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Abstract This paper presents a methodology for fusing data from multiple sensors, including 

wireless devices, to make an estimation of the state of an urban traffic network. An extended 

Kalman filter is employed along with a state evolution model to make estimates of the state in 

a discretized network. Results are presented from simulation tests of signal controllers on a 

network with three signalized junctions. Two signal control methods are tested: SCOOT and a 

machine learning junction control algorithm that employs the discretized state structure 

described in this paper. These tests represent lower and upper performance benchmarks and 

present a significant difference. The tests also demonstrate a framework for the future 

evaluation of the proposed methodology. 

 

Keywords: WiFi, wireless, traffic control, signal control, Kalman filter, neural network, 

machine learning. 

 

Introduction 

 

The number of wireless devices in the transport network is growing rapidly. This includes 

smart-phones carried by drivers and passengers, in-car blue-tooth systems (for example in the 

radio) and, increasingly in-car WiFi. Chrysler, BMW and Toyota are all currently developing 

and/or marketing in car WiFi systems for information, entertainment and ITS (Intelligent 

Transportation Systems) applications [1]. In Europe three major studies have recently 

examined the benefits of vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) WiFi 

communications [2,3,4]. Furthermore common European protocols have been set for this type 

of communication (IEEE 802.11p). 
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It is clear that the future trend is towards a large number of different types of wireless devices 

in the road traffic network. The data that may be available from these wireless devices carries 

valuable information that can be exploited by Urban Traffic Control (UTC) systems. The 

challenge becomes to combine these data sources and existing traffic data sources (e.g. 

inductive loops [5], microwave detectors [6], cameras [7]) to estimate a single coherent image 

of the state of the network. 

 

The potential value of wireless device data in UTC has been investigated by simulating 

prototype junction systems that employ simulated wireless data in their control algorithms 

[8,9,10]. This research indicates that signal controllers that employ wireless data can 

significantly outperform existing control systems (e.g. MOVA [11]) both in terms of delay and 

equitability. In this case the variance of the distribution of journey times across the junction is 

taken as a measure of equitability. In particular [9] and [10] show that the fidelity of wireless 

data supports the use of machine learning signal control algorithms, which exhibit high 

performance. 

 

This paper presents a methodology for estimating a single coherent image of the state of the 

network that can support machine learning algorithms for urban signalized junction control. 

The proposed methodology discretizes the road network into small areas at the lane level. 

Metrics defining the state of the network (e.g. average speed 𝑉̅, number of vehicles 𝑁) are 

associated with each area and estimated from multiple information sources using an Extended 

Kalman Filter (EKF). 

 

Simulation test results are presented for two baseline scenarios. One where perfect data are 

employed along with machine learning control algorithms to control a junction and another 

where the SCOOT algorithm [12], using inductive loops, is used to control the same junction. 

 

Methodology 

 

The UTC systems described above all use dedicated sensors, which collect census data, that is 

vehicles are detected passing a specific point in space. Wireless device technology can be used 

to collect census data (e.g. with Bluetooth detectors at the roadside), however it can also be 

used to collect probe data, that is tracking the position and speed of individual vehicles.  

 

Trying to combine multiple independent sources of wireless and non-wireless data, which are 

measuring different things in different ways, can present some challenges. For example, not 

all of the data sources are available all of the time (latency); data from different sources may 

be contradictory; some vehicles may contain multiple wireless devices, some none (penetration). 
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Figure 1 – A four junction network with three signalized junctions (the corners of the triangle) is 

discretised into areas (numbered) to define the network state.  

 

The proposed methodology to meet these challenges is to employ an Extended Kalman Filter 

(EKF) [13] as described in this section. 

 

Definition of State  

Within the EKF framework we assume that no single source of information is providing the 

truth of the state on the road but is instead providing us with evidence of a state, which must 

be defined. To define the state we discretize the network up into small areas, an example is 

shown in Figure 1. Each area has one or more metrics associated with it. In the example 

presented here we assume two metrics: mean vehicle speed, averaged across all vehicles in the 

area at time 𝑡  (𝑉𝑡̅) and number of vehicles in the area at time (𝑁𝑡). The size/granularity of 

areas is something which can be set up in the design of the network state and tuned to provide 

the required level of complexity in information. 

 

The EKF framework employs a state evolution model to make a prediction of the state in each 
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area by dynamically modelling how these states change with time. The prediction is then used 

estimate the sensor measurements that will be collected via the sensor model. The EKF 

equations [13] use the difference between these predicted sensor measurements and the actual 

recorded measurements to estimate the true state in each area. Examples of a simple state 

evolution model and sensor model are given below. 

 

State Evolution Model 

When dynamically assessing the state of the network it is possible to make reasonable 

predictions of how the state will evolve over the very short term, even in the absence of any 

information from sensors. This can be useful, especially during short periods of high sensor 

latency. An example of a simple state evolution model is presented below. 

 

 

Figure 2 – State evolution model predict the flow of vehicles between neighbouring areas. 

 

Each area in the network is considered individually along with its upstream neighbour (Figure 

2). The out-flow of an area at time 𝑡(𝑄𝑡) is estimated from  𝑉𝑡̅ and 𝑁𝑡 within the area using 

(1), for the special case where end of the area corresponds with a junction stop line and the 

light is currently red, where 𝑄𝑡 = 0 (1). 

 

𝑄𝑡 = {

0 𝑎𝑡 𝑎 𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡

𝑁𝑡 𝑉̅𝑡

𝑙
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

Where 𝑙 is the total length of all lanes in the area. 

 

The model estimates the state in area A at time 𝑡 + 1 as 

𝑁𝐴,𝑡+1 = 𝑁𝐴,𝑡 + 𝑄𝐵,𝑡𝛿𝑡 − 𝑄𝐴,𝑡𝛿𝑡 

𝑽̅𝑨,𝒕+𝟏 = 𝑽̅𝑨,𝒕 

(2) 

(3) 
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Figure 3 – State evolution model – multiple upstream neighbours are possible e.g. at junctions 

 

Where 𝛿𝑡 is the time step between 𝑡 and 𝑡 + 1. In the event that area A has more than one 

upstream neighbour (Figure 3), for example, at a junction, then the model is adjusted as in 

equation (4). 

𝑁𝐴,𝑡+1 = 𝑁𝐴,𝑡 + 𝑄𝐵,𝑡𝛿𝑡+𝑄𝐶,𝑡𝛿𝑡 − 𝑄𝐴,𝑡𝛿𝑡 (4) 

 

Sensor Model 

The goal of the sensor model is to estimate the sensor signals that will be received given the 

predicted state. The specific sensor model employed depends on how many sensors, which 

collect census data are in the area of interest and how many types of wireless probe sensors 

are currently in the network. In general for a census sensor 𝐶1, The expected number of counts 

registered on the sensor for time interval 𝛿𝑡. Is modelled as in (9), where the superscript (-) 

indicates the value predicted by the state evolution model. 

𝑁𝐶1 =
𝑁𝐴,𝑡+1

− 𝑉̅𝐴,𝑡+1
− 𝛿𝑡

𝑙
 (9) 

 

For a wireless probe sensor type 𝑊1, The expected number of detections in area A is modelled 

as 

𝑁𝑊1 = 𝑁𝐴,𝑡+1
− 𝜑𝑊1  (10) 

Where 𝜑𝑊1 is the penetration rate for 𝑊1, which is the fraction of vehicles in the network that 

carry sensor type 𝑊1. For some sensors, for example mobile phones, 𝜑𝑊1  could be greater than 

1. 

 

If the wireless probe sensor 𝑊1 can report vehicle speed then the mean speed averaged across 

all 𝑊1 sensors detected in area A is modelled as 

𝑉̅𝑊1 = 𝑉̅𝐴,𝑡+1
−  (11) 

The same approach in (11) is used for census detectors that measure speed, for example 

inductive loop pairs.. 

  

Signal Control: Benchmark Tests 

The type of discretized network state described in the previous section can be used as an input 

to machine learning junction control algorithms of the type described in [9,10]. Under this 

approach each junction has a corresponding set of areas which are deemed important to its 

signal control decision making. The metrics attached to the areas form the input nodes to a 

neural network. The output of the neural network is a decision as to which stage of the junction 

gets the green light at time t+1. 
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The neural network function can be trained in a number of ways including by a human expert 

using a computer game interface [9] and through trial and error, with feedback (reinforcement 

learning)[10]. The latter technique allows junctions to learn improvements in strategy while 

in operation. 

 

In order to provide performance benchmarks for the evaluation of the methodology described 

in this paper micro-simulation tests were carried out on the three junction network shown in 

Figure 1 using S-Paramics micro-simulation software.  

 

The lower benchmark test was a four (simulated) hours run, where the junctions were 

controlled by the SCOOT algorithm. The SCOOT API for S-Paramics was configured by a 

qualified SCOOT engineer from Siemens Traffic Solutions, UK. 

 

The upper benchmark test was an otherwise identical four (simulated) hours run, where the 

junctions were controlled by the machine learning control system described in [9]. In this case 

perfect information was assumed in each of the discretized network areas.   

 

Figure 4. Shows the transient journey times averaged across all vehicles leaving the 

simulation area in a 5 minute period. These values are plotted across the four hour test time 

for both SCOOT control and machine learning control.       

 

Figure 4 – Performance of upper and lower benchmark tests on the three junction network in 

Figure 1.  
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The evidence in Figure 4 shows that there is a significant performance differential between 

the upper and a lower benchmarks indicating that there is value in pursuing the gathering of 

wireless data for urban traffic control. Because perfect information is assumed in the upper 

benchmark test it does not represent a validation of the proposed EKF approach or the state-

evolution model.  

 

Conclusions 

This paper has presented a methodology for estimating the state of the road network for UTC 

applications. The methodology can employ existing UTC sensors, for example inductive loops, 

microwave sensors and cameras. However it can also employ multiple types of wireless device 

sensors. By design the Extended Kalman Filter approach proposed is flexible to varying rates 

of penetration and latency in these sensors. 

 

Results from simulation experiments have demonstrated a framework for the evaluation of 

the proposed methodology. Upper and lower benchmark tests of, respectively, a machine 

learning controller with perfect information and the SCOOT junction control system. The 

results of these tests in Figure 4 indicate that there is significant domain in which 

improvements over current systems are possible through the employment of wireless device 

data. 
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