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Abstract

We consider the problem of testing whether two
variables should be adjacent (either due to a di-
rect effect between them, or due to a hidden com-
mon cause) given an observational distribution, and
a set of causal assumptions encoded as a causal
diagram. In other words, given a set of edges in
the diagram known to be true, we are interested
in testing whether another edge ought to be in the
diagram. In fully observable faithful models this
problem can be easily solved with conditional in-
dependence tests. Latent variables make the prob-
lem significantly harder since they can imply cer-
tain non-adjacent variable pairs, namely those con-
nected by so called inducing paths, are not inde-
pendent conditioned on any set of variables. We
characterize which variable pairs can be determined
to be non-adjacent by a class of constraints due to
dormant independence, that is conditional indepen-
dence in identifiable interventional distributions.
Furthermore, we show that particular operations on
joint distributions, which we call truncations are
sufficient for exhibiting these non-adjacencies. This
suggests a causal discovery procedure taking ad-
vantage of these constraints in the latent variable
case can restrict itself to truncations.

1 Introduction

Causal discovery, that is the problem of learning causal the-
ories from observations, is central to empirical science. In
graphical models, which is a popular formalism for represent-
ing causal assumptions in the presence of uncertainty, there
is a large literature on this problem [Cooper and Dietterich,
1992], [Spirtes et al., 1993], [Suzuki, 1993]. In such models,
causal assumptions are represented by means of a directed
acyclic graph (dag) called a causal diagram, where nodes are
variables of interest, and arrows represent, informally, direct
causal influences.

In this setting, causal discovery amounts to learning as-
pects of the causal diagram from observations summarized
as an observable joint probability distribution P (v). The sim-
plest causal discovery problem assumes causal sufficiency,

e.g. it assumes whenever two observed variables share a com-
mon cause, that cause is itself observed. There are two ap-
proaches to causal discovery in this setting. The score-based
approach [Suzuki, 1993], assigns to each possible graph a
score consisting of two terms – the likelihood term which
measures how well the graph fits the data, and the model
complexity term, which penalizes large graphs. A search
is then performed for high scoring graphs. The second, so
called constraint-based approach [Spirtes et al., 1993] rules
out graphs which are not compatible with constraints ob-
served in the data. Both approaches to causal discovery in
the presence of causal sufficiency rely on faithfulness, which
is a property stating that a notion of path-separation known
as d-separation [Pearl, 1988] in the graph precisely charac-
terizes conditional independence inherent in the distribution
which the graph represents.

In the absence of causal sufficiency, the causal discovery
problem is significantly harder, especially if, as in this paper,
no parametric assumptions are made. One problem is that in
this setting graphs may entail constraints which cannot be ex-
pressed as conditional independence constraints.

Previous work showed that certain non-independence con-
straints, which we refer to as Verma constraints, may be rep-
resented by an identified dormant independence (i.e., a condi-
tional independence in an interventional distribution [Robins,
1986], [Spirtes et al., 1993], [Pearl, 2000] that can be used to
test for the presence of an edge in the causal diagram [Robins,
1999], [Tian and Pearl, 2002b], [Shpitser and Pearl, 2008].
We show that there exist identified dormant independencies
that cannot be used to test for the presence of an edge and
thus do not represent a Verma constraint.

Using the notion of edge testing, explored in [Shpitser and
Pearl, 2008], we characterize which dormant independences
do give rise to Verma constraints. Finally, we prove that every
such dormant independence can be obtained from the joint
distribution by a sequence of simple operations we call trun-
cations, and construct an algorithm which does this. This im-
plies that an algorithm trying to recover correct causal struc-
ture from data which uses Verma constraints can restrict itself
to searching over possible truncations.

2 An Example of Edge Testing

Consider the causal graph in Fig. 1 (a), where a bidirected arc
corresponds to an unobserved cause of W and Y . Any model
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Figure 1: (a) The Verma graph. (b) The graph of the submodel
Mz derived from the Verma graph.
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Figure 2: (a) A graph where Y and Z are independent given
do(x, w), yet there is no Verma constraint. Illustration of how
Theorem 3 fails for identifying a directed edge from Y to Z
(b) and bidirected edge from Y to Z (c).

compatible with this graph imposes certain constraints on its
observable distribution P (x, w, z, y), here assumed positive.
Some of these constraints are in the form of conditional inde-
pendences. For instance, in any such model X is independent
of Z given W , which means P (x|w) = P (x|w, z).

However, there is an additional constraint implied by this
graph which cannot be expressed in terms of conditional in-
dependence in the observable distribution. This constraint,
noted in [Verma and Pearl, 1990], [Robins, 1999], states that
the expression

∑
w P (y|z, w, x)P (w|x) is a function of y and

z, but not of x. In fact, constraints of this type do emanate
from conditional independences, albeit not in the original ob-
servable distribution, but in a distribution resulting from an
intervention.

An intervention, written do(x) [Pearl, 2000], is an opera-
tion which forces variables X to attain values x regardless of
their usual behavior in a causal model. The result of applying
an intervention do(x) on a model M with a set of observable
variables V is a submodel Mx, with stochastic behavior of V
described by an interventional distribution written as Px(v)
or P (v|do(x)). The graph induced by Mx is almost the same
as the graph induced by M , except it is missing all arrows
incoming to X, to represent the fact that an intervention sets
the values of X independently of its usual causal influences,
represented by such arrows. We will denote such a graph as
Gx. We will also consider the so called stochastic interven-
tions, where values of X are set according to a new distribu-
tion P ∗(x). We denote this intervention as do(x ∼ P ∗), and
its result by P (v|do(x ∼ P ∗)) or Px∼P∗(v). The graphical
representation of stochastic interventions is the same as that
of ordinary interventions.

A key idea in causal inference is that in certain causal mod-
els, some interventional distributions can be identified from
the observational distribution. Consider for instance a model
M inducing the graph in Fig. 1 (a). If we intervene on Z
in M , we obtain the submodel Mz inducing the graph in
Fig. 1 (b). The distribution of the unfixed observables in this
submodel, Pz(x, w, y), is identifiable from P (x, w, z, y) and

equals to P (y|z, w, x)P (w|x)P (x) [Pearl and Robins, 1995],
[Tian and Pearl, 2002a]. Moreover, by d-separation [Pearl,
1988], the graph in Fig. 1 (b) implies that X is independent
of Y in Pz(x, w, y), or Pz(y|x) = Pz(y). But it’s not hard
to show that Pz(y|x) is equal to

∑
w P (y|z, w, x)P (w|x),

which means this expression depends only on z and y. What
we have just shown is that independence in Pz(x, w, y),
which is an identifiable distribution, leads to a constraint on
observational distributions in the original, unmutilated model
M . The same reasoning applies to stochastic interventions,
since all identification results carry over without change.
Conditional independences in interventional distributions are
called dormant [Shpitser and Pearl, 2008]. Given an appro-
priate notion of faithfulness, we can conclude from this con-
straint that there should be no edge between X and Y in Fig.
1 (a). In the remainder of the paper, we explore this sort of
constraint-based testing in more detail.

2.1 A Vacuous Dormant Independence

It turns out that not every dormant independence leads to
a Verma constraint. Consider the graph in Fig. 2 (a). In
this graph, variables Y and Z cannot be d-separated by
any conditioning set. However, it’s not difficult to see that
Y and Z are independent if we fix X and W , in other
words Y is independent of Z in P (y, z|do(x, w)). Moreover,
P (y, z|do(x, w)) is identifiable in this graph, and equal to
P (y|x)P (z|w). In other words, there exists an (identifiable)
dormant independence between Y and Z . However, if we
translate what this independence asserts about the joint distri-
bution P (x, y, z, w) we get that Y and Z are independent in
the distribution P (y|x)P (z|w) where x, w are held constant
and y, z are allowed to vary. But this independence trivially
holds by construction regardless of what P (v) we choose. In
other words, this dormant independence does not constrain
P (x, y, z, w) in any way.

Which dormant independences do give rise to Verma con-
straints? For intuition we consider the easier case of condi-
tional independence. In faithful models the presence of con-
ditional independence between X and Y implies the lack of
an edge connecting these variables. Similarly, we would ex-
pect (identifiable) dormant independences between two vari-
ables which lead to constraints to imply the lack of an edge
between those variables. However, unlike the conditional in-
dependence case, identifying dormant independences relies
on the absence of certain edges (since the process of identify-
ing interventional distributions relies on causal assumptions
embodied by missing edges in the causal diagram). The key
point is that identifying the dormant independence used to test
a particular edge e cannot rely on the absence of that edge in
the process of identification!

In particular, the distribution P (y, z|do(x, w)) in Fig. 2
(a) is only identifiable if we assume there is no edge be-
tween Y and Z (the very thing we would be trying to test
by a dormant independence between Y and Z). In particu-
lar, if we add a directed edge from Y to Z as in Fig. 2 (b),
P (y, z|do(x, w)) becomes non-identifiable since the graph
becomes a Z-rooted C-tree [Shpitser and Pearl, 2006b]. Sim-
ilarly, P (y, z|do(x, w)) becomes non-identifiable if we add a
bidirected edge from Y to Z as in Fig. 2 (c).
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3 Preliminaries

One way of formalizing causal inference is with probabilis-
tic causal models (PCMs). Such models consist of two sets
of variables, the observable set V representing the domain of
interest, and the unobservable set U representing the back-
ground to the model that we are ignorant of. Associated with
each observable variable Vi in V is a function fi which deter-
mines the value of Vi in terms of values of other variables in
V ∪ U. Finally, there is a joint probability distribution P (u)
over the unobservable variables, signifying our ignorance of
the background conditions of the model.

The causal relationships in a PCM are represented by the
functions fi, each function causally determines the corre-
sponding Vi in terms of its inputs. Causal relationships en-
tailed by a given PCM have an intuitive visual representa-
tion using a graph called a causal diagram. Causal diagrams
contain two kinds of edges. Directed edges are drawn from
a variable X to a variable Vi if X appears as an input of fi.
Directed edges from the same unobservable Ui to two observ-
ables Vj , Vk can be replaced by a bidirected edge between Vj

to Vk. We will consider models which induce acyclic graphs
where P (u) =

∏
i P (ui), and each Ui has at most two ob-

servable children. A graph obtained in this way from a model
is said to be induced by said model.

The importance of causal diagrams stems from the fact that
conditional independences between observable variables cor-
respond to graphical features in the diagram. Since the rest of
the paper will rely heavily on this correspondence, we intro-
duce probabilistic and graphical notions we will need to make
use of it. A set X is independent of Y conditional on Z (writ-
ten as X ⊥⊥P Y|Z) if P (x|y, z) = P (x|z). We will use the
following graph-theoretic notation. An(.)G, De(.)G, Pa(.)G

stand for the set of ancestors, descendants and parents of a
given variable set in G. The sets An(.)G and De(.)G will
be inclusive, in other words, for every An(X)G, De(X)G,
X ∈ An(X)G and X ∈ De(X)G. The set C(X)G stands
for the C-component of X [Tian and Pearl, 2002a], that is the
maximal set of nodes containing X where any two nodes are
pairwise connected by a bidirected path contained in the set.
A graph Gx is the subgraph of G containing only nodes in X
and edges between them.

It’s possible to show that whenever edges in a causal dia-
gram are drawn according to the above rules, the distribution
P (u, v) induced by P (u) and the fi functions factorizes as∏

Xi∈V∪U P (xi|Pa(xi)). This Markov factorization implies

that conditional independences in P (u, v) are mirrored by a
well-known graphical notion of “path blocking” known as d-
separation [Pearl, 1988], which we will not reproduce here.1

Two sets X, Y are said to be d-separated given Z (written
X ⊥G Y|Z) in G if all paths from X to Y in G are d-separated
by Z. Paths or sets which are not d-separated are said to be
d-connected. The relationship between d-separation and con-
ditional independence is provided by the following theorem.

Theorem 1 (Pearl) Let G be a causal diagram. Then in any
model M inducing G and P , if X ⊥G Y|Z, then X ⊥⊥P Y|Z.

1In fact d-separation is defined for dags, although a natural gen-
eralization exists for mixed graphs with bidirected arcs [Richardson
and Spirtes, 2002].

Using d-separation as a guide, we can look for a condition-
ing set Z which renders given sets X and Y independent by
only examining the causal diagram, without having to inspect
the probability distribution P (v).

A causal dag with an arbitrary set of hidden variables has
a graphical representation called the latent projection [Pearl,
2000], such that the projection only contains nodes corre-
sponding to observable variables, it contains only directed
and bidirected arcs, is acyclic, and preserves the set of d-
separation statements over observed nodes in the dag. In this
sense the mixed graphs we consider include causal models
with arbitrary latent variables.

We examine probabilistic independences in distributions
resulting from not only conditioning but a second, powerful
operation of intervention, defined in the previous section. An
intervention is a more powerful operation than conditioning,
for the purposes of determining probabilistic independence.
This is because conditioning on a variable can d-separate cer-
tain paths, but also d-connect certain paths (due to the pres-
ence of the so called collider triples). On the other hand, in-
terventions can only block paths, since incoming arrows are
cut by interventions, destroying all colliders involving the in-
tervened variable. Some interventions can be computed from
P (v) and the graph G, due to a general notion called identifi-
ability, defined as follows.

Definition 1 (identifiability) Consider a class of models M
with a description T , and two objects φ and θ computable
from each model. We say that φ is θ-identified in T if all mod-
els in M which agree on θ also agree on φ.

If φ is θ-identifiable in T , we write T, θ �id φ. Otherwise,
we write T, θ ��id φ. Often, the model class T corresponds
to a causal graph, θ is the observational distribution P (v),
and φ is the causal effect of interest. For example, in Fig.
1 (a), G, P (v) �id Pz(x, w, y). Conditional independences
in interventional distributions are called dormant in [Shpitser
and Pearl, 2008].

Definition 2 (dormant independence) A dormant indepen-
dence exists between variable sets X, Y in P (v) obtained
from the causal graph G if there exist variable sets Z, W
(with W possibly intersecting X ∪Y) such that Pw∼P∗(y|z) =
Pw∼P∗(y|x, z). If P (v), G �id Pw∼P∗(y, x|z), the dormant in-
dependence is identifiable; we denote this as X ⊥⊥w,G,P Y|Z.2

A natural graphical analogue of d-separation exists for dor-
mant independence.

Definition 3 (d∗-separation) Let G be a causal diagram.
Variable sets X, Y are d∗-separated in G given Z, W (written
X ⊥w,G Y|Z), if we can find sets Z, W, such that X ⊥Gw

Y|Z,
and P (v), G �id Pw∼P∗(y, x|z).

Note that despite the presence of probability notation in
the definition, this is a purely graphical notion, since identifi-
cation can be determined using only the graph [Shpitser and

2Earlier work [Shpitser and Pearl, 2008] used ⊥⊥w. We use this
modified notation to emphasize the fact that dormant independence
unlike conditional independence is both graph and distribution de-
pendent.
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Pearl, 2006a]. A theorem analogous to Theorem 1 links d∗-
separation and identifiable dormant independence [Shpitser
and Pearl, 2008]. 3

Theorem 2 Let G be a causal diagram. Then in any model
M inducing G, if X ⊥w,G Y|Z, then X ⊥⊥w,G,P Y|Z. 4

In the next section we consider the question of edge iden-
tification, namely determining which dormant independences
can test non-adjacency of variable pairs.

4 Edge Identification

Typically, questions of identifiability are posed about distri-
butions obtained from interventions, such as causal effects
and counterfactuals. In such cases, a given distribution P is
identifiable in a model class M if every model in the class
agrees on P . This can be extended to any aspect of the model,
such as an edge. An edge e is said to be θ-identifiable in M
(written θ �id e) if every model in M which agrees on θ
agrees on the presence of e.

For faithful, causally sufficient models, P (v)-identified
edges are those edges on which the Markov equivalence class
of models [Pearl, 1988] consistent with P (v) agree.

We are interested in exploring which edges can be identi-
fied if, in addition to P (v), we assume partial causal knowl-
edge in the form of a graph, where every edge is either cor-
rectly specified, or extraneous. We call such graphs valid. As
we saw in an earlier example, such problems may be solved
using constraints implied by dormant independence, given an
appropriate notion of faithfulness. It turns out this notion is
identifiable faithfulness.5 A model is identifiable faithful if
the subgraph corresponding to every identifiable Px∼P∗(y) is
faithful to Px∼P∗(y). 6 We can give a general theorem for
testing edges in valid graphs of such models.

Theorem 3 Let M be an identifiable faithful model with ob-
servable distribution P (v), G a graph valid for M , and e
a (possibly extraneous) edge between X and Y in G. Then
G, P (v) �id e if there exist variable sets W, Z, such that
G, P (v) �id Pw(x, y|z), X ⊥Gw\{e} Y |Z, and Gw �= Gw \
{e}. Gw \{e} is obtained by removing incoming arrows to W,
and then removing e from G.

Proof: Assume such sets W, Z exist. If X and Y are indepen-
dent in Pw∼P∗(x, y|z), then due to results in [Shpitser and
Pearl, 2006a], there exists a set Z′ such that G, P (v) �id

Pw,z′(x, y, z \ z′) iff G, P (v) �id Pw(x, y|z). By identifi-
able faithfulness of M , the true graph G′ corresponding to

3The reference did not consider stochastic interventions, al-
though the theorem extends to this setting.

4This theorem also holds if we drop the requirement of identifia-
bility from both sides of the implication.

5In fact, it is possible to relax this assumption somewhat by re-
stricting faithfulness only to those identifiable distributions which
can lead to edge identification. However, characterizing all such dis-
tributions is outside the scope of this paper (though we give one
such distribution for each identifiable edge), so we used a slightly
stronger assumption that was easier to state.

6This graph can be obtained by applying graphical rules for
marginalization found in [Richardson and Spirtes, 2002] to remove
variables in V \ (Y ∪ X), and removing all arrows incoming to X.

Pw,z′(x, y, z \ z′) is faithful to Pw,z′(x, y, z \ z′), so it cannot
contain e. Since Z cannot intersect {X, Y }, and we assumed
Gw �= Gw \ {e}, do(w ∪ z′) does not cut e. We conclude that
e is extraneous in G.

If X and Y are dependent in Pw(x, y|z), then by identifi-
able faithfulness of M , the true graph of M must contain e
since, Gw \ {e} d-separates X and Y given Z. Thus the pres-
ence of e is a function of G and Pw(x, y|z), and the latter is a
function of P (v). �

We use existing graphical conditions for identification of
conditional causal effects [Shpitser and Pearl, 2006a] to char-
acterize exactly when edges can be identified in a valid graph
via Theorem 3, although we make no claims about the exis-
tence of other methods by which edges may be identified. In
the remainder of the paper we use “identified” and “identified
by Theorem 3” as synonyms.

We start by characterizing directed edge testing. First, we
define some graphical terminology. A C-forest is a graph con-
sisting of a single C-component where every node has at most
one child. A C-forest with a single childless node is called
C-tree. The set of childless nodes R of a C-forest is called
its root set. The unique maximum set of nodes that forms a
Y -rooted C-tree in G is called the maximum ancestral con-
founding set (MACS) of Y , and is denoted by T G

y
[Shpitser

and Pearl, 2008].

Theorem 4 Let e be a directed edge X → Y in G. Then
P (v), G �id e (via Theorem 3) if and only if X �∈ T G

y , and

the only directed edge from X to T G
y is e.

Proof: Let G′ = G\{e}. By Theorem 3, Y �∈ W for any sepa-
rating W. Assume X ∈ T G

y . This implies there is an inducing

path from X to Y in G, and moreover no element of T G
y can

be fixed, since G, P (v) ��id Pt(y), for T ⊆ T G
y . If we remove

e from T G
y , nodes in T G

y either form an {X, Y }-rooted C-

forest or stay a C-tree in G′. In both cases the inducing path
remains. If there is a directed arrow from X to T G

y other than

e, and X �∈ T G
y then there is an inducing path from X to Y in

G, and no element in it can be (identifiably) fixed. Moreover,
fixing X , even if identifiable, does not cut this path. Finally,
if we remove e from G, the inducing path remains.

Assume X �∈ T G
y , and the only directed edge from X to

T G
y is e. This implies T G

y = T G′

y , and by definition, T G
x =

T G′

x . Since G is acyclic, there cannot be a directed arc from

Y to T G′

x . What remains is to show there is no bidirected arc

from T G′

x to T G′

y . But if such an arc does exist, then T G′

x ∪

T G′

y would form a Y -rooted C-tree in G, which means T G′

x ∪

T G′

y ⊆ T G
y . But we assumed X �∈ T G

y . By results in [Shpitser

and Pearl, 2008], X, Y are d∗-separable in G′ by Z, W, where

Z = T G′

x ∪ T G′

y \ {X, Y }, W = (Pa(T G′

x ) ∪ Pa(T G′

y )) \

(T G′

x ∪T G′

y ). If G, P (v) ��id Pw(x, y|z), then there is a hedge

[Shpitser and Pearl, 2006b] ancestral to {X, Y } in G for this
effect, and it must contain e (or it would exist in G′ which we

ruled out). But the existence of this hedge implies T G
y �= T G′

y ,
which is a contradiction. �

There are simple examples where an edge e between X
and Y is not identifiable if it is bidirected, but identifiable if
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it is directed. For instance, if we add an edge X ↔ Z to Fig.
1 (a), the directed edge from X to Y is identifiable using the
same reasoning as in our example, while the bidirected edge
from X to Y is not identifiable (no sets Z, W both separate
X and Y and result in an identifiable distribution). The next
natural question is the converse, can there be a graph where a
bidirected arc can be identified but a directed arc cannot be.
It turns out the answer is no. In fact, the same is true if we
reverse the direction of a directed arc.

Theorem 5 Let G be a graph where a directed arc e from X
to Y is not identified. Let G′ be an acyclic graph obtained
from G by replacing e by a bidirected (or directed but re-
versing direction if this is possible) edge e′. Then e′ is not
identified in G′.

Proof: If e between X, Y is not identified, then for any sets
Z, W either G, P (v) ��id P (x, y|do(w), z) or X, Y are not
d∗-separated by conditioning on Z, and fixing W in the graph
G \ {e}, or do(w) cuts e directly. In particular, if the second
case is true, then it is also true in the graph G′ \ {e′}.

If the first case is true, assume without loss of generality
G, P (v) ��id P (x, y, z|do(w)). Results in [Shpitser and Pearl,
2006b] imply there is a hedge for this effect in G. Results
in [Shpitser and Pearl, 2008] imply it is sufficient to restrict
our attention to Z ∈ An({X, Y }). Since there is a hedge for
P (x, y, z|do(w)) (e.g. ancestral to {X, Y } ∪ Z), then there is
one ancestral to {X, Y }. If this hedge does not involve the
edge e, then it remains in G′ and remains ancestral to {X, Y }
in G′, so our conclusion follows. If the hedge does involve
e, then at least one of the X, Y nodes which e connects must
be in F (the smaller of the two C-forests of the hedge). Re-
moving e will then preserve the {X, Y }-rooted status of both
C-forests in the hedge, and our conclusion follows.

If the third case is true, then if e becomes bidirected, it
stays true. If e points the other way, then due to Theorem 4
either X is an ancestor of Y , in which case we cannot reverse
e without introducing a cycle into G′, or reversing e creates

T G′

x which contains Y . �

Due to Theorem 5, there is no need to give conditions for
testing for the absence of bidirected edges, although it is not
hard to rephrase Theorem 4 for this purpose (and this may be
useful in cases where background knowledge forbids direct
effects, but confounding is still desirable to test for).

We also note that, assuming all constraints of the type that
appear in Fig. 1 are due to missing edges that are identifiable,
Theorem 4 gives a characterization of dense inducing paths,
that is inducing paths [Verma and Pearl, 1990] which prevent
separation of X and Y not only by conditioning but by iden-
tifiable interventions.

5 Sufficiency of Truncations

In the previous section, we characterized identification of
edges in valid graphs of identifiable faithful models – a no-
tion of identification which corresponds to observable con-
straints implied by dormant independence. In this section, we
give an algorithm for identifying interventional distributions
where such constraints appear, show this algorithm complete
for this problem, and use this fact to conclude that a particular

operation which we call truncation is sufficient for showing
such constraints.

The algorithm, shown in Fig. 3, consists of four functions.
The function Test-Edge is a top level function, and deter-
mines the candidate sets W, Z to fix and condition respec-
tively in order to d∗-separate X and Y . In order to do so
it uses the notion of a maximum ancestral confounded set
(MACS), which was shown to be sufficient for this purpose
[Shpitser and Pearl, 2008]. The function Find-MACS finds
the MACS (such sets are unique) for a singleton node argu-
ment in a given graph. The function Truncate-IDC identi-
fies a conditional interventional distribution by rephrasing the
query to be without conditioning, and calling Truncate-ID. It
was shown that such rephrasing is without loss of generality
for conditional effects [Shpitser and Pearl, 2006a]. Finally,
the function Truncate-ID identifies the resulting distribution
by means of two operations: marginalization and truncation.
The latter operation consists of dividing by a conditional dis-
tribution term P (x|nd(x)), where Nd(X) is the set of non-
descendants of X .

The key theorem about Test-Edge is that it can succeed
on every edge identifiable by Theorem 3. Before proving this
result, we prove a utility lemma.

Lemma 1 Px(v \ x) = P (v)/P (x|nd(x)) in G if there is no
bidirected path from X to De(X).

Proof: Px(v \ x) = Px(de(x)|nd(x))Px(nd(x)) (by chain
rule). Px(nd(x)) = P (nd(x)) by rule 3 of do-calculus [Pearl,
2000]. We claim Px(de(x)|nd(x)) = P (de(x)|nd(x), x) by
rule 2 of do-calculus. We must show there are no d-connected
back-door paths from X to De(x) conditioned on Nd(x).
Such a path must start either with an directed arrow pointing
to X or a bidirected arrow. In the former case, such an arrow
will have a tail pointing to an element in Nd(X) which is
conditioned on, implying no d-connected path. In the latter
case, as long as the path consists entirely of bidirected arcs,
it must stay within Nd(X) by assumption. However, the first
directed arc on the path will render it d-separated by the above
reasoning if the arrow points to the path fragment, and by
definition if the arrow points away. �

Theorem 6 Let e be an edge in a valid graph G of an identi-
fiable faithful model M . Then P (v), G �id e due to Theorem
3 if and only if Test-Edge succeeds. Moreover, the successful
output of Test-Edge gives an identifiable distribution witness-
ing identification of e.

Proof: Soundness of Find-MACS is shown in [Shpitser and
Pearl, 2008]. Soundness of Truncate-ID follows by Lemma
1 and the soundness proof of the ID algorithm is found in
[Shpitser and Pearl, 2006b]. Soundness of Truncate-IDC fol-
lows by soundness of do-calculus, and the fact that the input
distribution P ∗(v) at the point of failure of Truncate-ID was
soundly identified from P (v). Soundness of Test-Edge fol-
lows from the soundness of other functions, and results in
[Shpitser and Pearl, 2008].

To show completeness, we must show that if Test-Edges
returns FAIL, the preconditions of Theorem 3 fail. If
Test-Edges returns FAIL itself, then by known results X
and Y are not d∗-separable [Shpitser and Pearl, 2008]. If
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function Test-Edge(P (v), G, e).
INPUT: P (v) a probability distribution, G a causal diagram,
e an edge from X to Y .
OUTPUT: Expression for Pw(x, y|z) that tests e in G or
FAIL.

1 T G
x = Find-MACS(G, X), T G

y = Find-MACS(G, Y ).

2 If X is a parent of T G
y or Y is a parent of T G

x or there is

a bidirected arc between T G
x and T G

y , return FAIL.

3 Let T = T G
x ∪ T G

y , Z = T \ {X, Y }, W = Pa(T) \ T.

4 return Truncate-IDC(P (v), G, {X, Y }, W, Z, e).

function Find-MACS(G, Y )
INPUT: G, a causal diagram, Y a node in G.
OUTPUT: T G

y , the maximum ancestral confounded set for Y
in G.

1 If (∃X �∈ An(Y )G), return Find-MACS(GAn(Y ), Y ).

2 If (∃X �∈ C(Y )G), return Find-MACS(GC(Y ), Y ).

3 Otherwise, return G.

function Truncate-IDC(P (v), G, Y, X, Z, e)
INPUT: P (v) a probability distribution, G a causal diagram,
X,Y,Z variable sets, e an edge between X and Y .
OUTPUT: Expression for Pw(x, y|z) such that
X ⊥⊥w,G,P Y |Z or FAIL.

1 If (∃Z ∈ Z)(Y ⊥⊥P Z|X, Z \ {Z})Gx,z
,

return Truncate-IDC(P (v), G, y, x ∪ {z}, z \ {z}, e).

2 Let P ′ = Truncate-ID(P (v), G ∪ {e}, y ∪ z, x).

4 Otherwise, return P ′/
∑

y P ′.

function Truncate-ID(P (v), G, Y, X).
INPUT: P (v) a probability distribution, G a causal diagram,
X, Y, variable sets.
OUTPUT: An expression for P (y|do(x)) or FAIL.

1 If X is empty, return
∑

v\y P (v).

2 If Na(Y) = V \ An(Y) is not empty, return
Truncate-ID(

∑
na(y) P (v), Gan(y), Y, X \ Na(Y)).

3 If W = (V \ X) \ An(Y)Gx
is not empty, return

Truncate-ID(P (v), G, Y, X ∪ W).

4 If there is a node X ∈ X with no bidirected paths to
De(X) in G,

return Truncate-ID(P (v)∗P∗(x)
P (x|nd(x)) , Gx, P (y|do(x \ {x})).

5 If C(X)G �= C(Y )G, return Test-Edge(
Truncate-ID(P (v), G, C(Y )G, C(X)G), G

c(x)g
, e).

6 Otherwise, return FAIL.

Figure 3: An identification algorithm for interventional distri-
butions which lead to edge identification. GC(Y ) is the sub-
graph of G containing the C-component of Y . Gx,z is the
graph obtained from G by removing incoming arrows to X
and outgoing arrows from Z.

a b c d e

Figure 4: A causal diagram with a Verma constraint between
B and E.

Truncate-ID returns FAIL, then by construction of the al-
gorithm, the only remaining nodes other than X and Y are
nodes Z such that Z is an ancestor of X, Y , Z has a bidi-
rected path to a descendant of Z , and Z is being fixed. But
this implies (by induction) that every remaining node has a
bidirected path to {X, Y }.

Since e can be assumed directed, then all remaining
nodes are ancestors of either X or Y , say Y . Then these
nodes (including X) either form a Y -rooted C-tree, in which
case Theorem 4 applies, or there are two C-components,
one containing X and another containing Y . In this case,
P (c(y)|do(c(x))) is identifiable by truncations, and line 5 of
Truncate-ID uses this fact to continue the recursion. Either
failure case after this step implies either Theorem 4 holds, or
X and Y are not d∗-separable – in the original graph.

Finally, though complete identification results in [Shpitser
and Pearl, 2006b], [Shpitser and Pearl, 2006a] were for the
set of all causal models, it is simple to extend them to also
hold in all faithful models. �

We illustrate the operation of the algorithm by testing an
edge between B and E in Fig. 4. In this graph, T G

b = {B},

and T G
e = {E}. Thus, the algorithm tries to fix the parents of

{B, E}, namely {A, D}. However, both of these nodes have
bidirected paths to their descendants (an arc from A to C,
and a path D ↔ A ↔ E), so these interventions cannot
be identified by truncations. Instead, since the C-component
containing B (which is just B itself) and the C-component
containing E are disjoint, the algorithm recurses and trun-

cates out B, e.g. it considers
P∗(b)
P (b|a)P (a, b, c, d, e). This distri-

bution is equal to Pb∼P∗(a, b, c, d, e), and corresponds to the
graph where the arrow from A to B is cut. The algorithm then
proceeds to marginalize A and truncate D, resulting in an ex-

pression
P∗∗(d)
P (d|b,c)

∑
a

P∗(b)
P (b|a)P (a, b, c, d, e) which corresponds

to Pb∼P∗,d∼P∗∗(b, c, d, e), where B and E are independent.

Note that in this example in order to find the independence
between B and E we had to fix B itself. Since typically in-
terventions hold the variable constant, an intervention do(b)
would make B and E trivially independent. By considering
stochastic interventions like do(b ∼ P ∗), we are able to show
that B and E remain independent after appropriate trunca-
tions even if B is allowed to vary (although in a way that no
longer depends on B’s causal ancestors).

The distributions returned by Test-Edges can be thought of
as resulting from applying a sequence of nested operations,
where some operations are marginalizations and others are
truncations. What we are going to show is that all truncations
can be applied before every marginalization, in which case
marginalizations can be dispensed with as they do not affect
conditional independence.
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Theorem 7 Let P (v) be a probability distribution, and P ∗ =
f1(f2(...fk(P (v))...)), where fi(p) is either

∑
xi

p, for some

Xi ∈ V, or
p

P (xi|zi)
, and such that Xi �= Xj for i �= j,

Zi is some set not containing either Xi or any Xj men-
tioned in fi+1, ..., fk (Zi and Zj can intersect for j > i).
Then there exists an ordering j1, ..., jk of fi such that P ∗ =
fj1(fj2(...fjk

(P (v))...)), and for any fji
that is a marginal-

ization, fj1 , ..., fji−1
are also marginalizations.

Proof: By definition of Zi, every truncation fi commutes with
every marginalization fj where j > i, while marginalizations
commute with each other due to axioms of probability. �

Corollary 1 Let M be an identifiable faithful model with
a valid graph G and observable distribution P (v). Then if
an edge e is identifiable by Theorem 3, there exists a set of
truncations f1, ..., fk and a set Z such that X ⊥⊥P Y |Z in
f1(...fk(P (v))...).

Proof: This follows from Theorems 6 and 7, the fact that con-
ditional independence X ⊥⊥P Y |Z holds in P (v) if and only
if it holds in

∑
w P (v) for any W which does not intersect

{X, Y } ∪ Z, and the fact that Truncate-ID never mentions
nodes it removes on each step in subsequent steps. �

Corollary 1 suggests that in order to unearth dor-
mant independence constraints which are due to edge ab-
sences in the graph, it is sufficient to consider trun-
cation operations on a probability distribution. For in-
stance, the independence between B and E in the ex-

pression
P∗∗(d)
P (d|b,c)

∑
a

P∗(b)
P (b|a)P (a, b, c, d, e) obtained by run-

ning Test-Edge on Fig. 4, also holds in the expression
P∗∗(d)
P (d|b,c)

P∗(b)
P (b|a)P (a, b, c, d, e).

We hasten to add that since Theorem 7 “pushes truncations
inward,” and Corollary 1 ignores marginalizations, the inde-
pendences we observe in the distributions obtained by trun-
cations alone using these two results can lose their causal in-
terpretability as independences in identifiable interventional
distributions, since such distributions rely on truncations and
marginalizations performed in a certain order. In particular,
the expression above with two nested truncations does not
correspond in an obvious way to any identifiable interven-
tional distribution. Losing this interpretability is the price we
pay for restricting the set of operations we consider.

What remains is to characterize all the constraints between
two variables which are discoverable via truncation opera-
tions, and show, as we conjecture, that under reasonable faith-
fulness assumptions such constraints can only arise due to
edge absences. The proof of this conjecture would allow the
use of dormant independence in causal discovery, although
unfortunately it is outside the scope of this paper.

Conclusion

In this paper we consider probabilistic constraints due to dor-
mant independence which can be used to test the presence of
edges in a causal diagram. We characterized when these con-
straints arise, and give an algorithm which finds them, given
a graph where every edge is either correct or extraneous, i.e.
the graph is a (possibly non-proper) supergraph of the true
graph. Furthermore, we showed that applying an operation

we call truncation in sequence to an observable probability
distribution is sufficient to unearth all constraints of this type.

What remains to show before dormant independence con-
straints can be used in causal discovery algorithms is that se-
quences of truncation operations only lead to types of con-
straints we characterize and no others, given an appropriate
notion of faithfulness. Proving this conjecture, and develop-
ing a causal discovery algorithm based on these ideas are the
next steps in our investigation.
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