems) applications [1]. In Europe three major studies have recently
examined the benefits of vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) WiFi
communications [2,3,4]. Furthermore common European protocols have been set for this type
of communication IEEE 802.11p).
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It is clear that the future trend is towards a large number of different types of wireless devices
in the road traffic network. The data that may be available from these wireless devices carries
valuable information that can be exploited by Urban Traffic Control (UTC) systems. The
challenge becomes to combine these data sources and existing traffic data sources (e.g.
inductive loops [5], microwave detectors [6], cameras [7]) to estimate a single coherent image

of the state of the network.

The potential value of wireless device data in UTC has been investigated by simulating
prototype junction systems that employ simulated wireless data in their control algorithms
[8,9,10]. This research indicates that signal controllers that employ wireless data can
significantly outperform existing control systems (e.g. MOVA [11]) both in terms of delay and
equitability. In this case the variance of the distribution of journey times across the junction is
taken as a measure of equitability. In particular [9] and [10] show that the fidelity of wireless
data supports the use of machine learning signal control algorithms, which exhibit high

performance.

This paper presents a methodology for estimating a single coherent image of the state of the
network that can support machine learning algorithms for urban signalized junction control.
The proposed methodology discretizes the road network into small areas at the lane level.
Metrics defining the state of the network (e.g. average speed V, number of vehicles N) are
associated with each area and estimated from multiple information sources using an Extended
Kalman Filter (EKF).

Simulation test results are presented for two baseline scenarios. One where perfect data are
employed along with machine learning control algorithms to control a junction and another

where the SCOOT algorithm [12], using inductive loops, is used to control the same junction.

Methodology

The UTC systems described above all use dedicated sensors, which collect census data, that is
vehicles are detected passing a specific point in space. Wireless device technology can be used
to collect census data (e.g. with Bluetooth detectors at the roadside), however it can also be

used to collect probe data, that is tracking the position and speed of individual vehicles.

Trying to combine multiple independent sources of wireless and non-wireless data, which are
measuring different things in different ways, can present some challenges. For example, not
all of the data sources are available all of the time (latency); data from different sources may

be contradictory; some vehicles may contain multiple wireless devices, some none (penetration).
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Figure 1 — A four junction network with three signalized junctions (the corners of the triangle) is

discretised into areas (numbered) to define the network state.

The proposed methodology to meet these challenges is to employ an Extended Kalman Filter
(EKF) [13] as described in this section.

Definition of State

Within the EKF framework we assume that no single source of information is providing the
truth of the state on the road but is instead providing us with evidence of a state, which must
be defined. To define the state we discretize the network up into small areas, an example is
shown in Figure 1. Each area has one or more metrics associated with it. In the example
presented here we assume two metrics: mean vehicle speed, averaged across all vehicles in the
area at time t (V,) and number of vehicles in the area at time (N,). The size/granularity of
areas is something which can be set up in the design of the network state and tuned to provide

the required level of complexity in information.

The EKF framework employs a state evolution modelto make a prediction of the state in each
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area by dynamically modelling how these states change with time. The prediction is then used
estimate the sensor measurements that will be collected via the sensor model The EKF
equations [13] use the difference between these predicted sensor measurements and the actual
recorded measurements to estimate the true state in each area. Examples of a simple state

evolution model and sensor model are given below.

State Evolution Model

When dynamically assessing the state of the network it is possible to make reasonable
predictions of how the state will evolve over the very short term, even in the absence of any
information from sensors. This can be useful, especially during short periods of high sensor

latency. An example of a simple state evolution model is presented below.
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Figure 2 — State evolution model predict the flow of vehicles between neighbouring areas.

Each area in the network is considered individually along with its upstream neighbour (Figure
2). The out-flow of an area at time t(Q,) is estimated from V, and N, within the area using
(1), for the special case where end of the area corresponds with a junction stop line and the

light is currently red, where Q, =0 (1).
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Where [ is the total length of all lanes in the area.

The model estimates the state in area A at time t+ 1 as
Nptr1 = Nyt + Qp 6t — Qq 6t 2)
Vaee1=Vay 3

B




A methodology for traffic state estimation and signal control utilizing high wireless device
penetration

Figure 3 — State evolution model — multiple upstream neighbours are possible e.g. at junctions

Where 6t is the time step between t and t + 1. In the event that area A has more than one
upstream neighbour (Figure 3), for example, at a junction, then the model is adjusted as in
equation (4).

Nptr1 = Nye + Qp8t+Qc 6t — Q6 (4)

Sensor Model

The goal of the sensor model is to estimate the sensor signals that will be received given the
predicted state. The specific sensor model employed depends on how many sensors, which
collect census data are in the area of interest and how many zypes of wireless probe sensors
are currently in the network. In general for a census sensor C;, The expected number of counts
registered on the sensor for time interval §t. Is modelled as in (9), where the superscript (-)
indicates the value predicted by the state evolution model.

_ Nite1Vars10t )
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For a wireless probe sensor type W, The expected number of detections in area A is modelled
as
N" = Ngpyr9™ (10)
Where ¢"1is the penetration rate for W,, which is the fraction of vehicles in the network that
carry sensor type W,. For some sensors, for example mobile phones, ¢"* could be greater than

1.

If the wireless probe sensor W; can report vehicle speed then the mean speed averaged across
all W, sensors detected in area A is modelled as

VWi =V (11)
The same approach in (11) is used for census detectors that measure speed, for example

inductive loop pairs..

Signal Control: Benchmark Tests

The type of discretized network state described in the previous section can be used as an input
to machine learning junction control algorithms of the type described in [9,10]. Under this
approach each junction has a corresponding set of areas which are deemed important to its
signal control decision making. The metrics attached to the areas form the input nodes to a
neural network. The output of the neural network is a decision as to which stage of the junction

gets the green light at time t+1.



A methodology for traffic state estimation and signal control utilizing high wireless device
penetration

The neural network function can be trained in a number of ways including by a human expert
using a computer game interface [9] and through trial and error, with feedback (reinforcement
learning)[10]. The latter technique allows junctions to learn improvements in strategy while

in operation.

In order to provide performance benchmarks for the evaluation of the methodology described
in this paper micro-simulation tests were carried out on the three junction network shown in

Figure 1 using S-Paramics micro-simulation software.

The lower benchmark test was a four (simulated) hours run, where the junctions were
controlled by the SCOOT algorithm. The SCOOT API for S-Paramics was configured by a
qualified SCOOT engineer from Siemens Traffic Solutions, UK.

The upper benchmark test was an otherwise identical four (simulated) hours run, where the
junctions were controlled by the machine learning control system described in [9]. In this case

perfect information was assumed in each of the discretized network areas.

Figure 4. Shows the transient journey times averaged across all vehicles leaving the
simulation area in a 5 minute period. These values are plotted across the four hour test time

for both SCOOT control and machine learning control.
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Figure 4 — Performance of upper and lower benchmark tests on the three junction network in

Figure 1.
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The evidence in Figure 4 shows that there is a significant performance differential between
the upper and a lower benchmarks indicating that there is value in pursuing the gathering of
wireless data for urban traffic control. Because perfect information is assumed in the upper
benchmark test it does not represent a validation of the proposed EKF approach or the state-

evolution model.

Conclusions

This paper has presented a methodology for estimating the state of the road network for UTC
applications. The methodology can employ existing UTC sensors, for example inductive loops,
microwave sensors and cameras. However it can also employ multiple types of wireless device
sensors. By design the Extended Kalman Filter approach proposed is flexible to varying rates

of penetration and latency in these sensors.

Results from simulation experiments have demonstrated a framework for the evaluation of
the proposed methodology. Upper and lower benchmark tests of, respectively, a machine
learning controller with perfect information and the SCOOT junction control system. The
results of these tests in Figure 4 indicate that there is significant domain in which
improvements over current systems are possible through the employment of wireless device

data.
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