SIS

O

(@) 5
0 A vance —Z

Learning Material: Code Generation with

Tasking Event-B

A. Edmunds

Electronics and Computer Science, University of Southampton

March 26, 2013

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Outline

0 Event-B

@ Background
@ Overview of Event-B
@ Composition / Decomposition

e Implementation-Level Modelling
@ Tasking Event-B
@ The User Interface: Machine and Event Annotations

e Adding New Types, and Translation Rules
@ Translation Rules for Ada
@ Example of Adding a New Type

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

Outline

0 Event-B

@ Background

dy Edmunds Learning Materi

Event-B Background
QOverview of Event-B
Composition / Decomposition

What We Have...

@ Automatic Code Generation from Event-B To Ada, C, Java
FMI C or OpenMP C.

Ada for Multi-Tasking Embedded Systems.

Java for concurrent shared memory systems.

Modelling of Controllers / Protected, Shared Data and
Environment.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

What We Have...

@ Automatic Code Generation from Event-B To Ada, C, Java
FMI C or OpenMP C.
Ada for Multi-Tasking Embedded Systems.
Java for concurrent shared memory systems.
Modelling of Controllers / Protected, Shared Data and
Environment.
@ Extensible Mathematical Language Translations:
e add new Types, and their Implementations.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

Resources

@ From the EU funded RODIN, DEPLQOY, and ADVANCE
projects:

http://www.event-b.org/

http://wiki.event-b.org/index.php/Main_Page

http://www.advance-ict.eu/

... a unified tool-based framework for automated formal

verification and simulation-based validation of

cyber-physical systems.

@ Rodin Tools - A new not-for-profit company.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Outline

0 Event-B

@ Overview of Event-B

y Edmunds Learning Material: Code Generation with Tasking Ev

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

@ Context Component.
@ Specify Sets, Constants, and Axioms.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

@ Context Component.
@ Specify Sets, Constants, and Axioms.
@ Machine Component.
e Specify Variables, Invariants, and Events.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

@ Context Component.

@ Specify Sets, Constants, and Axioms.
@ Machine Component.

e Specify Variables, Invariants, and Events.
@ Theory Component

e Add new Types, Operators.
o Add new Translation, Re-write Rules etc.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Event-B - Context

... from the Heater Controller Example.

CONTEXT
HC_CONTEXT
CONSTANTS
Max
Min
AXIOMS
axml : Max =
axm2 : Min =
axm3 : Max e
axmé : Min

m
NNUU B

END

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B

MACHINE
HCtrl_Me
SEES
HC_CONTEXT
VARIABLES
hsc V4
nha Va
cttm2 V4
INVARIANTS
typing nha
typing hsc
typing ota
EVENTS
INITIALISATION
BEGIN
act3: hsc
act4: nha
act5: cttm2
END

dy Edmunds

Background
Overview of Event-B
Composition / Decomposition

Event-B - Machines, Variables etc.

heat source commanded
no heat alarm
commanded target temp

nha € BOOL
hsc € BOOL
cttm2 € Z

= FALSE
= FALSE

e Z

Learning Materi

Background
Overview of Event-B
Composition / Decomposition

Event-B - Events

-

TurnON_Heat_Source
REFINES
TurnON_Heat_Source
WHEN

// average temp less
grdl: avt < cttm2// than commanded

// value
THEN
actl: hsc = TRUE // Turn heat source on
END

@ Based on guarded command: g — a
o In Event-B, the guard g is an Event-B predicate;
e the action ais an Event-B expression.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Event-B - Event Parameters

>

Sense_Temperatures

ANY t1 t2

WHERE grdl:tl € Z
grd2: t2 e

THEN actl: stml
act2: stm2

i N

tl
t2

END

@ The ANY construct admits parameters:

e Parameters are typed in the Guard;
e but may not be assigned to.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Outline

0 Event-B

@ Composition / Decomposition

y Edmunds Learning Mater ode Generation with Tasking Eve

Event-B Background
Overview of Event-B
Composition / Decomposition

Decomposition

Distribute Variables Between Machines

Abstract Machine

Variables

|
|

/ M1 \MZ \ M3

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Background
Overview of Event-B
Composition / Decomposition

Automatic Decomposition

Shared Event Decomposition

MACHINE m,
VARIABLES v

e

MACHINE m ANY o
VARIABLES vI v2 WHERE g (vZ, p)
EVENTS THEN a(v1, p)
o END
ANY p, ¢
WHERE g(vI, v2, p, q)
THENa(vI, v2, p, q) MACHINE m,
END VARTABLES 12
"\ EVENTS
e &
ANY ¢
WHERE g(v2, q)
THEN a(v2, q)

@ Events are Refactored.
@ Synchronization e; || e, models an atomic subroutine call.
@ The Composed Machine is a Refinement.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

The Heater Controller Development

Heating_Ctrl_MO

Heating_Ctrl_M1

First Level

Decomposition
Environment | | HCtrl_MO |
Environmentl HCtrl_M1

Second Level

Decomposition l l l

Shared Temperature Ctrl Heater Monitor Display Update
Object Task Task Task

y Edmunds Learning Materi

Tasking Event-B

Implementation-Level Modellin)
plementation-Level Modelling The User Interface: Machine and Event Annotations

Outline

e Implementation-Level Modelling
@ Tasking Event-B

y Edmunds Learning Materi

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
plementation-Level Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.

@ Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
plementation-Level Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.

@ Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.

@ A Machine’s Task-Body - formally describes the flow of
execution,

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tation-Level Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.
@ Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.

@ A Machine’s Task-Body - formally describes the flow of
execution,

@ is the basis for refinement of the Abstract Development.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

Andy Edmunds Learning Materi ode Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

@ Environ Machines
e map to Environment Tasks.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

@ Environ Machines
e map to Environment Tasks.
@ Environment Tasks

e simulate the environment,
e or, provide an interface to the environment.
e (to be explored in the Advance project)

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

@ Environ Machines
e map to Environment Tasks.
@ Environment Tasks
e simulate the environment,
e or, provide an interface to the environment.
e (to be explored in the Advance project)
@ Shared Machines
e map to Protected Objects in Ada.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

dy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
e depends on use in task body.

Andy Edmunds Learning Materi ode Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

e depends on use in task body.
e Some event guards and actions are ‘in-lined’.

Andy Edmunds Learning Materi ode Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
e depends on use in task body.
e Some event guards and actions are ‘in-lined’.
@ Some events map to 'subroutines’, and are called.

Andy Edmunds Learning Materi ode Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,

@ or, looping/branching statements.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,

@ or, looping/branching statements.

The code generator takes care of this.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
e depends on use in task body.
e Some event guards and actions are ‘in-lined’.
@ Some events map to 'subroutines’, and are called.
o Guards

@ map to entry barriers,
@ or, looping/branching statements.

e The code generator takes care of this.
@ Synchronizations:

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

depends on use in task body.

Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,
@ or, looping/branching statements.

e The code generator takes care of this.
@ Synchronizations:
e Tasking & Shared Machine = protected subprogram/entry .

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
plementation-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

depends on use in task body.

Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,
@ or, looping/branching statements.

e The code generator takes care of this.
@ Synchronizations:

e Tasking & Shared Machine = protected subprogram/entry .
e Tasking & Environ Machine = rendezvous.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
plementation-Level Modelling The User Interface: Machine and Event Annotations

The Common Language Model

The Common Language Meta-model is independent of the
implementation; an abstraction based on Ada.

Composed
Machine
Refi h
enes Environ cm] Ada Simulation Cod
Machi Task Task imulation Code
| Machine U asl |
Abstract Decompose AutoTask oM I Ada
Development Machine Task H Task :
= \
Deployable Code
™| Shared o I Ada
Machine Shared H Protected
|

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

Implementation-Level Modelling The User Interface: Machine and Event Annotations

Outline

e Implementation-Level Modelling

@ The User Interface: Machine and Event Annotations

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Tasking Event-B

| .)
mplementation-Level Modelling The User Interface: Machine and Event Annotations

Ul - Specifying a Task Body

TASKING
@ G 0

<™ @ MACHINETYPE | AutoTask ~ PRIORITY |5 //

<7 TASK TYPE
® 9 JjL

" @ | Periodic ~ | PERIOD 500

Integrated with . oo
@ Machine Editor. < TASK BODY

® ¢

Get_Target Temperaturel ;
Sense_PressIncrease_Target_Temperature ;
1f Ralse_Target_Temperature
. else Ralse_Target_Temperature_Blocked ;
© | Sense_PressDecrease_Target_Temperature ;
if Lower Target Temperature
else Lower_Target_Temperature_Blocked ;
Set_Target_Temperature ;
Display_Target_Temperature

dy Edmunds Learning Material: Code Generation wi

Implementation-Level Modelling

Ul - Events

Tasking Event-B
The User Interface: Machine and Event Annotations

@ Synchronized
Events

@ Parameter
Directions.

@ Typing.

Get_Target_Temperaturel =
COMBINES EVENT
Shared Object IMPL.Get Target Temperaturel ||
Display_Update_Task IMPL.Get_Target_Temperaturel
REFINES
Get_Target Temperaturel

Get_Target_Temperaturel =
REFINES
Get_Target_Temperaturel

ANY
in tm
WHERE
grdl : tme z TYPING
THEN
actl : cttml = tm
END

y Edmunds Learning Material: Code Generation with Tasking Ev

Tasking Event-B

Implementation-Level Modelling The User Interface: Machine and Event Annotations

Generating Code

|, Event-B Explorer 3 = | @@ ¢ B db © — O |(@ Display_Update Task IMPL ¢
o [t [MACHINE Display_Update Task_IMPL
5 Buffer [Examples/y0.2.3/Buffe A
4 3 Heating_ControllerTutorial2_Completed
@ HC_CONTEXT

> REFINES
@Y Heating_Ctrl5_ M1_cmp
& HCtrM1_emy
48 decompFile H Open
&% decompFile H Open With »
@ Display Updat
@ Display_Updat roperties
@ Envir Code Generation , Translate Event8 to Ada
@ Envirl © Reiry Auto Provers Translate EventB to €
ry
@ Envinl IMPL Translate EventB to Java
@Hcmo | @ Recalculate Auto Status
@ HCtl ML 45 Proof Replay on Undischarged POs Translate Tasking Events to Event8
Heater_ Monite ., .
g Heater Moni [N Start Animation / Model Checking ot e ey
D Heoting_Cris, [ProB Classic . v
@ Hesting_Ctls
@ Shared_ Object Rename
Shared_Object &
Q) Shared_Object & Create Composed Machine he vee [Fastem 5] srioRTY[S] &
@ TempCtlTa! v peete
@ Temp_Ctrl_Tal
R TYPE
4 (= code Simplify Proof(s) -
0
4 & adadefaul pyrge proofs.. U
2] hesting_conmomeruronens_wornpreceu_grovor.aus = Perodic 5| perion [S0¢
| heating_controllertutorial2_completed_globals.ali
| heating_controllertutorial2_completed_globals.o + f

5] Heating_ControllerTuterial2_Completed_Main.adb

—Tack panv

Translation Rules for Ada

Adding New Types, and Translation Rules SRSl AREIE &2 WRe

Outline

e Adding New Types, and Translation Rules
@ Translation Rules for Ada

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules SRSl AREIE &2 WRe

Using Mathematical Extensions

THEORY AdaRules
TRANSLATOR Ada

Metavariables = a € Z, beZ, ceQ, deQ
Translator Rules

trns2: a-bH—>a-b

trns9: c=dH— c=d

trnsl9: a# bk a/=b

trns21: a mod b > a mod b

trns22: =$c = not(%c)

trns23: $c v $d > ($c) or ($d)

trns24: $c A $d > ($c) and ($d)

trns25: $c = $d > not($c) or ($d)
Type Rules

typeTrnsl: z > Integer

typeTrns2: BOOL > boolean

dy Edmunds Learning Material: Code Generation with Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules el Gl ARl & B fER

Outline

e Adding New Types, and Translation Rules

@ Example of Adding a New Type

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules SEUIHD I ACEITE & NEw WS

Adding Arrays

THEORY Array
TYPE PARAMETERS T
OPERATORS

earray : array(s:[P(T))
direct definition
array(s : P(T)) = {n,f-n ENAfE 0--(n-1) > s | f}

earrayN : arrayN(n:Z,s:P(T))
well-definedness condition n € N A finite(s)
direct definition

arrayN(n : Z, s : P(T)) = { a | aSarray(s) A card(s)=n }

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules el Gl ARl & B fER

Theory: Translation Rules for Arrays

eupdate : update(a: ZoT,i:Z,x:T)

elookup : lookup(a:ZeT,i:7)

enewArray : newArray(n:Z,x:T)

TRANSLATOR Ada
Metavariables s € P(T), n€ Z, a€ Z—T, i €Z, xeT

Translator Rules

trnsl : lookup(a,i) »a(i)
trns2 : a = update(a,i,x) p a(i) :=x
trns3 : newArray(n,x) » (others => x)
Type Rules
typeTrnsl : arrayN(n,s) b array (0..n-1) of s

y Edmunds Learning Material: Code Generation with Tasking Evel

Translation Rules for Ada
Adding New Types, and Translation Rules SEUIHD I ACEITE & NEw WS

Theory: Applying the Rules for Arrays

Event-B:
Invariants cbuf € arrayN(maxbuf,Z)
Initialisation cbuf = newArray(maxbuf,®)
type rule : arrayN(n,s) » array (0..n-1) of s
constructor ! newArray(n,x) b (others => x)
z » Integer
Ada:
type cbuf array is array (0..maxbuf-1) of Integer;
cbuf : cbuf array (others => 0);

y Edmunds

Learning Material: Code Generation with Tasking Ev

Translation Rules for Ada

Adding New Types, and Translation Rules el Gl ARl & B fER

Wrapping Up

@ Tasking Event-B guides code generation.
@ Event-B modelling artefacts correspond to:

o Ada Tasks - Protected Objects;
e Java threads - monitors.
e C which uses PThread library.

@ The Common Language Meta-model is an abstraction of
commonly used programming constucts.

@ Tasking Event-B has: AutoTask , Environ and Shared
machines

e AutoTask Machines have a Task-body to specify flow of
control.

e The Tasking Language has sequence, branch and loop
constructs.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules el Gl ARl & B fER

Wrapping Up

@ We make use of the tool-driven decomposition approach,
to structure the development.
e This allows us to partition the system in a modular fashion,
reflecting implementation constructs.
e Decomposition is also the mechanism for breaking up
complex systems to make modelling and proof more
tractable.

@ We have data-type and operator extensibility.
@ Target Language specification is extensible.

Andy Edmunds Learning Material: Code Generation with Tasking Event-B

	Event-B
	Background
	Overview of Event-B
	Composition / Decomposition

	Implementation-Level Modelling
	Tasking Event-B
	The User Interface: Machine and Event Annotations

	Adding New Types, and Translation Rules
	Translation Rules for Ada
	Example of Adding a New Type

