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Abstract

Re-sampling methods for estimating the distribution of descriptive statistics of functional data

are considered. Through Monte-Carlo simulations, we compare the performance of several

re-sampling methods commonly used for estimating the distribution of descriptive statistics.

We introduce two re-sampling methods that rely on functional principal component analysis,

where the scores were randomly drawn from multivariate normal distribution and Stiefel

manifold. Illustrated by one-dimensional Canadian weather station data and two-dimensional

bone shape data, the re-sampling methods provide a way of visualizing the distribution of

descriptive statistics for functional data.

Keywords: bootstrap validity, functional mean, trimmed functional mean, functional
median, functional variance, smoothed bootstrap

1. Introduction

Recent computer technology facilitates the presence of functional data, whose graphical

representations are in the form of curve (Hyndman and Shang, 2010), image (Locantore

et al., 1999), or shape (Epifanio and Ventura-Campos, 2011). The monographs by Ramsay

and Silverman (2002, 2005) have greatly popularized the functional data analysis (FDA),

offering a number of appealing case studies and presenting many parametric statistical

methods. The book by Ferraty and Vieu (2006) is an excellent reference on the introduction
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of many nonparametric statistical methods, such as functional kernel estimator in density

estimation and regression models. A collective book by Ferraty and Romain (2011) collected

the latest development of functional data analysis, covering the topics of classification,

regression and theory of operator-based statistics. Additional information on FDA can be

found in the web sites http://www.psych.mcgill.ca/misc/fda/ and http://www.math.

univ-toulouse.fr/staph/npfda/.

The increasing popularity of FDA demands new development of statistical techniques

that can accommodate the continuous and smooth nature of functional data. Despite

considerable progress made on probability theory in function spaces (see for example, Hall

and Horowitz, 2007) and in estimation of infinite-dimensional parameter (Mas and Pumo,

2011), the methodology of FDA is far from complete as many topics remain un-explored.

Nonetheless, some theoretical, methodological and practical developments have been mainly

focused on functional principal component analysis (Hall and Hosseini-Nasab, 2006, 2009; Hall,

2011), functional partial least squares analysis (Preda and Saporta, 2005; Reiss and Ogden,

2007; Delaigle and Hall, 2012), functional regression models (Cardot et al., 2003; Ferraty

and Vieu, 2006; Müller and Yao, 2008), functional clustering (Hall et al., 2001; Tarpey and

Kinateder, 2003; Delaigle et al., 2012). These lines of research have been frequently appeared

in many statistical journals, such as the special issues of Statistica Sinica (vol 14, issue 3),

Computational Statistics & Data Analysis (vol 51, issue 10), Computational Statistics (vol 22,

issue 3), and Journal of Multivariate Analysis (vol 101, issue 2).

In FDA, a main task is to make inference about the distribution of descriptive statistics,

such as functional mean or median, from a set of realized samples. Not only it is important to

obtain a consistent estimator, we are also interested in estimating the variability associated

with the descriptive statistics and constructing its confidence intervals (CIs). When such

a problem arises, re-sampling methodology especially bootstrapping turns out to be the

only practical alternative (Cuevas et al., 2006; McMurry and Politis, 2011). Pioneering

work by Mahalanobis (1946), Hartigan (1969), Efron (1979), Hall (1992), Simon (1993)
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and Efron and Tibshirani (1993) show the use of bootstrap techniques to compute valid

statistical measures, such as CIs, by means of computational-intensive simulations using only

the observed data. In contrast to multivariate data analysis, there is comparably less work

that has been done on bootstrapping functional data. Nonetheless, for instance, Giné and

Zinn (1990) established consistency for the mean of Banach-space-valued random variable

via bootstrapping; Politis and Romano (1994) investigated the use of bootstrap for the

mean of Hilbert-space-valued time series; Cuevas et al. (2006) have proposed bootstrap

methods and conducted a large scale of simulation studies. Hall and Vial (2006), Bathia

et al. (2010) and Poskitt and Sengarapillai (2013) used the bootstrap methods to determine

the optimal number of functional principal components. Hall et al. (2009) proposed tie-

respecting bootstrap methods for estimating distributions of eigenvalue estimators. Ferraty

et al. (2010) established the validity of bootstrap in nonparametric functional regression, while

the asymptotic validity of a componentwise bootstrap procedure has been studied by Ferraty

et al. (2012) in nonparametric functional regression with functional predictor and functional

response. Ferraty and Vieu (2011) applied a residual-based bootstrap method to construct

CIs of regression function in nonparametric functional regression, while González-Manteiga

and Mart́ınez-Calvo (2011) applied a residual-based bootstrap method to construct CIs of

regression coefficient in functional linear regression. In addition, González-Manteiga et al.

(2012) proposed bootstrap independence test for functional linear models.

We use the re-sampling methods to study the distribution of descriptive statistics of

functional data. Following the early work by Cuevas et al. (2006) and McMurry and Politis

(2011), we extend the scale of previous empirical study and presents two novel re-sampling

techniques for visualizing the distribution of descriptive statistics of functional data. This

paper by no means tries to single out the best bootstrap method, instead, it aims to contribute

to the area of explanatory analysis for functional data.

The rest of this paper is given as follows. The descriptions of re-sampling methods are

given in Section 2. Through Monte Carlo simulations, the bootstrap performance is compared
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based on their empirical coverage probability and width of CIs in Section 3. In Sections 4

and 5, we apply the bootstrap methods to the one-dimensional Canadian weather station data

and two-dimensional bone shape data, for visualizing the CIs of their descriptive statistics.

Conclusions are presented in Section 6, along with some thoughts on how the methods

developed here might be further extended.

2. Some re-sampling techniques

2.1. Notation

It is commonly assumed that random functions are sampled from a second-order stochastic

process X in L2[0, τ ], where L2[0, τ ] is the Hilbert space of square-integrable functions on the

bounded interval [0, τ ]. The stochastic process X satisfies the condition
∫ τ
0

E(X2(t))dt <∞,

inner product < f, g >=
∫ τ
0
f(t)g(t)dt for any two functions, f and g ∈ L2[0, τ ] and induced

squared norm ‖ · ‖2 =< ·, · >.

Although the space of its trajectories of the stochastic process X is infinite dimensional

on the interval [0, τ ], it is seldom observed at infinitely many data points. Instead, a finite

number of data points are observed. Here, we presume that each curve is observed on a

common and dense grid of data points (t1, t2, . . . , tT ) with 0 ≤ t1 < t2 · · · < tT ≤ τ .

2.2. Bootstrap functions

Denote n realizations of a stochastic process X evaluated at t ∈ [0, τ ] as

{X1(t), X2(t), . . . , Xn(t)}. When functional data are independent and identically dis-

tributed (iid), we can obtain bootstrap sample {X∗1 (t), X∗2 (t), . . . , X∗n(t)} directly, by ran-

domly sampling with replacement from the original functions {X1(t), X2(t), . . . , Xn(t)}

with the fixed t. In practice, we can only observe and evaluate X at discretized data

points 0 ≤ t1 < t2 · · · < tT ≤ τ , thus the discretized bootstrap samples are obtained as

{X∗(tu) = [X∗1 (tu), X
∗
2 (tu), . . . , X

∗
n(tu)]

>;u = 1, 2, . . . , T}.

To avoid the possible appearance of repeated curves in the bootstrap samples, Cuevas

et al. (2006) replaced the standard iid bootstrap samples by the so-called smooth bootstrap
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samples, which are drawn from a smooth empirical distribution function. This can be achieved

by adding a white noise to the bootstrap sample, expressed as

X0(tu) = X∗(tu) + z(tu), u = 1, 2, . . . , T,

where {z(tu) = [z1(tu), z2(tu), . . . , zn(tu)]
>}; and [z(t1), z(t2), . . . ,z(tT )] is normally dis-

tributed with mean 0 and covariance matrix βΣX ; and ΣX is the covariance matrix of

[X(t1), X(t2), . . . , X(tT )]. Although Cuevas et al. (2006) suggest to set β = 0.05 customarily,

we chose an optimal value of β based on a holdout (training) sample in our simulation study

in hope to obtain a more accurate empirical coverage probability in the testing sample.

In this paper, we put forward some other sampling techniques by using the continuous

Karhunen-Loève decomposition (also known as functional principal component analysis), and

then compare the sample performance among several bootstrap methods considered.

2.3. Karhunen-Loève decomposition

Among many techniques for modeling the variability of functional data, methods based

on Karhunen-Loève decomposition are quite popular (see Cardot et al., 2003; Cai and Hall,

2006; Hall and Hosseini-Nasab, 2006, 2009; Hall and Horowitz, 2007; Delaigle and Hall, 2012,

among others), and we have also considered this method in this paper. A Karhunen-Loève

expansion of X evaluated at t ∈ [0, τ ] is expressed by

X(t) = µ(t) +
∞∑
j=1

ξjρj(t), (1)

with the mean function µ(t) = E[X(t)] and the basis functions (ρ1(t), ρ2(t), . . . ) are the

orthonormal eigenfunctions of the covariance kernel Γ(s, t) = Cov[X(s), X(t)]. The covariance
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kernel Γ(s, t) can be expressed as

∫ τ

0

Γ(s, t)ρj(t)dt = λjρj(s),

Γ(t, s) =
∞∑
j=1

λjρj(t)ρj(s),

where λj ≥ 0 is a set of eigenvalues in a decreasing order, and the condition
∫ τ
0

E(X2(t))dt <∞

entails
∑∞

j=1 λj < ∞. The coefficient ξj in (1) is given by the projection of X − µ in the

direction of the jth eigenfunction ρj, i.e., ξj =< X − µ, ρj >. The coefficients (ξ1, ξ2, . . . )

consist of uncorrelated sequences of random variables with zero mean and finite variance.

Asymptotically, the distribution of ξj can be captured by N(0, λ2j).

In practice, we will presume that each curve is observed on a grid of T points with

0 ≤ t1 < t2 · · · < tT ≤ τ . Thus, the raw data set {X1(t), X2(t), . . . , Xn(t)} of n observations

on X will consist of an n× T data matrix X, where

Xs(tu) = µ(tu) +
∞∑
j=1

ξjρj(tu),

where s = 1, 2, . . . , n and u = 1, 2, . . . , T . The mean centered data matrix is given by

X = X −
∑n

s=1Xs/n. Then, a standard approach to estimate the covariance kernel is to take

Γ̂(tu, tv) =
1

n

n∑
s=1

[Xs(tu)− X̄(tu)][Xs(tv)− X̄(tv)],

as an estimator of Γ(tu, tv), where X̄(tu) = 1
n

∑n
s=1Xs(tu).

By applying the singular value decomposition, X can be decomposed into

X = ULR>, (2)

where U>U = R>R = Im and m = rank(X) = min(n, T ), the diagonal matrix L =

diag(
√
l1,
√
l2, . . . ,

√
lm) is a set of non-negative singular values, and {l1, l2, . . . , lm} lists the

6



positive eigenvalues of XX>/n in decreasing order. The columns of U are the normalized

eigenvectors of XX>/n, and the columns of R are the normalized eigenvectors of X>X/n.

Equation (2) provides a discrete counterpart to the Karhunen-Loève expansion given in (1) in

that a curve in X can be written as

Xs(tu) = X̄(tu) +
m∑
j=1

usj
√
ljrj(tu). (3)

Poskitt and Sengarapillai (2013, Lemmas 1-3) respectively showed that X̄ is a uniformly

consistent estimate of µ; lj provides a uniformly consistent estimate of λj; and rj provides a

uniformly consistent estimate of ρj. Similar types of derivations and theoretical arguments

can also be found in Yao et al. (2005, Section 3).

2.4. Bootstrap functional principal component scores

From (2) and (3), the re-sampling procedure first holds the mean X̄(tu), L and R fixed

at their realized values, the following re-sampling methods differ mainly by the ways of

re-sampling U .

a) Obtain the re-sampled singular column matrix U ∗ = [u∗1,u
∗
2, . . . ,u

∗
min(n,T )] by ran-

domly sampling with replacement from the original principal component scores

U = [u1,u2, . . . ,umin(n,T )].

b) To avoid the possible appearance of repeated values in U ∗, we adapt a smooth bootstrap

procedure by adding a white noise component to the bootstrap U . More precisely,

U 0 = U ∗ + ε, where ε follows a multivariate normal distribution with mean 0 and

covariance matrix of βΣU . Note that ΣU = Imin(n,T ) is the covariance matrix of U .

c) Because U follows a standard multivariate normal distribution asymptotically, we can

randomly draw U ∗ from a multivariate normal distribution with mean vector and

covariance matrix of U .
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d) Recall that U>U = Imin(n,T ), therefore U can be considered as points on the Stiefel

manifold Vn,T . As defined in Chikuse (2003), the (compact) Stiefel manifold Vn,T is the

space whose points (denoted by u1, . . . , un) are n orthonormal vectors in RT (n ≤ T ),

that is, < ui, uj >= δij, i, j = 1, . . . , n and δij is the Kronecker product. James (1976,

Chapter 2) provides a good introduction to the geometry of the Stiefel manifold, while

Chikuse (2003) put forward gradient methods on the Stiefel manifold in the context of

eigenvalue problems. Following the early work by Hoff (2009), we propose to sample U ∗

from the Stiefel manifold. A computational algorithm in ©©©©©RR language (R Development

Core Team, 2012) is presented in the appendix.

For s = 1, 2, . . . , n, the realization X∗s (tu), u = 1, 2, . . . , T is constructed as in (2) and (3) by

replacing U with the bootstrapped U ∗ or smoothed bootstrapped U 0. In this paper, we

utilize all components of U .

3. Simulation study

In this paper, the re-sampling techniques are designed to estimate distribution of descriptive

statistics of functional data. In Section 3.1, we introduce a number of descriptive statistics

that characterize a set of functional data. Section 3.2 introduces two simulation examples of

Gaussian process, while the evaluation metrics are given in Section 3.3. Section 3.4 presents

the simulation results, where the performances of different sampling techniques are evaluated

and compared, based on their empirical coverage probability and width of CIs.

3.1. Descriptive statistics of functional data

Similar to univariate point estimation, we seek an estimator of functional median, which

also allows us to rank a sample of curves based on their location depth, that is, the distance

from the functional median (the deepest curve). This leads to the notion of functional depth

(see, for example, Fraiman and Muniz, 2001; Cuevas et al., 2006, 2007; Febrero et al., 2007,

2008; Lopéz-Pintado and Romo, 2009; Cuesta-Albertos and Nieto-Reyes, 2010; Gervini, 2012).
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In what follows, we shall briefly describe three functional depth measures considered, namely

the Fraiman and Muniz (2001) depth, Cuevas et al. (2007) depth based on random projection,

and Gervini (2012) depth based on small ball property.

The Fraiman and Muniz (2001) depth was the oldest functional depth measure. For each

t ∈ [0, τ ], let Fn,t be the empirical sample distribution of {X1(t), X2(t), . . . , Xn(t)} and let

Zi(t) be the univariate depth of function Xi(t), given by

Ii =

∫ τ

0

Zi(t)dt =

∫ τ

0

1−
∣∣∣1
2
− Fn,t(Xi(t))

∣∣∣dt, (4)

and the values of Ii provide a way of ranking curves from inward to outward. Thus, the

functional median is the deepest curve with the maximum Ii value.

Cuevas et al. (2007) considered a random direction a (typically simulated from standard

Gaussian distribution) and project the data along this direction by the inner product. The

functional depth of Xi(t), for i = 1, . . . , n, is then defined as the univariate depth given in (4)

of the one-dimensional projection < a,Xi >. This functional depth by random projection

gives a random measure of depth, as it relies on the rank of the projections along a random

direction (Cuevas et al., 2007). In order to reduce variability, the functional depth of each

function can be evaluated by averaging the functional depths over a number (typically 50) of

random directions.

Furthermore, Gervini (2012) considered the set of interdistances between any two functions,

denoted by {d(Xi, Xj)}. An observation Xi is an outlier if it is far from most other observations.

Given α ∈ [0, 1], Gervini (2012) defined α-radius ri as the distance between Xi(t) and the

dαneth closest observations, where dxe denotes the integer closest to x from above. The rank

of ri provides a measure of outlyingness of Xi(t). The smaller the ri is, the more dense the

Xi is. The functional median has the smallest ri.

In addition to the functional median, we also consider sample versions of functional mean
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and functional variance, given by

X̄(t) =
1

n

n∑
s=1

Xs(t),

V̂ (t) =
1

n− 1

n∑
s=1

[Xs(t)− X̄(t)]2,

and α-trimmed functional mean that is the mean function of the 100(1− α)% most deepest

curves. The functional trimmed mean is expressed as

1

n− dαne

n−dαne∑
i=1

Xi(t), α ∈ [0, (n− 1)/n],

where α is the amount of trimming, and (X(1), X(2), . . . , X(n−dαne)) are the ordered sample

curves based on their increasing location depth.

3.2. Simulation setup

A Monte Carlo simulation study is implemented to evaluate and compare the performance

of the bootstrap methods, for estimating the distribution of descriptive statistics of functional

data in Section 3.1. For comparison, we consider the same two functional models as previously

studied in Cuevas et al. (2006):

(a) A Wiener process with trend, expressed by X(t) = m(t)+B(t), where B(t) is a standard

Brownian motion, m(t) = 0.95×10t(1−t)+0.05×30t(1−t) and Var(X(t)) = Var(B(t)).

(b) A Gaussian process X(t) with mean m(t) = 0.95 × 10t(1 − t) + 0.05 × 30t(1 − t),

Cov(X(ti), X(tj)) = exp(−|ti − tj|/0.3), and Var(X(t)) = 1.

In practice, we can only evaluate and compare the bootstrap methods on a common set of

grid points. In our simulation study, we have taken 101 equally-spaced grid points between 0

and 1, for two different sample sizes n = 25 and n = 100.

Since both models (a) and (b) are Gaussian processes, computationally, we can draw

samples from a multivariate normal distribution with mean [m(t1),m(t2), . . . ,m(tT )]> and
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covariance matrix Cov(X(ti), X(tj)) = min{ti, tj} = ti for model (a) and Cov(X(ti), X(tj)) =

exp(−|ti − tj|/0.3) = 1 for model (b).

3.3. Simulation evaluation

To evaluate the performance of the bootstrap methods, we calculate the bootstrap

CIs of a descriptive statistics. Given the raw data {X1, X2, . . . , Xn}, we draw R = 200

replications of bootstrap samples; and the same random seed is used for all the methods

in order to give the same simulation randomness. For each replication, the 100(1 − α)%

bootstrap CIs of a descriptive statistics T (X1, X2, . . . , Xn), is defined by calculating the

cut-off value D(X1, X2, . . . , Xn), such that the 100(1 − α)% of the bootstrap repetitions

T (X∗1 , X
∗
2 , . . . , X

∗
n) are within a distance smaller than D(X1, X2, . . . , Xn). In our simulation

study, the performance of bootstrap CIs is evaluated through the 200 replications, the

corresponding CIs are constructed based on B = 150 repetitions for each replication.

We calculate the coverage probability that the target function at the population level lies

within the CIs. Two distance metrics, L2 and L∞, are used for constructing CIs, these are

‖Tboot − Tsample‖2 =

(∫
(Tboot − Tsample)

2

) 1
2

,

‖Tboot − Tsample‖∞ = sup |Tboot − Tsample|.

Apart from the coverage probability, the performance of the bootstrap methods is also

assessed by the width of bootstrap CIs, which is the range of distances covered for each

bootstrap CIs (see also Cuevas et al., 2006). For a given confidence level (customarily

α = 0.05), a smaller value of the width corresponds to a more informative of the CIs.

3.4. Simulation results

With two models (a) and (b), L2 and L∞ are the metrics used to measure the distance

between the bootstrapped and sample descriptive statistics of simulated functional data. For

simplicity, we shall use the abbreviations of the bootstrap methods as shown in Table 1.
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[Table 1 about here.]

In Table 2, we report the coverage probability of bootstrap CIs for different descriptive

statistics of functional data and bootstrap methods. As the sample size increases from n = 25

to 100, the empirical coverage probability generally improves for all the bootstrap methods.

This is not surprising, as the validity of bootstrapping relies on a moderate or large sample

size (see also, McMurry and Politis, 2011). Subject to the same random seed, the St and StU

methods give the same empirical coverage probability. For estimating functional median, the

higher empirical coverage probabilities of the bootstrap methods reflect the robustness of

functional median. For estimating the 5% trimmed functional mean, the empirical coverage

probabilities of the smoothed bootstrap methods outperform their non-smoothed counterparts,

using three different depth measures. This is reflected in model (a), where the smoothing

parameter β selected from the training set is large (close to 1). On the contrary, when β

is small, the differences in coverage probability between the un-smoothed and smoothed

bootstrap methods are small (as shown in model (b)).

As noted by an anonymous referee, the performance of the trimmed mean, based on St

(α-radius) is much worse for n = 100 than for n = 25 in model (a). A possible explanation is

that there are some tuning parameters in the calculation of α-radius depth, and they need

to be determined. The results presented in Table 2 were obtained using the default tuning

parameters. A data-driven selection of these tuning parameters may improve the coverage

probabilities.

[Table 2 about here.]

Apart from the comparison of coverage probability, we also calculate the width of CIs. For

a given coverage probability, a smaller value of the width corresponds to a more informative of

the CIs. Based on the 200 replications and 150 bootstrap repetitions within each replication,

we have evaluated the width of the CIs for every considered bootstrap method, functional

estimator, distance metric, sample size and underlying model. As an illustration, Figure 1
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plots two histograms of the range of CIs using the standard bootstrap method under model

(a) with sample size n = 100.

[Figure 1 about here.]

The 192(6 × 4 × 2 × 2 × 2) histograms for all the considered cases are summarized in

Tables 3 and 4. The numbers in the cells of Table 3 represent the estimated mode value of

the CI width, that is, the most frequently occurred value of the interval width. The table also

displays the range of bootstrapped CIs, defined as the support of the respective histograms in

model (a). Table 4 shows the estimated mode value and range of the CI width in model (b).

From the simulation output, there is an improvement in precision, as the width of CIs becomes

narrower when sample size increases from n = 25 to 100 (McMurry and Politis, 2011). Subject

to the same random seed, the St and StU methods provide the same interval width. As shown

in Table 3, better empirical coverage probabilities of the smoothed bootstrap methods (with

large values of the smoothing parameter) are at the cost of their wider CI width. In contrast,

the differences in precision between the un-smoothed and smoothed bootstrap methods are

small as shown in Table 4.

[Table 3 about here.]

[Table 4 about here.]

4. Application to Meteorology

The Canadian weather station data is one of the classical functional data sets, which is

available at the fda package (Ramsay et al., 2012). This data set has been studied by Ramsay

and Silverman (2002, 2005), Ramsay et al. (2009) and James et al. (2009) in the areas of

explanatory analysis and regression analysis for functional data.

Figure 2 plots the change in temperature over the course of a year, taken from 35 weather

stations across Canada. The functional curves are interpolated from 365 data points, which

13



measure the daily mean temperature recorded by a weather station averaged over the period

from 1960 to 1994. The colors correspond to the geographic climates of stations. The red

lines show the weather stations located at the warmer regions, whereas the purple lines show

the weather stations located at the colder regions.

[Figure 2 about here.]

Our aim is to utilize a bootstrap method to visualize the distribution of descriptive

statistics of the Canadian weather station data. As an illustration, we used the smoothed

bootstrap principal component score method with β = 0.05 to plot the 95% CIs of functional

mean, functional median, 5% trimmed functional mean and functional variance.

In Figure 3, we plot the distribution of descriptive statistics for the Canadian weather

station. While the sample estimates are shown in red, their 95% CIs are shown in blue. There

is a 95% chance that the true population mean, median, 5% trimmed mean and variance are

within the constructed CIs.

[Figure 3 about here.]

5. Application to Paleopathology

While Section 4 focus on the one-dimensional functional curves, this section considers

two-dimensional functional shapes in the field of paleopathology. Paleopathology is the study

of disease in human history, incorporating information that can be gathered from human

skeletal remains. Ramsay and Silverman (2002, Chapter 4) analyzed the shapes of 68 bones

from hundreds years ago, in an attempt to gain insights into a possible relationship between

bone shape and osteoarthritis of the knee. The paleopathologists attempted to identify

every person in the sample with definite signs of osteoarthritis of the knee, as evidenced by

eburnation — polished bone surface caused by complete cartilage loss. This left 16 eburnated

femora and 52 non-eburnated femora for analysis.
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We concentrate on images of the knee end of the femur (the upper leg bone). These images

were constructed from the x and y coordinates of 12 landmarks. The shape of a bone can be

reasonably well approximated by interpolating through the coordinates of the 12 landmarks.

These landmarks have been centered. Because the size and orientation of the bones are of no

particular interest, we have performed a procrustes rotation to eliminate size and orientation

variabilities, so that various bones are fitted together as closely as possible (Ramsay and

Silverman, 2002, Chapters 4 and 8). The bone shapes characterized by the positions of 12

landmarks are plotted in Figure 4, for the 16 eburnated femora and 52 non-eburnated femora.

[Figure 4 about here.]

Our aim is to apply a bootstrap method to visualize the distribution of descriptive statistics

of the bone shape data. As an illustration, we implemented the standard bootstrap score

method to plot the 95% CIs of the functional mean and functional median, for both the

eburnated and non-eburnated femora.

In Figure 5, we plot the distribution of some descriptive statistics for the bone shape

data. While the sample estimates are shown in red, their 95% confidence region is shown

by the upper and lower black circles in two dimensions. There is a 95% chance that the

true population mean and median are within the constructed confidence region, for both the

eburnated femora and non-eburnated femora.

[Figure 5 about here.]

6. Conclusion

In this paper, we present some re-sampling procedures to visualize the distribution of

descriptive statistics of functional data. Through Monte-Carlo simulation, we demonstrate

the better empirical coverage probability and narrower width of CIs, as the sample size

increases from 25 to 100. This phenomenon applies to all the bootstrap procedures inves-

tigated, regardless of their differences in bootstrapping original functions or bootstrapping
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functional principal component scores. However, as the dimension T → ∞, bootstrapping

smoothed principal component scores outperforms bootstrapping smoothed functions in terms

of empirical coverage probability, which may due to better numerical stability in estimating

the covariance structure. By truncating the number of retained principal components, the

methods of bootstrapping principal component scores and smoothed principal component

scores are also capable of eliminating possible noise in data, and this feature has not been

explored in this paper.

Illustrated by the two empirical applications, it is shown that the bootstrap procedures

provide an explanatory tool to the functional data analysis toolbox. It is expected that the

bootstrap methods will receive increasing popularity in functional data analysis, where the

object of interest is on the distribution of functional estimators.

The present study is limited to the bootstrap methods applied to iid functional data.

However, the presence of functional time series is not uncommon, such as in modeling and

forecasting ozone concentration (Damon and Guillas, 2002), demographic rates (Hyndman

and Shang, 2009), and term structure of the Eurodollar futures rate (Kargin and Onatski,

2008). In some recent surveys, Bühlmann (2002), Politis (2003) and Kreiss and Paparoditis

(2011) revisited some bootstrap methods, such as moving block bootstrap and sieve bootstrap,

which are mainly applied to univariate or multivariate dependent data. In the future research,

we intend to extend bootstrap methods for functional time series.

Another possible research direction is to propose an efficient algorithm, for implementing

a high-order bootstrapping for functional data. Advances in statistical and econometric

theory show that iterating the bootstrap principle brings further refinements upon the single

bootstrap (Beran, 1988; Hall, 1986, 1992). Iterating the bootstrap principle reduces the

dependence between the probability distribution of the resample and the unknown data

generating process. Therefore, double bootstrap has typically higher order accuracy than

single bootstrap, but at a much higher computational cost. Although a fast double bootstrap

algorithm has been developed by Davidson and MacKinnon (2007), its extension to functional

16



data remains a future research.
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Appendix: Stiefel-manifold algorithm in R

library(MASS)

rstiefel = function(data)

{

# data is a (n× p) matrix

U = svd(data)$u

n = dim(U)[1]

X = mvrnorm(n, colMeans(U), cov(U))

tmp = eigen(t(X)%*%X)

# Let the eigenvectors (tmp$vec) be Q, and the eigenvalues (tmp$val) be S,

# If matrix X>X is eigen-decomposable and none of its eigenvalues is 0,

# then (X>X)−
1
2 = Q% ∗%(diag(S)−

1
2 )% ∗%Q−1, where Q−1 = Q>.

Ustar = X%*%(tmp$vec%*%sqrt(diag(1/tmp$val))%*%t(tmp$vec))

return(Ustar)

}
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Table 1: Abbreviations of the bootstrap methods. St and Sm are described in Section 2.2, while the
rest are described in Section 2.4.

St = Standard function bootstrap
Sm = Smoothed function bootstrap
StU = Standard score bootstrap
SmU = Smoothed score bootstrap
StGU = Standard Gaussian-distributed score bootstrap
StiefelU = Random Stiefel manifold score bootstrap
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Table 2: Coverage probabilities for the bootstrapped CIs based on B = 150 repetitions and 200
replications, at the nominal coverage probability of 95%.

Estimator and Model (a) Model (b)
bootstrap Distance Distance

L2 L∞ L2 L∞

n n
100 25 100 25 100 25 100 25

Mean

St 0.920 0.880 0.935 0.900 0.945 0.935 0.940 0.925
Sm 0.950 0.975 0.995 0.980 0.945 0.940 0.950 0.930
StU 0.920 0.880 0.935 0.900 0.945 0.935 0.940 0.925
SmU 0.980 0.980 0.990 0.975 0.945 0.920 0.960 0.925
StGU 0.915 0.885 0.945 0.915 0.945 0.935 0.950 0.945
StiefelU 0.970 0.920 0.975 0.950 0.980 0.955 0.995 0.970
Median

St 0.970 0.940 0.985 0.975 1.000 0.995 1.000 1.000
Sm 0.965 0.955 0.985 0.990 1.000 1.000 1.000 1.000
StU 0.970 0.940 0.985 0.975 1.000 0.995 1.000 1.000
SmU 0.970 0.950 0.980 0.985 1.000 1.000 1.000 1.000
StGU 1.000 0.970 1.000 1.000 1.000 1.000 1.000 1.000
StiefelU 1.000 0.985 1.000 1.000 1.000 1.000 1.000 1.000
5% Trimmed mean

St (Fraiman-Muniz) 0.780 0.915 0.795 0.930 0.960 0.935 0.975 0.935
St (Random projection) 0.795 0.965 0.795 0.980 0.980 0.985 0.985 0.990
St (α-radius) 0.450 0.890 0.490 0.930 0.945 0.970 0.960 0.970
Sm (Fraiman-Muniz) 0.945 0.975 0.970 0.965 0.960 0.935 0.980 0.940
Sm (Random projection) 0.940 0.925 0.975 0.940 0.975 0.970 0.980 0.980
Sm (α-radius) 0.920 0.915 0.940 0.925 0.945 0.965 0.955 0.975
StU (Fraiman-Muniz) 0.780 0.915 0.795 0.930 0.960 0.935 0.975 0.935
StU (Random projection) 0.795 0.965 0.795 0.980 0.980 0.985 0.985 0.990
StU (α-radius) 0.450 0.890 0.490 0.930 0.945 0.970 0.960 0.970
SmU (Fraiman-Muniz) 0.940 0.960 0.975 0.970 0.945 0.935 0.965 0.945
SmU (Random projection) 0.940 0.925 0.975 0.945 0.975 0.960 0.975 0.975
SmU (α-radius) 0.915 0.920 0.935 0.935 0.955 0.965 0.960 0.975
StGU (Fraiman-Muniz) 0.925 0.930 0.940 0.940 0.970 0.935 0.975 0.960
StGU (Random projection) 0.940 0.935 0.950 0.960 0.980 0.965 0.970 0.965
StGU (α-radius) 0.955 0.955 0.970 0.965 0.980 0.980 0.980 0.975
StiefelU (Fraiman-Muniz) 0.960 0.945 0.975 0.970 1.000 0.980 1.000 0.985
StiefelU (Random projection) 0.970 0.985 0.990 0.980 0.995 0.985 1.000 0.995
StiefelU (α-radius) 0.990 0.980 0.995 0.980 0.995 0.990 1.000 1.000
Variance

St 0.905 0.900 0.910 0.910 0.925 0.860 0.980 0.960
Sm 0.950 0.985 0.935 0.990 0.940 0.930 0.980 0.970
StU 0.905 0.900 0.910 0.910 0.925 0.860 0.980 0.960
SmU 0.940 0.985 0.945 0.935 0.945 0.880 0.980 0.950
StGU 0.925 0.905 0.930 0.935 0.935 0.915 0.965 0.995
StiefelU 0.900 0.900 0.920 0.910 0.945 0.875 0.975 0.980
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Table 3: Mode and range of the bootstrapped CI widths under model (a), based on B = 150
repetitions and 200 replications.

Estimator and Model (a) at the nominal coverage probability of 95%
bootstrap Distance

L2 L∞

n
100 25 100 25
mode range mode range mode range mode range

Mean

St 2.36 1.54-4.25 3.06 2.14-10.28 0.31 0.22-0.61 0.62 0.36-1.56
Sm 2.81 1.78-5.20 7.68 2.52-13.57 0.40 0.25-0.76 0.99 0.42-1.76
StU 2.36 1.54-4.25 3.06 2.14-10.28 0.31 0.22-0.61 0.62 0.36-1.56
SmU 3.47 1.69-6.11 8.66 2.63-15.30 0.43 0.27-0.74 0.81 0.36-1.84
StGU 2.63 1.60-4.51 4.03 2.16-10.80 0.33 0.23-0.59 0.66 0.36-1.45
StiefelU 3.32 1.70-5.42 4.35 2.27-11.72 0.36 0.24-0.73 0.89 0.40-1.53
Median

St 3.60 3.00-7.06 5.62 3.82-13.78 1.06 0.78-1.79 1.23 0.92-2.56
Sm 3.79 3.19-7.84 6.16 3.85-13.17 0.99 0.78-2.02 1.38 1.03-2.74
StU 3.60 3.00-7.06 5.62 3.82-13.78 1.06 0.78-1.79 1.23 0.92-2.56
SmU 3.39 3.03-6.95 6.07 4.20-21.46 0.96 0.76-1.78 1.43 1.04-4.03
StGU 3.51 2.25-7.32 5.91 3.12-15.57 0.89 0.63-1.85 1.24 0.78-2.36
StiefelU 3.44 2.53-9.04 5.77 3.81-17.32 0.98 0.68-1.85 1.36 0.87-3.07
5% Trimmed mean

St (Fraiman-Muniz) 2.34 1.35-6.28 3.83 2.65-16.95 0.34 0.21-0.93 0.88 0.41-2.41
St (Random projection) 3.62 1.80-6.57 4.27 3.32-16.34 0.45 0.25-0.89 0.65 0.50-2.21
St (α-radius) 2.71 1.68-6.01 4.73 3.07-17.33 0.35 0.24-0.81 0.81 0.47-2.45
Sm (Fraiman-Muniz) 4.15 2.47-6.88 7.27 2.95-15.77 0.57 0.33-0.91 0.99 0.49-2.05
Sm (Random projection) 4.19 2.61-8.27 5.56 4.15-19.59 0.66 0.35-1.12 0.98 0.68-2.73
Sm (α-radius) 3.28 2.76-7.39 8.09 4.20-20.41 0.58 0.38-1.03 1.10 0.75-2.90
StU (Fraiman-Muniz) 2.34 1.35-6.28 3.83 2.65-16.95 0.34 0.21-0.93 0.88 0.41-2.41
StU (Random projection) 3.62 1.80-6.57 4.27 3.32-16.34 0.45 0.25-0.89 0.65 0.50-2.21
StU (α-radius) 2.71 1.68-6.01 4.73 3.07-17.33 0.35 0.24-0.81 0.81 0.47-2.45
SmU (Fraiman-Muniz) 4.22 2.42-8.03 6.26 3.53-16.86 0.56 0.34-1.15 1.16 0.47-1.91
SmU (Random projection) 4.06 2.53-7.68 6.25 3.83-17.94 0.65 0.39-1.02 1.04 0.63-2.62
SmU (α-radius) 4.00 2.79-8.57 5.80 3.90-19.67 0.57 0.37-1.12 1.19 0.76-2.71
StGU (Fraiman-Muniz) 4.10 1.92-6.35 7.60 2.40-12.48 0.56 0.26-0.82 0.84 0.40-1.68
StGU (Random projection) 3.52 2.19-6.82 6.24 2.95-15.08 0.62 0.31-0.94 1.09 0.49-2.03
StGU (α-radius) 4.92 2.65-7.61 6.77 2.91-15.46 0.57 0.36-1.08 0.89 0.51-2.28
StiefelU (Fraiman-Muniz) 3.39 2.18-6.23 6.69 2.46-14.03 0.52 0.30-0.86 0.72 0.46-1.92
StiefelU (Random projection) 4.67 2.79-8.04 5.18 3.45-16.76 0.73 0.38-1.06 0.79 0.53-2.19
StiefelU (α-radius) 5.74 3.12-9.08 3.85 3.62-17.38 0.61 0.42-1.25 1.21 0.56-2.35
Variance

St 1.71 0.95-4.76 2.94 1.19-8.62 0.34 0.21-0.88 0.72 0.27-1.98
Sm 2.85 1.37-4.95 5.01 2.46-14.25 0.40 0.24-0.81 1.32 0.49-3.24
StU 1.71 0.95-4.76 2.94 1.19-8.62 0.34 0.21-0.88 0.72 0.27-1.98
SmU 1.62 1.24-4.15 5.44 3.03-12.57 0.43 0.26-0.89 0.81 0.44-2.06
StGU 1.68 1.15-3.58 3.73 1.66-9.94 0.41 0.21-0.88 0.85 0.39-1.97
StiefelU 1.76 1.12-3.82 4.11 1.58-9.03 0.35 0.23-0.75 0.65 0.36-1.85
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Table 4: Mode and range of the bootstrapped CI widths under model (b), based on B = 150
repetitions and 200 replications.

Estimator and Model (b) at the nominal coverage probability of 95%
bootstrap method Distance

L2 L∞

n
100 25 100 25
mode range mode range mode range mode range

Mean

St 1.50 1.04-2.90 2.77 2.18-6.07 0.27 0.20-0.49 0.55 0.43-0.96
Sm 1.65 1.10-2.65 3.21 1.86-5.30 0.28 0.21-0.45 0.63 0.41-0.96
StU 1.50 1.04-2.90 2.77 2.18-6.07 0.27 0.20-0.49 0.55 0.43-0.96
SmU 1.67 1.08-3.12 3.14 2.06-5.59 0.29 0.22-0.43 0.61 0.46-1.04
StGU 1.42 1.15-2.95 2.78 2.34-5.59 0.27 0.21-0.48 0.63 0.44-1.01
StiefelU 1.86 1.27-2.98 3.80 2.45-6.73 0.32 0.23-0.47 0.71 0.47-1.05
Median

St 7.30 6.35-11.36 10.33 7.70-18.36 2.14 1.60-3.99 2.75 1.89-5.46
Sm 7.74 6.19-10.84 12.22 7.68-17.59 1.88 1.62-4.03 2.69 2.11-5.41
StU 7.30 6.35-11.36 10.33 7.70-18.36 2.14 1.60-3.99 2.75 1.89-5.46
SmU 6.86 6.12-11.35 12.03 7.65-16.57 2.24 1.64-3.99 2.88 2.00-4.16
StGU 3.75 2.73-6.34 5.50 4.35-10.01 1.53 1.14-2.76 1.95 1.24-3.32
StiefelU 4.01 3.52-8.16 6.08 5.15-12.76 1.42 1.23-3.23 1.95 1.39-4.09
5% Trimmed mean

St (Fraiman-Muniz) 2.03 1.35-3.36 3.57 2.44-7.39 0.30 0.23-0.51 0.69 0.48-1.13
St (Random projection) 2.08 1.64-3.58 5.32 2.91-8.71 0.36 0.29-0.55 0.86 0.58-1.46
St (α-radius) 2.50 1.61-3.63 4.40 3.34-9.38 0.38 0.27-0.51 0.79 0.69-1.58
Sm (Fraiman-Muniz) 1.74 1.12-3.38 2.96 2.76-7.81 0.32 0.21-0.49 0.69 0.45-1.09
Sm (Random projection) 2.25 1.58-3.63 4.04 3.13-7.75 0.36 0.29-0.54 0.85 0.61-1.20
Sm (α-radius) 2.09 1.66-3.80 4.67 3.21-8.43 0.37 0.30-0.69 0.93 0.62-1.25
StU (Fraiman-Muniz) 2.03 1.35-3.36 3.57 2.44-7.39 0.30 0.23-0.51 0.69 0.48-1.13
StU (Random projection) 2.08 1.64-3.58 5.32 2.91-8.71 0.36 0.29-0.55 0.86 0.58-1.46
StU (α-radius) 2.50 1.61-3.63 4.40 3.34-9.38 0.38 0.27-0.51 0.79 0.69-1.58
SmU (Fraiman-Muniz) 1.67 1.27-3.12 4.20 2.46-7.83 0.34 0.23-0.47 0.67 0.47-1.27
SmU (Random projection) 2.11 1.44-3.41 4.80 2.97-8.58 0.36 0.30-0.52 0.82 0.61-1.31
SmU (α-radius) 2.07 1.68-3.83 4.48 2.96-8.29 0.39 0.28-0.60 0.79 0.63-1.33
StGU (Fraiman-Muniz) 1.86 1.21-2.99 3.53 2.56-8.00 0.30 0.23-0.48 0.71 0.51-1.20
StGU (Random projection) 2.34 1.57-3.30 3.66 3.20-8.30 0.35 0.29-0.53 0.80 0.61-1.28
StGU (α-radius) 2.24 1.60-3.63 4.77 3.13-7.94 0.36 0.29-0.52 0.88 0.56-1.27
StiefelU (Fraiman-Muniz) 2.38 1.39-3.99 4.46 2.76-7.52 0.34 0.27-0.51 0.79 0.55-1.21
StiefelU (Random projection) 2.64 1.75-4.19 5.01 3.58-9.17 0.41 0.31-0.65 0.89 0.67-1.47
StiefelU (α-radius) 2.71 1.90-3.95 5.70 3.32-9.24 0.42 0.34-0.65 0.92 0.67-1.45
Variance

St 1.90 1.02-4.09 3.08 1.76-10.42 0.41 0.24-0.93 0.82 0.57-2.37
Sm 2.09 0.98-3.92 4.08 2.07-10.95 0.48 0.30-0.86 0.79 0.55-2.49
StU 1.90 1.02-4.09 3.08 1.76-10.42 0.41 0.24-0.93 0.82 0.57-2.37
SmU 2.03 1.31-4.03 2.69 1.79-11.26 0.52 0.33-0.93 0.85 0.61-2.74
StGU 2.05 1.25-3.24 3.71 1.79-9.66 0.46 0.30-0.81 1.03 0.64-2.55
StiefelU 2.03 1.29-3.44 3.15 1.71-8.63 0.44 0.29-0.80 0.98 0.58-2.41
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Figure 1: Histograms of the widths for the CIs with the L∞ metric, based on the sample mean
(left) and the 5%-trimmed mean (right).
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Figure 2: Averaged daily temperatures from 1960 to 1994 observed at 35 Canadian weather stations.
Note that each curve represents the averaged daily temperatures at a weather station, not at a
particular year.
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Figure 3: 95% CIs of the descriptive statistics for the Canadian weather station data, based on the
smoothed bootstrap principal component score method with smoothing parameter β = 0.05 and
B = 150 repetitions. While the sample estimates are shown in red, their 95% CIs are shown in blue.
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(a) 16 eburnated femora.
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(b) 52 non-eburnated femora.

Figure 4: Raw data for the 68 bone shapes.
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(a) 95% CI for the mean shape of eburnated
bones.
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(b) 95% CI for the mean shape of non-
eburnated bones.
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(c) 95% CI for the median shape of eburnated
bones.
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(d) 95% CI for the median shape of non-
eburnated bones.

Figure 5: 95% CIs of the descriptive statistics for the bone shape data, based on the standard
bootstrap principal component score method. The mean or median shape is shown in red, while the
95% pointwise CI of the mean or median shape based on B = 150 repetitions is shown by the black
circles. The variability associated with the mean shape is smaller than the variability associated
with the median shape.
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