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On the definition of a confounder

Tyler J. VanderWeele and Ilya Shpitser

Abstract

The causal inference literature has provided a clear formal definition of confound-
ing expressed in terms of counterfactual independence. The causal inference lit-
erature has not, however, produced a clear formal definition of a confounder, as
it has given priority to the concept of confounding over that of a confounder. We
consider a number of candidate definitions arising from various more informal
statements made in the literature. We consider the properties satisfied by each
candidate definition, principally focusing on (i) whether under the candidate defi-
nition control for all “confounders” suffices to control for ”confounding” and (ii)
whether each confounder in some context helps eliminate or reduce confounding
bias. Several of the candidate definitions do not have these two properties. Only
one candidate definition of those considered satisfies both properties. We propose
that a ”confounder” be defined as a pre-exposure covariate C for which there ex-
ists a set of other covariates X such that effect of the exposure on the outcome is
unconfounded conditional on (X,C) but such that for no proper subset of (X,C)
is the effect of the exposure on the outcome unconfounded given the subset. A
variable that helps reduce bias but not eliminate bias we propose referring to as a
”surrogate confounder.”



1. Introduction

Epidemiologists had traditionally conceived of a confounder as a pre-exposure
variable that was associated with exposure and associated also with the out-
come conditional on the exposure, possibly conditional also on other covariates
(Miettinen, 1974). The developments in causal inference over the past two
decades have made clear that this de�nition of a "confounder" is inadequate:
there can be pre-exposure variables associated with the exposure and the out-
come, the control of which introduces rather than eliminates bias (Greenland
et al., 1999a; Glymour and Greenland, 2008; Pearl, 2009). The causal infer-
ence literature has moved away from formal language about "confounders" and
instead places the conceptual emphasis on "confounding." See Morabia (2011)
for historical discussion of this point. The literature has provided a formal
de�nition of "confounding" in term of dependence of counterfactual outcomes
and exposure, possibly conditional on covariates. The absence of confound-
ing (independence of the counterfactual outcomes and the exposure) has been
taken as the foundational assumption for drawing causal inferences. Such
absence of confounding is alternatively referred to as "ignorability" or "ig-
norable treatment assignment" (Rubin, 1978), "exchangeability" (Greenland
and Robins, 1986), "no unmeasured confounding" (Robins, 1992), "selection
on observables" (Barnow et al., 1980; Imbens, 2004) or "exogeneity" (Imbens,
2004). Today, at least within the formal methodological causal inference liter-
ature, language concerning "confounders" is generally used only informally, if
at all. Nevertheless, amongst practicing epidemiologists, language concerning
both "confounders" and "confounding" is common. This raises the question
as to whether a formal de�nition of a "confounder" can also be given within
the counterfactual framework. It has been noted that confounders and con-
founding are relative a particular exposure-outcome relationship, relative to a
particular population, and relative to the study design (cf. Rothman et al.,
2008). Here we ask the question, for a speci�c exposure and outcome, in a
particular study, of a speci�c population, what is a confounder?
In this article we will examine de�nitions and language concerning "con-

founders" in both formal methodological work and in epidemiologic practice.
We will re�ect on how such language implicitly conceives of "confounders" and
on what properties of "confounders" are implicitly assumed to hold. In consid-
ering what de�nitions a �eld might use, two contrasting perspectives might be
adopted. First, one might examine the language that is informally used within
a �eld and try to discern how particular words are used, what is presupposed
by that language, and whether there is any internally consistent formalization
of that language which preserves the properties that the language presupposes.
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Second, one might instead decide about de�nitions based on which de�nitions
lead to elegant and useful results. Our analysis below could be understood in
light of either of these two perspectives. On one hand, we will consider what
language epidemiologists informally use about "confounders", what proper-
ties of "confounders" are generally assumed by epidemiologists to hold, and
whether any de�nition coheres with this language and these properties. From
a number of candidate de�nitions implicit in the literature we will see that
only one satis�es the properties that are generally implicitly assumed to hold
for "confounders." On the other hand, seen in a di¤erent light, if we are in-
terested in what de�nitions give rise to important theoretical results, we will
see below again that only one of the de�nitions of those considered gives rise
to type of elegant and useful results we might desire. The two perspectives
settle on the same de�nition; we believe that either perspective on the task of
selecting de�nitions leads to the same conclusion.

2. Notation and Framework

We let A denote an exposure, Y the outcome, and we will use C, S and X
to denote particular pre-exposure covariates or sets of covariates (that may or
may not be measured). As noted in the penultimate section of the paper, the
restriction to pre-exposure covariates could, in the context of causal diagrams
(Pearl, 1995, 2009), be replaced to that of non-descendents of exposure A.
Within the counterfactual or potential outcomes framework (Neyman, 1923;
Rubin 1978), we let Ya denote the potential outcome for Y if exposure A were
set, possibly contrary to fact, to the value a. If exposure is binary the average
causal e¤ect is given by E(Y1)�E(Y0). Note that the potential outcomes no-
tation Ya presupposes that an individual�s potential outcome does not depend
on the exposures of other individuals. This assumption is sometimes referred
to as SUTVA, the stable unit treatment value assumption (Rubin, 1990) or as
a no-interference assumption (Cox, 1958).
We use the notation E ?? F jG to denote that E is independent of F con-

ditional on G. For exposure A and outcome Y , we say there is no confounding
conditional on S (or that the e¤ect of A on Y is unconfounded given S) if
Ya ?? AjS. We will refer to any such S as a su¢ cient set or a su¢ cient ad-
justment set. If the e¤ect of A on Y is unconfounded given S then the causal
e¤ect can be consistently estimated by:

E(Y1)� E(Y0) =
X

s
fE(Y jA = 1; s)� E(Y jA = 0; s)gpr(s):

We will say that S = (S1; :::; Sn) constitutes a minimally su¢ cient adjustment
set if Ya ?? AjS but there is no proper subset T of S such that Ya ?? AjT
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where "proper subset" here is understood as T being a strict subset of the
coordinates of S = (S1; :::; Sn). Some of the candidate de�nitions of a con-
founder below de�ne "confounder" in terms of "confounding" via reference
to "minimally su¢ cient adjustment sets." Such de�nitions give conceptual
priority to "confounding," as has generally been done in the causal inference
literature (cf. Greenland and Robins, 1986; Greenland and Morgenstern, 2001;
Hernán, 2008). Often after formal de�nitions of "confounding" are given, a
"confounder" is de�ned as a derivative and sometimes informal concept. For
example, in papers by Greenland et al. (1999) and Greenland and Morgenstern
(2001), formal de�nitions are given for "confounding" and then a "confounder"
is simply described as a variable that is in some sense "responsible" (Greenland
et al., 1999b, p. 33) for confounding.
Most of the de�nitions and properties we discuss make reference only to

counterfactual outcomes. However, one of the de�nitions and several propo-
sitions make reference to causal diagrams. We will thus restrict attention in
this paper to causal diagrams. We review concepts and de�nitions for causal
diagrams in the appendix; the reader can also consult Pearl (1995, 2009). In
short, a causal diagram is a very general data generating process correspond-
ing to a set of non-parametric structural equations where each variable Xi is
given by its non-parametric structural equation Xi = fi(pai; �i) where pai are
the parents of Xi on the graph and the �i are mutually independent such that
the structural equations encode one-step ahead counterfactual relationships
amongst the variables with other counterfactuals given by recursive substitu-
tion (Pearl, 1995, 2009). The assumption of "faithfulness" is said to be satis�ed
if all of the conditional independence relationships amongst the variables are
implied by the structure of the graph; see the Appendix for further details. A
back-door path from A to Y is a path to Y which begins with an edge into
A. Pearl (1995) showed that if a set of pre-exposure covariates S blocks all
backdoor paths from A to Y then the e¤ect of A on Y is unconfounded given
S.
The de�nitions given below will stated formally in terms of causal dia-

grams. It is assumed that there is an underlying causal diagram which may
contain both measured and unmeasured variables; all variables considered in
the de�nitions are variables on the diagram. Whether a variable satis�es the
criteria of a particular de�nition will be relative to the causal diagram. In
section 6, we will consider settings with multiple causal diagrams where one
diagram may have variables absent on another.

3. Candidate De�nitions for a Confounder

Here we give a number of candidate de�nitions of a confounder motivated
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by statements made in the methodological literature. We will cite speci�c
statements from the methodologic literature; we do not necessarily believe
these statements were intended as de�nitions for a "confounder" by the authors
cited. We simply use these statements to motivate the candidate de�nitions.
As noted above, we believe statements about "confounders," as opposed to
"confounding," have generally been used only informally and intuitively.
As already noted, the traditional conception of a confounder in epidemiol-

ogy had been a variable associated with both the treatment and the outcome.
Miettinen (1974) notes that whether such associations hold will depend on
what other variables are controlled for in an analysis. This motivates our �rst
candidate de�nition for a confounder.

De�nition 1. A pre-exposure covariate C is a confounder for the e¤ect of
A on Y if there exists a set of pre-exposure covariates X such that C 6?? A j X
and C 6?? Y j (A;X) .

De�nition 1 is essentially a generalization of the traditional conceptualiza-
tion of a confounder in epidemiology.
Pearl (1995) showed that if a set of pre-exposure covariates X blocks all

backdoor paths from A to Y then the e¤ect of A on Y is unconfounded given
X. Hernán (2008) accordingly speaks of a confounder as a variable that "can
be used to block a backdoor path between exposure and outcome" (p. 355).
A similar de�nition of a confounder is given in Greenland and Pearl (2007, p.
152) and in Glymour and Greenland (2008, p. 193). This motivates a second
candidate de�nition.

De�nition 2. A pre-exposure covariate C is a confounder for the e¤ect of
A on Y if it blocks a backdoor path from A to Y .

The second de�nition is perhaps one that would arise most naturally within
the context of causal diagrams; the de�nition itself of course presupposes a
framework of causal diagrams or variants thereof (Spirtes et al., 1993; Dawid,
2002).
Pearl (2009) speaks of a confounder as "a variable that is a member of

every su¢ cient [adjustment] set" (p. 195) i.e. control for it must be neces-
sary. Likewise, Robins and Greenland (1986) write, "We will call a covariate a
confounder if estimators which are not adjusted for the covariate are biased"
(p. 393) and Hernán (2008) speaks of a confounder as "any variable that is
necessary to eliminate the bias in the analysis" (p. 357). Note that a variable
is a member of every su¢ cient adjustment set if and only if it is a member of
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every minimal su¢ cient adjustment set. This motivates our third candidate
de�nition.

De�nition 3. A pre-exposure covariate C is a confounder for the e¤ect of
A on Y if it is a member of every minimally su¢ cient adjustment set.

De�nition 3 captures the notion that controlling for a confounder might be
necessary to eliminate bias. The de�nition makes reference to "every minimally
su¢ cient adjustment set"; this will be relative to a particular causal diagram,
a point to which we will return below.
Kleinbaum et al. (1982), in a textbook on epidemiologic research, gave

as a de�nition of a "confounder" a variable that is "a member of a su¢ cient
confounder group" where a su¢ cient confounder group is de�ned as "a minimal
set of one or more risk factors whose simultaneous control in the analysis will
correct for joint confounding in the estimation of the e¤ect of interest" (p. 276).
Kleinbaum et al. (1982), however, de�ne "confounding" in terms of association
rather than counterfactual independence. As a variant of the Kleinbaum et al.
proposal, we could retain the de�nition "a member of a minimally su¢ cient
adjustment set" but use the counterfactual de�nition of "confounding." This
motivates the fourth candidate de�nition.

De�nition 4. A pre-exposure covariate C is a confounder for the e¤ect of
A on Y if it is a member of some minimally su¢ cient adjustment set.

De�nition 4 can be restated as: a pre-exposure covariate C is a confounder
for the e¤ect of A on Y if there exists a set of pre-exposure covariates X
such that Ya ?? Aj(X;C) but there is no proper subset T of (X;C) such that
Ya ?? AjT .
Miettinen and Cook (1981) and Robins and Morgenstern (1987) conceive

of a confounder as any variable that is helpful in reducing bias. Hernán (2008)
likewise speaks of a confounder as "any variable that can be used to reduce
[confounding] bias" (p. 355). Geng et al. (2002) use a similar de�nition for
confounding. As noted by other authors (Greenland and Morgenstern, 2001;
Hernán, 2008) whether a variable is helpful in reducing bias will depend on
what other variables are being conditioned on in the analysis; a confounder
should be helpful for reducing bias in some context. This motivates our �fth
de�nition.

De�nition 5. A pre-exposure covariate C is a confounder for the ef-
fect of A on Y if there exists a set of pre-exposure covariates X such that

5

Hosted by The Berkeley Electronic Press



j
X

x;c
fE(Y jA = 1; x; c) � E(Y jA = 0; x; c)gpr(x; c) � fE(Y1) � E(Y0)gj <

j
X

x
fE(Y jA = 1; x)� E(Y jA = 0; x)gpr(x)� fE(Y1)� E(Y0)gj.

De�nition 5 captures the notion that controlling for C along with X results
in lower bias in the estimate of the causal e¤ect than controlling forX alone. A
number of variants of De�nition 5 could also be considered. Geng et al. (2002)
for example, considered the analogous de�nition for the e¤ect of the exposure
on the exposed rather than the overall e¤ect of the exposure on the population;
one could likewise consider the analogue of De�nition in 5 for e¤ects conditional
onX rather than standardized overX or alternatively for di¤erent measures of
e¤ect e.g. risk ratios or odds ratios rather than causal e¤ects on the di¤erence
scale. De�nition 5, unlike other De�nitions, is inherently scale-dependent.
Thus under De�nition 5, a variable C might be a confounder for Y but not
for log(Y ) or vice versa. This is an important limitation of De�nition 5. Note,
however, that some authors also consider "confounding" to be scale-dependent
(Greenland and Robins, 1986, 2009; Greenland and Morgenstern, 2001) and
use "ignorability" to refer to the notion of unconfoundedness in the distribution
of counterfactuals as given above.
Although not the focus of the present paper, in the appendix, we give some

further remarks on the possibility of empirical testing for each of De�nitions
1-5 and for confounding and non-confounding more generally. However, for
the most part, notions of confounding and confounders, under these �ve def-
initions, are not empirically testable. Confounders have also sometimes been
de�ned in terms of empirically collapsibility (Miettinen, 1976; Breslow and
Day, 1980) but such a de�nition does not work for all e¤ect measures, such as
the odds ratio, due to non-collapsibility (Greenland et al., 1999b). Moreover
even for the causal e¤ects on the additive scale, collapsibility-based de�nitions
can lead to bias from adjusting for non-confounders due to what is sometimes
referred to as "M-bias" or "collider-strati�cation" (Greenland, 2003; Hernán
et al., 2002; Hernán, 2008). We will thus not consider collapsibility-based de-
�nitions here. See Greenland et al. (1999b), Geng et al. (2001) and Geng
and Li (2002) for further discussion of the relationship between, and general
non-equivalence of, confounding and collapsibility.

4. Properties of a Confounder

Language about "confounders" occurs of course not simply in methodologic
work but in substantive epidemiologic research. In the design and analysis of
observational studies in the applied epidemiologic literature the task of con-
trolling for "confounding" is often construed as that of collecting data on and
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controlling for all "confounders." In this section we propose that when lan-
guage about "confounders" is generally used in epidemiology, two things are
implicitly presupposed: �rst, that if one were to control for all "confounders"
then this would su¢ ce to control for "confounding" and second, that control
for a "confounder" will in some sense help to reduce or eliminate confounding
bias. We would propose that if a formal de�nition is to be given for a "con-
founder" it should in some sense satisfy these two properties. If it does not, it
arguably does not cohere with what is typically presupposed in language about
"confounders" when used in epidemiologic practice. We give a formalization
of these two properties and in the following section we will discuss which of
these two properties are satis�ed by each of the candidate de�nitions of the
previous section.
We could formalize the �rst property as follows.

Property 1. If S consists of the set of all confounders for the e¤ect of A
on Y , then there is no confounding of the e¤ect of A on Y conditional on S
i.e. Ya ?? AjS.

The de�nition makes reference to "all confounders"; to make reference to all
such variables the domain of the variables considered needs to be speci�ed. The
domain here will be all pre-exposure variables on a particular causal diagram
that qualify as confounders according to whatever de�nition is in view. See
section 6 for some extensions.
The second property is that control for a confounder should help either

reduce or eliminate bias. The reduction and the elimination of bias are not
equivalent and thus we will formally give two alternative properties, 2A and
2B.

Property 2A. If C is a confounder for the e¤ect of A on Y , then there
exists a set of pre-exposure covariates X such that Ya ?? Aj(X;C) but Ya 6??
A j X.

Property 2B. If C is a confounder for the e¤ect of A on Y , then there
exists a set of pre-exposure covariates X such that j

X
x;c
fE(Y jA = 1; x; c)�

E(Y jA = 0; x; c)gpr(x; c) � fE(Y1) � E(Y0)gj < j
X

x
fE(Y jA = 1; x) �

E(Y jA = 0; x)gpr(x)� fE(Y1)� E(Y0)gj.

Property 2A captures that notion that in some context, i.e. conditional
on X, the covariate C helps eliminate bias. Property 2B captures the notion
that in some context, i.e. conditional on X, the covariate C helps reduce
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bias. Note that Property 2B, like De�nition 5, is inherently scale-dependent
and in this sense perhaps less fundamental than Property 2A. For now we
simply propose that for a candidate de�nition of a confounder to adequately
capture epidemiologic intuition it should satisfy Property 1 and should also
satisfy either Property 2A or 2B. In the next section we consider whether each
of the candidate de�nitions, De�nitions 1-5, satisfy Properties 1, 2A and 2B.
Of course, one possible outcome of this exercise is that none of the candidate
de�nitions satisfy Property 1 and either 2A or 2B (or even that no candidate
de�nition could). However, as we will see in the next section, this turns out
not to be the case.

5. Properties of the Candidate De�nitions

De�nition 1 was a generalization of the traditional epidemiologic conception
of a confounder as a variable associated with exposure and outcome. For this
de�nition we have the following result. The proofs of all propositions are given
in the Appendix.

Proposition 1. Under faithfulness, for every causal diagram, De�nition 1
satis�es Property 1. De�nition 1 does not satisfy Property 2A or 2B.

To see why De�nition 1 does not satisfy Property 2A or 2B consider the
causal diagram in Figure 1.

Fig. 1. De�nition 1 does not satisfy Property 2A or 2B.

The variable C3 is unconditionally associated with A and Y ; the variables
C1 and C2 are each associated with A and Y conditional on C3. Thus under
De�nition 1, all three would qualify as "confounders." Control for fC1; C2; C3g
would su¢ ce to control for confounding but for C3 there is no set of pre-
exposure covariates X on the graph such that control for C3 helps eliminate
(Property 2A) or reduce (Property 2B) bias. We note that if faithfulness is
violated De�nition 1 does not satisfy Property 1 either (Pearl, 2009).
Under De�nition 2, a confounder was de�ned as a pre-exposure covariate

that blocks a backdoor path from A to Y .
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Proposition 2. For every causal diagram, De�nition 2 satis�es Property
1. De�nition 2 does not satisfy Property 2A or 2B.

Consider the causal diagram in Figure 2.

Fig 2. De�nition 2 does not satisfy Property 2A or 2B.

Under De�nition 2 both C1 and C2 block a backdoor path from A to Y and
thus would qualify as confounders. However, for C2 there is no set of pre-
exposure covariates X on the graph such that control for C2 helps eliminate
(Property 2A) since if X = C1, there is no bias without controlling for C2;
if X = ?, there is bias even with controlling for C2. Likewise, examples can
be constructed (see proof in the Appendix) in which control for C2 will only
increase bias i.e. control for C2 does not help reduce bias (Property 2B).
Under De�nition 3, a confounder was de�ned as a member of every mini-

mally su¢ cient adjustment set.

Proposition 3. De�nition 3 does not satisfy Property 1. De�nition 3
satis�es Property 2A.

A variable C that is a confounder under De�nition 3 will in general satisfy
Property 2B as well but may not always because there are cases in which there
is confounding in the distribution of counterfactual outcomes conditional on C
and so that C is a confounder under De�nition 3 but with the average causal
e¤ect on the additive scale not confounded (Greenland et al., 1999b). To see
that De�nition 3 does not satisfy Property 1, consider the causal diagram in
Figure 3.

Fig 3. De�nition 3 does not satisfy Property 1.

9
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Here, either C1 or C2 would constitute minimally su¢ cient adjustment sets
and thus neither are a member of every minimally su¢ cient adjustment set.
Under De�nition 3, there would thus be no confounders for the e¤ect of A on
Y ; clearly, however, if we control for nothing there is still confounding for the
e¤ect of A on Y .
Under De�nition 4, a confounder was de�ned as a member of some mini-

mally su¢ cient adjustment set.

Proposition 4. For every causal diagram, De�nition 4 satis�es Property
1. De�nition 4 satis�es Property 2A.

A variable that is a confounder under De�nition 4 will in general satisfy
Property 2B as well but may not always because as before there may be con-
founding in distribution without the average causal e¤ect on the additive scale
being confounded. De�nition 4 thus satis�es Property 2A, generally Property
2B, and as shown in the Appendix, also satis�es Property 1 for all causal dia-
grams. De�nition 4 thus satis�es the properties which arguably ought to be
required for a reasonable de�nition of a "confounder."
Under De�nition 5, a confounder was essentially de�ned as a pre-exposure

covariate the control for which helped reduce bias.

Proposition 5. De�nition 5 does not satisfy Property 1. De�nition 5
satis�es Property 2B but not 2A.

De�nition 5 does not satisfy Property 1 because an unadjusted estimate of
the causal risk di¤erence may be correct, even in the presence of confounding,
because the bias due to confounding for E(Y1) may cancel that for E(Y0); said
another way there may be confounding in the distribution of counterfactual
outcomes without their being confounding in a particular measure; see the
example in the proof in the Appendix. That De�nition 5 satis�es Property
2B is essentially embedded in De�nition 5 itself. To see that De�nition 5 does
not satisfy Property 2A, consider the causal diagram in Figure 4.

Fig. 4. De�nition 5 does not satisfy Property 2A.
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Although control for C2 might reduce bias compared to an unadjusted estimate
and thus satisfy De�nition 5 with X = ?, there would be no X such that the
e¤ect of A on Y is unconfounded conditional on (X;C2) but not on X alone.
A variable that satis�es De�nition 5 but not De�nition 4 will never help to

eliminate confounding bias, only to reduce such bias. Such a variable reduces
bias essentially by serving as a proxy for a variable that does satisfy De�nition
4. We therefore propose that a confounder be de�ned as in De�nition 4, "a
pre-exposure covariate that is a member of some minimally su¢ cient adjust-
ment set" and that any variable that satis�es De�nition 5 but not De�nition 4
be referred to as a "surrogate confounder." The terminology of a "surrogate
confounder" or "proxy confounder" appears elsewhere (Greenland and Mor-
genstern, 2001; Hernán, 2008); here we have provided a formal criterion for
such a "surrogate confounder."

6. Some Extensions and Implications

In the discussion above we have considered whether a covariate is a "con-
founder" in an unconditional sense. However, we might also speak about
whether a variable C is a confounder for the e¤ect of A on Y conditional
on some set of covariates L which an investigator is going to condition on
irrespective of whether control is made for C. De�nition 4 above, the de�n-
ition for an "unconditional confounder" could be restated as: a pre-exposure
covariate C is a confounder for the e¤ect of A on Y if there exists a set of
pre-exposure covariates X such that Ya ?? Aj(X;C) but there is no proper
subset T of (X;C) such that Ya ?? AjT . The conditional analogue would
then be as follows: we say that a pre-exposure covariate C is a confounder
for the e¤ect of A on Y conditional on L if there exists a set of pre-exposure
covariates X such that Ya ?? Aj(X;L;C) but there is no proper subset T of
(X;C) such that Ya ?? Aj(T; L). Consider again the causal diagram in Figure
3. Here, C2 would be a confounder under De�nition 4. However, C2 is not
a confounder for the e¤ect of A on Y conditional on L = C1. Consider once
more the causal diagram in Figure 1. Here, neither C1 nor C2 would be a
confounder under De�nition 4. However, conditional on L = C3, both C1 and
C2 would be confounders.
We have restricted our attention in this paper thus far to pre-exposure

covariates as potential confounders. We have done so in order to correspond
as closely as possible to the discussion in the epidemiologic and potential out-
comes literatures. However, within the context of causal diagrams, a somewhat
broader range of variables could be considered as "confounders" in that all of
the discussion above is applicable if we consider all non-descendents of A as
potential confounders rather than simply considering pre-exposure covariates.
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Throughout the paper we have given all de�nitions with respect to a partic-
ular underlying causal diagram. However, for a given exposure A and a given
outcome Y , there will be multiple causal diagrams that correctly represent the
causal structure relating these variables to one another and to covariates. One
diagram may be an elaboration of another and contain variables that the other
does not. It is straightforward to verify that if a variable C is classi�ed as a
confounder under De�nitions 1, 2, 4 or 5, then C will also be a confounder un-
der that De�nition on any expanded causal diagram with additional variables.
In the case of De�nition 1, this is because associations that hold conditional
on covariates X for one diagram will clearly also hold for the other. In the
case of De�nition 2, if C blocks a backdoor path on one causal diagram, it
will block a backdoor path on any larger diagram that also correctly describe
the causal structure. In the case of De�nition 4, if there is some minimally
su¢ cient adjustment set S of which C is a member then that set will also
be minimally su¢ cient on any larger diagram that also correctly describe the
causal structure. In the case of De�nition 5, if the inequality in that de�nition
holds for some covariate set X for one diagram, it will clearly also hold for
the other. Only De�nition 3 does not share this property. To see this, con-
sider Figure 3; if in, Figure 3, we collapsed over C2 so that the causal diagram
involved only C1, A, and Y , then C1 would be a member of every minimally
su¢ cient adjustment set for this diagram and thus a confounder under De�n-
ition 3. However, as we saw above, C1 is not a confounder under De�nition 3
for Figure 3 itself which includes the extra variable C2. This failure is a serious
problem with De�nition 3; but, as we also saw above, De�nition 3, su¤ers from
other limitations as well.
Several fairly trivial implications follow from De�nition 4 and may be worth

noting for the sake of completeness. First, if a causal diagram had a variable
C with an arrow to log(C) (or vice versa) and if C were a member of a min-
imally su¢ cient adjustment set then, under De�nition 4, both C and log(C)
would be considered "confounders"; though log(C) would not be a confounder
conditional on C, and likewise C would not be a confounder conditional on
log(C). We believe that this is in accord with epidemiologic usage, though
it would be peculiar to consider both C and log(C) simultaneously, just as it
would be peculiar to include both C and log(C) on a causal diagram. Second,
if a variable C is measured with error, taking value C�, and if the measurement
error term � = C� � C were also represented on the causal diagram then, if
C were a confounder under De�nition 4, C� and � would also both be con-
founders under De�nition 4. We believe this is also in accord with standard
epidemiologic usage of "confounder", though we would in practice rarely refer
to � as a "confounder" since we rarely, if ever, have access to �. Once again,
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however, neither C� nor � would be confounders conditional on C. Finally,
suppose C1 were height in meters and C2 were weight in kilograms and that
C1 and C2 together su¢ ced to control for confounding but neither alone did;
let C3 = C1=C21 be body mass index (BMI) and suppose that controlling for
C3 alone su¢ ced to control for confounding. Then under De�nition 4, C1,
C2 and C3 would each be confounders, though C3 would not be a confounder
conditional on (C1; C2) and likewise neither C1 nor C2 would be a confounder
conditional on C3. Once again, we believe this is in accord with traditional
epidemiologic usage of "confounder."

7. Concluding Remarks

The causal inference literature has provided a formal de�nition of con-
founding with reference to distributions of counterfactual outcomes but the
literature has generally been lacking a formal de�nition of a "confounder";
more informal approaches have generally been taken and there has not been
consensus on how, or even whether, a "confounder" should be de�ned. We
have considered a number of candidate proposals often arising from more in-
formal statements made in the literature. Having assessed the properties of
each of these, we have proposed that a pre-exposure covariate C be considered
a confounder for the e¤ect of A on Y if there exists a set of covariates X such
that the e¤ect of the exposure on the outcome is unconfounded conditional
on (X;C) but for no proper subset of (X;C) is the e¤ect of the exposure on
the outcome unconfounded given the subset. Equivalently, a confounder is a
"member of a minimally su¢ cient adjustment set." We have provided a con-
ditional analogue of this de�nition also. We have shown that this proposed
de�nition satis�es the properties that (i) on any causal diagram, control for
all confounders so de�ned will control for confounding and (ii) any variable
qualifying as a confounder under this criterion will in some context remove
confounding. A number of other candidate de�nitions do not satisfy these two
properties. We have proposed that a variable that helps reduce bias but not
eliminate bias be referred to as a "surrogate confounder." The de�nition of a
"confounder" we propose here is given rigorously in terms of counterfactuals,
thereby �lling the gap in the literature, and, we believe, also in accord with
the intuitive properties of a "confounder" implicitly presupposed by practic-
ing epidemiologists. From a more theoretical perspective, De�nition 4, unlike
the other de�nitions gives, rise to elegant and useful results which itself lends
further support for its being taken as the de�nition of a confounder.
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Appendix.
Review of Causal Diagrams

A directed graph consists of a set of nodes and directed edges amongst
nodes. A path is a sequence of distinct nodes connected by edges regardless
of arrowhead direction; a directed path is a path which follows the edges in
the direction indicated by the graph�s arrows. A directed graph is acyclic if
there is no node with a sequence of directed edges back to itself. The nodes
with directed edges into a node A are said to be the parents of A; the nodes
into which there are directed edges from A are said to be the children of A.
We say that node A is ancestor of node B if there is a directed path from A
to B; if A is an ancestor of B then B is said to be a descendant of A. If
X denotes a set of nodes then An(X) will denote the ancestors of X, Nd(X)
will denote the set of non-descendants of X. For a given graph G, and a set
of nodes S, the graph GS denotes a subgraph of G containing only vertices
of G in S and only edges of G between vertices in S. On the other hand,
the graph GS denotes the graph obtained from G by removing all edges with
arrowheads pointing to S. A node is said to be a collider for a particular path
if it is such that both the preceding and subsequent nodes on the path have
directed edges going into that node. A path between two nodes, A and B, is
said to be blocked given some set of nodes C if either there is a variable in C
on the path that is not a collider for the path or if there is a collider on the
path such that neither the collider itself nor any of its descendants are in C.
For disjoint sets of nodes A, B and C, we say that A and B are d-separated
given C if every path from any node in A to any node in B is blocked given
C. Directed acyclic graphs are sometimes used as statistical models to encode
independence relationships amongst variables represented by the nodes on the
graph (Lauritzen, 1996). The variables corresponding to the nodes on a graph
are said to satisfy the global Markov property for the directed acyclic graph
(or to have a distribution compatible with the graph) if for any disjoint sets
of nodes A;B;C we have that A ?? BjC whenever A and B are d-separated
given C. The distribution of some set of variables V on the graph are said
to be faithful to the graph if for all disjoint sets A;B;C of V we have that
A ?? BjC only when A and B are d-separated given C.
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Directed acyclic graphs can be interpreted as representing causal relation-
ships. Pearl (1995) de�ned a causal directed acyclic graph as a directed acyclic
graph with nodes (X1; :::; Xn) corresponding to variables such that each vari-
able Xi is given by its non-parametric structural equation Xi = fi(pai; �i)
where pai are the parents of Xi on the graph and the �i are mutually indepen-
dent. For a causal diagram, the non-parametric structural equations encode
counterfactual relationships amongst the variables represented on the graph.
The equations themselves represent one-step ahead counterfactuals with other
counterfactuals given by recursive substitution (see Pearl, 2009, for further
discussion). A causal directed acyclic graph de�ned by non-parametric struc-
tural equations satis�es the global Markov property as stated above (Pearl,
2009). The requirement that the �i be mutually independent is essentially a
requirement that there is no variable absent from the graph which, if included
on the graph, would be a parent of two or more variables (Pearl, 1995, 2009).
Throughout we assume the exposure A consists of a single node. A back-door
path from A to Y is a path to Y which begins with an edge into A. A set
of variables X is said to satisfy the backdoor path criterion with respect to
(A; Y ) if no variable in X is a descendant of A and if X blocks all back-door
paths from A to Y . Pearl (1995) showed that if X satis�es the backdoor path
criterion with respect to (A; Y ) then the e¤ect of A on Y is unconfounded
given X, i.e. Ya ?? AjX.

Empirical Testing for Confounders and Confounding

The absence of confounding conditional on a set of covariates S, i.e. Ya ?
? AjS, is not a property that can be tested empirically with data. One must
rely on subject matter knowledge, which may sometimes take the form of a
causal diagram. Nonetheless a few things can be said about empirical testing
concerning confounding and confounders. For the sake of completeness, we will
consider each of De�nitions 1-5. It is possible to verify empirically whether
a variable is a confounder under De�nition 1 since the de�nition refers to
observed associations; however, it is not possible, without further knowledge,
to empirically verify that a variable does not satisfy De�nition 1 because a
variable may satisfy De�nition 1 for some X that involves an unmeasured
variable U . One would have to know that data were available for all variables
on a causal diagram to empirically verify that a variable were a non-confounder
under De�nition 1. Because of this even though De�nition 1 satis�es Property
1, this cannot be used as an empirical test for confounding since (i) we cannot
empirically verify that a variable is a non-confounder under De�nition 1 and
(ii) we cannot empirically verify whether faithfulness holds.
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Without further assumptions, we cannot empirically verify that a variable
is a confounder or a non-confounder under De�nition 2 because De�nition 2
makes reference to backdoor paths. Whether a variable lies on a backdoor path
cannot be tested empirically without further assumptions; one would have to
know the structure of underlying causal diagram. Likewise, for De�nitions 3
and 4, one would need to know all minimally su¢ cient adjustment sets, which
itself would require checking the "no confounding" condition Ya ?? AjS, which
is, as noted above, not empirically testable; though see below for some quali-
�cations. For De�nition 5, we could empirically reject the inequality in De�n-
ition 5 for observed X if

P
x;cfE(Y jA = 1; x; c)�E(Y jA = 0; x; c)gpr(x; c) =P

xfE(Y jA = 1; x) � E(Y jA = 0; x)gpr(x). However, we cannot empirically
reject the inequality in De�nition 5 for unobserved X and we moreover cannot
empirically verify the inequality in De�nition 5 because E(Y1)�E(Y0) will not
in general be empirically identi�ed if there are unobserved variables.
Determining whether a variable is a confounder requires making untestable

assumptions. The only real progress that can be made with empirical testing
for confounders is by making other untestable assumptions that logically imply
a test for assumptions we care about. For example, suppose we assume we
have some set S that we are sure constitutes a su¢ cient adjustment set. In
this case, we can sometimes remove variables as unnecessary for confounding
control. In particular, Robins (1997) showed that if we knew that for covariate
sets S1 and S2, we had that Ya ?? Aj(S1; S2) then we would also have that
Ya ?? AjS1 if S2 can be decomposed into two disjoint subsets T1 and T2 such
that A ?? T1jS1 and Y ?? T2jA; S1; T1. Both of these latter conditions are
empirically testable. Geng et al. (2001) provide some analogous results for the
e¤ect of exposure on the exposed. VanderWeele and Shpitser (2011) note that
if for covariate set S, we have that Ya ?? AjS then if a backward selection
procedure is applied to S such that variables are iteratively discarded that are
independent of Y conditional on both exposure A and the members of S that
have not yet been discarded, then the resulting set of covariates will su¢ ce
for confounding control. They also show that under an additional assumption
of faithfulness, if, for covariate set S, we have that Ya ?? AjS, then if a
forward selection procedure is applied to S such that, starting with the empty
set, variables are iteratively added which are associated with Y conditional
on both exposure A and the variables that have already been added, then the
resulting set of covariates will su¢ ce for confounding control. Note, however,
all of these results require knowledge that for some set S, Ya ?? AjS, which is
not itself empirically testable.
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Proofs

Proof of Proposition 1. We �rst show that De�nition 1 satis�es Property
1 in faithful models. Let G� = GNd(A)[An(Y ). Let Pa� be the subset of Pa(A)
in G� such that every element P 2 Pa� contains some path in G� to Y not
through A. Since we consider faithful models, we can use d-connectedness
to represent dependence. First we note that every element in Pa� satis�es
De�nition 1. Indeed, any element of Pa(A) is dependent on A conditioned
on any set. For any member of Pa�, we �x some path � to Y (not through
A). We are now free to pick any set X to make this path d-connected (for
instance we can pick the smallest X that opens all colliders in �). This set
X satis�es De�nition 1 for Pa� with respect to A and Y . Thus, the set of
all nodes in Nd(A) satisfying De�nition 1 will include Pa�. Next, we show
that any superset of Pa� in Nd(A) will be a valid adjustment set for (A; Y ).
Assume this isn�t the case for a particular S, and �x a back-door path from A
to Y which is open given S. Then the �rst node on this path after A must be
in Pa�. But this means the path is blocked by S. Our conclusion follows.
We now show De�nition 1 does not satisfy Property 2A or 2B. Consider the

causal diagram in Figure 1. The variable C3 is unconditionally associated with
A and Y ; the variables C1and C2 are each associated with Aand Y conditional
on C3. Thus under De�nition 1, all three would qualify as "confounders."
There is no set of pre-exposure covariates X on the graph such that control
for C3 helps eliminate or reduce bias. Therefore De�nition 1 does not satisfy
Properties 2A or 2B.

Proof of Proposition 2. If S consists of the set of all confounders under
De�nition 2 then this set S will include all pre-exposure covariates that block
a backdoor path from A to Y . From this it follows that S blocks all backdoor
paths from A to Y and by Pearl�s backdoor path theorem, the e¤ect of A on
Y is unconfounded given S. Thus De�nition 2 satis�es Property 1.
We now show that it does not satisfy Properties 2A and 2B. Consider the

causal diagram in Figure 2. Under De�nition 2 both C1 and C2 block a back-
door path from A to Y and thus would qualify as confounders. However, for C2
there is no set of pre-exposure covariates X on the graph such that control for
C2 helps eliminate since if X = C1, there is no bias without controlling for C2;
if X = ?, there is bias even with controlling for C2. Thus De�nition 2 does
not satisfy Property 2A. We now show that it doesn�t satisfy Property 2B.
Suppose Figure 2 is a causal diagram for (C1; C2; A; Y ) where all variables are
binary and suppose that P (C1 = 1) = 1=2, P (C2 = 1jc1) = 1=5+3c1=5, P (A =
1jc1; c2) = 1=10+3c1=5+c2=10, P (Y = 1ja; c1; c2) = 1=2+(1=2)(a�1=2)c1. One
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can then verify that E(Y1) � E(Y0) =
P

c1;c2
fE(Y jA = 1; c1; c2) � E(Y jA =

0; c1; c2)gpr(c1; c2) = 0:25 =
P

c1
fE(Y jA = 1; c1) � E(Y jA = 0; c1)gpr(c1),

that E(Y jA = 1) � E(Y jA = 0) = 0:266 and that
P

c2
fE(Y jA = 1; c2) �

E(Y jA = 0; c2)gpr(c2) = 0:269. Under De�nition 2, C2 would be considered
a confounder since C2 blocks the backdoor path A  C2  C1 ! Y . How-
ever, there is no set X of pre-exposure covariates such that j

P
x;c2
fE(Y jA =

1; x; c2) � E(Y jA = 0; x; c2)gpr(x; c2) � fE(Y1) � E(Y0)gj < j
P

xfE(Y jA =
1; x)�E(Y jA = 0; x)gpr(x)�fE(Y1)�E(Y0)gj. This is because ifX is taken as
C1 then the expressions on both sides of the inequality are equal to 0 (control-
ling forC2 in addition toC1 does not reduce bias); ifX is taken as the empty set
we have j

P
c2
fE(Y jA = 1; c2)�E(Y jA = 0; c2)gpr(c2)� fE(Y1)�E(Y0)gj =

j0:269� 0:250j = 0:019 > 0:016 = j0:266� 0:250j = jfE(Y jA = 1)�E(Y jA =
0)g�fE(Y1)�E(Y0)gj and again controlling for C2 does not reduce (but rather
increases) bias. De�nition 2 thus does not satisfy Property 2B.

Proof of Proposition 3. Consider the causal diagram in Figure 3. Here,
either C1 or C2 would constitute minimally su¢ cient adjustment sets and thus
neither are a member of every minimally su¢ cient adjustment set and under
De�nition 3, neither would be confounders. If we control for nothing there
is still confounding for the e¤ect of Aon Y and thus for Figure 3, controlling
for all confounders under De�nition 3 would not su¢ ce to control for con-
founding. Thus De�nition 3 does not satisfy Property 1. If C is a member of
every minimally su¢ cient adjustment set then it is a member of a minimally
su¢ cient adjustment set and from this it trivially follows that it satis�es the
requirements in Property 2A.

Proof of Proposition 4. We will show that De�nition 4 satis�es Property 1.
We �rst claim that any minimally su¢ cient adjustment set for (A; Y ) must lie
in GAn(A)[An(Y ). Assume this isn�t true, and pick some minimally su¢ cient set
S with elements outside An(A)[An(Y ). This means S \ (An(A)[An(Y )) is
not su¢ cient. Note that any ancestor of a node in the set An(A)[An(Y ) will
also be in An(A)[An(Y ). From this it follows that any back-door path from
A to Y which has a node outside An(A)[An(Y ) will require a collider to get
back into An(A)[An(Y ). However, those colliders must be open by elements
in S. We have a contradiction. We have shown that any minimally su¢ cient
adjustment set must be a subset of An(A)[An(Y ) and thus any variable that
is a confounder under De�nition 4 must be in An(A) [ An(Y ).
Next we note that Pa(A) is a su¢ cient adjustment set for (A; Y ). Pick

a minimal subset Pa+ of Pa(A) that is su¢ cient. Our claim is that every
element P in Pa(A) n Pa+ is such that P is not connected to Y in the graph
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(GAn(A)[An(Y ))a except by paths that are blocked conditional on Pa+. Assume
this isn�t true, and �x a path ! from P to Y that is not blocked by Pa+

in (GAn(A)[An(Y ))a. If this path has no colliders, then appending ! with the
edge P ! A produces a back-door path from A to Y not blocked by Pa+,
contradicting the earlier claim that Pa+ is a valid adjustment set.
If ! only contains colliders ancestral of Pa+, then either ! has a non-

collider triple blocked by Pa+ (in which case we are done with that path), or
! appended with P ! A produces a backdoor path open conditional on Pa+,
which is a contradiction. If ! contains collider triples ancestral of Pa(A)nPa+
(but not ancestral of Pa+), let W be the central node of the last such collider
triple on the path from P to Y . Let P 0 be a member of Pa(A) nPa+ of which
W is an ancestor. Consider instead of ! a new path: A  P 0  :::  W
appended with the subpath of ! that begins with the node on ! after W and
ends with Y . This path either has a non-collider triple blocked by Pa+ (in
which case so does ! and we are done with !), or it is open conditional on Pa+,
in which case we have a contradiction, or it contains collider triples ancestral
of Y not through Pa(A). In the last case, let Z be the central node of the �rst
such collider triple on the currently considered path from A to Y . Consider
instead a new path which appends a subpath of the currently considered path
extending from A to Z, and the segment Z ! ::: ! Y . This path has no
blocked colliders by construction, and thus must either have a non-collider
triple blocked by Pa+ (in which case so does ! and we are done with !), or it
is open conditional on Pa+, in which case we have a contradiction.
Our �nal claim is that any superset S of Pa+ in Nd(A)\ (An(A)[An(Y ))

is a valid adjustment set for (A; Y ). Assume this were not so and �x an open
back-door path � from A to Y given S. The �rst node on � after A must lie
either in Pa+ or in Pa(A) n Pa+. In the �rst case, the path is blocked. In
the second case, we have shown above that every path from Pa(A) n Pa+ to
Y in (GAn(A)[An(Y ))a is blocked by Pa+ and thus the path must be blocked
in the second case as well. There thus cannot be an an open back-door path
from A to Y given S and we have a contradiction. We have that Pa+ is a
su¢ cient adjustment set; any variable that is a confounder under De�nition
4 will be a member of Nd(A) \ (An(A) [ An(Y )) and thus we have that the
set of variables that are confounders under De�nition 4 will be a su¢ cient
adjustment set. De�nition 4 thus satis�es Property 1.
De�nition 4 satis�es Property 2A trivially.

Proof of Proposition 5. Suppose that Ya ?? AjC, that (C;A; Y ) are all
binary and that P (C = 1) = 1=2, P (A = 1jc) = 1=4 + c=2, P (Y = 1ja; c) =
4=10�4c=10�3a=10+8ac=10. One can then verify that E(Y1) =

P
cE(Y jA =
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1; c)pr(c) = 3=10, E(Y jA = 1) = 4=10, E(Y0) =
P

cE(Y jA = 0; c)pr(c) =
2=10, E(Y jA = 0) = 3=10. Thus j

P
cfE(Y jA = 1; c)�E(Y jA = 0; c)gpr(c)�

fE(Y1) � E(Y0)gj = 0 = jfE(Y jA = 1) � E(Y jA = 0) � fE(Y1) � E(Y0)gj
and so under De�nition 5, C would not be a confounder. The set of variables
de�ned as confounders under De�nition 5 would thus be empty. However,
it is not the case that adjustment for the empty set su¢ ces to control for
confounding since, for example, E(Y1) = 3=10 6= 4=10 = E(Y jA = 1). Thus
De�nition 5 does not satisfy Property 1. We now show that De�nition 5 does
not satisfy Property 2A. Consider the causal diagram in Figure 4. Although
control for C2 might reduce bias compared to an unadjusted estimate and thus
satisfy De�nition 5 with X = ?, there is no X such that the e¤ect of A on Y
is unconfounded conditional on (X;C2) but not on X alone. Thus De�nition
5 does not satisfy Property 2A. De�nition 5 satis�es Property 2B trivially.
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