
Digital & Physical Laboratories

Jeremy Frey
University of Southampton
Champion for IT as a Utility Digital Economy Network

20/07/2012

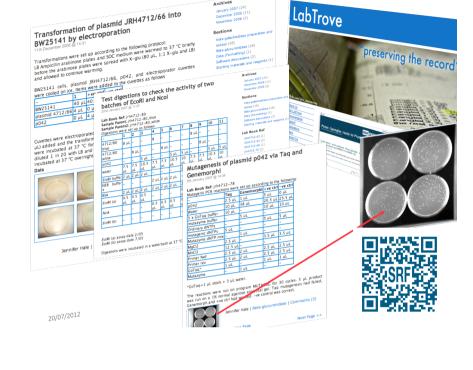
Semantic Chemistry II PNNL

A SCIENTIST

A GUIDE TO RESPONSIBLE CONDUCT IN RESEARCH

THIRD EDITION

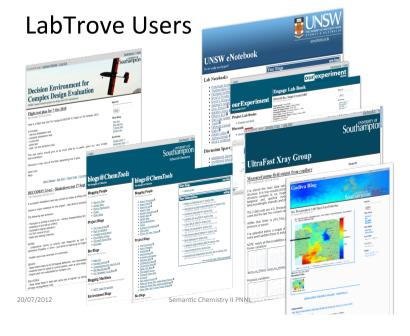


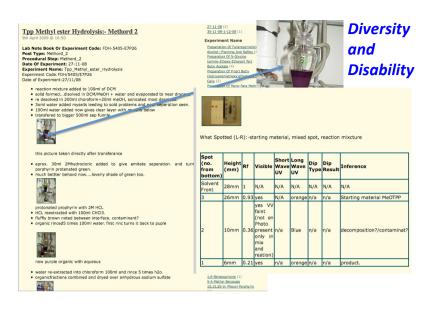

Faraday's laboratory notebooks are also remarkable in the amount of detail that they give about the design and setting up of experiments, interspersed with comments about their outcome and thoughts of a more philosophical kind. All are couched in plain language, with many vivid phrases of delightful spontaneity....

Peter Day, "The Philosopher's Tree: A Selection of Michael Faraday's Writings'

20/07/2012

Semantic Chemistry II PNNL




Core of Self describing data

- Store of data that can be viewed and manipulated in different ways
- User interfaces to suite user and occasion

He is charged with expressing contempt for meta-data

20/07/2012 Semantic Chemistry II PNNL

Returning to the Lab

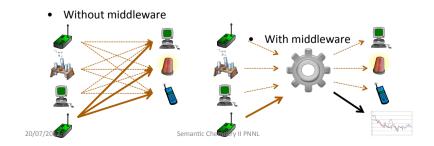
or How to get people to use the systems

Get the Data there before them!

Laboratory Middleware
The SRF LabBroker Sotware

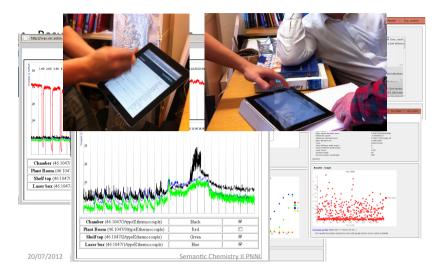
Impact on researchers

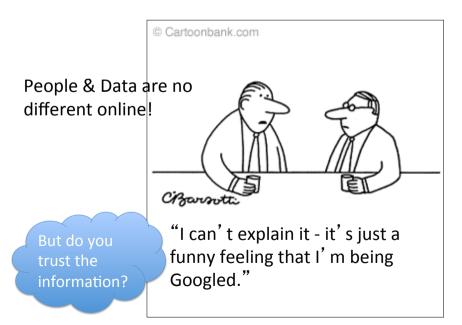
- Higher Quality Record
- Easier Collaboration
- Improved planning
- Improved discussions
- Efficiency gain in production of presentations/reports
- Change the nature of Professor/Student interactions



20/07/2012

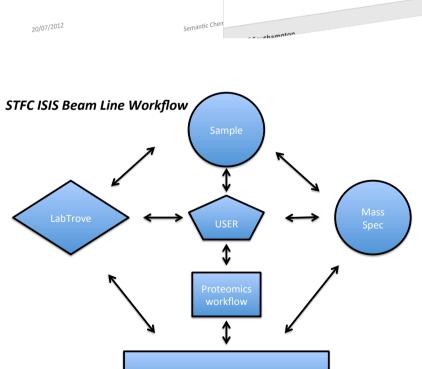
Semantic Chemistry II PNNL


Middleware

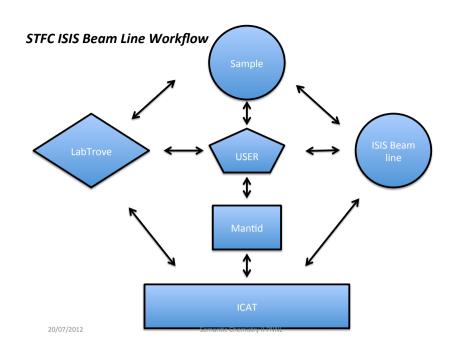

- Middleware is the connecting software between separated components
- Message brokering system used
- Increases scalability and interoperability

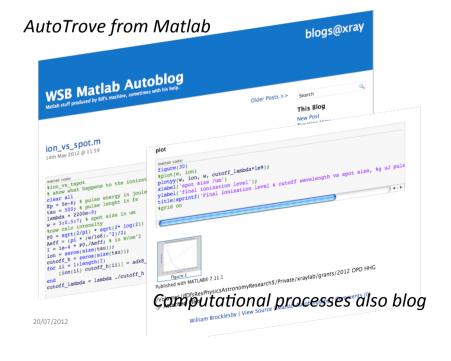

20/07/2012 Semantic Chemistry II PNNL

Experimental review



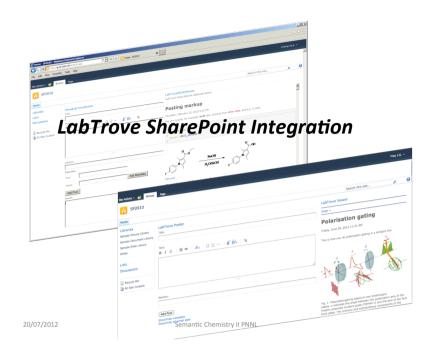
Not just people - Instruments Blog



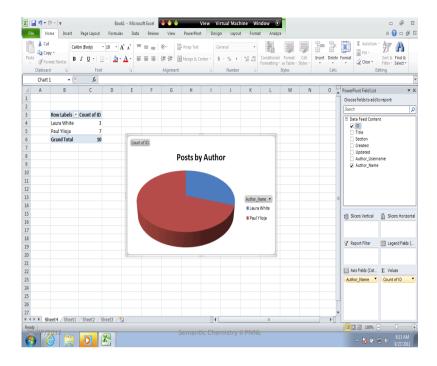


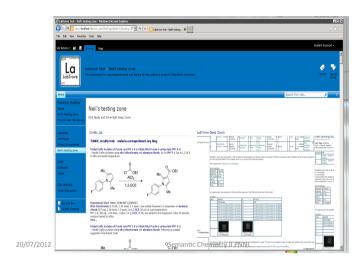
20/07/2012

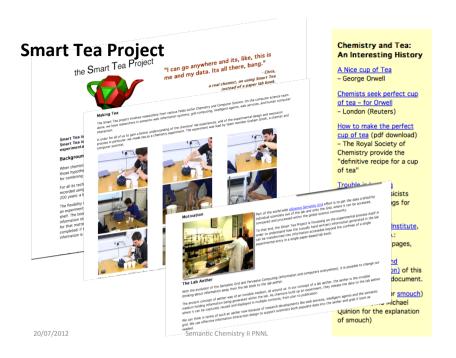


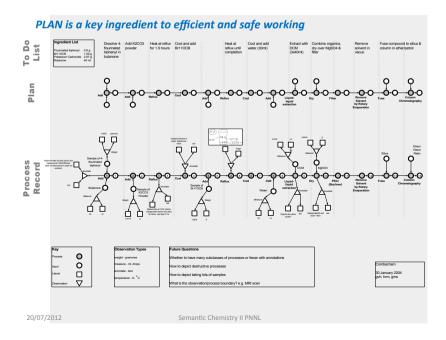


"We have lots of information technology. We just don't have any information."


20/07/2012 Semantic Chemistry II PNNL


OData


Adding DeepZoom to SharePoint



How do we communicate?

- Surprisingly difficult to explain what a process involves
- Much of the detail is assumed to be understood and not explicitly discussed
- This is where the missunderstandings usually arise.

COSHH

Leverage off things we already have to do – "We have a cunning plan"

20/07/2012 Semantic Chemistry II PNNL

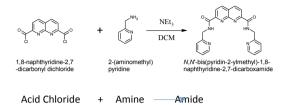
ELN In Application

Andrew Bailey ajb302@soton.ac.uk

20/07/2012

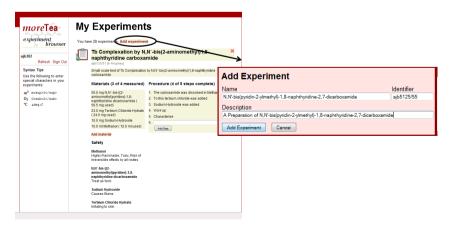
Semantic Chemistry II PNNL

The Two Interfaces

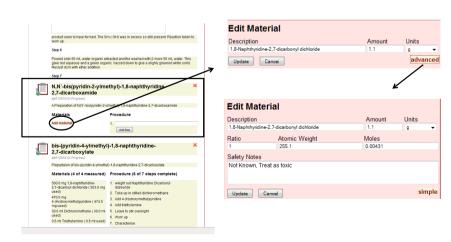

Planning and Review

Implementation

20/07/2012

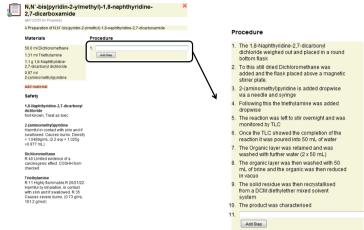

Semantic Chemistry II PNNL

A Worked Example

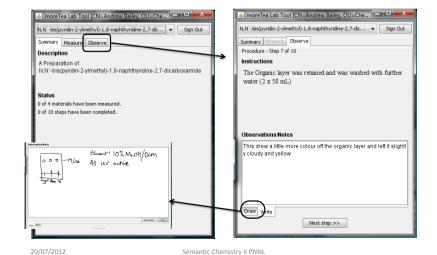


20/07/2012 Semantic Chemistry II PNNL

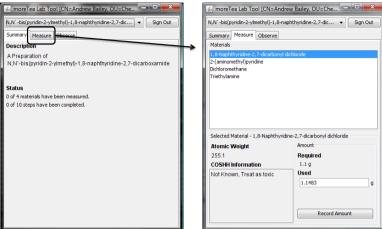
The Planning Process



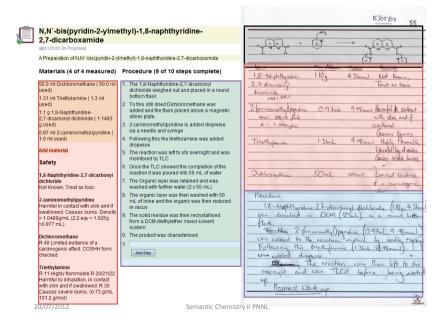
Materials


20/07/2012 Semantic Chemistry II PNNL 20/07/2012 Semantic Chemistry II PNNL

Procedure



20/07/2012 Semantic Chemistry II PNNL


Into the Lab!

Into the Lab!

20/07/2012 Semantic Chemistry II PNNL

Step 1	
Step 2	
gave a murky brown solution	
Step 3	
A white precipitate was formed as the amine was added to the reaction mixture	
Step 4	
As the triethylamine was added the white precipiate dissolved.	
Step 5	
Elunt. 10% Meron /Ocan	
0 0 -18/15	
911	
Overnight the reaction went purple with a gunky ppt By TLC reaction appears to have produ	
some product although it was impossible to comfirm if the reaction has gone to completion	n,
as the starting material(s) are too polar to eluet. However the workup was continued as	
as the starting material(s) are too polar to eluet. However the workup was continued as planned	
as the starting material(s) are too polar to eluet. However the workup was continued as planned Step 6	om
as the starting material(s) are too polar to eluet. However the workup was continued as planned Step 6 This gave two layered separation, when shaken the aq layer (top) became red and the both	om
as the staffing material(s) are too polar to eluet. However the workup was continued as planned Step 6 This gave two layered separation, when shaken the aq layer (top) became red and the bottl layer was an off yellow	mom
as the starting material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave two layered separation, when shaken the activer (top) became red and the bottl step 7	om
as the starting material(s) are too polar to eluet. However the workup was continued as planned Step 6 This gave hou layered separation, when shaken the aq layer (top) became red and the bottl step 7 This drew a little more colour off the organic layer and left it slightly doudy and yellow.	om
as the starting material(s) are too polar to eluet. However the workup was continued as planned Step 6 This gave hou layered separation, when shaken the aq layer (top) became red and the bottl step 7 This drew a little more colour off the organic layer and left it slightly doudy and yellow.	om
as the standing material(s) are too poller to eluct. However the workup was continued as steep 6 Steep 6 This gave two lawred separation, when shaken the aq layer (top) became red and the bott layer was an off yellow. Steep 7 This drew a little more colour off the organic layer and left it slightly cloudy and yellow steep 8	
as the starting material(s) are too polar to eluet. However the workup was continued as Step 6 Step 6 This give the Daywed separation, when shaken the aq layer (bp) became red and the both layer was an off yellow Step 7 This drew a little more colour off the organic layer and left it slightly doudy and yellow Step 8 This removed the cloudyness from the organic layer, and then it yielded a yellow solid. 1280g	
as the staffing material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave tho layered separation, when shaken the aq layer (top) became red and the both gave was an oil yellow Step 7 This drew a tills more colour off the organic layer and left it slightly cloudy and yellow Step 8 This removed the cloudness from the organic layer, and then it yielded a yellow solid. 1,283g Step 9	
as the staffing material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave tho layered separation, when shaken the aq layer (top) became red and the both gave was an oil yellow Step 7 This drew a tills more colour off the organic layer and left it slightly cloudy and yellow Step 8 This removed the cloudness from the organic layer, and then it yielded a yellow solid. 1,283g Step 9	
as the starting material(s) are too polar to eluet. However the workup was continued as Step 6 Step 6 This give the Daywed separation, when shaken the aq layer (bp) became red and the both layer was an off yellow Step 7 This drew a little more colour off the organic layer and left it slightly doudy and yellow Step 8 This removed the cloudyness from the organic layer, and then it yielded a yellow solid. 1280g	
as the staffing material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave tho layered separation, when shaken the aq layer (top) became red and the both gave was an oil yellow Step 7 This drew a tills more colour off the organic layer and left it slightly cloudy and yellow Step 8 This removed the cloudness from the organic layer, and then it yielded a yellow solid. 1,283g Step 9	
as the staffing material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave tho layered separation, when shaken the aq layer (top) became red and the both gave was an oil yellow Step 7 This drew a tills more colour off the organic layer and left it slightly cloudy and yellow Step 8 This removed the cloudness from the organic layer, and then it yielded a yellow solid. 1,283g Step 9	
as the staffing material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave tho layered separation, when shaken the aq layer (top) became red and the both gave was an oil yellow Step 7 This drew a tills more colour off the organic layer and left it slightly cloudy and yellow Step 8 This removed the cloudness from the organic layer, and then it yielded a yellow solid. 1,283g Step 9	
as the staffing material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave tho layered separation, when shaken the aq layer (top) became red and the both gave was an oil yellow Step 7 This drew a tills more colour off the organic layer and left it slightly cloudy and yellow Step 8 This removed the cloudness from the organic layer, and then it yielded a yellow solid. 1,283g Step 9	
as the staffing material(s) are too polar to eluet. However the workup was continued as claimed Step 6 This gave tho layered separation, when shaken the aq layer (top) became red and the both gave was an oil yellow Step 7 This drew a tills more colour off the organic layer and left it slightly cloudy and yellow Step 8 This removed the cloudness from the organic layer, and then it yielded a yellow solid. 1,283g Step 9	

56
Actual men of 1,8 nephhyndai med = 1,4433
- Dissolution of the solid in DCM gave a murky brown solution.
- On addition of the brinic a white precapitate formed which directly again on addition of treaty-amount
After stirring ournight the reaction was TICO
O 0 - 18/35 W action.
formed some product However it is hard to fell if the reacher has gone to completion due to polarity of the SM.
to fell if the receive has gone to completion
· due to polarity of the SM.
The workup proceeded as followed. Reacher powered into water (50ml) and
100 -111
(2x50ml) Him separated red from the organic and leve a cloudy yellow 50th (Dml)
and leve a cloudy yellow Sol-
This organic was New wested with (Dunk)
TI
Percent from Other me our to gald
Vacced down (1.232) Record from Old by the office of yello (1.234) Clean by WHX (H+') I awaiting it only instruments
(lean by NMK (H+E)) awaiting 1K+Mp
Histry II PNIVL

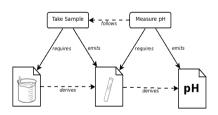
P&E

Peony

"The oreChem Project

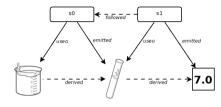
http://en.wikipedia.org/ wikiFile:PaeoniaSuffrutionsa7.ipg

"An ontology for Planning and Enactment"


"In theory, there is no difference between theory and practice. But, in practice, there is."

Unknown (possibly Yogi Berra)

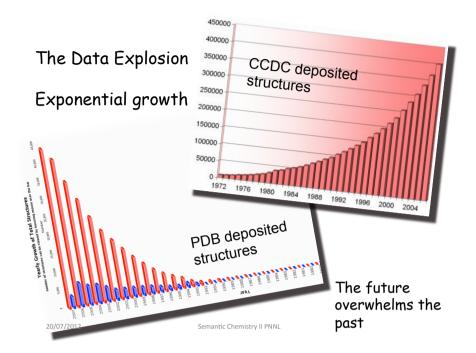
(C) University of Southampton IT Innovation Centre, 2009 / / Copyright in this library belongs to the University of Southampton / University Road. Highfield. Southampton. UK. SO17 1BJ / This software may not be used, sold, licensed, transferred, copied / or reproduced in whole or in part in any manner or form or in or / on any media by any person other than in accordance with the terms / of the Licence Agreement supplied with the software, or otherwise without the prior written consent of the copyright owners. // This software is distributed WITHOUT ANY WARRANTY, without even the // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, except where stated in the Licence Agreement supplied with the software. Ken Meacham 2009/07/20 Created By: Created Date : Created for Project: moreTea Dependencies: none <!DOCTYPE rdf:RDF [<!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
<!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>
<!ENTITY xsd 'http://www.w3.org/2001/XMLSchema#'>
<!ENTITY base 'http://schemas.it-innovation.soton.ac.uk/moretea/experiment/0.2/rdf-schema*/
</pre> <!ENTITY experiment '&base;#'> Semantic Chemistry II PNNL


P&E Ontology: Planning

- Prospective provenance
- Describes a scientific experiment that will be enacted (in the future)
- Three entity types:
 - Plan
 - Plan Stage
 - Plan Object

P&E Core Ontology: Enactment

- Retrospective provenance
- Describes a scientific experiment that was enacted
- Three entity types:
 - Run
 - Stage
 - Object

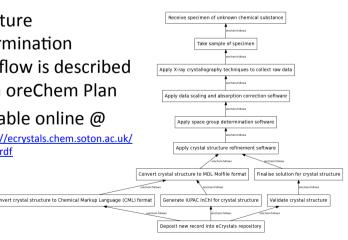


20/07/2012

Semantic Chemistry II PNNL

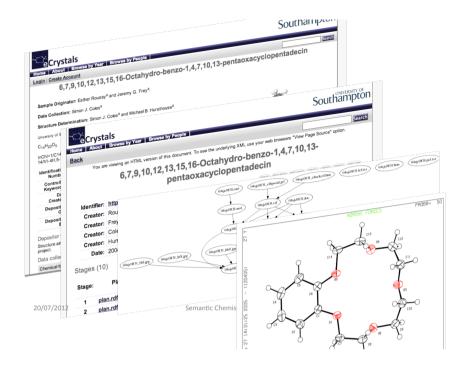
Unavailable Information

- Not just lots of data but why are many of the structures unpublished so certainly unavailable?
- The E-Crystals and E-Bank Project looked at how to address this issue
- Is making data available the same as depositing a copy with someone else?



oreChem Plan for eCrystals

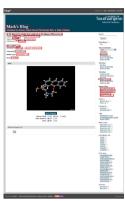
 Structure determination workflow is described by an oreChem Plan


Available online @

http://ecrystals.chem.soton.ac.uk/ plan.rdf

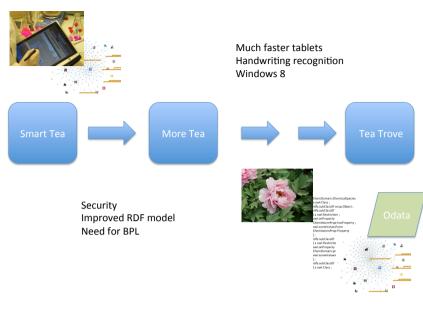
20/07/2012 Semantic Chemistry II PNNL 20/07/2012

Semantic Chemistry II PNNL


Human AND Computer Readable

XHTML

XHTML with RDFa



20/07/2012

Semantic Chemistry II PNNL

BRINGING THE PARTS TOGETHER

Tea Trove

MyExperiment

20/07/2012 Semantic Chemistry II PNNL 20/07/2012 Semantic Chemistry II PNNL

It is not necessary to change. Survival is not mandatory. W. Edwards Deming

START @HOME PUBLICATION@SOURCE

Downloaded from rsta.royalsocietypublishing.org on July 19, 2012

Grid-based dynamic electronic publication: a case study using combined experiment and simulation studies of crown ethers at the air/water interface

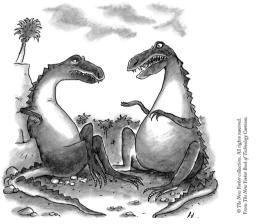
Esther R Rousay, Hongchen Fu, Jamie M Robinson, Jonathan W Essex and Jeremy G Frey

Phil. Trans. R. Soc. A 2005 **363**, 2075-2095 doi: 10.1098/rsta.2005.1630

20/07/2012

Semantic Chemistry II PNNL

Change in the whole way we design and build



3D Printers

Shared Space?

Quantity Names R/LISP Papers Symbol Value P <- read("http://eprints.soton.ac.uk/frey/reproducible. computable.paper' Units Summary(p) Prov The rate constant for the OH reactions..... Abstract(p) vs p\$Abstract {First abstracts the paper, second gives the papers' abstract} pSTitleone on progress OH Rate constants for Atmospheric Chemistry and Combustion Print(p\$Text); variables <- p\$Quantities Graph <- p\$Graphs or to access the data in the graph p\$Graphs\$Table\$Quantities Context(P) $\Delta_{c}H(OH) =$ Frev & DeRoure Context(P) <- New.Context(new thermodynamic data) Stockholm p1 <- Run(p); run with new context : value of $\Delta H(OH)$ 4t Paradigm Next Step Warninh:you do not have the resources to re-run this paper fall meeting Diff/672P12 p1; what conclusions changentic Chemistry II PNNL 4 Dec 2011

We must speed up the knowledge discovery process

All I am saying is that now is the time to develop the technology to deflect an asteroid

 20/07/2012
 Semantic Chemistry II PNNL
 20/07/2012
 Semantic Chemistry II PNNL

Thanks

- UK e-Science Programme
- RCUK, EPSRC, JISC, BBSRC, HEFCE, Microsoft & IBM, for funding
- Southampton Colleagues and Students from Chemistry, Electronics & Computer Science, Engineering, Mathematics, iSolutions and the Library
- Colleagues at UKOLN, STFC, University of Reading
- Colleagues from Penn State, Cornell, PNNL, UNSW, USyd

USA MINOS BEAUTY

20/07/2012

Semantic Chemistry II PNNL

Thank you for listening

vr collection. Torker Book of

Trust me Mort - no electronic communications superhighway, no matter how vast and sophisticated, will ever replace the art of the schmooze