
IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Overview of the SpiNNaker system
architecture

Steve B. Furber, Fellow, IEEE, David R. Lester, Luis A. Plana, Senior Member, IEEE, Jim D.
Garside, Eustace Painkras, Steve Temple, and Andrew D. Brown, Senior Member, IEEE

Abstract—SpiNNaker (a contraction of Spiking Neural Network Architecture) is a million-core computing engine whose flagship
goal is to be able to simulate the behaviour of aggregates of up to a billion neurons in real time. It consists of an array of ARM9
cores, communicating via packets carried by a custom interconnect fabric. The packets are small (40 or 72 bits), and their
transmission is brokered entirely by hardware, giving the overall engine an extremely high bisection bandwidth of over 5 billion
packets/s. Three of the principle axioms of parallel machine design – memory coherence, synchronicity and determinism –
have been discarded in the design without, surprisingly, compromising the ability to perform meaningful computations. A further
attribute of the system is the acknowledgment, from the initial design stages, that the sheer size of the implementation will make
component failures an inevitable aspect of day-to-day operation, and fault detection and recovery mechanisms have been built
into the system at many levels of abstraction. This paper describes the architecture of the machine and outlines the underlying
design philosophy; software and applications are to be described in detail elsewhere, and only introduced in passing here as
necessary to illuminate the description.

Index Terms— Interconnection architectures, parallel processors, neurocomputers, real-time distributed.

——————————  ——————————

1 INTRODUCTION
he SpiNNaker engine [1] is a massively-parallel
multi-core computing system. It will contain up to
1,036,800 ARM9 cores and 7Tbytes of RAM distri-

buted throughout the system in 57K nodes, each node be-
ing a System-in-Package (SiP) containing 18 cores plus a
128Mbyte off-die SDRAM (Synchronous Dynamic Ran-
dom Access Memory). Each core has associated with it
64Kbytes of data tightly-coupled memory (DTCM) and
32Kbytes of instruction tightly-coupled memory (ITCM).

The cores have a variety of ways of communicating
with each other and with the memory, the dominant of
which is by packets. These are 5- or 9-byte (40- or 72-bit)
quanta of information that are transmitted around the
system under the aegis of a bespoke concurrent hardware
routing system.

The physical hierarchy of the system has each node
containing two silicon dies – the SpiNNaker chip itself,
plus the Mobile DDR (Double Data Rate) SDRAM, which
is physically mounted on top of the SpiNNaker die and
stitch-bonded to it – see Fig. 1. The nodes are packaged
and mounted in a 48-node hexagonal array on a PCB
(Printed Circuit Board), the full system requiring 1,200
such boards. In operation, the engine consumes at most
90kW of electrical power.

This paper will describe architectural and physical de-
sign aspects of the system. Clearly, there are many chal-

lenges associated with the design, construction and use of
a system as large and complex as this – the software and
application portfolio will be described in detail elsewhere.
While previous papers have presented aspects of the ar-
chitecture (e.g. [2], [3]; a complete list of SpiNNaker pub-
lications is available on the project web site [1]), the con-
tribution here is to offer a comprehensive overview focus-
ing on the motivation and rationale for the architectural
decisions taken in the design of the machine.

2 HIGH-LEVEL PROJECT GOALS AND BACKGROUND
Multi-core processors are now clearly established as the
way forward on the desktop, and highly-parallel systems

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• S.B. Furber, D.R Lester, L.A. Plana, J.D. Garside, E. Painkras and S. Tem-

ple are with the School of Computer Science, the University of Manchester,
UK.

• A.D. Brown is with Electronics and Computer Science, the University of
Southampton, UK.

Manuscript received 14th January 2012.

T

Fig 1: SDRAM stitch-bonded to the underlying SpiNNaker die.
3D packaging by UNISEM (Europe) Ltd.

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

have been the norm for high-performance computing for
some while. In a surprisingly short space of time, indus-
try has abandoned the exploitation of Moore’s Law
through ever more complex uniprocessors, and is embrac-
ing the ‘new’ Moore’s Law: the number of processor cores
on a chip will double roughly every 18 months. If pro-
jected over the next 25 years this leads inevitably to the
landmark of a million-core processor system.

Much work is required to understand how to optimize
the scheduling of workloads on such machines, but the
nature of this task is changing: in the past, a large applica-
tion was distributed ‘evenly’ over a few processors and
much effort went into scheduling to keep all of the proc-
essor resources busy; today, the nature of the cost func-
tion is different: processing is effectively a free resource.
Although the automatic parallelization of general-
purpose codes remains a ‘holy grail’ of computer science,
biological systems achieve much higher levels of parallel-
ism, and we turn for inspiration to connectivity patterns
and computational models based on our (extremely lim-
ited) understanding of the brain.

This biological inspiration draws us to two parallel,
synergistic directions of enquiry [4]; significant progress
in either direction will represent a major scientific break-
through:
• How can massively-parallel computing resources ac-

celerate our understanding of brain function?
• How can our growing understanding of brain func-

tion point the way to more efficient, parallel, fault-
tolerant computation?
We start from the following question: what will hap-

pen when processors become so cheap that there is, in
effect, an unlimited supply of them? The goal is now to
get the job done as quickly and/or energy-efficiently as
possible, and as many processors can be brought into
play as is useful; this may well result in a significant
number of processors doing identical calculations, or in-
deed nothing at all - they are a free resource.

2.1 The mammalian nervous system
The mammalian nervous system – by any metric – is one
of the most remarkable, effective and efficient structures
occurring in nature. The human brain exhibits massive
parallelism (1011 neurons), and massive connectivity (1015
synapses). It consumes around 25W, and is composed of
very low-performance components (neurons ‘behave’ at

up to around 100Hz; the biological interconnect propa-
gates information at speeds of a few ms-1). It is massively
tolerant of component-level failure – typically a human
will lose neurons at a rate of about 1s-1 throughout their
adult life [5].

For a computer engineer, the similarities between the
nervous system and a digital system are overwhelming.
The principal component of the nervous system, the neu-
ron [6], is a unidirectional device, connected to its peers
via a single output, the axon. Near its terminal the axon
branches and forms connections (synapses) with the inputs
of its fellow neurons. The input structure of a neuron is
termed the dendritic tree - see Fig. 2. Specialised neurons
interface to muscles (and drive the system ‘actuators’),
and others to various sensors.

2.2 Spiking communication
Most biological neurons communicate predominantly via
an electrochemical impulse known as an action potential
[6]. This is a complex, propagating electrochemical pulse,
supported mainly by transient sodium, potassium, chlo-
ride and electron fluxes, and perturbations of the electro-
chemical impedance to these species in the axon cell
walls. To a zeroth approximation, these impulses can be
viewed as spikes. The size and shape of the spike is
largely invariant, (and, indeed, probably irrelevant) being
determined by local instabilities in the cell membrane
current balance, so a spike can be viewed as a unit im-
pulse that conveys information solely in the time at which
it occurs. It costs the axon energy to transmit an event,
but this is provided by a kind of electrochemical ‘gain’
distributed along the length of the fibre: the net effect is
that – again to a zeroth approximation – the axon can be
viewed as a lossless dispersion free transmission line,
although it has to have a ‘rest’ just after a pulse has gone
by to ‘charge itself up’ again.

2.3 Point neuron model
SpiNNaker is optimized for what is commonly known as
the ‘point neuron model’ [4], where the details of the den-
dritic structure of the neuron are ignored and all inputs
are effectively applied direct to the soma (the ‘body’ of
the neuron). The inputs arrive in the correct temporal
order – more or less – but there is no attempt to model the

Fig. 3. The corresponding point neuron model.

Fig. 2. A biological neuron.

FURBER ET AL.: OVERVIEW OF THE SPINNAKER SYSTEM ARCHITECTURE 3

geometry of the dendritic tree. The abstract synaptic in-
puts are summed to form a net soma input that drives a
system of simple differential equations that compute
when an output spike should be issued.

2.4 Synapses
A synapse is the ‘component’ whereby a spike from one
neuron couples into the input to another neuron. A spike
has unit impulse, but the synapse has a variable efficiency
which is often represented by a numerical ‘weight’ [4]. If
the weight is positive, the synapse is excitatory. If the
weight is negative, the synapse is inhibitory.

The modeling abstraction is summarized in Fig. 3. In
the jargon of electronic circuits, a neural circuit is repre-
sented by a devices-on-devices graph. Biology – as one
might expect – is vastly more complex than this extreme
abstraction. An unresolved issue is how much of the
complexity is biological artifact, and how much is neces-
sary for the information processing required to support a
viable organism? The performance of electronic circuits is
ultimately dictated by the speed and efficiency with
which the flow of electrons through silicon can be cho-
reographed by the designer – and there are physical lim-
its. In biology, the information carriers are more diverse
(ionic species) and they are controlled by an electro-
chemical field gradient. Ions are necessarily big, electro-
chemical fields necessarily small. Nature compensates by
utilizing massive parallelism, but there will always be
huge functional compromises. It is interesting to note that
almost every creature on the planet today utilizes broadly
the same structure for its controlling neural system.
Comprehensive descriptions of the many types of real
neurons and synapses are available elsewhere [6], [7].

2.5 Address Event Representation
The central idea of the standard SpiNNaker execution
model is that of Address Event Representation (AER) [8], [9].
The underlying principle of AER, which is well-
established in the neuromorphic community, is that when
a neuron fires the spike is a pure asynchronous ‘event’.
All of the information is conveyed solely in the time of the
spike and the identity of the neuron that emitted the spike.
In a real-time system, time models itself, so in an AER
system the identity (‘address’) of a neuron that spikes is
simply broadcast at the time that it spikes to all neurons
to which the spiking neuron connects.

In SpiNNaker, AER is implemented using packet-
switched communication and multicast routing. Al-
though the communication system introduces some tem-
poral latency, provided this is small compared with bio-
logical time constants (which in practice means provided
it is well under 1ms) then the error introduced by this
latency is negligible (when modeling biological neural
systems).

2.6 Topological virtualization
Biological neural systems develop and operate in three
dimensions, and both their topologies and geometries are
constrained by their physical structures. SpiNNaker em-
ploys a two-dimensional physical communication struc-
ture, but this in no way limits its capacity to model three-

(or higher-) dimensional networks. Because electronic
communication is effectively instantaneous on biological
time-scales, every neuron in a SpiNNaker system can be
connected to any other neuron with a time delay that
equates to adjacency in the biological three-dimensional
space. Thus the mapping of neurons from the biological
3-D space into the SpiNNaker 2-D network of processors
can be arbitrary – any neuron can be mapped to any
processor. In practice, the SpiNNaker model will be more
efficient if the mapping is chosen carefully, and this, in
turn, means mapping physically close neurons into
physically close processors, but this is only a matter of
efficiency and is in no way fundamentally constrained by
the SpiNNaker implementation.

2.7 Time models itself
Biological systems have no central synchronising clock.
Spikes are launched, spikes propagate, spikes arrive
(usually), target neurons react. In a conventional elec-
tronic synchronous system, data is expected to be at the
right place at the right time. If it isn't, the system is bro-
ken. In an asynchronous electronic system, data arrives, is
processed and passed on, and a non-trivial choreography
of request and acknowledge signals ensures that the in-
tegrity of the dataflow is maintained. In biology, data is
transmitted in the hope that most of it will get to the right
place in a timely – but strictly undefined – manner.
Strangely, it is clear by inspection that it is possible to
create hugely complex systems – mammals – operating
successfully on this principle.

In SpiNNaker, cores react to packets, process packets,
and optionally emit further packets. These are transmit-
ted to their target by the routing subsystem, to the best of
its ability. If the routing fabric becomes congested – an
unpredictable function of the workload – packets will, in
the first instance, be re-routed (causing them to arrive
late) or even dropped (if there is no space to hold them).
A design axiom of SpiNNaker is that nothing can ever
prevent a packet from being launched. A consequence of
the effects described above is that not only is the arrival
time of the packets non-deterministic, the packet ordering
is non-transitive.

A single SpiNNaker core is a single ARM9 processor.
This is deterministic and is expected to multiplex the be-
haviour of around 1,000 neurons. The nodes, each con-
taining 18 such cores, cores are equipped with six bi-
directional fast links, and embedded in a communication
mesh – see the next section – which intelligently redirects
and duplicates packets as necessary. The speed at which
packets are transmitted over the network is about
0.2!s/node hop, all of which means that we can reason-
ably expect the neuron models to react to stimuli on a
wall-clock timescale of ms – just like biology.

3 THE TECHNOLOGY LANDSCAPE
There are other approaches to brain modelling with objec-
tives broadly similar to, though approaches rather differ-
ent from, the work described here.

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

3.1 BlueBrain
The Blue Brain project at EPFL [10], is bringing together
wet neuroscience with high-performance computing to
deliver high-fidelity computer models of biological neural
systems. The computing resource available to the project
is an IBM Blue Gene supercomputer [11] with very so-
phisticated visualisation facilities.

3.2 SyNAPSE
An IBM project, funded under the DARPA SyNAPSE
programme [12] claims the successful modelling of a neu-
ral network on the scale of a cat cortex (which is around a
billion neurons with 1013 synapses).

3.3 Izhikevich
Eugene Izhikevich, at the Neuroscience Research Institute
in San Diego, developed a 100 billion neuron model based
on the mammalian thalamo-cortical system [13], [14]. One
second of simulation took 50 days on a 27-processor Be-
owulf cluster.

3.4 Issues
These major projects demonstrate the debate (that is as

yet unresolved within the brain modelling research com-
munity): to what extent are the finer details of biological
neurons essential to the accurate modelling of the infor-
mation processing capabilities of the brain, and to what
extent can they be ignored as artifacts resulting from the
evolutionary development of the biological neuron and
its need to grow and find energy?

The SpiNNaker architecture is biased towards the
simpler side of this debate – the machine is optimised for
simple point neuron models and it is capable of model-
ling very complex networks of these simple models.

The principal differentiator of the SpiNNaker project
from other large-scale neural models is our objective to
run in biological real time. None of the above systems are
close to this goal, but we believe this to be essential if the
neural experiments are to benefit from ‘embodiment’ by
integration with robotic systems.

Other approaches to large-scale neural modelling are,
of course, possible, for example using GPGPUs or FPGAs.
It is difficult with such approaches to achieve the balance
of computation, memory hierarchy and communication
that SpiNNaker achieves, though of course they do avoid
the high development cost of the bespoke chip approach.

4 ARCHITECTURE OVERVIEW
4.1 Overview
A block diagram of a single SpiNNaker node is shown in
Fig. 4. The six communications links are used to connect
the nodes in a triangular lattice; this lattice is then folded
onto the surface of a toroid, as in Fig. 5. Other tilings are
obviously possible; this design decision was guided by
the pragmatics of assembling the system onto a set of two
dimensional printed circuit boards.

Fig. 4. A SpiNNaker node.

Fig. 5. The SpiNNaker machine.

Fig. 6. The SpiNNaker die.

FURBER ET AL.: OVERVIEW OF THE SPINNAKER SYSTEM ARCHITECTURE 5

Fig. 6 depicts the individual SpiNNaker die. Each chip
contains 18 identical processing subsystems (ARM cores).
The die is fabricated by UMC on a 130nm CMOS process,
and was designed using Synopsys, Inc., synthesis tools
for the clocked subsystems and Silistix Ltd tools and li-
braries for the self-timed on-chip and inter-chip networks.

At start-up, following self-test, one of the processors is
elected to a special role as Monitor Processor, achieved by a
deliberate hardware race, and thereafter performs system
management tasks. The other processors are available for
application processing; normally 16 will be used to sup-
port the application and one reserved as a spare for fault-
tolerance and manufacturing yield-enhancement pur-
poses.

The router is responsible for routing neural event
packets both between the on-chip processors and from
and to other SpiNNaker nodes. The Tx and Rx interface
components (Fig. 4) are used to extend the on-chip Com-
munications NoC (Network-on-Chip) to other SpiNNaker
chips. Inputs from the various on- and off-chip sources
are assembled into a single serial stream which is then
passed to the router.

Various resources are accessible from the processor
systems via the System NoC. Each of the processors has
access to the shared off-die SDRAM, and various system
components also connect through the System NoC in
order that, whichever processor is the monitor, it will
have access to these components.

4.2 Quantitative drivers
The SpiNNaker architecture is driven by the quantitative
characteristics of the biological neural systems it is de-
signed to model. The human brain comprises in the re-
gion of 1011 neurons; the objective of the SpiNNaker work
is to model 1% of this scale, which amounts to a billion
neurons. This corresponds approximately to 10% of the
human cortex, or ten complete mouse brains. Each neu-
ron in the brain connects to thousands of other neurons.
The mean firing rate of neurons is below 10 Hz, with the
peak rate being 100s of Hz. These numerical points of
reference can be summarized in the following deductions:

109 neurons, mean fan in/out 103 => 1012 synapses.
1012 synapses, ~4 bytes/synapse => 4x106 Mbytes.
1012 synapses switching at ~10Hz => 1013 connections/s.
1013 conn/s, 20 instr/conn => 2x108 MIPS.
2x108 MIPS, ~200MHz ARM => 106 ARMs.

So 109 neurons need 106 ARMs, whence:

1 ARM at ~200MHz => 103 neurons.
1 node: 16 ARM968 + 64MB => 1.6x104 neurons.
6 x105 nodes, 1.6x104 neur/node => 109 neurons.

The above numbers all assume each neuron has 1,000
inputs. In biology, this number varies from 1 to of the
order of 105, and it is probably most useful to think of
each ARM being able to model about 1M synapses, so it
can model 100 neurons each with 10,000 inputs, and so
on.

The system will be inefficient unless there is some
commonality across the inputs to the set of neurons mod-
eled on a processor, so that each input event typically
connects to tens or hundreds of neurons modeled by a
processor. In biology, connections tend to be sparse, so,
for example, a processor could model 1000 neurons each
of which connects to a random 10% of the 104 inputs that
are routed to the processor. The standard model assumes
sparse connectivity.

4.3 Routing
With a billion neurons a 32-bit address is (more than) suf-
ficient. The AER packets incur a small overhead for con-
trol purposes, which amounts to one byte in the current
design. This is generally transparent to the software run-
ning on the ARM cores and exists only while the packet is
in transit. Since spike events are unit impulses, all the
packet need carry is the control byte and the 32-bit ID of
the neuron that fired. SpiNNaker packet formats support
an optional 32-bit data payload in addition, but that is not
used for neural system modeling directly. The payload
will be used for other applications and for debug and di-
agnostics. Thus the communication traffic generated by
one node is:

1.6x104 neurons x 10Hz x 5 bytes => 0.8Mbyte/s.

Each chip incorporates a router that implements AER-
based routing of neural spike-event packets. The total
traffic from neurons modeled by the processors on the
same chip as the router averages 1.6x105 packets/s, which
is undemanding, although the router also handles incom-
ing and passing traffic.

4-bit symbols @ 60MHz/link => 6x106 pkts/s
6 incoming links => 3.6x107 pkts/s

So a router operating at 100MHz processing one packet
per clock cycle can easily handle all local, incoming and
passing traffic.

4.4 Bisection bandwidth
If a 57K-node system is organized in such a way that all
of the neurons in one half are connected to at least one
neuron in the other half, the traffic across the border from
one half to the other is 29K x 160K = 4.6G packets/s. The
border is 480 nodes long (assuming a square layout,
mapped to a toroid), so each node must carry 10M pack-
ets/s, which is well within the capacity of the router, and
960 links connect the two halves, each carrying 5M pack-
ets/s, which is again within a link’s capability.

5 SYSTEM COMPONENTS
The routing subsystem, which is a crucial component of
SpiNNaker, is described in section 7.

5.1 ARM968
The ARM subsystem [15] organisation is shown in Fig. 7.
The system is memory-mapped (see section 6), and the
map for the ARM968 spans a number of devices and

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

buses. The tightly-coupled core-local memories are di-
rectly connected to the processor and accessible at the
processor clock speed. All other parts of the memory map
are visible via the AHB (Advanced High-Speed Bus – one
of the ARM AMBA – Advanced Microcontroller Bus Ar-
chitecture – interface standards) master interface, which
runs at the full processor clock rate. This gives direct ac-
cess to the registers of the DMA controller, communica-
tions controller and the timer/interrupt controller. In ad-
dition, a path is available through the DMA controller
onto the System NoC which provides processor access to
all memory and other resources on the System NoC.

5.2 Vectored interrupt controller
In standard use, it is envisaged that SpiNNaker will be
entirely interrupt-driven [16]. There is no conventional
operating system running on the cores, simply a low-level
‘service provision’ system. An interrupt arrives (usually
in the form of a message packet); the core wakes to han-
dle it, possibly emitting more packets of its own as a con-
sequence; and then returns to sleep – see Fig. 8.

Each processor node on a SpiNNaker chip has a vec-
tored interrupt controller (VIC) [17] that is used to enable
and disable interrupts from various sources, and to wake
the processor from sleep mode when required. The inter-
rupt controller provides centralised management of IRQ
(standard interrupt) and FIQ (fast interrupt) sources, and
offers an efficient indication of the active sources for IRQ
vectoring purposes.

The sources of interrupts on SpiNNaker are:
• Communication controller flow-control
• DMA complete/error/timeout
• Timers (& watchdog timer)
• Interrupt from another processor on the chip
• Packet-error from the router
• System fault
• Ethernet controller
• Off-chip signals
• 32kHz slow system clock
• Software interrupt, for downgrading FIQ to IRQ.

5.3 Counter/timers
Each node has a counter/timer [18]. This uses the stan-
dard AMBA peripheral device, modified in that the APB
(Advanced Peripheral Bus) interface of the original has
been replaced by an AHB interface for direct connection

to the ARM968 AHB bus.
The unit provides two independent counters, provid-

ing:
• Millisecond interrupts for real-time dynamics
• Free-running and periodic counting modes
• Automatic reload for precise periodic timing
• One-shot and wrapping count modes
• The counter clock (which runs at the processor clock

frequency) may be pre-scaled by dividing by 1, 16 or
256.

5.4 DMA control
Each node includes a DMA controller. The primary appli-
cation of the DMA subsystem is manually-controlled pag-
ing. This is used for transferring inter-neural connection
data from the SDRAM in large blocks in response to an
input event arriving at an application processor, and for
returning updated state information. In addition, the
DMA controller can transfer data to/from other targets
on the System NoC such as the System RAM and Boot
ROM.

As a secondary function the DMA controller incorpo-
rates a ‘Bridge’ across which its host ARM968 has direct
read and write access to System NoC devices, including
the SDRAM. The ARM968 can use the Bridge whether or
not DMA transfers are active.

The DMA controller:
• Allows direct pass-through requests from the ARM968
• Possesses dual buffers supporting simultaneous direct

and DMA transfers
• Provides support for CRC error control in transferred

blocks
• Provides DMA completion notification interrupts

DMA transfers are initiated by writing to control regis-
ters in the controller. They are executed in the back-
ground, and the relevant interrupt caught when the work
is complete. Bridge transfers occur when the ARM initi-
ates a request directly to the needed device or service. The
DMA controller fulfils these requests transparently, the
host processor retaining full control of the transfer. Invis-
ible to the user, the controller may buffer the data from
write requests for more efficient bus management. If an
error occurs on such a buffered write the DMA controller

Fig. 7. ARM968 subsystem organization.

Fig. 8. SpiNNaker event-driven operating mode.

FURBER ET AL.: OVERVIEW OF THE SPINNAKER SYSTEM ARCHITECTURE 7

signals an error interrupt.

5.5 Ethernet
The SpiNNaker system connects to a host machine via
Ethernet links. Every node includes an Ethernet MII (Me-
dia Independent Interface), although only a few of the
chips are expected to use this. These chips require an ex-
ternal physical connection to a transceiver PHY (PHYsical
layer) chip. The interface hardware operates at the frame
level: all higher-level protocols are implemented in soft-
ware running on the local monitor processor.

The Ethernet subsystem provides:
• Support for full-duplex 10 and 100 Mbit/s Ethernet
• An outgoing 1.5Kbyte frame buffer, for one maxi-

mum-size frame
• Outgoing frame control, CRC generation and inter-

frame gap insertion
• Incoming 3Kbyte frame buffer, for two maximum-size

frames
• Incoming frame descriptor buffer, for up to 48 frame

descriptors
• Incoming frame control with length and CRC check
• Support for unicast (with programmable MAC ad-

dress), multicast, broadcast and promiscuous frame
capture

• Receive error filter
• Internal loop-back (for test purposes)
• General-purpose IO for PHY management and reset
• Interrupt sources for frame-received, frame-

transmitted and PHY (external) interrupt
The implementation does not provide support for half-
duplex operation (as required by a CSMA/CD MAC al-
gorithm), jumbo or VLAN frames.

6 MEMORY SPACES
Each processor has, directly available to it, four memory
spaces, which are mapped onto a single processor-local
32-bit memory space. Processor-local memory is visible
only to the core to which it is bound, and that core can
use the full available bandwidth. Node-local memory and
off-die SDRAM are directly visible to all the cores in a
given node, and the available bandwidth is shared be-
tween all processors with active accesses.

The memory space access characteristics are sum-
marized in Table 1. Note that although the off-chip
SDRAM has higher bandwidth than the on-chip SRAM, it
also has higher access latency.

TABLE 1
MEMORY TYPES

Memory area Size Speed/CPU Visibility
ITCM 32kB 800MBps Core-local
DTCM 64kB 800MBps Core-local
SRAM 32kB 25MBps Node-local

SDRAM 128MB 64MBps Node-local

No node has direct visibility of any memory on any
other node, except for limited access via the communica-
tions fabric to node-local memory on neighbouring nodes,
and there is no mechanism for maintaining memory co-
herence of any type across nodes.

The memory map for a single node is shown in Table
2.

TABLE 2
SINGLE NODE MEMORY MAP

Address Area Buffered
0x00000000 ITCM n/a
0x00008000 Not used n/a
0x00400000 DTCM n/a
0x00410000 Not used n/a
0x10000000 Local peripherals -

comms, counter, VIC,
DMA

mixture

0x50000000 Bus error n/a
0x60000000 SDRAM yes
0x70000000 SDRAM no
0x80000000 Bus error n/a
0xe0000000 NoC peripherals - router,

controller, watchdog,
ethernet

yes

0xe5000000 System RAM yes
0xe6000000 System ROM yes
0xe7000000 Bus error n/a
0xf0000000 NoC peripherals no
0xf5000000 System RAM no
0xf6000000 System ROM no
0xf7000000 Bus error n/a
0xff000000 Boot area no

The shaded areas in Table 2 represent core-local re-

sources, the others are node-local. The buffered column
indicates whether or not the resource is accessed directly
(and therefore capable of exact recovery if a fault occurs)
or via a FIFO (which is faster but not exactly recoverable).

7 THE ROUTING SUBSYSTEM
The only direct inter-node communication mechanism in
the SpiNNaker engine is via packets. These are launched
by cores, and transmitted – by hardware – to the local
node router [19]. There they are redirected as necessary to
their target core(s). If these are in the same node as the
source, the onward transmission is direct; if a target is a
core in another node, the packet is handed out to a physi-
cally adjacent node to begin its journey. Each node is only
physically directly connected to a handful of neighbour
nodes (fig. 5); a variety of routing techniques ensure that
a packet is delivered to the target node.

Packets consist of 40 or 72 bits of data, conveniently
broken up into a control byte (8 bits) and one or two data
words (1x or 2x 32 bits). The second data word is op-
tional; its presence or absence is signified by a bit in the
control byte.

The router is responsible for routing all packets that ar-
rive at its input to one or more of its outputs. It is respon-
sible for routing multicast neural event packets (which it
does through an associative multicast router subsystem);
point-to-point packets (for which it uses a look-up table);
nearest neighbour packets (using a simple algorithmic
process); fixed-route packet routing (where the route is
defined in a register); default routing (when a multicast

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

packet does not match any entry in the multicast router),
and emergency routing (when an output link is blocked
due to congestion or hardware failure). Various error
conditions are identified and handled by the router, for
example packet parity errors, time-out, and output link
failure.

The sheer physical size of the system makes global
clock synchronisation a virtual impossibility. This is side-
stepped by simply doing away with the requirement al-
together [20]. The asynchronous interconnect infrastruc-
ture allows arbitrary clock skew (although not clock drift)
across the system.

7.1 Packet taxonomy
SpiNNaker packets are of four types: nearest neighbour
(NN), point-to-point (P2P), multicast (MC) and fixed
route (FR). The passage of each through the router sub-
system is brokered by hardware; nominally the latency of
a packet transfer through a router is 0.1!s, irrespective of
its type, source or destination.

7.1.1 Nearest neighbour (NN) packets
The layout of an NN packet is shown in Fig. 9a. The con-
trol byte contains a packet-type nibble (bits[7:6] = 10 for
NN packets), a ‘peek/poke’ or ‘normal’ type indicator (T)
- see below, routing information (where the packet should
be sent), a payload indicator (the presence or absence of
the second data word) and error detection (parity) infor-

mation.
The routing nibble – three bits – decodes to eight choi-

ces: which of the six physical ports is to be used, OR the
packet is to be duplicated and sent from all or a register-
defined subset of all six simultaneously, OR the packet is
to be directed to the local monitor core.

The T bit indicates whether the packet is a normal
packet or a special type known as peek-poke. The usage of
this facility is discussed in section VII.

The NN packet may be launched from any core; it will
only be delivered to the monitor core on a physically ad-
jacent node (or its own monitor). Monitors may talk to
themselves.

7.1.2 Point-to-point (P2P) packets
The layout of a P2P packet is shown in Fig. 9b. The con-
trol byte contains a packet-type nibble (bits[7:6] = 01 for
P2P packets), a sequence code (used for multi-part mes-
sages), time stamp, a payload indicator (as above) and
error detection (parity) information.

The system has a coarse global time phase that cycles
through the sequence 00, 01, 11, 10, 00, … . Global syn-
chronisation must be accurate to within one time phase
(the duration of which is programmable and may be dy-
namically variable). A packet is launched with a time
stamp equal to the current time phase, and if a router
finds a packet that is two time phases old (time now XOR
time launched = 11) it will drop it to the local Monitor
Processor. This provides a rudimentary garbage collec-
tion mechanism.

The first data payload word (Fig. 9b) is used to carry
two 16-bit values – the source and target node addresses.
(This is the origin of the hard limit of 64k nodes in the
system.) The P2P packet may be launched from any core,
and will be delivered to the Monitor Processor on the tar-
get node (which may or may not be physically adjacent to
the source node).

7.1.3 Multicast (MC) packets
The layout of the MC packet is shown in Fig. 9c. The con-
trol byte contains a packet-type nibble, as usual (bits[7:6]
= 00 for multicast packets), emergency routing (see sec-
tion VII) and time stamp information, a payload indica-
tor, and error detection (parity) information.

This packet type is used by the application code for
data transmission, as it is the only one that permits direct
core-to-core transmission. Entries in the CAM routing
table (see section VI.C) permit a single packet to be repli-
cated at each stage of its journey, and this permits a high
fan-out to be implemented efficiently. The first data word
contains the full 32-bit source address of the generating
neuron (following some convention, for example 16 bits
for the node, 16 bits for the neuron-in-that-node). The MC
packet may be launched from any core, to be delivered to
any core; however, the appropriate router may duplicate
the packet at any stage on its journey, to support the mas-
sive fan-out requirement of the problem (neural aggre-
gate) topology.

7.1.4 Fixed route (FR) packets
The layout of the FR packet is shown in Fig. 9d. The con-

Fig. 9. Packet layouts.

FURBER ET AL.: OVERVIEW OF THE SPINNAKER SYSTEM ARCHITECTURE 9

trol byte contains a type nibble (11), emergency routing
(see section VII) and time stamp information, a payload
indicator, and error detection (parity) information. The
packet provides a ‘fast track’ from wherever it is launched
to the nearest Ethernet-enabled node; all 64 bits of pay-
load are at the disposal of the application programmer.

7.2 Initialising the router
Each node has a router; there are up to 65,000 of them.
Setting up the data tables necessary to drive the routing is
a non-trivial task, in terms of both complexity and data
size. Configuring the system to simulate a large neural
aggregate takes place as a sequence of steps:

Step 0: On power-up the NN routing capability is im-
mediately available. Each node is physically connected to
six adjacent neighbours, and the internal port addresses
of each link are known. For the sake of clarity, we ignore
the issue of hardware failures here.

Step 1: The P2P routing tables need to be defined. Fig.
10 shows a very simple SpiNNaker mesh, consisting of a
flat 3x3 grid of nodes, not connected as a torus. The nodes
are labelled 0-8, the ports on each node a-f. The figure
shows the P2P tables for nodes 0, 1, 2 and 5. To send a
P2P packet from node 5 to node 0, say, requires the fol-
lowing:
• The P2P packet is launched from a core on node 5, and

sent to the node 5 router. The packet will be directed out
of port e on node 5.

• The packet will arrive via port b on node 1, and the node
1 router will redirect it to port f.

• The packet will arrive via port c on node 0, and be di-
rected to the monitor processor.
It follows that in a full 65,000-node SpiNNaker engine,

with each node containing a 65,000-entry table, some

4x109 table entries have to be derived.
These table entries are derived internally by boot code,

and define a distributed definition of the working node
mesh topology. Note there is no requirement for the P2P
route from node X to node Y to be the inverse of that from
Y to X.

Step 2: It is now necessary to map the problem graph –
the neuron topology – onto the working node mesh. This
is done by a combination of techniques taken from the
world of design automation; prima facie a simple mapping
problem is made extremely hard by the sheer size of the
data sets we are forced to confront: 109 neurons, with an
average fan-out of 103. Even the most brutally simplistic
of data structures requires over 4Tbytes simply to store
the definition.

Step 3: Once the mapping has been achieved (1,000
neurons to each core), it is possible to define the MC rout-
ing tables. This again is a non-trivial task, but a (much
simplified) illustration of the table structure necessary is
shown in Fig. 11.

The neural circuit consist of three neurons; A excites X
and Y. A has been mapped onto node 6, X to node 0 and
Y to node 5. Recall that the MC packets are labelled using
address event representation (AER) – they contain only
the originating neuron identification. The relevant MC
table entries are shown. In node 6, an event from source
neuron A will be routed out of port d. Thus it will be re-
ceived via port a on node 3, whence it will be duplicated
and copies sent out of ports c and d. The packet out of
port d will arrive via port a on node 0, and hence to its
target neuron. The copy sent to node 4 will be forwarded
to node 5.

The table entries are derived partly internally and
partly externally, and define a distributed version of the
problem graph definition.

Fig. 11. Propagation of MC packets.

 Fig 10. Propagation of P2P packets.

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

7.3 Router internals

The P2P routing hardware is fairly obvious, and will not
be detailed here.

The organization of the MC packet router is shown in
Fig. 12. The 32-bit source key (source neuron) is input to a
1024x32-bit tristate (0, 1, X) CAM – in general, multiple
hits will be both possible and common. These hits are
written to a 1024x1-bit hit register. All but the most sig-
nificant single bit in this register are discarded, and this
single remaining bit treated as a 1024 bit 1-hot and passed
into an address encoder. This generates a 10-bit binary
equivalent, which drives a 1024x24 bit lookup RAM. (This
is a RAM, not a ROM, because it needs at least to be pro-
grammed at load time, and the ultimate intention is to be
able to change it on the fly.) The 24-bit word so generated
consists of a 6-bit nibble and a 18-bit nibble. The 6-bit nib-
ble represents an n-hot external link indicator (0-5) to
which the packet is forwarded (for example 010110 would
cause the packet to be routed to external links 1, 2 and 4).
The 18-bit nibble represents an n-hot internal core address
(0-17) to which the packet will be forwarded, triggering
an interrupt as it arrives. (For example,
001000100100000000 will cause packets to go to cores 8, 11
and 15 on the current chip.) It is easy to see how packets
may be duplicated by this mechanism.

(The 1024x32-bit tristate CAM may be thought of as a
1024x32-bit binary CAM and a 1024x32-bit binary RAM.
In the actual implementation the RAM simply holds a bit
mask indicating the position of the “don’t cares” in the
CAM.)

7.4 Networks-on-Chip
SpiNNaker contains two NoCs: A Communications NoC

(used to handle on- and off-chip inter-processor com-
muni-cation) and a System NoC (used to handle on-chip
processor-to-memory and processor-to-peripheral com-

munication). Both of these use delay-insensitive (DI)
asynchronous logic. DI communication makes no as-
sumptions about gate and interconnect delays (except
that they be finite). This makes it extremely robust in the
face of timing issues that would probably defeat a syn-
chronous system. Further, once designed, it is not neces-
sary to perform any timing validation on the layout, be-
cause the physical geometry simply has no effect. The
price paid for this is that the protocols require extra in-
formation to be embedded in the signalling to signify
data validity, requests and acknowledge, so more phys-
ical wires are required, though data transmission energy
costs can be lower due to the absence of a high-speed
clock and careful choice of data encoding to minimise the
number of transitions used by the communication proto-
col.

7.4.1 System NoC
The System NoC was developed using design automation
tools from Silistix Ltd that generate the self-timed fabric
to meet the bandwidth requirements for communication
between each client-pair. Data is transmitted through
multiple parallel channels, each of which sends 4 bits of
data encoded in 3-of-6 RTZ (Return To Zero) form.

The major requirement on the System NoC is to allow
up to 16 active application processors to share the 1Gbyte
per second available SDRAM bandwidth equitably,
whilst providing independent access (via a cross-bar or-
ganization) for the monitor processor to other system re-
sources.

7.4.2 Communication NoC
The communications NoC carries packets between the
processors on the same or different chips. It plays a cent-
ral role in the system architecture – fig. 4. The NoC can be
cleanly divided into two unequal sections – input and

Fig. 13. Input section of the Communications NoC.

Fig. 12. Internal structure of the MC table router.

FURBER ET AL.: OVERVIEW OF THE SPINNAKER SYSTEM ARCHITECTURE 11

output.
The input half of the communication NoC is shown in

Fig. 13. The structure is a tree arbiter which merges the
various sources of packets (inter-node links and in-node
cores) into a single stream, for input to the router. The
flow rate of data at each stage is maintained by doubling
the available bandwidth each time two streams merge.

The output half of the NoC simply transforms the data
protocol of the router output into the DI NRZ (Non Re-
turn to Zero) protocol needed to drive the output ports,
and/or sends packets back to the communications con-
trollers of the node-local cores.

The on-chip sections of the Communication NoC use
the same 3-of-6 RTZ protocol as the System NoC, but the
inter-chip links use a 2-of-7 NRZ protocol. This protocol
change was chosen to minimize the power consumed in
the large PCB track capacitances. The 2-of-7 NRZ protocol
sends 4 bits with 3 signal transitions (including the ac-
knowledge), whereas the 3-of-6 RTZ protocol uses 8 sig-
nal transitions to send 4 bits.

8 FAULT TOLERANCE
As computing architectures move inexorably towards the
ExaFLOP regime and beyond, failure rates will become
an important – if not dominant – design concern. For ex-
ample, IBM cite a failure rate of 0.02 faults/month/TF on
a BlueGene machine, which scales to around 1
fault/minute on an ExaFLOP system [21].

The complete SpiNNaker engine contains around
57,000 nodes, 350,000 inter-node communication links
and around 7TBytes of memory. The ability of the system
to degrade gracefully in the face of point failures in the
underlying hardware has been considered at all levels of
both the software and hardware design – the discussion
here is limited to the hardware aspects, and divided into
three sections: Fault insertion (made easy by the inter-
rupt-driven nature of the system), fault detection and
fault isolation.

8.1 Processors
Insertion: Any core can be disabled by the monitor pro-

cessor, and software can be used to corrupt
the RAM to model soft errors.

Detection: The node watchdog will catch rogue software
and periodic self-test interrupt handlers can
be run.

Isolation: Individual ARMs can be locked out (but not
individual parts of the memory subsystems).

8.2 Interrupt controller
The sensitivity of the node to errors in this functional
block is high; it is hard to see how it can continue to func-
tion in the face of most errors here, so the entire node will
have to be locked out.
Insertion: The vector locations can be trivially cor-

rupted.
Detection: Quis custodiet ipsos custodes? It is – philoso-

phically – almost impossible to tell if a han-
dler has been invoked erroneously.

Isolation: Failed vector locations can be removed from

outside.

8.3 Counter/timers
Insertion: A counter can be disabled (stopped) from

outside.
Detection: The two counter/timer systems can periodi-

cally check the calibration of each other as
part of the maintenance/self-test cycle.

Isolation: Outside control allows the counter to be dis-
abled, its output interrupt signal inhibited
and the handler disconnected.

8.4 DMA
As with the interrupt controller, it is difficult to see how
the node can continue with faults here. The off-die
SDRAM is memory mapped, so in principle, operation
could continue although the memory access to the
SDRAM would be some two orders of magnitude slower.
Insertion: Software can introduce bit patterns in the

SDRAM that will cause DMA CRC errors.
Detection: CRC error detection is built into the hard-

ware, and the transfer can be timed out.
Isolation: Not, in general, a viable option. The node

must be closed down.

8.5 Packet communications
The packet communication infrastructure has error detec-
tion and recovery built in at several levels.

8.5.1 Nearest neighbour peek-poke
Nearest-neighbour packets are used to initialise the sys-
tem and to perform run-time flood-fill and debug func-
tions. In addition, the ‘peek/poke’ form of NN packet can
be used by neighbouring systems to access System NoC
resources. Here an NN poke ‘write’ packet (which is a
peek/poke type with a 32-bit payload) is used to write
the 32-bit data defined in the payload to a 32-bit address
defined in the address/operation field. An NN peek
‘read’ packet (which is a peek/poke type without a 32-bit
payload) uses the 32-bit address defined in the ad-
dress/operation field to read from the System NoC and
returns the result (as a ‘normal’ NN packet) to the neigh-
bour that issued the original packet, using the Rx link ID
to identify that source. This ‘peek/poke’ access to the
principal resources of a neighbouring node can be used to
investigate a non-functional chip, to re-assign the monitor
processor from outside, and obtain visibility into a chip
for test and debug purposes.

As the peek/poke NN packets convey only 32-bit data
payloads the bottom 2 bits of the address should always
be zero. All peek/poke NN packets return a response to
the sender, with bit 0 of the address set to 1. Bit 1 will also
be set to 1 if there was a bus error at the target. Peeks re-
turn a 32-bit data payload; pokes return without a pay-
load.

8.5.2 Low level error control
If a link fails (temporarily, due to congestion, or perma-
nently, due to component failure) action is taken at two
levels:

Hardware: The blocked link will be detected (in hard-

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

ware) and subsequent packets rerouted via the other two
sides of a triangle of which the suspect link was an edge,
being initially re-routed via the link which is rotated one
link clockwise from the blocked link (so if link Tx0 fails,
link Tx5 is used).

Software: The monitor processor will be informed. It
can track the problem using a diagnostic counter:
• If the problem was due to transient congestion, it will

note the congestion but do nothing further;
• if the problem was due to recurring congestion, it will

negotiate and establish a new route for some of the traf-
fic using this link;

• if the problem appears permanent, it will establish new
routes for all of the traffic using this link.

The hardware support for these processes include:
• Default routing processes in adjacent nodes that are

invoked by flagging the packet as an emergency type;
• mechanisms to inform the monitor processor of the

problem;
• means of inducing the various types of fault for testing

purposes.
Emergency rerouting around the triangle requires addi-
tional emergency packet types for MC and FR packets.
(P2P packets find their own way to their destination fol-
lowing emergency routing.)

These packet types use the ‘emergency routing’ nibbles
within the control byte to control emergency routing
around a failed or congested link:
• 00 - normal packet;
• 01 - the packet has been redirected by the previous

router through an emergency route along with a normal
copy of the packet. The receiving router should treat
this as a combined normal plus emergency packet.

• 10 - the packet has been redirected by the previous
router through an emergency route which would not be
used for a normal packet.

• 11 - this emergency packet is reverting to its normal
route.

This is illustrated in Fig. 14. A packet transmitted from
node O towards node T would normally transit via O-D-
I-D-T. However, if the link a is congested, the packet

could be redirected along the path b-c. One consequence
of this is that – in theory – it is possible for packets to be
delivered out of order. Note that there is no software
overhead for any of this; the entire operation is brokered
by hardware and is transparent to the sending and receiv-
ing nodes.

8.5.3 Communication router
The communications router has some internal fault-
tolerance capacity; in particular it is possible to map out a
failed multicast router entry. This is a useful mechanism
as the multicast router dominates the silicon area of the
communication system.

There is also capacity to cope with external failures.
Emergency routing will attempt to bypass a faulty or
blocked link, however, in the event of a node (or larger)
failure this will not be sufficient. In order to tolerate a
chip failure several expedients can be employed on a local
basis:
• P2P packets can be routed around the obstruction;
• MC packets with a router entry can be redirected ap-

propriately. In most cases, default MC packets cannot
sensibly be trapped by adding table entries due to their
(almost) infinite variety. To allow rerouting, these pack-
ets can be dropped to the monitor on a link-by-link
basis using a ‘diversion register’. In principle, they can
then be routed around the obstruction as P2P payloads
before being resurrected at the opposite side. Should the
monitor processor become overwhelmed, it is also pos-
sible to use the diversion register to eliminate these
packets in the router; this prevents them blocking the
router pipeline whilst waiting for a timeout and thus
delaying viable traffic.

Detection: Packet parity errors, packet time-phase errors,
wrong packet length: these are all detected by
the hardware and cause – usually – the errant
packet to be dropped to the monitor proces-
sor.

Isolation: A multicast router entry can be disabled if it
fails.

Since all multicast router entries are identical, the func-
tion of any entry can be relocated to a spare entry. If a
router becomes full a global reallocation of resources can
move functionality to a different router, although this is a
non-trivial exercise.

8.6 Inter-chip communication
The fault inducing, detecting and resetting functions are
controlled from the System Controller. The on- and off-
chip interfaces are ‘glitch hardened’ to greatly reduce the
probability of a link deadlock arising as a result of a glitch
on one of the inter-chip wires. Such a glitch may intro-
duce packet errors, which will be detected and handled
elsewhere, but it is very unlikely to cause deadlock. It is
expected that the link reset function will not be required
often.
Insertion: An input controlled by the system controller

causes the interface to deadlock (by disabling
it).

Detection: Monitor Processors should regularly test link

Fig. 14. Emergency routing example.

FURBER ET AL.: OVERVIEW OF THE SPINNAKER SYSTEM ARCHITECTURE 13

functionality.
Isolation: The interface can be disabled to isolate the chip-

to-chip link. This input from the system con-
troller is also used to create a fault.

9 PHYSICAL ASSEMBLY
9.1 Topology and geometry
With six physical links available, a variety of topologies
are possible. The dominant goal in selecting a topology is
the desire to keep the routing as short and isotropic as
possible. A 3-cube is clearly the most desirable from this
perspective, but mapping this to a two-dimensional PCB-
based physical geometry would have introduced signifi-
cant disparities in the length of the individual links. The
hexagonal tiling wrapped onto the torus of figure 5 is as
good a configuration as any.

9.2 Power distribution
The chips are mounted in a 48-node hexagonal array on a
double height Eurocard, with 24 cards per rack. The rack
is supplied with mains AC, a rack-local supply generates
12V DC, which is distributed to each board; finally local
down-regulators are mounted on each board to provide
the 1.8V and 1.2V DC needed for each chip and 3.3V for
other board services. The boards within a rack are inter-
connected via high-speed serial cables, allowing an indi-
vidual rack to be configured as a 1,152-node torus. Vir-
tually any number of racks may be interconnected to form
a system of arbitrary scalability.

9.3 Power dissipation
We budget for the nodes dissipating up to 1W, and with
other components a board will dissipate up to 75W. Scal-
ing this up to the full million-core machine indicates a
total power budget of around 90kW – this is just within
the range of off-the-shelf forced air-cooling systems.

Each node is provided with 3 temperature sensors
which can be used to moderate the local clock speed if the
die temperature rises too high.

10 SOFTWARE
Programming the SpiNNaker engine is unlike most other
computing machinery. The small core-local memory –
and the mode of operation – make the idea of an operat-
ing system (in the general sense of the word) inapplicable.
A low level of ‘service-providing’ software runs on each
core; thereafter the entire system executes as a sequence
of choreographed interrupts. A model that is probably
helpful to envisage the behaviour of the system is not that
of a massively-parallel computing engine, rather as a
hardware accelerator attached to a conventional host (or
hosts), the internals of which are programmable.

Users who wish to model systems of spiking neurons
on SpiNNaker can define their network in a high-level
neural network description language such as PyNN [22].
Automated software tools have been developed that map
PyNN descriptions onto SpiNNaker to real-time execu-
tion.

Although at the time of writing only small SpiNNaker
systems are operational, results so far are promising, and
real-time spiking neural network controllers have been
demonstrated, for example in simple robotics tasks.

11 FINAL COMMENTS
From one perspective, SpiNNaker is ‘just another’
supercomputer (cluster). However, it is significantly dif-
ferent, in many ways:
• It is constructed from medium-performance compo-

nents (200MHz ARM9 cores).
• The total development and construction budget to date

is UK£5M (~US$8M).
• It has no hardware floating point support. In retrospect

although the use of fixed-point arithmetic is more en-
ergy-efficient, it leads to greater programming diffi-
culty, and this may be the wrong approach in the
longer-term.

• The design principles explicitly disregard three of the
most significant axioms of conventional supercomputer
engineering: memory coherence, synchronization and
determinism.

Designing software to run on a large system with no con-
ventional operating system, non-deterministic communi-
cations and almost no internal debug or visibility capabil-
ity requires new techniques and thinking to be developed
at numerous levels; these will be described in future pub-
lications.

Finally, we note that, although the SpiNNaker design
trajectory was originally inspired by biology, and neuro-
logical simulation remains the flagship objective, the ar-
chitecture is elegantly suited to a wide variety of non-
biological applications. Suitable problems are those that
can be transformed into a mesh-based representation
where the dominant node interaction is (or can be trans-
formed into) one defined by each processor having one or
more arbitrary graphs that connect its outputs to many
logical neighbours (physical nearest-neighbour connec-
tivity being a very simple example), and the problem can
be re-cast as a global relaxation where the solution trajec-
tory is unimportant and only the steady state solution
corresponds to physical reality. Examples include finite
elements, molecular modeling (protein folding) and dis-
crete system simulation. These issues will also be dis-
cussed in future publications.

ACKNOWLEDGMENT
This work is supported by the UK Engineering and
Physical Sciences Research Council (under EPSRC grant
EP/G015740/1), with industry partners ARM Ltd, Silistix
Ltd and Thales.

REFERENCES
[1] BIMPA project website :

http://apt.cs.man.ac.uk/projects/SpiNNaker/
[2] L. A. Plana, D. Clark, S. Davidson, S. Furber, J. Garside, E.

Painkras, J. Pepper, S. Temple and J. Bainbridge, “ "SpiNNaker:
Design and Implementation of a GALS Multi-Core System-on-
Chip,” "ACM Journal on Emerging Technologies in Computing Sys-
tems, vol. 7, no. 4, Article 17, pages 17:1 - 17:18, Dec. 2011.

14 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

[3] X. Jin, M. Lujan, L.A. Plana, S. Davies, S. Temple and S. Furber,
“ "Modeling Spiking Neural Networks on SpiNNaker,”
"Computing in Science & Engineering, vol. 12, iss. 5, pp 91 - 97,
Sept.-Oct. 2010.

[4] S.B. Furber and S. Temple, “Neural Systems Engineering,”
"Journal of The Royal Society Interface, vol. 4, no. 13, pp. 193-206,
April 2007, doi:10.1098/rsif.2006.0177

[5] B. Pakkenberg, D. Pelvig, L. Marner, M.J. Bundgaard, H.J.G.
Gundersen, J.R. Nyengaard and L. Regeur, “Aging and the
Human Neocortex,” Experimental Gerontology, vol. 38, no. 1-2,
pp. 95-99, Jan/Feb 2003.

[6] D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, A-S.
LaMantia, J.O. McNamara and L.E. White (eds.), Neuroscience
(4th edition). Sinauer Associates, 2008, ISBN 978-0-87893-697-7.

[7] C.U.M. Smith, Elements of Molecular Neurobiology (3rd edition).
Wiley, 2002, ISBN 0-471-56038-3.

[8] M. Mahowald, An Analog VLSI System for Stereoscopic Vision.
Kluwer Academic Publishers, 1994.

[9] M. Sivilotti, Wiring Considerations in Analog VLSI Systems, with
Application to Field-Programmable Networks. Ph.D. dissertation,
California Inst. Tech., Pasadena, CA, 1991.

[10] H. Markram, “The Blue Brain Project,” Nature Reviews Neuro-
science, vol. 7, pp. 153-160, Feb 2006, doi:10.1038/nrn1848.

[11] IBM Blue Gene team, “Overview of the IBM Blue Gene/P
Project,” IBM J. Research and Development, vol. 52, iss. 1/2, pp.
199-220, Jan 2008.

[12] R. Ananthanarayanan, S.K. Esser H.D. Simon and D.S. Modha,
“The cat is out of the bag: Cortical Simulations with 109 Neu-
rons and 1013 Synapses,” Proc. ACM/IEEE Conf. Supercomput-
ing, pp. 1–12, 2009.

[13] E.M. Izhikevich, Simulation of Large-Scale Brain Models, 2005.
www.nsi.edu/users/izhikevich/interest/index.htm

[14] E.M. Izhikevich and G.M. Edelman, “Large-Scale Model of
Mammalian Thalamocortical Systems,” Proc. National Academy
of Sciences of the USA, vol. 105, no. 9, pp. 3593–3598, Feb 2008,
doi: 10.1073/pnas.0712231105.

[15] ARM968E-S Technical Reference Manual, ARM DDI 0311C,
2004.

[16] T. Sharp, L.A. Plana, F. Galluppi and S.B. Furber, “ "Event-
Driven SpiNNaker Simulation,” "Proc. ICONIP 2011. Pub. in:
!Neural Information Processing, LNCS vol. 7064, pp. 424-430,
2011.

[17] ARM PL190 Technical Reference Manual, ARM DDI 0181E,
2004.

[18] AMBA Design Kit Technical Reference Manual, ARM DDI
0243A, 2003.

[19] J. Wu and S.B. Furber, “A Multicast Routing Scheme for a
Universal Spiking Neural Network Architecture,” The Com-
puter Journal, vol. 53, no. 3, pp. 280-288, 2010,
doi:10.1093/comjnl/bxp024.

[20] L.A. Plana, S.B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu and
S. Yang, “ "A GALS Infrastructure for a Massively Parallel
Multiprocessor,” IEEE Design & Test of Computers vol. 24, no.
5, pp. 454-463, 2007, doi:10.1109/MDT.2007.149.

[21] L.D. Solano-Quinde and B.M. Bode, “Module Prototype for
Online Failure Prediction for the IBM Blue Gene/L,” Proc.
IEEE Electro/Information Technology Conf., EIT 2008, pp. 470-474,
May 2008, doi:10.1109/EIT.2008.4554349.

[22] A.P. Davison, D. Brüderle, J.M. Eppler, J. Kremkow, E. Muller,
D.A. Pecevski, L. Perrinet and P. Yger P, “PyNN: a common
interface for neuronal network simulators,” Front. Neuroin-
form, 2008. doi:10.3389/neuro.11.011.2008.

Biographies

Steve B. Furber (M'98, SM'02, F’05) received his
BA in Mathematics in 1974 and his PhD in
Aerodynamics in 1980 from the University of
Cambridge, UK. He worked in the R&D
department at Acorn Computer Ltd from 1981
to 1990, and was a principal designer of the
BBC Micro and the ARM 32-bit RISC

microprocessor, and moved to his current position as ICL Professor
of Computer Engineering at the University of Manchester, UK, in
1990. His research interests include energy-efficient many-core archi-
tectures and neural systems engineering. He is a Fellow of the Royal

Society, the Royal Academy of Engineering, the BCS, the IET and the
IEEE.

Jim Garside received the BSc in Physics in
1983 and the PhD in Computer Science in 1987
from the University of Manchester, UK. His
doctoral work looked at digital signal-
processing architectures. He spent some time
working on parallel architectures with
Transputers. After a brief sojourn in the soft-
ware industry, he returned to the University

of Manchester as a Lecturer in 1991. Later research work has primar-
ily been concerned with VLSI technology, particularly with the
Amulet asynchronous ARM processors and, more recently, with
SpiNNaker. His current interests include power-efficient processing
especially using hardware reconfiguration.

David Lester received an MA in Mathematics
from the University of Oxford, UK, in 1983, an
MSc in Computer Science from Universty College,
London, in 1984 and a DPhil in Computer Science
from the University of Oxford, UK, in 1988. From
1988 to 1990 worked for GEC-Marconi on func-
tional language compilers for parallel machines,

validating communication protocols on transputer hardware. He
moved to the University of Manchester as a Lecturer in 1990. His
research interests include computer arithmetic, where he developed
the first practical continued fraction representation of the comput-
able reals, and communications protocols for NASA's avionics. He is
a Member of the IET.

Steve Temple was awarded a BA in Computer
Science in 1980 and a PhD for research into
local area networks in 1984 from the University
of Cambridge, UK. He was subsequently em-
ployed as a Research Fellow at the University of
Cambridge Computer Laboratory. He was a
self-employed computer consultant from 1986

to 1993 when he took up his current post of Research Fellow in the
School of Computer Science at the University of Manchester. His
research interests include VLSI and microprocessor system design.

Luis A. Plana (M’97, SM'07) received an Inge-
niero Electrónico degree from Universidad
Simón Bolívar (Venezuela) in 1978, an MSc in
Electrical Engineering from Stanford Univer-
sity in 1984, and a PhD in Computer Science
from Columbia University in 1998. Luis
worked at Universidad Politécnica, Vene-
zuela, for over 20 years, where he was Profes-

sor and Head of the Department of Electronic Engineering. Cur-
rently, he is a Research Fellow in the School of Computer Science at
the University of Manchester. His research interests include the de-
sign and synthesis of asynchronous, embedded, and GALS systems.

Eustace Painkras received her B.Tech degree
from Kerala University and M.S from State
University of New York at Stony Brook. She
is a Research Fellow in the School of Com-

FURBER ET AL.: OVERVIEW OF THE SPINNAKER SYSTEM ARCHITECTURE 15

puter Science at the University of Manchester. Her research interests
include VLSI design, wireless communications systems, reliable and
power-aware computer architectures.

Andrew D. Brown (M’90, SM’96) obtained his
first degree in Physical Electronics in 1976,
and a PhD in Microelectronics in 1981 from
Southampton University, UK. He has been a
member of academic staff at Southampton
since 1980. He spent time at IBM Hursley
Park UK as an IBM Visiting Scientist in 1983,
at Siemens NeuPerlach (Munich) as a Visiting

Professor in 1989, and at Multiple Access Communications Ltd as
part of the Senior Academics in Industry scheme in 1994. He was
appointed to an Established Chair of electronics at Southampton
University in 1999. In 2000, he spent a sabbatical at LME Design
Automation working on cryptographic synthesis; in 2002 he was
awarded a Royal Society industrial fellowship for two years; in 2004
he spent six months in Trondheim (Norway), and in 2008 in Cam-
bridge (UK), both sabbaticals as Visiting Professor. He has published
over 130 papers and edited a book in the field of design automation
as applied to VLSI. He is a Fellow of the IET and the BCS, a Char-
tered Engineer, and a registered European Engineer.

