
On Identifying Causal Effects

Jin Tian

Department of Computer Science

Iowa State University

Ames, IA 50011

jtian@cs.iastate.edu

Ilya Shpitser

Department of Epidemiology

Harvard School of Public Health

ishpitse@hsph.harvard.edu

August 22, 2009

Abstract

A variety of questions in causal inference can be represented as proba-

bility distributions over hypothetical worlds where idealized randomized ex-

periments known as interventions have taken place. Some such questions are

really questions of causal effect of a particular intervention, while others are

counterfactual and consider results of interventions which violate the state of

affairs actually observed. Randomized experiments are expensive and often

illegal. It is therefore imperative to find ways of evaluating, or identifying

causal effect and counterfactual questions from available information, and

causal assumptions.

In this paper, we review the state of the art in identification of causal

effects and related counterfactual quantities in the framework of graphical

causal models, a formalism where a causal domain of interest is represented

by directed acyclic graphs with vertices representing variables of interest, and

arrows representing direct causal influences.

1 Introduction

This paper deals with the problem of inferring cause-effect relationships from a

combination of data and theoretical assumptions. This problem arises in diverse

fields such as artificial intelligence, statistics, cognitive science, economics, and the

health and social sciences. For example, investigators in the health and social

sciences are often required to elucidate cause-effect relationships (e.g., the effects
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of treatments on diseases) from observational studies of populations under natural

conditions. Policymakers are concerned with the effects of policy decisions. One

of the goals of artificial intelligence research is constructing agents able to create

and execute plans in uncertain environments where trying actions to observe their

effects directly is costly.

To estimate causal effects, scientists normally perform randomized experiments

where a sample of units drawn from the population of interest is subjected to the

specified manipulation directly. In many cases, however, such a direct approach is

not possible due to expense or ethical considerations. Instead, investigators have

to rely on observational studies to infer effects. A fundamental question in causal

analysis is to determine when effects can be inferred from statistical information,

encoded as a joint probability distribution, obtained under normal, intervention-

free behavior. A key point here is that it is not possible to make causal conclusions

from purely probabilistic premises – it is necessary to make causal assumptions.

This is because without any assumptions it is possible to construct multiple “causal

stories” which can disagree wildly on what effect a given intervention can have, but

agree precisely on all observables. For instance, smoking may be highly correlated

with lung cancer either because it causes lung cancer, or because people who are

genetically predisposed to smoke may also have a gene responsible for a higher cancer

incidence rate. In the latter case there will be no effect of smoking on cancer.

In this paper, we assume that the causal assumptions will be represented in

by directed acyclic causal graphs [Pearl, 2000, Spirtes et al., 2001] in which arrows

represent the potential existence of direct causal relationships between the corre-

sponding variables and some variables are presumed to be unobserved. Our task will

be to decide whether the qualitative causal assumptions represented in any given

graph are sufficient for assessing the strength of causal effects from nonexperimental

data.

This problem of identifying causal effects has received considerable attention

in the statistics, epidemiology, and causal inference communities [Robins, 1986,

Robins, 1987, Pearl, 1993, Robins, 1997, Kuroki and Miyakawa, 1999, Glymour and Cooper, 1999,

Pearl, 2000, Spirtes et al., 2001]. In particular Judea Pearl and his colleagues have

made major contributions in solving the problem. In his seminal paper Pearl

(1995) established a calculus of interventions known as do-calculus - three infer-

ence rules by which probabilistic sentences involving interventions and observations

can be transformed into other such sentences, thus providing a syntactic method

of deriving claims about interventions. Later, do-calculus was shown to be com-

plete for identifying causal effects, that is, every causal effects that can be iden-

tified can be derived using the three do-calculus rules[Shpitser and Pearl, 2006a,

Huang and Valtorta, 2006b]. Pearl (1995) also established the popular “back-door”

and “front-door” criteria - sufficient graphical conditions for ensuring identification

of causal effects. Using do-calculus as a guide, Pearl and his collaborators devel-

oped a number of sufficient graphical criteria: a criterion for identifying causal
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effects between singletons that combines and expands the “front-door” and “back-

door” criteria [Galles and Pearl, 1995], a condition for evaluating the effects of plans

in the presence of unmeasured variables, each plan consisting of several concur-

rent or sequential actions [Pearl and Robins, 1995]. More recently, an approach

based on c-componenet factorization has been developed in [Tian and Pearl, 2002a,

Tian and Pearl, 2003] and complete algorithms for identifying causal effects have

been established [Tian and Pearl, 2003, Shpitser and Pearl, 2006b].

In this paper, we summarize the state of the art in identification of causal effects.

The rest of the paper is organized as follows. Section 2 introduces causal models

and gives formal definition for the identifiability problem. Section 3 presents Pearl’s

do-calculus and a number of easy to use graphical criteria. Section 4 presents the

results on identifying (unconditional) causal effects. Section 5 shows how to iden-

tify conditional causal effects. Section 6 considers identification of counterfactual

quantities which arise when we consider effects of additive interventions. Section 7

concludes the paper.

2 Notation, Definitions, and Problem Formulation

In this section we review the graphical causal models framework and introduce the

problem of identifying causal effects.

2.1 Causal Bayesian Networks and Interventions

The use of graphical models for encoding distributional and causal assumptions is

now fairly standard [Heckerman and Shachter, 1995, Lauritzen, 2000, Pearl, 2000,

Spirtes et al., 2001]. A causal Bayesian network consists of a DAG G over a set

V = {V1, . . . , Vn} of variables, called a causal diagram. The interpretation of such a

graph has two components, probabilistic and causal. The probabilistic interpreta-

tion views G as representing conditional independence assertions: Each variable is

independent of all its non-descendants given its direct parents in the graph.1 These

assertions imply that the joint probability function P (v) = P (v1, . . . , vn) factorizes

according to the product [Pearl, 1988]

P (v) =
∏

i

P (vi|pai) (1)

where pai are (values of) the parents of variable Vi in the graph. Here use uppercase

letters to represent variables or sets of variables, and use corresponding lowercase

letters to represent their values (instantiations).

The causal interpretation views the arrows in G as representing causal influ-

ences between the corresponding variables. In this interpretation, the factorization

1We use family relationships such as “parents,” “children,” and “ancestors” to describe the

obvious graphical relationships.
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Figure 1: A causal diagram illustrating the effect of smoking on lung cancer

of (1) still holds, but the factors are further assumed to represent autonomous

data-generation processes, that is, each parents-child relationship characterized by

a conditional probability P (vi|pai) represents a stochastic process by which the

values of Vi are assignedin response to the values pai (previously chosen for Vi’s

parents), and the stochastic variation of this assignment is assumed independent of

the variations in all other assignments in the model. Moreover, each assignment pro-

cess remains invariant to possible changes in the assignment processes that govern

other variables in the system. This modularity assumption enables us to infer the

effects of interventions, such as policy decisions and actions, whenever interventions

are described as specific modifications of some factors in the product of (1). The

simplest such intervention, called atomic, involves fixing a set T of variables to some

constants T = t denoted by do(T = t) or do(t), which yields the post-intervention

distribution2

Pt(v) =

{

∏

{i|Vi 6∈T} P (vi|pai) v consistent with t.

0 v inconsistent with t.
(2)

Eq. (2) represents a truncated factorization of (1), with factors corresponding to the

manipulated variables removed. This truncation follows immediately from (1) since,

assuming modularity, the post-intervention probabilities P (vi|pai) corresponding

to variables in T are either 1 or 0, while those corresponding to unmanipulated

variables remain unaltered. If T stands for a set of treatment variables and Y for

an outcome variable in V \ T , then Eq. (2) permits us to calculate the probability

Pt(y) that event Y = y would occur if treatment condition T = t were enforced

uniformly over the population. This quantity, often called the “causal effect” of T

on Y , is what we normally assess in a controlled experiment with T randomized, in

which the distribution of Y is estimated for each level t of T .

As an example, consider the model shown in Figure 1(a) from [Pearl, 2000] that

concerns the relations between smoking (X) and lung cancer (Y ), mediated by the

amount of tar (Z) deposited in a person’s lungs. The model makes qualitative

2[Pearl, 1995, Pearl, 2000] used the notation P (v|set(t)), P (v|do(t)), or P (v|t̂) for the post-

intervention distribution, while [Lauritzen, 2000] used P (v||t).
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causal assumptions that the amount of tar deposited in the lungs depends on the

level of smoking (and external factors) and that the production of lung cancer

depends on the amount of tar in the lungs but smoking has no effect on lung cancer

except as mediated through tar deposits. There might be (unobserved) factors (say

some unknown carcinogenic genotype) that affect both smoking and lung cancer,

but the genotype nevertheless has no effect on the amount of tar in the lungs

except indirectly (through smoking). Quantitatively, the model induces the joint

distribution factorized as

P (u, x, z, y) = P (u)P (x|u)P (z|x)P (y|z, u). (3)

Assume that we could perform an ideal intervention on variable X by banning

smoking3, then the effect of this action is given by

PX=False(u, z, y) = P (u)P (z|X = False)P (y|z, u), (4)

which is represented by the model in Figure 1(b).

2.2 The Identifiability Problem

We see that, whenever all variables in V are observed, given the causal graph G,

all causal effects can be computed from the observed distribution P (v) as given by

Eq. (2). However, if some variables are not measured, or two or more variables

in V are affected by unobserved confounders, then the question of identifiability

arises. The presence of such confounders would not permit the decomposition of

the observed distribution P (v) in (1). For example, in the model shown in Figure

1(a), assume that the variable U (unknown genotype) is unobserved and we have

collected a large amount of data summarized in the form of (an estimated) join

distribution P over the observed variables (X, Y, Z). We wish to assess the causal

effect Px(y) of smoking on lung cancer.

Let V and U stand for the sets of observed and unobserved variables, respec-

tively. If each U variable is a root node with exactly two observed children, then

the corresponding model is called a semi-Markovian model. In this paper, we

will focus on semi-Markovian models as they have simpler structures and it has

been shown that causal effects in a model with arbitrary sets of unobserved vari-

ables can be identified by first projecting the model into a semi-Markovian model

[Tian and Pearl, 2002b, Huang and Valtorta, 2006a].

In a semi-Markovian model, the observed probability distribution, P (v), be-

comes a mixture of products:

P (v) =
∑

u

∏

i

P (vi|pai, u
i)P (u) (5)

3Whether or not any actual action is an ideal manipulation of a variable (or is feasible at all)

is not part of the theory - it is input to the theory.
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where Pai and U i stand for the sets of the observed and unobserved parents of

Vi respectively, and the summation ranges over all the U variables. The post-

intervention distribution, likewise, will be given as a mixture of truncated products

Pt(v) =







X

u

Y

{i|Vi 6∈T}

P (vi|pai, u
i)P (u) v consistent with t.

0 v inconsistent with t.

(6)

And, the question of identifiability arises, i.e., whether it is possible to express some

causal effect Pt(s) as a function of the observed distribution P (v), independent of

the unknown quantities, P (u) and P (vi|pai, u
i).

It is convenient to represent a semi-Markovian model with a graph G that does

not show the elements of U explicitly but, instead, represents the confounding effects

of U variables using (dashed) bidirected edges. A bidirected edge between nodes Vi

and Vj represents the presence of unobserved confounders that may influence both

Vi and Vj . For example the model in Figure 1(a) will be represented by the graph

in Figure 1(c).

In general we may be interested in identifying conditional causal effects Pt(s|c),

the causal effects of T on S conditioned on another set C of variables. This problem

is important for evaluating conditional plans and stochastic plans [Pearl and Robins, 1995],

where action T is taken to respond in a specified way to a set C of other variables

– say, through a functional relationship t = g(c). The effects of such actions may

be evaluated through identifying conditional causal effects in the form of Pt(s|c)

[Pearl, 2000, chapter 4].

Definition 1 (Causal-Effect Identifiability) The causal effect of a set of vari-

ables T on a disjoint set of variables S conditioned on another set C is said to be

identifiable from a graph G if the quantity Pt(s|c) can be computed uniquely from

any positive probability of the observed variables—that is, if PM1
t (s|c) = PM2

t (s|c)

for every pair of models M1 and M2 with PM1(v) = PM2(v) > 0 and G(M1) =

G(M2) = G.

3 Do-calculus and Graphical Criteria

In general the identifiability of causal effects can be decided using Pearl’s do-calculus

– a set of inference rules by which probabilistic sentences involving interventions

and observations can be transformed into other such sentences. A finite sequence

of syntactic transformations, each applying one of the inference rules, may reduce

expressions of the type Pt(s) to subscript-free expressions involving observed quan-

tities.

Let X, Y, and Z be arbitrary disjoint sets of nodes in G. We denote by GX the

graph obtained by deleting from G all arrows pointing to nodes in X . We denote

by GX the graph obtained by deleting from G all arrows emerging from nodes in

X .

6



Theorem 1 (Rules of do-Calculus) [Pearl, 1995] For any disjoint subsets of vari-

ables X, Y, Z, and W we have the following rules.

Rule 1 (Insertion/deletion of observations) :

Px(y|z, w) = Px(y|w) if (Y ⊥⊥Z|X, W )G
X

. (7)

Rule 2 (Action/observation exchange) :

Px,z(y|w) = Px(y|z, w) if (Y ⊥⊥Z|X, W )G
XZ

. (8)

Rule 3 (Insertion/deletion of actions) :

Px,z(y|w) = Px(y|w) if (Y ⊥⊥Z|X, W )G
X,Z(W )

, (9)

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in

GX .

Theorem 2 Do-calculus is complete for identifying causal effects of the form Px(y|z).

In principle we can apply do-calculus to identify any causal effects. The difficulty

lies in that there is no general heuristics as to how to use those inference rules, that

is, there is no general guidance on which do-calculus rule to apply at each step so

as to finally decide whether a causal effect is identifiable or not.

In practice, there are a number of graphical criteria which can be used for quickly

judging the identifiability by looking at the causal graph G.

Definition 2 (Back-Door) A set of variables Z satisfies the back-door criterion

relative to an ordered pair of variables (Xi, Xj) in a DAG G if:

(i) no node in Z is a descendant of Xi; and

(ii) Z blocks every path between Xi and Xj that contains an arrow into Xi.

Similarly, if X and Y are two disjoint subsets of nodes in G, then Z is said to

satisfy the back-door criterion relative to (X, Y ) if it satisfies the criterion relative

to any pair (Xi, Xj) such that Xi ∈ X and Xj ∈ Y .

The name “back-door” echoes condition (ii), in which the paths with arrows pointing

at Xi are called back door.

Theorem 3 (Back-Door Criteria) [Pearl, 1995] If a set of variables Z satisfies

the back-door criterion relative to (X, Y ), then the causal effect of X on Y is iden-

tifiable and is given by the formula

Px(y) =
∑

z

P (y|x, z)P (z). (10)
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For example, in Figure 1(c) X satisfies the back-door criterion relative to (Z, Y )

and we have

Pz(y) =
∑

x

P (y|x, z)P (x) (11)

Definition 3 (Front-Door) A set of variables Z is said to satisfy the front-door

criterion relative to an ordered pair of variables (X, Y ) if:

(i) Z intercepts all directed paths from X to Y ;

(ii) there is no back-door path from X to Z; and

(iii) all back-door paths from Z to Y are blocked by X.

Theorem 4 (Front-Door Criterion) [Pearl, 1995] If Z satisfies the front-door

criterion relative to (X, Y ), then the causal effect of X on Y is identifiable and is

given by the formula

Px(y) =
∑

z

P (z|x)
∑

x′

P (y|x′, z)P (x′). (12)

For example, in Figure 1(c) Z satisfies the front-door criterion relative to (X, Y )

and the causal effect Px(y) is given by Eq. (12).

There is a simple yet powerful graphical criterion for identifying the causal

effects of a singleton. For any set S, let An(S) denote the union of S and the set

of ancestors of the variables in S. For any set C, let GC denote the subgraph of G

composed only of variables in C.

Theorem 5 [Tian and Pearl, 2002a] Px(s) is identifiable if there is no bidirected

path connecting X to any of its children in GAn(S).

In fact, for X and S being singletons, this criterion covers both “back-door” and

“front-door” [Tian and Pearl, 2002a], and also the criteria in [Galles and Pearl, 1995].

These criteria are simple to use but are not necessary for identification. In the

next sections we present complete systematic procedures for identification.

4 Identification of Pt(s)

In this section, we present a systematic procedure for identifying causal effects Pt(s)

using so-called c-component decomposition.

4.1 C-component Decomposition

Let a path composed entirely of bidirected edges be called a bidirected path. The

set of variables V in G can be partitioned into disjoint groups by assigning two

variables to the same group if and only if they are connected by a bidirected path.
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Assuming that V is thus partitioned into k groups S1, . . . , Sk, each set Sj is called a

c-component of V in G or a c-component of G. For example, the graph in Figure 1(c)

consists of two c-components {X, Y } and {Z}.
For any set C ⊆ V , define the quantity Q[C](v) to denote the post-intervention

distribution of C under an intervention to all other variables:4

Q[C](v) = Pv\c(c) =
X

u

Y

{i|Vi∈C}

P (vi|pai, u
i)P (u). (13)

In particular, we have Q[V ](v) = P (v). For convenience, we will often write

Q[C](pa(C)) as Q[C]. If there is no bidirected edges connected with a variable Vi,

then U i = ∅ and Q[{Vi}] = P (vi|pai).

The importance of the c-component steps from the following lemma.

Lemma 1 (C-component Decomposition) [Tian and Pearl, 2002a] Assuming

that V is partitioned into c-components S1, . . . , Sk, we have

(i) P (v) =
∏

i Q[Si].

(ii) Each Q[Si] is computable from P (v). Let a topological order over V be

V1 < . . . < Vn, and let V (i) = {V1, . . . , Vi}, i = 1, . . . , n, and V (0) = ∅. Then each

Q[Sj], j = 1, . . . , k, is given by

Q[Sj ] =
∏

{i|Vi∈Sj}

P (vi|v
(i−1)) (14)

The lemma says that for each c-component Si the causal effect Q[Si] = Pv\si
(si) is

identifiable. For example, in Figure 1(c), we have Px,y(z) = Q[{Z}] = P (z|x) and

Pz(x, y) = Q[{X, Y }] = P (y|x, z)P (x).

Lemma 1 can be generalized to the subgraphs of G as given in the following

lemma.

Lemma 2 (Generalized C-component Decomposition) [Tian and Pearl, 2003]

Let H ⊆ V , and assume that H is partitioned into c-components H1, . . . , Hl in the

subgraph GH . Then we have

(i) Q[H ] decomposes as

Q[H ] =
∏

i

Q[Hi]. (15)

(ii) Each Q[Hi] is computable from Q[H ]. Let k be the number of variables in

H, and let a topological order of the variables in H be Vh1 < · · · < Vhk
in GH .

Let H(i) = {Vh1 , . . . , Vhi
} be the set of variables in H ordered before Vhi

(including

Vhi
), i = 1, . . . , k, and H(0) = ∅. Then each Q[Hj ], j = 1, . . . , l, is given by

Q[Hj ] =
∏

{i|Vhi
∈Hj}

Q[H(i)]

Q[H(i−1)]
, (16)

4Set Q[∅](v) = 1 since
P

u
P (u) = 1.
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where each Q[H(i)], i = 0, 1, . . . , k, is given by

Q[H(i)] =
∑

h\h(i)

Q[H ]. (17)

Lemma 2 says that if the causal effect Q[H ] = Pv\h(h) is identifiable then for

each c-component Hi of the subgraph GH the causal effect Q[Hi] = Pv\hi
(hi) is

identifiable.

Next, we show how to use Lemmas 1 and 2 to identify causal effects.

4.2 Computing Pt(s)

First we present a facility lemma. For W ⊆ C ⊆ V , the following lemma gives a

condition under which Q[W ] can be computed from Q[C] by summing over C \W ,

like ordinary marginalization in probability theory.

Lemma 3 [Tian and Pearl, 2003] Let W ⊆ C ⊆ V , and W ′ = C \ W . If W

contains its own ancestors in the subgraph GC (An(W )GC
= W ), then

∑

w′

Q[C] = Q[W ]. (18)

Note that we always have
∑

c Q[C] = 1.

Next, we show how to use Lemmas 1–3 to identify the causal effect Pt(s) where

S and T are arbitrary (disjoint) subsets of V . We have

Pt(s) =
∑

(v\t)\s

Pt(v \ t) =
∑

(v\t)\s

Q[V \ T ]. (19)

Let D = An(S)GV \T
. Then by Lemma 3, variables in (V \ T ) \ D can be summed

out:

Pt(s) =
∑

d\s

∑

(v\t)\d

Q[V \ T ] =
∑

d\s

Q[D]. (20)

Assume that the subgraph GD is partitioned into c-components D1, . . . , Dl. Then

by Lemma 2, Q[D] can be decomposed into products of Q[Di]’s, and Eq. (20) can

be rewritten as

Pt(s) =
∑

d\s

∏

i

Q[Di]. (21)

We obtain that Pt(s) is identifiable if all Q[Di]’s are identifiable.

Let G be partitioned into c-components S1, . . . , Sk. Then any Di is a subset

of certain Sj since if the variables in Di are connected by a bidirected path in a

subgraph of G then they must be connected by a bidirected path in G. Assuming

Di ⊆ Sj , Q[Di] is identifiable if it is computable from Q[Sj]. In general, for C ⊆

10



Algorithm Identify(C, T, Q)

INPUT: C ⊆ T ⊆ V , Q = Q[T ]. GT and GC are both composed of one single

c-component.

OUTPUT: Expression for Q[C] in terms of Q or FAIL.

Let A = An(C)GT
.

• IF A = C, output Q[C] =
∑

t\c Q.

• IF A = T , output FAIL.

• IF C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component T ′.

2. Compute Q[T ′] from Q[A] =
∑

t\a Q by Lemma 2.

3. Output Identify(C, T ′, Q[T ′]).

Figure 2: An algorithm for determining if Q[C] is computable from Q[T ].

T ⊆ V , whether Q[C] is computable from Q[T ] can be determined recursively by

repeated applications of Lemma 3 and 2, as given in the recursive algorithm shown

in Figure 2. At each step of the algorithm, we either find an expression for Q[C],

find Q[C] unidentifiable, or reduce the problem to a simpler one.

In summary, an algorithm for computing Pt(s) is given in Figure 3 and the

algorithm has been shown to be complete.

Theorem 6 [Shpitser and Pearl, 2006b, Huang and Valtorta, 2006a] The algorithm

ID in Figure 3 is complete.

5 Identification of Conditional Causal Effects

An important refinement to the problem of identifying causal effects P (y|do(x))

is concerned with identifying conditional causal effects, in other words causal ef-

fects in a particular subpopulation where variables Z are known to attain values z.

These conditional causal effects are written as Px(y|z), and defined just as regular

conditional distributions as

Px(y|z) =
Px(y, z)

Px(z)

Despite the fact that do-calculus is complete for identifying such effects, it is

desirable to obtain a closed form algorithm which can be applied in polynomial

time, since this is preferable to searching for a valid do-calculus derivation, which,

absent a general purpose heuristic, could take a long time.
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Algorithm ID(s, t, P (.), G)

INPUT: two disjoint sets S, T ⊂ V .

OUTPUT: the expression for Pt(s) or FAIL.

Phase-1:

1. Find the c-components of G: S1, . . . , Sk. Compute each Q[Si] by Lemma 1.

2. Let D = An(S)GV \T
and the c-components of GD be Di, i = 1, . . . , l.

Phase-2:

For each set Di such that Di ⊆ Sj :

Compute Q[Di] from Q[Sj ] by calling Identify(Di, Sj , Q[Sj]) in Figure 2. If the

function returns FAIL, then stop and output FAIL.

Phase-3: Output Pt(s) =
∑

D\S

∏

i Q[Di].

Figure 3: A complete algorithm for computing Pt(s).

One existing approach [Tian, 2004], generalizes the algorithm for identifying

unconditional causal effects Px(y) found in section 4. There is, however, an easier

approach which works.

The idea is to reduce the expression Px(y|z), which we don’t know how to handle

to something like Px’(y
′), which we do know how to handle via the algorithm already

presented. This reduction would have to find a way to get rid of variables z in the

conditional effect expression.

Ridding ourselves of some variables in Z can be accomplished via rule 2 of

do-calculus. Recall that applying rule 2 to an expression allows us to replace con-

ditioning on some variable set W ⊆ Z by fixing W instead. Rule 2 states that this

is possible in the expression Px(y|z) whenever W contains no back-door paths to

Y conditioned on the remaining variables in Z and X (that is X ∪ Z \ W), in the

graph where all incoming arrows to X have been cut.

It’s not difficult to show the following uniqueness theorem.

Lemma 4 ([Shpitser and Pearl, 2006a]) For every conditional effect Px(y|z)

there exists a unique maximal W ⊆ Z such that Px(y|z) is equal to Px,w(y|z \ w)

according to rule 2 of do-calculus.

Lemma 4 states that we only need to apply rule 2 once to rid ourselves of as

many conditioned variables as possible in the effect of interest. However, even after

this is done, we may be left with some variables in Z \W past the conditioning bar

in our effect expression. If we insist on using unconditional effect identification, we

may try to identify the joint distribution Px,w(y, z \ w) to obtain an expression α,

and obtain the conditional distribution Px,w(y|z \ w) by taking α
P

y
α
. But what
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function IDC(y, x, z, P, G)

INPUT: x,y,z value assignments, P a probability

distribution, G a causal diagram (an I-map of P).

OUTPUT: Expression for Px(y|z) in terms of P or FAIL.

1 if (∃W ∈ Z)(Y ⊥⊥ W |X,Z \ {Z})Gx,z
,

return IDC(y,x ∪ {w}, z \ {w}, P, G).

2 else let P ′ = ID(y ∪ z,x, P, G).

return P ′/
∑

y P ′.

Figure 4: A complete identification algorithm for conditional effects.

if Px,w(y, z \ w) is not identifiable? Are there cases where Px,w(y, z \ w) is not

identifiable, but Px,w(y|z \ w) is? Fortunately it turns out the answer is no.

Lemma 5 ([Shpitser and Pearl, 2006a]) Let Px(y|z) be a conditional effect of

interest in a causal model inducing G, and W ⊆ Z the unique maximal set such

that Px(y|z) is equal to Px,w(y|z\w). Then Px(y|z) is identifiable from G and P (v)

if and only if Px,w(y, z \w) is identifiable from G and P (v).

Lemma 5 gives us a simple algorithm for identifying arbitrary conditional effects

by first reducing the problem into one of identifying an unconditional effect – and

then invoking the complete algorithm. This simple algorithm is actually complete

since the statement in Theorem 5 is if and only if. The algorithm itself is shown in

Fig. 4. The algorithm as shown picks elements W of W one at a time, although the

set of W it picks as it iterates will equal the maximal set W due to the following

lemma.

Lemma 6 Let Px(y|z) be a conditional effect of interest in a causal model inducing

G, and W ⊆ Z the unique maximal set such that Px(y|z) is equal to Px,w(y|z \w).

Then W = {W |Px(y|z) = Px,w(y|z \ {w})}.

Completeness of the algorithm easily follows from the results we presented.

Theorem 7 ([Shpitser and Pearl, 2006a]) The algorithm IDC is complete.

6 Relative Interventions and the Effect of Treat-

ment on the Treated

Interventions considered in the previous sections are what we term “absolute,” since

the values x to which variables are set by do(x) bear no relationship to whatever

natural values were assumed by variables X prior to an intervention. Such absolute

13



interventions correspond to clamping a wire in a circuit to ground, or performing a

randomized clinical trial for a drug which does not naturally occur in the body.

By contrast, many interventions are relative, in other words, the precise level x

to which the variable X is set depends on the values X naturally attains. A typical

relative intervention is the addition of insulin to the bloodstream. Since insulin

is naturally synthesized by the human body, the effect of such an intervention

depends on the initial, pre-intervention concentration of insulin in the blood, even

if a constant amount is added for every patient. The insulin intervention can be

denoted by do(i + X), where i is the amount of insulin added, and X denotes the

random variable representing pre-intervention insulin concentration in the blood.

More generally, a relative intervention on a variable X takes the form of do(f(X))

for some function f .

How are we to make sense of a relative intervention do(f(X)) on X applied to a

given population where the values of X are not known? Can relative interventions

be reduced to absolute interventions? It appears that in general the answer is “no.”

Consider: if we knew that X attained the value x for a given unit, then the the effect

of an intervention in question on the outcome variable Y is really P (y|do(f(x)), x).

This expression is almost like the (absolute) conditional causal effect of do(f(x)) on

y, except the evidence that is being conditioned on is on the same variable that is

being intervened. Since x and f(x) are not in general the same, it appears that this

expression contains a kind of value conflict. Are these kinds of probabilities always

0? Are they even well defined?

In fact, expressions of this sort are a special case of a more general notion of

a counterfactual distribution, which can be derived from functional causal models

[Pearl, 2000], Chapter 7.

Such models consist of two sets of variables, the observable set V representing

the domain of interest, and the unobservable set U representing the background

to the model that we are ignorant of. Associated with each observable variable Vi

in V is a function fi which determines the value of Vi in terms of values of other

variables in V ∪ U. Finally, there is a joint probability distribution P (u) over the

unobservable variables, signifying our ignorance of the background conditions of the

model.

The causal relationships in functional causal models are represented, naturally,

by the functions fi; each function causally determines the corresponding Vi in terms

of its inputs. Causal relationships entailed by a given model have an intuitive visual

representation using a graph called a causal diagram. Causal diagrams contain two

kinds of edges. Directed edges are drawn from a variable X to a variable Vi if X

appears as an input of fi. Directed edges from the same unobservable Ui to two

observables Vj , Vk can be replaced by a bidirected edge between Vj to Vk. We will

consider models which induce acyclic graphs where P (u) =
∏

i P (ui), and each Ui

has at most two observable children. A graph obtained in this way from a model is

said to be induced by said model.
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Unlike causal Bayesian networks introduced in Section 2, functional causal mod-

els represent fundamentally deterministic causal relationships which only appear

stochastic due to our ignorance of background variables. This inherent determin-

ism allows us to define counterfactual distributions which spam multiple worlds

under different interventions regimes. Formally, a joint counterfactual distribution

is a distribution over events of the form Yx where Y is a post-intervention random

variable in a causal model (the intervention in question being do(x)). A single joint

distribution can contain multiple such events, with different, possibly conflicting

interventions.

Such joint distributions are defined as follows:

P (Y 1
x1 = y1, ..., Y k

xk = yk) =
∑

{u|Y 1
x1 (u)=y1∧...∧Y k

xk
(u)=yk}

P (u)

where U is the set of unobserved variables in the model. In other words, a

joint counterfactual probability is obtained by adding up the probabilities of every

setting of unobserved variables in the model that results in the observed values of

each counterfactual event Yx in the expression. The query with the conflict we

considered above can then be expressed as a conditional distribution derived from

such a joint, specifically P (Yf(x) = y|X = x) =
P (Yf(x)=y,X=x)

P (X=x) . Queries of this

form are well known in the epidemiology literature as the effect of treatment (ETT)

on the treated [Heckman, 1992, Robins et al., 2006].

In fact, relative interventions aren’t quite the same as ETT since we don’t ac-

tually know the original levels of X . To obtain effects of relative interventions,

we simply average over possible values of X , weighted by the prior distribution

P (x) of X . In other words, the relative causal effect P (y|do(f(X))) is equal to
∑

x P (Yf(x) = y|X = x)P (X = x).

Since relative interventions reduce to ETT, and because ETT questions are of in-

dependent interest, identification of ETT is an important problem. If interventions

are performed over multiple variables, it turns out that identifying ETT questions is

almost as intricate as general counterfactual identification [Shpitser and Pearl, 2009],

[Shpitser and Pearl, 2007]. However, in the case of a singleton intervention, there

is a formulation which bypasses most of the complexity of counterfactual identifi-

cation. This formulation is the subject of this section.

We want to approach identification of ETT in the same way we approached iden-

tification of causal effects in the previous section, namely by providing a graphical

representation of conditional independences in joint distributions of interest, and

then expressing the identification algorithm in terms of this graphical representa-

tion. In the case of causal effects, we were given as input the causal diagram rep-

resenting the original, pre-intervention world, and we were asking questions about

the post-intervention world where arrows pointing to intervened variables were cut.

In the case of counterfactuals we are interested in joint distributions that span mul-

tiple worlds each with its own intervention. We want to construct a graph for these
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Figure 5: (a) A causal diagram G. (b) The counterfactual graph for P (Yx = y|x′)

in G.

distributions.

The intuition is that each interventional world is represented by a copy of the

original causal diagram, with the appropriate incoming arrows cut to represent the

changes in the causal structure due to the intervention. All worlds are assumed to

share history up to the moment of divergence due to differing interventions. This

is represented by all worlds sharing unobserved variables U . In the special case of

two interventional worlds the resulting graph is known as the twin network graph

[Balke and Pearl, 1994b, Balke and Pearl, 1994a].

In the general case, a refinement of the resulting graph (to account for the

possibility of duplicate random variables) is known as the counterfactual graph

[Shpitser and Pearl, 2007]. The counterfactual graph represents conditional inde-

pendences in the corresponding counterfactual distribution via the d-separation

criterion just as the causal diagram represents conditional independences in the ob-

served distribution of the original world. A graph in Figure 5(b) is a counterfactual

graph for the query P (Yx = y|X = x′) obtained from the original causal diagram

shown in Figure 5(a).

There exists a rather complicated general algorithm for identifying arbitrary

counterfactual distributions from either interventional or observational data [Shpitser and Pearl, 2007],

[Shpitser and Pearl, 2008], based on ideas from the causal effect algorithm from the

previous section, only applied to the counterfactual graph, rather than the causal

diagram. It turns out that while identifying ETT of a single variable X can be

represented as an identification problem of ordinary causal effects, ETT of multiple

variables is significantly more complex [Shpitser and Pearl, 2009]. In this paper, we

will concentrate on single variable ETT with multiple outcome variables Y.

What makes single variable ETT P (Yx = y|X = x′) particularly simple is the

form of its counterfactual graph. For the case of all ETTs, this graph will have

variables from two worlds – the “natural” world where X is observed to have taken

the value x′ and the interventional world, where X is fixed to assume the value

x. There two key points that simplify matters. The first is that no descendant

of X (including variables in Y) is of interest in the “natural” world, since we are

only interested in the outcome Y in the interventional world. The second is that

all non-descendants of X behave the same in both worlds (since interventions do
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not affect non-descendants). Thus, when constructing the counterfactual graph we

don’t need to make copies of non-descendants of X , and we can ignore descendants

of X in the “natural” world. But this means the only variable in the “natural”

world we will construct is a copy of X itself.

What this implies is that a problem of identifying the ETT P (Yx = y|X = x′)

can be rephrased as a problem of identifying a certain conditional causal effect.

Theorem 8 ([Shpitser and Pearl, 2009]) P (Yx = y|X = x′) is identifiable in

G if and only if P (y|w, do(x)) is identifiable in G′, where G′ is obtained from G by

adding a new node W with the same set of parents (both observed and unobserved)

as X, and no children. Moreover, the estimand for P (Yx = y|X = x′) is equal to

that of P (y|w, do(x)) with all occurrences of w replaced by x′.

We illustrate the application of Theorem 8 by considering the graph G in Fig.

5 (a). The query P (Yx = y|X = x′) is identifiable by considering P (y|w, do(x)) in

the graph G′ shown in Fig. 5 (b), while the counterfactual graph for P (Yx = y|x′)

is shown in Fig. 5 (c). Identifying P (y|w, do(x)) in G′ using the algorithms in the

previous section
∑

z P (z|x)
∑

x P (y|z, w, x)P (w, x)/P (w). Replacing w by x′ yields

the expression
∑

z P (z|x)
∑

x′′ P (y|z, x′, x′′)P (x′, x′′)/P (x′).

Ordinarily, we know that P (y|z, x′, x′′) is undefined if x′ is not equal to x′′.

However, in our case, we know that observing X = x′ in the natural world implies

X = x′ in any other interventional world which shares ancestors of X with the nat-

ural world. This implies the expression
∑

x′′ P (y|z, x′, x′′)P (x′, x′′)/P (x′) is equiva-

lent to P (y|z, x′), thus our query P (Yx = y|X = x′) is equal to
∑

z P (y|z, x′)P (z|x).

It is possible to use Theorem 8 to derive analogues of the Backdoor and Front-

door criteria for ETT.

Corollary 1 (Backdoor Criterion for ETT) If a set Z satisfies the Backdoor

Criterion relative to (X,Y), then P (Yx = y|X = x′) is identifiable and equal to
∑

z P (y|z, x)P (z|x′).

The intuition for the Backdoor Criterion for ETT is that Z, by assumption,

screens X and Y from observed values of X in other counterfactual worlds. Thus,

the first term in the Backdoor expression does not change. The second term changes

in an obvious way since Z depends on observing X = x′.

Corollary 2 (Frontdoor Criterion for ETT) If a set Z satisfies the Frontdoor

Criterion relative to (X,Y) in G, then P (Yx = y|X = x′) is identifiable and equal

to
∑

z P (y|z, x′)P (z|x).

Proof: We will be using a number of graphs in this proof. G is the original graph.

Gw is the graph obtained from G by adding a copy of X called W with the same

parents (including unobserved parents) as X and no children. G′ is a graph repre-

senting independences in P (X,Y,Z). It is obtained from G by removing all nodes
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other than X,Y,Z, by adding a directed arrow between any remaining A and B in

X,Y,Z if there is a d-connected path containing only nodes not in X,Y,Z which

starts with a directed arrow pointing away from A and ends with any arrow pointing

to B. Similarly, a bidirected arrow is added between any A and B in X,Y,Z if there

is a d-connected path containing only nodes not in X,Y,Z which starts with any

arrow pointing to A and ends with any arrow pointing to B. (This graph is known

as a latent projection [Pearl, 2000]). The graphs G′w, G′w
x are defined similarly as

above.

We want to identify P (y, z, w|do(x)) in G′w. First, we want to show that no

node in Z shares a C-component with W or any node in Y in G′w
x . This can only

happen if a node in Z and W or a node in Y share a bidirected arc in G′w
x . But

this means that either there is a backdoor d-connected path from Z to Y in Gx, or

there is a backdoor d-connected path from X to Z in G. Both of these claims are

contradicted by our assumption that Z satisfies the Frontdoor Criterion for (X,Y).

This implies P (y, z, w|do(x)) = P (y, w|do(z, x))P (z|do(x, w)) in Gw.

By construction of Gw and the Frontdoor Criterion, P (z|do(x, w)) = P (z|do(x)) =

P (z|x). Furthermore, since no nodes in Z and Y share a C-component in G′w,

no node in Z has a bidirected path to Y in G′w. This implies, by Lemma 1 in

[Shpitser et al., 2009], that P (y, w, x|do(z)) = P (y|z, w, x)P (w, x).

Since Z intercepts all frontdoor paths from X to Y (by the Frontdoor criterion),

P (y, w|do(z, x)) = P (y, w|do(z)) =
∑

x P (y|z, w, x)P (w, x).

We conclude that P (y, w|do(x)) is equal to
∑

z P (z|x)
∑

x P (y|z, w, x)P (w, x).

Since P (w|do(x)) = P (w) in G′w, P (y, w|do(x)) =
∑

z P (z|x)
∑

x P (y|z, w, x)P (x|w).

Finally, recall that W is just a copy of X , and X is observed to attain value x′ in

the “natural” world. This implies that our expression simplifies to
∑

z P (z|x)P (y|z, x′),

which proves our result. �

If neither the Backdoor nor the Frontdoor criteria hold, we must invoke general

causal effect identification algorithms from the previous section. However, in the

case of ETT of a single variable, there is a simple complete graphical criterion which

works.

Theorem 9 ([Shpitser and Pearl, 2009]) P (Yx = y|X = x′) is identifiable

from P (v) if and only if there is no bidirected path from X to a child of X in Gan(y).

Moreover, if there is no such bidirected path, the estimand for P (Yx = y|X = x′) is

obtained by multiplying the estimand for
∑

an(y)\(y∪{x}) P (an(y) \ x|do(x)) (which

exists by results in [Tian and Pearl, 2002a]) by Q[Sx]′

P (x′)
P

x Q[Sx] , where Sx is the C-

component in G containing X, and Q[Sx]′ is obtained from the expression for Q[Sx]

by replacing all occurrences of x with x′.
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7 Conclusion

In this paper we described the state of the art in identification of causal effects and

related quantities in the framework of graphical causal models. We have shown

how this framework, developed over the period of two decades by Judea Pearl and

his collaborators, and presented in Pearl’s seminal work [Pearl, 2000], can sharpen

causal intuition into mathematical precision for a variety of causal problems faced

by scientists.
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