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Abstract of the Dissertation

Complete Identification Methods for Causal

Inference

by

Ilya Shpitser

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2008

Professor Judea Pearl, Chair

Human beings organize their intuitive understanding of the world in terms of

causes and effects. Primitive humanity posited gods and spirits as invisible causes

of phenomena they did not comprehend. As our attempts to understand the world

began to be formalized and codified as empirical science, the emphasis on discern-

ing cause-effect relationships remained. Though we, the modern humanity, are

armed with powerful computers, sophisticated technology, and highly developed

mathematics and statistics, our fundamental questions remain the same as those

of our cave dwelling ancestors – we seek to understand the causes of windfalls

and misfortunes that befall us, what effects our actions have, and what would

happen if the past were different from what it is. This thesis will address these

ancient questions with the rigor and generality of modern mathematics.

Using the framework of graphical causal models which formalizes a variety

of causal queries, such as causal effects, counterfactuals and path-specific effects

as certain types of probability distributions, I will develop algorithms which will

evaluate these probability distributions from available information; prove that

whenever these algorithms fail to evaluate a query, no other method could suc-

xiv



ceed; provide characterizations based on directed graphs for cases where these

algorithms do succeed; and finally show how a class of constraints placed on

the causal model by its directed graph are due to conditional independence in

these probability distributions, and how these conditional independencies can be

exploited for testing causal theories.
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CHAPTER 1

Introduction

Causality is fundamental to our understanding of the natural world. Causal

questions and claims are a part of everyday speech, as well as legal, scientific and

philosophical vocabulary. In discussing causal questions, just as in discussing

questions of arithmetic or geometry, human beings seem to reach consensus on

meaning. That isn’t to say that all causal notions are unambiguous and crystal

clear, but there is broad agreement on what claims such as “smoking causes can-

cer,” or “carbon dioxide emissions contribute to global warming” mean. However,

unlike arithmetic or geometry, there isn’t a universally agreed upon formalization

of causality. Instead, the consensus on causal issues seems to be driven largely

by intuition. Even the most honed intuition can fail or lead astray, so formal,

mathematical approaches to causality are preferable. Fortunately, the existence

of consensus suggests that some formal structure for representing and reason-

ing about causality is present in the human brain. Though the exact way in

which we reason about causality is not known, there are a number of formaliza-

tion attempts which can claim to lead to reasonable conclusions which generally

agree with human intuition [Wri21], [Ney23], [Tin37], [Lew73], [Rub74], [Rob87],

[Pea00]. In this thesis, I will represent causality using graphical causal models,

a representation method based on directed graphs and probability theory which

was independently discovered multiple times during the 20th century, with vari-

ous degrees of rigor [Wri21], [Pea95].
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1.1 Causality and Graphs

People generally distinguish causes from effects because the former influence the

latter, but not vice versa. Certainly in some cases involving dynamic equilibrium,

like economic or physical systems, mutual causation is possible. 1 Yet even in

such cases human beings tend to untangle the influences involved in causal loops

by considering distinct causes and effects. Causality thus implies directionality

of influence. In addition to directionality, people assume that causal influence is

modular, which means that full knowledge of all direct causes of a given effect is

sufficient for concluding the effect regardless of the state of the rest of the world.

Of course, when considering causal questions, human beings don’t have access to

the world “as it is.” Instead, they typically have in mind some model of causal

interactions of some part of the world, at a particular level of granularity. In

reality, no model, with the possible exception of extremely detailed models of

quantum interactions, will truly contain all direct causes of a given observable

effect. Instead, whenever a given cause explicitly named in a model is fixed, an

untold number of intermediate causes and effects omitted from the model operate,

according to natural laws, to bring about the explicitly named effect. Neither the

notion of “direct cause,” nor the intuitive notion of modularity of causal influence,

is absolute but dependent on the model. Nevertheless, the notion of modularity

is meaningful when applied to a particular model, since it implies a much weaker

claim, namely that the knowledge of all causes considered direct for a particular

effect in the model implies no other variable in the model can influence that effect.

These properties of directionality and modularity can be naturally expressed

using directed graphs. Perhaps due to the intuitiveness of such a visual represen-

1For instance, it’s well known that supply affects demand and vice versa. Similarly, it’s
possible to contrive physical systems with mutual causation, like two boards forming a “tent”
propping each other up. I am grateful to Sheldon Smith for this example.
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tation, the use of directed graphs to represent causality is an idea that arose mul-

tiple times, in genetics [Wri21], econometrics [Haa43], and artificial intelligence

[Pea88], [SGS93], [Pea00]. In each case, variables of interest were represented

as nodes in the graph, while an arrow from parent to child node stood for a

direct cause-effect relationship between the corresponding variables. Associated

with each node is an autonomous causal mechanism, independent of other such

mechanisms, which determined the value of that node depending on the values

of its parents in the graph. Directed graphs with this kind of interpretation are

called causal diagrams, and the causal domains they represent are called graphical

causal models [Pea00].

1.2 The Causal Hierarchy

An example of a graphical causal model is an electronic circuit. In a circuit,

causal mechanisms correspond to logic gates, while variables are input and out-

put wires, along with intermediate values computed by logic gates. Circuits and

propositional logic in general have been applied to a wide variety of problems.

Nevertheless, our knowledge of many interesting domains such as medicine, law,

social interactions, economics, and so on is incomplete. Our ignorance manifests

in two ways. Firstly, we rarely understand specific causal mechanisms so well

that we can describe them in terms of a function. Secondly, we rarely observe

all causes which help determine observable effects in our models. In order to

construct causal models faithful to the realities of our ignorance, we need to

handle uncertainty; the mathematical framework used for this purpose is prob-

ability theory. Fortunately, the framework of graphical causal models can be

easily extended to handle uncertainty. We model unobserved causes with observ-

able effects by considering certain root nodes in the graph as unobservable, while

3



ignorance of functional mechanisms can be represented by only exposing coarser

features of the model than causal mechanisms themselves, for example, condi-

tional probabilities of observing particular values given some input values. To

handle our uncertainty in a principled way, we endow unobservable nodes with a

probability distribution. This unobservable distribution, together with unknown

causal mechanisms specified in the model induce a probability distribution over

observable variables. This distribution is generally accessible, since we are free

to collect statistics pertaining to the observable parts of our domains.

A wide variety of causal queries, such as those concerning effects of actions, or

counterfactual situations are represented as probability distributions ultimately

derived from unobserved variables and causal mechanisms. I will consider a

hierarchy consisting of three kinds of causal queries in graphical causal models.

The lowest level in the hierarchy consists of what I call associational questions. A

typical question of this sort is “I have taken an aspirin an hour ago. How likely am

I to get a headache?” Such questions are represented as marginal or conditional

distributions over observable quantities (e.g., P (headache|aspirin)), and can be

computed from the joint distribution over all variables in the domain. Much

research in statistics and artificial intelligence is devoted to finding answers to

these sorts of questions when the knowledge of the joint distribution is constrained

by missing or limited information. It is well-known that association does not

imply causation, and associational queries are therefore not strictly speaking

causal. Nevertheless, I place such queries at the base of the hierarchy because

techniques developed for answering them will be invaluable for computing answers

to more intricate questions, and because associational statements form an easily

available base from which such computations can begin.

Placed above associational questions in the hierarchy are questions about ef-
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fects of interventions imposed on the causal model from the outside. Interventions

disrupt the normal flow of influence from causes to effects by setting some set

of variables to specific values, regardless of what the normal causes of that set

dictate. An example of a question that involves effects of interventions is “I am

about to take an aspirin. Will it help my headache?” Here I model a decision to

take medicine as disrupting the normal schedule of daily food intake. I denote

interventions using the do(.) notation used by [Pea00], where do(x) means that

a set of variables X is set to values x. The effects of interventions will be repre-

sented using interventional distributions denoted with either the do(.) operator

past the conditioning bar or a subscript denoting a set of intervened values (e.g.,

P (y|do(x)), or Px(y)). The effect of intervention do(x) on a variable set Y is

often called the causal effect of do(x) on Y.

The final set of questions, placed above both interventional and associational

queries in the hierarchy, involves hypothetical, “what-if” situations. An example

of such a counterfactual question would be “I took an aspirin and my headache

is gone; would I have a headache had I not taken an aspirin?” As their name

implies, counterfactuals often involve conflicts between the true state of affairs

and the hypothetical situation involved in the question. Despite these conflicts,

human beings frequently invoke and evaluate counterfactuals both in everyday

situations, and in technical domains. Nevertheless, it is not obvious how to an-

swer counterfactual questions correctly without complete knowledge of all aspects

of a causal model. Since some aspects of a causal model may not be experimen-

tally testable, the use of counterfactuals has been the subject of some criticism

[Daw00]. I will represent counterfactuals as joint or conditional distributions over

sets of events resulting from multiple, possibly conflicting interventions.

I also consider a special class of effect queries known as path-specific effects.

5



Such queries arise in situations where we want to know the effect of a given

intervention do(x) on the outcome Y , but only along certain causal paths. These

sorts of effects come up often in policy analysis [Pea01], and in legal cases. For

instance, gender discrimination occurs if a person’s gender has a direct effect

on the hiring decision. However, it is permissible that gender influence certain

factors which themselves have a strong influence on a person’s suitability for the

job. For example, women may, on average, be more affable than men in customer-

facing situations. In evaluating claims of discrimination, we are interested in

determining whether gender had no direct effect hiring, while possibly having

an indirect effect. Despite calling these kinds of queries path-specific effects, I

will show later that they can be computed from counterfactuals, and so properly

belong in the third level of the causal hierarchy.

1.3 Identification

This thesis is concerned with answering questions in the causal hierarchy. The

answering strategies available to us naturally depend on the complexity of the

question. Associational questions involving certain observable variables, such as

headache, and aspirin, can be computed from the joint probability distribution

over all observables in the domain, using basic probability theory. In practice

the joint probability distribution is generally not available, and must instead

be estimated, using techniques developed in statistics and artificial intelligence.

However, for the purposes of this thesis, I simplify the task by assuming that we

are given the true probability distribution representing the domain, rather than

an approximation obtained from some estimation procedure using a finite set of

samples. Given this assumption, it is a simple matter to compute an arbitrary

associational question from the corresponding joint distribution.

6



Computing causal effects is a more difficult task because interventions change

probability distributions. The stochastic behavior of the original domain, sum-

marized by the joint distribution over the observable variables, cannot be trans-

lated in a straightforward way to the stochastic behavior of the post-intervention

domain, represented by the interventional distribution.

There are two main approaches to computing causal effects. The first is the

direct approach: implement the intervention do(x) directly in an individual, cir-

cuit, living cell, etc. and observe the consequences. More generally, if we want

to compute the effect of an intervention in a population, we can perform a ran-

domized experiment [Fis26] where every member of the population in question

is randomly assigned either to the group subjected to the manipulation, or the

control group where no manipulation is performed. Needless to say, in most situ-

ations of interest, direct manipulation is not possible (e.g., no way to manipulate

gender), too expensive (e.g., public policy changes), or unethical (e.g., manipu-

lation of human bodies in medicine). It is desirable, then, to use a less direct

approach to inferring causal effects.

The second approach involves finding a way to link the effect of an interven-

tion with the probability distribution associated with the original, unmanipulated

model. If such a link can be found, it becomes possible to compute causal effects

from observational studies alone, without performing randomized experiments or

manipulations of any kind. This approach to causal inference bears a striking

resemblance to logical inference: we have some premises, in this case an obser-

vational distribution, and we are interested in computing conclusions of interest,

or more generally as many conclusions as possible. However, unlike conventional

logical inference, we are not operating over sentences in a particular logic, but

instead over probability distributions, using axioms of probability and perhaps

7



additional rules specific to graphical causal models. Causal inference of this sort

is called identification [Pea95], [Pea00].

Though identification was the framework used in the literature to compute

causal effects from observations, it is a more general notion which can be applied

any time we wish to deduce conclusions from premises in some set of models.

I will use this generality to answer not only questions involving causal effects,

but also counterfactuals. In this thesis, I view counterfactuals as distributions

which span multiple hypothetical worlds, often with contradictory features (e.g.,

in one world aspirin was taken, in another it was not). We could consider the

version of the identification problem analogous with causal effects, where we try

to determine which counterfactuals can be computed from observational distri-

butions. However, even if we permit ourselves to perform arbitrary experiments,

it’s unclear how we could evaluate counterfactual questions with such conflicts,

since, for example, no experimental setup exists which both gives and doesn’t give

someone aspirin. To simplify, I will consider the following identification problem:

assuming we allow ourselves any experiment in a given causal model, represented

by the set of all possible interventional distributions in this model, can we infer a

given counterfactual? Of course, if I can express a counterfactual in terms of some

set of interventional distributions, those distributions may, in turn, be expressible

in terms of observational distributions. In this case I will be able to identify a

counterfactual from observations. I will consider a similar identification problem

for path-specific effects, which are a particular kind of counterfactual.

1.4 Dormant Independence

Answering causal questions from observational studies using graphical causal as-

sumptions is an important problem in itself, however advances in this area also
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have useful applications for inducing and testing causal theories expressed as

causal graphs. A given causal graph constrains probability distributions in any

model consistent with this graph in two ways. Firstly, such distributions all con-

tain certain conditional independencies which can be read off from the graph

using the notion of d-separation [Pea86], [Ver86], [Pea88], which I will discuss in

Chapter 3. Secondly, such distributions also obey certain algebraic constraints,

noted by Verma [VP90].

Conditional independence constraints are relatively well-understood and fre-

quently used by causal induction algorithms, such as IC [VP90], [Pea00], and FCI

[SGS93]. For instance, such algorithms are able to conclude in certain classes of

models that two nodes X and Y are not connected by an edge in a causal dia-

gram if the corresponding random variables are conditionally independent in the

observed distribution. On the other hand, algebraic constraints are still relatively

poorly understood and seldom used for induction and testing.

I will consider a special subset of algebraic constraints which is easy to un-

derstand and apply, and which arises from “dormant independencies,” in other

words independencies that prevail in post-intervention distributions. I will de-

velop a complete algorithm for determining if a conditional independence exists

between two sets of variables in an interventional distribution which is also identi-

fiable, and show how this algorithm can be used to test certain features of causal

diagrams which ordinary conditional independence cannot test.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 discusses related work in graphical

models and causal inference which lead to the questions considered in this the-
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sis. Chapter 3 precisely defines graphical causal models, the hierarchy of causal

queries I consider, the notion of identification which I will use to answer these

queries, and other mathematical machinery needed to obtain my results. Chapter

4 considers the problem of identifying causal effects from observational studies.

Chapter 5 considers the problem of identifying counterfactuals from experimental

studies. Chapter 6 generalizes the notion of causal effect to the situation where

we are interested only in certain paths, and considers the problem of identifying

such path-specific effects. Chapter 7 considers the problem of determining if an

identifiable dormant independence exists between two sets of variables, and how

to use dormant independencies to test features of the causal graph. Chapter 8 is

the conclusion.
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CHAPTER 2

Related Work

In this chapter, I overview the conceptual developments over the last century

that culminated in the modern understanding of causal inference.

2.1 Graphical Models

Causal modeling using directed graphs started with the seminal work of Sewall

Wright on path analysis [Wri21]. Linear models considered by Wright became

the subject of study in the statistics community under the name of Structural

Equation Models [Wri21], [Haa43], [Kli05]. More recently, the use of graphs to

represent uncertainty became popular in the fields of artificial intelligence and

statistics with the introduction of Bayesian Networks [Pea85], [Pea88], [LS88],

[Lau96].

It soon became apparent that the use of graphs to represent uncertainty is a

powerful idea which arose multiple times and the emerging formalism of Graphical

Models [JW02] subsumed many special cases developed in separate disciplines,

such as Kalman filters in engineering [Kal60], Markov random fields in physics

[Bes74], and statistical mechanics [Bax92], hidden Markov models in signal pro-

cessing [Rab89], and many others [RG99]. Common to these approaches is the

decomposition of the joint probability distribution representing the domain of

interest into tractable pieces, and the use of graphs to mirror this decomposition
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via various Markov properties. Most graphical models serve as a compact rep-

resentation of the underlying distribution, and do not make any causal claims,

though causal knowledge is often used in their construction.

2.2 Causal Inference

More recent work [VP90], [Pea93a], [SGS93], [Pea95], [Pea00] has added a causal

interpretation to graphical models, with directed arrows in the graph being in-

terpreted as causal influence between variables. This interpretation allowed for-

malization of causal inference, posing and answering an additional class of causal

questions, such as interventional and counterfactual queries I discussed in the

introduction. Interventional queries P (y|do(x)) represent the notion of causal ef-

fects, which is ubiquitous in both informal and professional discourse, and forms

an important building block from which our understanding of the world is built.

While randomized experiments can often be used to estimate causal effects, in

practice such experiments can be expensive to conduct. Furthermore, certain

forms of experimentation (e.g., drug testing, surgical alteration, etc.) may be

illegal or unethical to conduct on human subjects. It is desirable, therefore, to

determine conditions under which a given causal effect can be computed from

observational studies, which are generally less expensive to conduct, less objec-

tionable on human subjects, and therefore more common. The formal problem

of characterizing models where queries of interest may be computable from lim-

ited information is known as the identification problem [Pea95], [Pea00]. Iden-

tification of causal effects has received considerable attention in the literature,

with two approaches being dominant. The first approach deals not with causal

models themselves, but with causal diagrams, and attempts to derive graphical

conditions a model must satisfy before a given causal effect can be computed.
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A number of such graphical conditions are known, for example the Back-Door

Criterion [Pea93b], and the Front-Door Criterion [Pea95]. While these two con-

ditions are intuitive and easy to state, their suffer from the problem of limited

applicability. The second approach views causal inference as a special case of

logical inference, and attempts to derive axioms to codify behavior of quantities

derived from causal models, and rules of inference to reason about such quanti-

ties appropriately. [GP98], [Hal00] proposed a complete set of axioms for causal

inference, while [Pea93c] proposed a set of three rules of do-calculus for reason-

ing about interventional distributions. While the resulting reasoning systems are

more general, the constructed proofs can be difficult for the unaided mind to

follow. Moreover such systems suffer from standard difficulties of theorem prov-

ing: large search spaces of possible proofs, and lack of termination guarantees.

The algorithms in this thesis, which can be viewed as simplifications and elab-

orations of Jin Tian’s original algorithms for causal effect identification [TP02],

[Tia04], [Tia02], combine the strengths of both approaches – we can derive intu-

itive graphical conditions while at the same time retaining the generality, in fact

completeness, of the logical methods. A number of interesting corollaries follow

from the completeness of these algorithms. For instance, my results imply that

do-calculus is complete for identifying all causal effect queries. Some of these

results and corollaries were derived independently elsewhere [HV06b], [HV06a].

2.3 Potential Outcomes and Counterfactuals

Another strand of work on causal modeling did not employ graphs and dealt

with the so called potential response variables [Ney23], [Rub74], written as Yx(u)

or Y (x, u). This notation is taken to mean “the value attained by Y in unit

u under intervention do(x).” If the domain is not observable at the unit level,
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we can average over possible units to attain random variables Yx which I will

call counterfactual variables, since they can be viewed as responses to hypothet-

ical interventions. Research in the potential response framework has sought to

establish rules governing such variables, and the way these variables relate to

those actually observed. Important causal assumptions such as exogeneity can

be expressed in terms of probabilistic independence among certain counterfac-

tual variables [Pea00], while evaluation of causal effects based on g-estimation

[Rob87] assumes that such counterfactual independencies hold. Recent work

on axiomatizing causal reasoning [GP98], [Pea00], [Hal00] has shown that the

framework of potential outcomes and the framework of graphical causal mod-

els both describe the same mathematical objects, probability distributions over

counterfactual variables. This unification allowed the expression of counterfac-

tual independence in terms of graphs, and evaluation of counterfactual queries

themselves if all parameters in a causal model are known [BP94a], [BP94b]. I

provide a generalization of this approach by providing a graphical representation

of independence among counterfactual variables in an arbitrary number of hypo-

thetical worlds, and provide complete algorithms for evaluating counterfactuals

from experimental studies. The results of such studies are more likely to be avail-

able than complete knowledge of all model parameters as required by previous

work [BP94b].

2.4 Natural and Path-specific Effects

[RG92] and [Pea01] introduced the notion of direct and indirect effects, meant

to represent cases where we are interested in the effect of an intervention do(x)

on an outcome variable Y , but only along certain causal paths. Such cases arise,

for instance, when discussing discrimination, where the question is whether a
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given characteristic, say gender, has a direct effect on the decision (e.g., hiring,

admission, lease, etc.) I say direct effect because indirect effect of gender on hiring

does not constitute discrimination. For instance, an employer may hire a greater

percentage of women, if women are more qualified on average than men, and this

would not necessarily be considered discriminatory. Formalizing the notion of

direct effect, where indirect effects are “forbidden,” or an indirect effect where

direct effects are “forbidden,” requires probabilities over nested counterfactual

variables [Pea01]. [Pea01] further provides some conditions where such effects

can be identified from the causal graph and observational studies. Subsequently,

[Pea01] and [ASP05] consider a generalization of natural effects to cases where

arbitrary sets of edges are “forbidden.” These generalized natural effects are

termed path-specific effects. In this thesis, I will provide a complete method for

identifying such effects in causal diagrams without latent variables, along with

a simple graphical characterization of such identifiable path-specific effects. 1

Furthermore, I will use the results on identifying counterfactual distributions to

provide identification criteria for path-specific effects in semi-Markovian causal

diagrams.

2.5 Algebraic Constraints and Causal Induction

One of the most important problems in causal inference is the problem of causal

induction, namely inferring aspects of the causal model, such as the graph, from

observations. Inferring the structure of graphical models has a long history in

Artificial Intelligence, with two approaches being dominant. The score-based

approach [Suz93], [LB94] assigns a score to each possible causal structure, where

“small” structures, and structures likely given the observed data are given high

1Some of these results were derived as a joint work with Chen Avin
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scores. Score-based algorithms perform a search for high scoring structures. The

constraint-based approach rules out causal structures which are inconsistent with

various constraints imposed by the observed data. Well-known constraint-based

algorithms are the IC algorithm [VP90], [Pea00] and the FCI algorithm [SGS93].

These algorithms return a set of all causal graphs which have the same set of d-

separation statements (and the corresponding independencies) as the graph of

the model which generated the observed distribution.

Constraint-based induction algorithms generally only make use of constraints

implied by conditional independencies, although causal graphs entail a wider class

of algebraic constraints, first noted in [VP90]. I extend the identification results

in this thesis to show that a special subset of such algebraic constraints is ob-

tained from conditional independence in interventional distributions, which I call

“dormant independence.” Although full use of dormant independence for causal

induction remains an open problem, I show how this kind of independence can be

used for model testing by giving an algorithm which uses dormant independence

to rule out extraneous edges from causal graphs.
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CHAPTER 3

Notation and Definitions

In this chapter I go over the definitions and mathematical machinery used in

causal inference.

3.1 Causal Models and Causal Diagrams

The primary object of causal inquiry is a probabilistic causal model. I will denote

variables by uppercase letters, and their values by lowercase letters. Similarly,

sets of variables will be denoted by bold uppercase, and sets of values by bold

lowercase.

Definition 1 A probabilistic causal model (PCM) is a tuple M = 〈U,V,F, P (u)〉,

where

• U is a set of background or exogenous variables, which cannot be observed

or experimented on, but which affect the rest of the model.

• V is a set {V1, ..., Vn} of observable or endogenous variables. These vari-

ables are functionally dependent on some subset of U ∪V.

• F is a set of functions {f1, ..., fn} such that each fi is a mapping from a

subset of U∪V \ {Vi} to Vi, and such that
⋃

F is a function from U to V.

• P (u) is a joint probability distribution over U.
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The set of variables V in this definition represents the part of the causal do-

main we can see and experiment on, the set of functions F corresponds to the

causal mechanisms which determine the values of V, while U represents the back-

ground context that influences V, yet remains outside it. Our ignorance of the

background context is represented by a distribution P (u). This distribution, to-

gether with the mechanisms in F, induces a distribution P (v) over the observable

domain.

The causal diagram, our vehicle for expressing causal assumptions, contains

two kinds of edges: directed edges which represent direct causal relationships, and

bidirected edges which represent “non-causal dependence,” or confounding. A

causal diagram is defined by the causal model as follows. Each observable variable

Vi ∈ V corresponds to a vertex in the graph. Any two variables X ∈ U ∪ V,

Vj ∈ V such that X appears in the description of fj are connected by a directed

arrow from X to Vj. In this thesis, we assume that all U variables are mutually

independent, in other words P (u) =
∏

i P (ui), and that each Ui ∈ U appears

in at most two functions in F. 1 If there is some Uk ∈ U which appears in the

functions fi and fj of two observable nodes Vi, Vj, instead of drawing two directed

arcs from Uk to Vi and Vj, we can draw a bidirected arc between Vi and Vj and

omit Uk from the graph entirely. Similarly, U variables with a single child can

be omitted from the graph. The graph defined in this way from a causal model

M is said to be induced by M . Fig. 3.1 and Fig. 3.2 show some examples of

causal diagrams. I will only consider recursive causal models, those models which

induce acyclic directed graphs.

1Most of the results in this thesis do not depend on this, and can easily be extended to
the general case of the same U variable influencing multiple functions. Similarly, if some U

variables are dependent, this dependence can be represented by bidirected arcs
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Figure 3.1: Causal graphs where P (y|do(x)) is not identifiable

In the remainder of this thesis, I will make heavy use of standard graph-

theoretic “family relations.” Specifically, Pa(X)G, Ch(X)G, De(X)G, An(X)G

stands for the set of parents, children, descendants and ancestors (respectively)

of the node set X in the graph G. We view De(.) and An(.) as inclusive relations,

in other words, X ∈ De(X) and X ∈ An(X), for any X ∈ X.

3.2 Interventions and Intervention-based Queries

The functions in F are assumed to be modular in a sense that changes to one

function do not affect any other. 2 This assumption allows us to model effectively

how a PCM would react to changes imposed from the outside. The simplest

change that is possible for causal mechanisms of a variable set X would be one

2This does not preclude functions from sharing parameters. The only requirement is that
external manipulation of arguments of one function does not affect other functions, except
through the output of the function being manipulated.
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Figure 3.2: Causal graphs where P (y|do(x)) is identifiable

that removes the mechanisms entirely and sets X to specific values x. This

change, denoted by do(x) [Pea00], is called an intervention. 3 An intervention

do(x) applied to a model M results in a submodel Mx. The effects of interventions

will be formulated in several ways. For any given u, the effect of do(x) on a set of

variables Y will be represented by counterfactual variables Yx(u), where Y ∈ Y.

Sometimes we will write a set of counterfactual variables Y 1
x , ...Y k

x with the same

subscript as Yx, where Y = {Y 1, ..., Y k}. As U varies, the counterfactuals Yx(u)

will vary as well, and their interventional distribution, denoted by P (y|do(x)) or

Px(y) will be used to specify the effect of x on Y. I will denote the proposition

“variable Y attains value y in Mx” by the shorthand yx.

Interventional distributions are a mathematical formalization of an intuitive

notion of “effect of action.” I now define joint probabilities on counterfactuals, in

3The simplicity and determinism of the do(.) operator sometimes draw criticism. In reality,
it is no simpler to develop complex accounts of change and causation without dealing with
something like the do(.) operator, than it is to understand the richness of chemistry without
understanding the “simple” elements of the periodic table
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multiple worlds, which will serve as the formalization of counterfactual queries.

Consider a conjunction of events γ = y1
x1 ∧ ... ∧ yk

xk . If all the subscripts xi are

the same and equal to x, γ is simply the set of values that variables take on

in Mx, and P (γ) = Px(y
1, ..., yk). However, if the actions do(xi) are not the

same, and potentially contradictory, a single submodel is no longer sufficient.

Instead, γ is invoking multiple causal worlds, each represented by a submodel

Mxi . I assume each submodel shares the same set of exogenous variables U,

corresponding to the shared “causal context” or background history of the hy-

pothetical worlds. Because the submodels are linked by common context, they

can really be considered as one large causal model, with its own induced graph,

and joint distribution over observable variables. P (γ) can then be defined as

a marginal distribution in this causal model. Formally, P (γ) =
∑

{u|u|=γ} P (u),

where u |= γ is taken to mean that each variable assignment in γ holds true in the

corresponding submodel of M when the exogenous variables U assume values u.

In this way, P (u) induces a distribution on all possible counterfactual variables

in M . I will represent counterfactual utterances by joint distributions such as

P (γ) or conditional distributions such as P (γ|δ), where γ and δ are conjunctions

of counterfactual events. [Pea00] (chapter 7) discusses counterfactuals, and their

probabilistic representation in greater depth.

Finally, I define path-specific effects, which represent situations where we are

interested in the effect of do(x) on Y along only certain causal paths. Graphically,

we can represent path-specific effects in some causal model M by considering the

causal diagram G of M , where certain edges are marked as forbidden. Intuitively,

we would like the “flow of influence” to proceed “downward” along causal paths

from do(x) to Y, just as in regular causal effects, but not along forbidden edges.

How can we prevent flow along a particular edge? We can remove forbidden

edges from the graph, but causal diagrams aren’t just arbitrary graphs, the edges
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represent the participation of the parent in the causal mechanism of the child.

The removal of the edge must correspond to a well-defined of change of the

corresponding function.

Following [Pea01], I define this change as follows. For each variable W , let

Pa(W ) be divided into two sets, Pa+(W ) is the set of parents connected to W by

“allowed” edges, and Pa−(W ) is the set of parents connected to W by “forbidden”

edges. Let x∗ be the reference values of X. For the purposes of determining the

value of W , we want Pa−(W ) to behave as if X was set to x∗. The follow formal

definition is a generalization of the one found in [Pea01], which was applicable to

a single effect variable X and single outcome variable Y .

Definition 2 (path-specific effect) Let G be a causal diagram induced from a

model M , Y,X sets of variables, x, x∗ values of X. Let g be the subset “allowed”

edges for the flow of effect from do(x) to Y. Let Mg be defined as follows. For

each observable W , if W ∈ X, replaced fW by a constant function which returns

the corresponding value of W in x. Otherwise, replace fW by another function f g
W

which maps Pa+(W ) to W as follows: f g
W (pa+(w),u) = fW (pa+(w), pa−(w)∗,u),

where pa−(w)∗ are the values obtained by Pa−(W ) under intervention do(x∗).

The path-specific effect PSEg(x, x∗;Y,u) is defined to equal Yx(u) − Yx∗(u),

where both counterfactual value sets are from Mg.

If we wish to summarize the path-specific effect over all settings of u, we

should resort to the expectation of the above difference, or the expected path-

specific effect. To identify this effect, we need to identify P (yx) and P (yx∗) in

Mg. For our purposes we can restrict our attention to P (yx), as the second term

corresponds to the quantity P (yx∗) in the original model M , which corresponds

to an ordinary causal effect expression P (y|do(x∗)).
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Path-specific effects, despite their name, are more akin to counterfactuals than

causal effects. This is because the same variable can behave as if the intervention

do(x) was performed with respect to some edges, and at the same time behave

as if the intervention do(x∗) was performed with respect to other edges. For

instance the variable A in Fig. 6.3 behaves like this. In this way a single path-

specific effect involves random variables from different submodels which disagree

on variable settings; the same is true of counterfactual distributions.

3.3 Identification

A fundamental question in causal inference is whether a given causal query, ei-

ther interventional or counterfactual in nature, can be uniquely specified by the

assumptions embodied in the causal diagram, and easily available information,

usually observational, associated with the causal model. To get a handle on this

question, I introduce the important notion of identifiability [Pea95], [Pea00].

Definition 3 (identifiability) Consider a class of models M with a description

T , and two objects φ and θ computable from each model. I say that φ is θ-identified

in T if φ is uniquely computable from θ in any M ∈M. In other words all models
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in M which agree on θ will also agree on φ.

If φ is θ-identifiable in T , I write T, θ ⊢id φ. Otherwise, I write T, θ 6⊢id φ.

The above definition leads immediately to the following corollary which we will

use to prove non-identifiability results.

Corollary 1 Let T be a description of a class of models M. Assume there exist

M1, M2 ∈M that share objects θ, while φ in M1 is different from φ in M2. Then

T, θ 6⊢id φ.

In our context, the objects φ, θ are probability distributions derived from the

PCM, where θ represents available information, while φ represents the quantity

of interest. The description T is a specification of the properties shared by all

causal models under consideration, in other words, the set of assumptions we

wish to impose on those models. Since I chose causal graphs as a language for

specifying assumptions, T would correspond to a given graph.

3.4 D-separation

Next, I briefly review the standard results which link directed graphs with in-

dependencies in probability distributions. Graphs earn their ubiquity as a spec-

ification language because they reflect in many ways the way people store ex-

periential knowledge, especially cause-effect relationships. The ease with which

people embrace graphical metaphors for causal and probabilistic notions – ances-

try, neighborhood, flow, and so on – are proof of this affinity, and help ensure

that the assumptions specified are meaningful and reliable. A consequence of this

is that probabilistic dependencies among variables can be verified by checking if

the “flow of influence” is blocked along paths linking the variables. By a path I
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mean a sequence of distinct nodes where each node is connected to the next in

the sequence by an edge. The precise way in which the flow of dependence can

be blocked is defined by the notion of d-separation [Pea86], [Pea88].

Definition 4 (d-separation) A path p in G is said to be d-separated by a set

Z if and only if either

1 p contains one of the following three patterns of edges: I → M → J ,

I ↔ M → J , or I ←M → J , such that M ∈ Z, or

2 p contains one of the following three patterns of edges (called colliders):

I → M ← J , I ↔M ← J , I ↔ M ↔ J , such that De(M)G ∩ Z = ∅.

Two sets X,Y are said to be d-separated given Z in G if all paths from X

to Y in G are d-separated by Z. Paths or sets which are not d-separated are

said to be d-connected. What allows us to connect this notion of blocking of

paths in a causal diagram to the notion of probabilistic independence among

variables is that the probability distribution over V and U in a causal model can

be represented as a product of factors each of which is a conditional distribution

of a given node given the values of its parents in the graph. In other words,

P (v,u) =
∏

i P (xi|pa(Xi)G), where pa(Xi)G is the values of the set of parents of

Xi in G. Whenever this property holds, it is said that G is an I-map [Pea88] of

P . The following well known theorem [VP88] links d-separation of vertex sets in

an I-map G with the independence of corresponding variable sets in P .

Theorem 1 If sets X and Y are d-separated by Z in G, then X is independent of

Y given Z in every P for which G is an I-map. Furthermore, the causal diagram

induced by any PCM M is an I-map of the distribution P (v,u) induced by M .
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Proof: It is not difficult to see that if I restrict d-separation queries to a subset

of variables W in some graph G, the corresponding independencies in P (w) will

only hold whenever the d-separation statements hold. Furthermore, if I replace G

by a latent projection L [PV91], [Pea00], where I view variables V\W as hidden,

independencies in P (w) will only hold whenever the corresponding d-separation

statement (extended to include bidirected arcs) holds in L. �

I will abbreviate the statement of d-separation as (X ⊥ Y|Z)G, and corre-

sponding independence as (X ⊥⊥ Y|Z)P , following the notation of [Daw79].

3.5 Axioms of Causal Inference

Finally I consider the axioms and inference rules that will be needed. Since PCMs

contain probability distributions, the inference rules I would use to compute

queries in PCMs would certainly include the standard axioms of probability.

They also include a set of axioms which govern the behavior of counterfactuals,

such as Effectiveness, Composition, etc. [GP98], [Hal00], [Pea00]. However, I will

concentrate on a set of three identities applicable to interventional distributions

known as do-calculus [Pea93c], [Pea00]:

• Rule 1: Px(y|z,w) = Px(y|w) if (Y ⊥ Z|X,W)Gx

• Rule 2: Px,z(y|w) = Px(y|z,w) if (Y ⊥ Z|X,W)Gx,z

• Rule 3: Px,z(y|w) = Px(y|w) if (Y ⊥ Z|X,W)G
x,z(w)

where Z(W) = Z \ An(W)G
X
. An(W)G is the set of ancestors of the set W in

G, Gx,y stands for a directed graph obtained from G by removing all incoming

arrows to X and all outgoing arrows from Y. The rules of do-calculus provide a
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way of linking ordinary statistical distributions with distributions resulting from

various manipulations.
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CHAPTER 4

Causal Effects

In this chapter, I consider the problem of identifying causal effects from statistical

knowledge, represented by the observational distribution, and causal assumptions

encoded in a causal diagram. Starting with simplest graphs, I develop an inter-

pretation of causal effect as resulting from a specific kind of flow of probabilistic

influence along edges in the graph. I introduce successively more complicated

techniques which recover causal effects from observational distributions in suc-

cessively more complicated graphs. At the same time, I show that in various

classes of graphs certain causal effects cannot be identified by any means. These

developments culminate in an algorithm which either identifies a given causal ef-

fect, or this causal effect cannot be identified by any means in the causal diagram

given. Finally, I provide a simple extension to handle conditional interventional

distributions, and provide some important corollaries of my results.

4.1 Identifying Simple Effects in Simple Graphs

Like probabilistic dependence, the notion of causal effect of X on Y has an

interpretation in terms of flow. Intuitively, X has an effect on Y if changing X

causes Y to change. Since intervening on X cuts off X from the normal causal

influences of its parents in the graph, we can interpret the causal effect of X on

Y as the flow of dependence which leaves X via outgoing arrows only.
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Recall that the ultimate goal is to express distributions of the form P (y|do(x))

in terms of the joint distribution P (v). The interpretation of effect as downward

dependence immediately suggests a set of graphs where this is possible. Specif-

ically, whenever all d-connected paths from X to Y are start with an outgoing

arrow from X (following [Pea00], I call such paths front-door), the causal effect

P (y|do(x)) is equal to P (y|x). In graphs shown in Fig. 3.2 (a) and (b) causal

effect P (y|do(x)) has this property.

In general, we don’t expect acting on X to produce the same effect as observing

X due to the presence of paths which do not start with an outgoing arrow (I

will call such paths back-door as in [Pea00]) between X and Y. However, d-

separation gives us a way to block undesirable paths by conditioning. If we can

find a set Z that blocks all back-door paths from X to Y, we obtain the following:

P (y|do(x)) =
∑

z P (y|z, do(x))P (z|do(x)). The term P (y|z, do(x)) is reduced to

P (y|z,x) since the influence flow from X to Y is blocked by Z. However, the act

of adjusting for Z introduced a new effect we must compute, corresponding to the

term P (z|do(x)). If it so happens that no variable in Z is a descendant of X, we

can reduce this term to P (z) using the intuitive argument that acting on effects

should not influence causes, or a more formal appeal to rule 3 of do-calculus.

Computing effects in this way is always possible if we can find a set Z blocking

all back-door paths which contains no descendants of X. This is known as the

back-door criterion [Pea93b], [Pea00]. Fig. 3.2 (c) and (d) shows some graphs

where the node z satisfies the back-door criterion with respect to P (y|do(x)),

which means P (y|do(x)) is identifiable.

The back-door criterion can fail – a common way involves a confounder that is

unobserved, which prevents adjusting for it. Surprisingly, it is sometimes possible

to identify the effect of X on Y even in the presence of such a confounder. To do
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so, we want to find a set Z located downstream of X but upstream of Y, such that

the downward flow of the effect of X on Y can be decomposed into the flow from

X to Z, and the flow from Z to Y. Clearly, in order for this to happen Z must

d-separate all front-door paths from X to Y. However, in order to make sure that

the component effects P (z|do(x)) and P (y|do(z)) are themselves identifiable, and

combine appropriately to form P (y|do(x)), we need two additional assumptions:

there are no back-door paths from X to Z, and all back-door paths from Z

to Y are blocked by X. It turns out that these three conditions imply that

P (y|do(x)) =
∑

z P (y|do(z))P (z|do(x)), and the latter two conditions further

imply that the first term is identifiable by the back-door criterion and equal to
∑

z P (y|z,x)P (x), while the second term is equal to P (z|x). Whenever these

three conditions hold, the effect of X on Y is identifiable. This is known as the

front-door criterion [Pea95], [Pea00]. The front-door criterion holds in the graph

shown in Fig. 3.2 (e).

4.2 C-components and General Identification

Unfortunately, in some graphs neither the front-door, nor the back-door criterion

hold for an outcome of interest. Yet even in such graphs we can sometimes

conclude that the effect is identifiable. Two examples of such graphs are shown

in Fig. 3.2 (f) and (g). A general method for identifying effects in such graphs

was developed in [TP02], [Tia02]. This method relies on a key graphical structure

known as a C-component.

Definition 5 (C-component) A set of nodes S is a C-component in a graph

G if any two nodes in S are connected by a path consisting entirely of bidirected

arrows in G.
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Tian showed that if a given graph G is not a C-component, it can be uniquely

partitioned into a set of maximal C-components. Moreover, the observable dis-

tribution P (v) of any causal model inducing G can be expressed as a product of

interventional distribution terms, where each term corresponds to a C-component,

and all such terms are identifiable. This property is known as C-component fac-

torization of causal models.

As an example, the graph in Fig. 3.2 (f) is partitioned into two C-components,

the first is the set {X, Z2}, and the second is the set {Z1, Y }. Moreover, P (v) =

Pz1,y(x, z2)Px,z2(z1, y), and both Pz1,y(x, z2) and Px,z2(z1, y) are identifiable. As

we can see from this example, each term in the C-component factorization cor-

responds to the effect of fixing all variables outside some C-component, on all

variables inside this C-component.

C-component factorization is a powerful idea, since it allows us to decompose

a complicated identification problem into a set of simpler ones. [TP02] used

C-components to give a general algorithm for identifying causal effects which

generalizes both the back-door and the front-door criterion, and handles some

graphs which fail both of these criteria. In the subsequent sections, I give a

somewhat simplified version of Tian’s algorithm, and prove it complete. In other

words, I show that whenever the algorithm fails to identify an effect in some

graph, that effect is not identifiable in every model inducing this graph.

4.3 Simple Non-identifiable Effects

In order to show completeness of causal effect identification, it is necessary to

catalogue non-identifiable graphs. The simplest such graph, known as the bow

arc graph due to its shape, is shown in Fig. 3.1 (a). The back-door criterion
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fails for this graph since the confounder node is unobservable, while the front-

door criterion fails since no intermediate variables between X and Y exist in the

graph. While the failure of these two criteria does not imply non-identification,

a simple argument shows that P (y|do(x)) is not identifiable in the bow arc graph

(see Appendix).

Theorem 2 P (v), G 6⊢id P (y|do(x)) in G shown in Fig. 3.1 (a).

Since we are interested in completely characterizing graphs where a given

causal effect P (y|do(x)) is identifiable, it would be desirable to list difficult graphs

like the bow arc graph which prevent identification of causal effects, in the hope

of eventually making such a list complete and finding a way to identify effects

in all graphs not on the list. I start constructing this list by considering graphs

which generalize the bow arc graph since they can contain more than two nodes,

but which also inherit its difficult structure. I call such graphs C-trees.

Definition 6 (C-tree) A graph G where the set of all its nodes is a C-component,

where each node has at most one child, and all nodes are ancestors of a single

(root) node is called a C-tree.

I call a C-tree with a root node Y Y -rooted. The graphs in Fig. 3.1 (a), (d),

(e), (f), and (h) are Y -rooted C-trees. It turns out that in any Y -rooted C-tree,

the effect of any subset of nodes, other than Y , on the root Y is not identifiable.

Theorem 3 Let G be a Y -rooted C-tree. Let X be any subset of observable nodes

in G which does not contain Y . Then P (v), G 6⊢id P (y|do(x)).

C-trees play a prominent role in the identification of direct effects. Intuitively, the

direct effect of X on Y exists if there is an arrow from X to Y in the graph, and
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corresponds to the flow of influence along this arrow. However, simply considering

changes in Y after fixing X is insufficient for isolating direct effect, since X can

influence Y along other, longer front-door paths than the direct arrow. In order to

disregard such influences, I also fix all other parents of Y (which as noted earlier

removes all arrows incoming to these parents and thus to Y ). The expression

corresponding to the direct effect of X on Y is then P (y|do(pa(y))). The following

theorem links C-trees and direct effects.

Theorem 4 P (v), G 6⊢id P (y|do(pa(y))) if and only if there exists a subgraph of

G which is a Y -rooted C-tree.

This theorem might suggest that C-trees might play an equally strong role in

identifying arbitrary effects on a single variable, not just direct effects. Unfortu-

nately, this turns out not to be the case, due to the following lemma.

Lemma 1 (downward extension lemma) Let V be the set of observable nodes

in G. Assume P (v), G 6⊢id P (y|do(x)). Let G′ contain all the nodes and edges

of G, and an additional node Z which is a child of all nodes in Y. Then

P (v, z), G′ 6⊢id P (z|do(x)).

Proof: Let |Z| =
∏

Yi∈Y |Yi| = n. By construction, P (z|do(x)) is equal to
∑

y P (z|y)P (y|do(x)). Due to the way I set the arity of Z, P (Z|Y) is an

n by n matrix which acts as a linear map which transforms P (y|do(x)) into

P (z|do(x)). Since I can arrange this linear map to be one to one, any proof

of non-identifiability of P (y|do(x)) immediately extends to the proof of non-

identifiability of P (z|do(x)). �

What this lemma shows is that identification of effects on a singleton is not

any simpler than the general problem of identification of effect on a set. In the

next section, I consider this general problem.
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Figure 4.1: (a) a graph hedge-less for P (y|do(x)) (b) a graph containing a hedge

for P (y|do(x))

4.4 C-Forests and Hedges

To find difficult graphs which prevent identification of effects on sets, I consider

a multi-root generalization of C-trees.

Definition 7 (C-forest) A graph G where the set of all its nodes is a C-component,

and where each node has at most one child is called a C-forest.

If a given C-forest has a set of root nodes (e.g., a set of nodes with no chil-

dren) R, I call it R-rooted. Graphs in Fig. 4.1 (a), (b) are {Y 1, Y 2}-rooted

C-forests. A naive way to generalize Theorem 3 would be to state that if G is an

R-rooted C-forest, then the effect of any set X that does not intersect R is not

identifiable. However, as I later show, this is not true. Specifically, I later prove

that P (y1, y2|do(x)) in the graph in Fig. 4.1 (a) is identifiable. To formulate the

correct generalization of Theorem 3, we must understand what made C-trees dif-

ficult for the purposes of identifying effects on the root Y . It turned out that for

particular function choices, the effects of ancestors of Y on Y precisely canceled

themselves out so even though Y itself was dependent on its parents, it was obser-

vationally indistinguishable from a constant function. To get the same canceling

of effects with C-forests, we must define a more complex graphical structure.
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Definition 8 (hedge) Let X,Y be sets of variables in G. Let F, F ′ be R-rooted

C-forests in G such that F ′ is a subgraph of F , X only occur in F , and R ∈

An(Y)Gx
. Then F and F ′ form a hedge for P (y|do(x)).

The graph in Fig. 4.1 (b) contains a hedge for P (y1, y2|do(x)). The mental

picture for a hedge is as follows. We start with a C-forest F ′. Then, F ′ grows new

branches, while retaining the same root set, and becomes F . Finally, we “trim

the hedge,” by performing the action do(x) which has the effect of removing some

incoming arrows in F \F ′ (the subgraph of F consisting of vertices not a part of

F ′). Note that any Y -rooted C-tree and its root node Y form a hedge. The right

generalization of Theorem 3 can be stated on hedges.

Theorem 5 Let F, F ′ be subgraphs of G which form a hedge for P (y|do(x)).

Then P (v), G 6⊢id P (y|do(x)).

Proof outline: As before, assume binary variables. I let the causal mechanisms

of one of the models consists entirely of bit parity functions. The second model

also computes bit parity for every mechanism, except those nodes in F ′ which

have parents in F ignore the values of those parents. It turns out that these two

models are observationally indistinguishable. Furthermore, any intervention in

F \ F ′ will break the bit parity circuits of the models. This break will be felt at

the root set R of the first model, but not of the second, by construction. �

4.5 A Complete Identification Algorithm

Unlike the bow arc graph, and C-trees, hedges prevent identification of effects on

multiple variables at once. Certainly a complete list of all possible difficult graphs

must contain structures like hedges. But are there other kinds of structures that
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function ID(y, x, P, G)

INPUT: x,y value assignments, P a probability distribution,

G a causal diagram.

OUTPUT: Expression for Px(y) in terms of P or FAIL(F,F’).

1 if x = ∅ return
∑

v\y P (v).

2 if V \ An(Y)G 6= ∅

return ID(y,x ∩An(Y)G,
∑

v\An(Y)G
P, GAn(Y)).

3 let W = (V \X) \ An(Y)Gx
.

if W 6= ∅, return ID(y,x ∪w, P, G).

4 if C(G \X) = {S1, ..., Sk}

return
∑

v\(y∪x)

∏
i ID(si,v \ si, P, G).

if C(G \X) = {S}

5 if C(G) = {G}, throw FAIL(G, G ∩ S).

6 if S ∈ C(G) return
∑

s\y

∏
{i|Vi∈S} P (vi|v

(i−1)
π ).

7 if (∃S ′)S ⊂ S ′ ∈ C(G) return ID(y,x ∩ S ′,
∏

{i|Vi∈S′} P (Vi|V
(i−1)
π ∩ S ′, v

(i−1)
π \ S ′), GS′).

Figure 4.2: A complete identification algorithm. FAIL propagates through re-

cursive calls like an exception, and returns the hedge which witnesses non-iden-

tifiability. V
(i−1)
π is the set of nodes preceding Vi in some topological ordering π

in G.
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present problems? It turns out that the answer is “no,” any time an effect is not

identifiable in a causal model (if we make no restrictions on the type of function

that can appear), there is a hedge structure involved. To prove that this is so,

we need an algorithm which can identify any causal effect lacking a hedge. This

algorithm, which I call ID, and which can be viewed as a simplified version of

the identification algorithm due to [Tia02], appears in Fig. 4.2.

I will explain why each line of ID makes sense, and conclude by showing the

operation of the algorithm on an example. The formal proof of soundness of ID

can be found in the appendix. The first line merely asserts that if no action has

been taken, the effect on Y is just the marginal of the observational distribution

P (v) on Y. The second line states that if we are interested in the effect on Y,

it is sufficient to restrict our attention on the parts of the model ancestral to Y.

One intuitive argument for this is that descendants of Y can be viewed as “noisy

versions” of Y and so any information they may impart which may be helpful

for identification is already present in Y. On the other hand, variables which

are neither ancestors nor descendants of Y lie outside the relevant causal chain

entirely, and have no useful information to contribute.

Line 3 forces an action on any node where such an action would have no effect

on Y – assuming we already acted on X. Since actions remove incoming arrows,

we can view line 3 as simplifying the causal graph we consider by removing certain

arcs from the graph, without affecting the overall answer. Line 4 is the key line of

the algorithm, it decomposes the problem into a set of smaller problems using the

key property of C-component factorization of causal models. If the entire graph

is a single C-component already, further problem decomposition is impossible,

and we must provide base cases. ID has three base cases. Line 5 fails because

it finds two C-components, the graph G itself, and a subgraph S that does not
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Figure 4.3: Subgraphs of G used for identifying Px(y1, y2).

contain any X nodes. But that is exactly one of the properties of C-forests that

make up a hedge. In fact, it turns out that it is always possible to recover a hedge

from these two c-components.

Line 6 asserts that if there are no bidirected arcs from X to the other nodes

in the current subproblem under consideration, then we can replace acting on

X by conditioning, and thus solve the subproblem. Line 7 is the most complex

case where X is partitioned into two sets, W which contain bidirected arcs into

other nodes in the subproblem, and Z which do not. In this situation, identifying

P (y|do(x)) from P (v) is equivalent to identifying P (y|do(w)) from P (V|do(z)),

since P (y|do(x)) = P (y|do(w), do(z)). But the term P (V|do(z)) is identifiable

using the previous base case, so we can consider the subproblem of identifying

P (y|do(w)).

I give an example of the operation of the algorithm by identifying Px(y1, y2)

from P (v) in the graph shown in in Fig. 4.1 (a). Since G = GAn({Y1,Y2}), C(G \

{X}) = {G}, and W = {W1}, I invoke line 3 and attempt to identify Px,w(y1, y2).

Now C(G \ {X, W}) = {Y1, W2 → Y2}, so I invoke line 4. Thus the origi-

nal problem reduces to identifying
∑

w2
Px,w1,w2,y2(y1)Pw,x,y1(w2, y2). Solving for

the second expression, I trigger line 2, noting that we can ignore nodes which

are not ancestors of W2 and Y2, which means Pw,x,y1(w2, y2) = P (w2, y2). Solv-

ing for the first expression, I first trigger line 2 also, obtaining Px,w1,w2,y2(y1) =

Px,w(y1). The corresponding G is shown in Fig. 4.3 (a). Next, I trigger line

7, reducing the problem to computing Pw(y1) from P (Y1|X, W1)P (W1). The
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corresponding G is shown in Fig. 4.3 (b). Finally, I trigger line 2, obtain-

ing Pw(y1) =
∑

w1
P (y1|x, w1)P (w1). Putting everything together, I obtain:

Px(y1, y2) =
∑

w2
P (y1, w2)

∑
w1

P (y1|x, w1)P (w1).

As mentioned earlier, whenever the algorithm fails at line 5, it is possible to

recover a hedge from the C-components S and G considered for the subproblem

where the failure occurs. In fact, it can be shown that this hedge implies the

non-identifiability of the original query with which the algorithm was invoked,

which implies the following result.

Theorem 6 ID is complete.

The completeness of ID implies that hedges can be used to characterize all

cases where effects of the form P (y|do(x)) cannot be identified from the obser-

vational distribution P (v).

Theorem 7 (hedge criterion) P (v), G 6⊢id P (y|do(x)) if and only if G con-

tains a hedge for some P (y′|do(x′)), where y′ ⊆ y, x′ ⊆ x.

4.6 Conditional Effects

I close this chapter by considering identification of conditional effects of the form

P (y|do(x), z) which are defined to be equal to P (y, z|do(x))/P (z|do(x)). Such

expressions are a formalization of an intuitive notion of “effect of action in the

presence of non-contradictory evidence,” for instance the effect of smoking on

lung cancer incidence rates in a particular age group (as opposed to the effect

of smoking on cancer in the general population). I say that evidence z is non-

contradictory since it is conceivable to consider questions where the evidence z

stands in logical contradiction to the proposed hypothetical action do(x): for
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Figure 4.4: (a) Causal graph with an identifiable conditional effect P (y|do(x), z)

(b) Causal graph with a non-identifiable conditional effect P (y|do(x), z)

instance what is the effect of smoking on cancer among the non-smokers. Such

counterfactual questions will be considered in the next chapter. Conditioning can

both help and hinder identifiability. P (y|do(x)) is not identifiable in the graph

shown in Fig. 4.4 (a), while it is identifiable in the graph shown in Fig. 4.4 (b).

Conditioning reverses the situation. In Fig. 4.4 (a), conditioning on Z renders Y

independent of any changes to X, making Px(y|z) equal to P (y|z). On the other

hand, in Fig. 4.4 (b), conditioning on Z makes X and Y dependent, resulting in

Px(y|z) becoming non-identifiable.

I would like to reduce the problem of identifying conditional effects to the

familiar problem of identifying causal effects without evidence for which I already

have a complete algorithm. Fortunately, rule 2 of do-calculus provides me with a

convenient way of converting the unwanted evidence z into actions do(x) which

I know how to handle. The following convenient lemma allows me to remove as

many evidence variables as possible from a conditional effect.

Theorem 8 For any G and any conditional effect Px(y|w) there exists a unique

maximal set Z = {Z ∈W|Px(y|w) = Px,z(y|w \ {z})} such that rule 2 applies to

Z in G for Px(y|w). In other words, Px(y|w) = Px,z(y|w \ z).

Of course Theorem 8 does not guarantee that the entire set z can be handled

in this way. In many cases, even after rule 2 is applied, some set of evidence will
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function IDC(y, x, z, P, G)

INPUT: x,y,z value assignments, P a probability

distribution, G a causal diagram (an I-map of P).

OUTPUT: Expression for Px(y|z) in terms of P or FAIL(F,F’).

1 if (∃Z ∈ Z)(Y ⊥ Z|X,Z \ {Z})Gx,z
,

return IDC(y,x ∪ {z}, z \ {z}, P, G).

2 else let P ′ = ID(y ∪ z,x, P, G).

return P ′/
∑

y P ′.

Figure 4.5: A complete identification algorithm for conditional effects.

remain in the expression. Fortunately, the following result implies that identifi-

cation of unconditional causal effects is all we need.

Theorem 9 Let Z ⊆W be the maximal set such that Px(y|w) = Px,z(y|w \ z).

Then Px(y|w) is identifiable in G if and only if Px,z(y,w \ z) is identifiable in G.

The previous two theorems suggest a simple addition to ID, which I call IDC,

shown in Fig. 4.5, which handles identification of conditional causal effects.

Theorem 10 IDC is sound and complete.

Proof: This follows from Theorems 8 and 9. �

[Tia04] developed a significantly more complicated algorithm for identifying

conditional effects. It can be shown, nevertheless, that Tian’s algorithm is in

some sense equivalent to IDC since it is complete [Shp07].

I conclude this section by noting that since the IDC algorithm uses d-separation

tests to remove conditioning variables, and since the ID algorithm it uses as a
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subroutine has a graphical condition characterizing the input graphs on which

it succeeds, it is possible to derive a complete graphical criterion for identifiable

conditional effects.

Corollary 2 (back-door hedge criterion) Let Z ⊆W be the unique maximal

set such that Px(y|w) = Px,z(y|w\z). Then Px(y|w) is identifiable from P if and

only if there does not exist a hedge for Px′(y
′), for any Y′ ⊆ (Y ∪W) \ Z,

X′ ⊆ X ∪ Z.

The name ’back-door hedge’ comes from the fact that both back-door paths

and hedge structures are key for identifiability of conditional effects. In particular,

Px(y|w) is identifiable if and only if Px,z(y,w \ z) does not contain any hedges

and every W ∈W \Z has a back-door path to some Y ∈ Y in the context of the

effect.

4.7 Corollaries

I conclude this section by showing that the notion of a causal theory as a set of

independencies embodied by the causal graph, together with rules of probability

and do-calculus is complete for computing causal effects, if we also take statistical

data embodied by P (v) as axiomatic.

Theorem 11 The rules of do-calculus are complete for identifying effects of the

form P (y|do(x), z), where x, y, z are arbitrary sets.

Proof: The proofs of soundness of ID and IDC in the appendix use do-calculus.

This implies every line of the algorithms I presented can be rephrased as a se-

quence of do-calculus manipulations. But ID and IDC are also complete, which

implies the conclusion. �
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CHAPTER 5

Counterfactuals

In this chapter, I consider the problem of inferring distributions over atomic coun-

terfactual events from the results of all possible experiments we can perform. I

approach this problem in the same spirit I approached the problem of identifying

causal effects from the previous chapter. First, I propose a graphical represen-

tation called the counterfactual graph for displaying causal assumptions involved

in multiple hypothetical worlds mentioned in counterfactual queries. With such

a representation, it’s not a difficult matter to construct an identification algo-

rithm along similar lines as the algorithm in the previous chapter. To prove

completeness, I construct the set of difficult counterfactual graphs which imply

non-identification of certain counterfactuals.

5.1 Counterfactuals and Multiple Worlds

While effects of actions have an intuitive interpretation as downward flow, the

interpretation of counterfactuals, or what-if questions is more complex. An in-

formal counterfactual statement in natural language such as “would I have a

headache had I taken an aspirin” talks about multiple worlds: the actual world,

and other, hypothetical worlds which differ in some small respect from the actual

world (e.g., the aspirin was taken), while in most other respects are the same. In

this chapter, I represent the actual world by a causal model in its natural state,
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Figure 5.1: (a) A causal graph for the aspirin/headache domain (b) A corre-

sponding twin network graph for the query P (H∗
a∗=true|A = false).

devoid of any interventions, while the alternative worlds are represented by sub-

models Mx where the action do(x) implements the hypothetical change from the

actual state of affairs considered. People make sense of informal statements in-

volving multiple, possibly conflicting worlds because they expect not only the

causal rules to be invariant across these worlds (e.g., aspirin helps headaches in

all worlds), but the worlds themselves to be similar enough where evidence in one

world has ramifications in another. For instance, if I find myself with a headache,

I expect the usual causes of my headache to also operate in the hypothetical

world, interacting there with the preventative influence of aspirin. In the repre-

sentation of counterfactuals used in this thesis, I model this interaction between

worlds by assuming that the world histories or background contexts, represented

by the unobserved U variables are shared across all hypothetical worlds.

I illustrate the representation method for counterfactuals I introduced in Sec-

tion 2 by modeling the example question “would I have a headache had I taken

an aspirin?” The actual world referenced by this query is represented by a causal

model containing two variables, headache and aspirin, with aspirin being a par-

ent of headache, see Fig. 5.1 (a). In this world, I observe that aspirin has value

false. The hypothetical world is represented by a submodel where the action

do(aspirin = true) has been taken. To distinguish nodes in this world I augment
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their names with an asterisk. The two worlds share the background variables U,

and so can be represented by a single causal model with the graph shown in Fig.

5.1 (b). The query is represented by the distribution P (H∗
a∗=true|A = false),

where H is headache, and A is aspirin. Note that the nodes A∗ = true and

A = false in Fig. 5.1 (b) do not share a bidirected arc. This is because an

intervention do(a∗ = true) removes all incoming arrows to A∗, which removes the

bidirected arc between A∗ and A.

5.2 Evaluating Counterfactuals

The graphs representing two hypothetical worlds invoked by a counterfactual

query like the one shown in Fig. 5.1 (b) are called twin network graphs, and were

first proposed as a way to represent counterfactuals by [BP94b], and [BP94a]. In

addition, [BP94b] proposed a method for evaluating counterfactual expressions

like P (H∗
a∗=true|A = false) when all parameters of a causal model are known.

This method can be explained as follows. If we forget the causal and counterfac-

tual meaning behind the twin network graph, and simply view it as a Bayesian

network, the query P (H∗
a∗=true|A = false) can be evaluated using any of the

standard inference algorithms available, provided we have access to all condi-

tional probability tables generated by F and U of a causal model which gave

rise to the twin network graph. In practice, however, complete knowledge of the

model is too much to ask for; the functional relationships as well as the distribu-

tion P (u) are not known exactly, though some of their aspects can be inferred

from the observable distribution P (v).

Instead, the typical state of knowledge of a causal domain is the statistical

behavior of the observable variables in the domain, summarized by the distribu-

tion P (v), together with knowledge of causal directionality, obtained either from
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expert judgment (e.g., we know that visiting the doctor does not make us sick,

though disease and doctor visits are highly correlated), or direct experimentation

(e.g., it’s easy to imagine an experiment which establishes that wet grass does

not cause sprinklers to turn on). I already used these two sources of knowledge in

the previous chapter as a basis for computing causal effects. Nevertheless, there

are reasons to consider computing counterfactual quantities from experimental,

rather than observational studies. In general, a counterfactual can posit worlds

with features contradictory to what has actually been observed. For instance,

questions resembling the headache/aspirin question I used as an example are ac-

tually frequently asked in epidemiology in the more general form where we are

interested in estimating the effect of a treatment x on the outcome variable Y

for the patients that were not treated (x′). In my notation, this is just the fa-

miliar expression P (Yx|X = x′). The problem with questions such as these is

that no experimental setup exists in which someone is both given and not given

treatment. Therefore, it makes sense to ask under what circumstances we can

evaluate such questions even if we are given as input every experiment that is

possible to perform in principle on a given causal model. In my framework the

set of all experiments is denoted as P∗, and is formally defined as {Px| where x

is any set of values of X ⊆ V}. The question that I ask in this chapter, then, is

whether it is possible to identify a query P (γ|δ), where γ, δ are conjunctions of

counterfactual events (with δ possibly empty), from the graph G and the set of

all experiments P∗. I can pose the problem in this way without loss of generality

since I already developed complete methods for identifying members of P∗ from

G and P (v). This means that if for some reason using P∗ as input is not realistic

I can combine the methods which I will develop in this chapter with those in the

previous chapter to obtain identification results for P (γ|δ) from G and P (v).
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5.3 The Counterfactual Graph

Before tackling the problem of identifying counterfactual queries from experi-

ments, I extend the example in Fig. 5.1 (b) to a general graphical representation

for worlds invoked by a counterfactual query. The twin network graph is a good

first attempt at such a representation. It is essentially a causal diagram for a

model encompassing two potential worlds. Nevertheless, the twin network graph

suffers from a number of problems. Firstly, it can easily come to pass that a coun-

terfactual query of interest would involve three or more worlds. For instance, we

might be interested in how likely the patient would be to have a symptom Y

given a certain dose x of drug X, assuming we know that the patient has taken

dose x′ of drug X, dose d of drug D, and we know how an intermediate symptom

Z responds to treatment d. This would correspond to the query P (yx|x
′, zd, d),

which mentions three worlds, the original model M , and the submodels Md, Mx.

This problem is easy to tackle – I simply add more than two submodel graphs,

and have them all share the same U nodes. This simple generalization of the

twin network model was considered by [ASP05], and was called there the parallel

worlds graph. Fig. 5.2 shows the original causal graph and the parallel worlds

graph for γ = yx ∧ x′ ∧ zd ∧ d.

The other problematic feature of the twin network graph, which is inherited

by the parallel worlds graph, is that multiple nodes can sometimes correspond

to the same random variable. For example, in Fig. 5.2 (b), the variables Z and

Zx are represented by distinct nodes, although it’s easy to show that since Z is

not a descendant of X, Z = Zx. These equality constraints among nodes can

make the d-separation criterion misleading if not used carefully. For instance,

Yx ⊥ Dx|Z even though using d-separation in the parallel worlds graph suggests

the opposite. This sort of problem is fairly common in causal models which are
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Figure 5.2: Nodes fixed by actions denoted with an overline, signifying that all

incoming arrows are cut. (a) Original causal diagram (b) Parallel worlds graph

for P (yx|x
′, zd, d) (the two nodes denoted by U are the same). (c) Counterfactual

graph for P (yx|x
′, zd, d).

not faithful [SGS93] or stable [PV91], [Pea00], in other words in models where d-

separation statements in a causal diagram imply independence in a distribution,

but not vice versa. However, lack of faithfulness usually arises due to “numeric

coincidences” in the observable distribution. In this case, the lack of faithfulness

is “structural,” in a sense that it is possible to refine parallel worlds graphs in such

a way that the node duplication disappears, and the attendant independencies

not captured by d-separation are captured by d-separation in refined graphs.

This refinement has two additional beneficial side effects. The first is that by

removing node duplication, we also determine which syntactically distinct coun-

terfactual variables correspond to the same random variable. By identifying such

equivalence classes of counterfactual variables, we guarantee that syntactically

different variables are in fact different, and this makes it simpler to reason about

counterfactuals in order to identify them. For instance, a counterfactual P (yx, y
′)

may either be non-identifiable or inconsistent (and so identifiable to equal 0), de-

pending on whether Yx and Y are the same variable. The second benefit of this

refinement is that resulting graphs are generally much smaller and less cluttered

48



than parallel worlds graphs, and so are easier to understand. Compare, for in-

stance, the graphs in Fig. 5.2 (b) and Fig. 5.2 (c). To rid ourselves of duplicates,

we need a formal way of determining when variables from different submodels

are in fact the same. The following lemma does this.

Lemma 2 Let M be a model inducing G containing variables α, β with the fol-

lowing properties:

• α and β have the same domain of values.

• There is a bijection f from Pa(α) to Pa(β) such that a parent γ and f(γ)

have the same domain of values.

• The functional mechanisms of α and β are the same (except whenever the

function for α uses the parent γ, the corresponding function for β uses

f(γ)).

Assume an observable variable set Z was observed to attain values z in Mx, the

submodel obtained from M by forcing another observable variable set X to attain

values x. Assume further that for each γ ∈ Pa(α), either f(γ) = γ, or γ and

f(γ) attain the same values (whether by observation or intervention). Then α

and β are the same random variable in Mx with observations z.

Proof: This follows from the fact that variables in a causal model are functionally

determined from their parents. �

If two distinct nodes in a causal diagram represent the same random variable,

the diagram contains redundant information, and the nodes must be merged. If

two nodes, say corresponding to Yx, Yz, are established to be the same in G, they

are merged into a single node which inherits all the children of the original two.
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These two nodes either share their parents (by induction) or their parents attain

the same values. If a given parent is shared, it becomes the parent of the new

node. Otherwise, I pick one of the parents arbitrarily to become the parent of

the new node. This operation is summarized by the following lemma.

Lemma 3 Let Mx be a submodel derived from M with set Z observed to attain

values z, such that Lemma 2 holds for α, β. Let M ′ be a causal model obtained

from M by merging α, β into a new node ω, which inherits all parents and the

functional mechanism of α. All children of α, β in M ′ become children of ω. Then

Mx, M
′
x agree on any distribution consistent with z being observed.

Proof: This is a direct consequence of Lemma 2. �

The new node ω I obtain from Lemma 3 can be thought of as a new coun-

terfactual variable. As mentioned in chapter 3, such variables take the form Yx

where Y is the variable in the original causal model, and x is a subscript speci-

fying the action which distinguishes the counterfactual. Since I only merge two

variables derived from the same original, specifying Y is simple. But what about

the subscript? Intuitively, the subscript of ω contains those fixed variables which

are ancestors of ω in the graph G′ of M ′. Formally the subscript is w, where

W = An(ω)G′∩sub(γ), where the sub(γ) corresponds to those nodes in G′ which

correspond to subscripts in γ. Since I replaced α, β by ω, I replace any mention

of α, β in the given counterfactual query P (γ) by ω. Note that since α, β are

the same, their value assignments must be the same (say equal to y). The new

counterfactual ω inherits this assignment.
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function make-cg(G, γ)

INPUT: G a causal diagram, γ a conjunction of counterfactual events

OUTPUT: A counterfactual graph Gγ, and either a set of events γ′ s.t. P (γ′) =

P (γ) or INCONSISTENT

• Construct a submodel graph Gxi
for each action do(xi) mentioned in γ.

Construct the parallel worlds graph G′ by having all such submodel graphs

share their corresponding U nodes.

• Let π be a topological ordering of nodes in G′, let γ′ := γ.

• Apply Lemmas 2 and 3, in order π, to each observable node pair α, β derived

from the same variable in G. For each α, β that are the same, do:

– Let G′ be modified as specified in Lemma 3.

– Modify γ′ by renaming all occurrences of β to α.

– If val(α) 6= val(β), return G′, INCONSISTENT.

• return (G′
An(γ′), γ

′), where An(γ′) is the set of nodes in G′ ancestral to nodes

corresponding to variables mentioned in γ′.

Figure 5.3: An algorithm for constructing counterfactual graphs
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5.4 Constructing Counterfactual Graphs

I summarize the inductive applications of Lemma 2, and 3 by the make-cg

algorithm, which takes γ and G as arguments, and constructs a version of the

parallel worlds graph without duplicate nodes. I call the resulting structure the

counterfactual graph of γ, and denote it by Gγ . The algorithm is shown in Fig.

5.3.

There are three additional subtleties in make-cg. The first is that if variables

Yx, Yz were judged to be the same by Lemma 2, but γ assigns them different

values, this implies that the original set of counterfactual events γ is inconsistent,

and so P (γ) = 0. The second is that if we are interested in identifiability of P (γ),

we can restrict ourselves to the ancestors of γ in G′. I can justify this using the

same intuitive argument I used in Section 3 to justify Line 2 in ID. The formal

proof for line 2 I provide in the Appendix applies with little change to make-cg.

Finally, because the algorithm can make an arbitrary choice picking a parent

of ω each time Lemma 3 is applied, both the counterfactual graph G′, and the

corresponding modified counterfactual γ′ are not unique. This does not present

a problem, however, as any such graph is acceptable for our purposes.

I illustrate the operation of make-cg by showing how the graph in Fig. 5.2

(c) is derived from the graph in Fig. 5.2 (b). I start the application of Lemma

2 from the topmost observable nodes, and conclude that the node pairs Dx, D,

and Xd, X have the same functional mechanisms, and the same parent set (in

this case the parents are unobservable nodes Ud for the first pair, and Ux for the

second). I then use Lemma 3 to obtain the graph shown in Fig. 5.4 (a). Since

the node pairs are the same, we pick the name of one of the nodes of the pair

to serve as the name of the new node. In this case, I picked D and X. Note

that for this graph, and all subsequent intermediate graphs I generate, I use the

52



Y

ZW

Y

ZW
x

x

x

(a)

Y

ZW
d d

d

U
w

U
z

U

x d
_ _

D

Y

ZW

Y

W

x

x

(b)

x
_

X
D X

U
w

U

Y
d Y

ZW

Y

W

x

x

(c)

x
_

D X
U

w

U

Figure 5.4: Intermediate graphs used by make-cg in constructing the counter-

factual graph for P (yx|x
′, zd, d) from Fig. 5.2 (b).

convention that if a merge creates a situation where an unobservable variable has

a single parent, that variable is omitted from the graph. For instance, in Fig. 5.4

(a), the variable Ud, and its corresponding arrow to D omitted.

Next, I apply Lemma 2 for the node pair Wd, W . In this case, the functional

mechanisms are once again the same, while the parents of Wd, W are X and Uw. I

can also apply Lemma 2 twice to conclude that Z, Zx and Zd are in fact the same

node, and so can be merged. The functional mechanisms of these three nodes are

the same, and they share the parent Uz. As far as the parents of this triplet, the

Uz parent is shared by all three, while Z, Zx share the parent D, and Zd has a

separate parent d, fixed by intervention. However, in the counterfactual query in

question, which is P (yx|x
′, zd, d), the variable D happens to be observed to attain

the value d, the same as the intervention value for the parent of Zd. This implies

that for the purposes of the Z, Zx, Zd triplet, their D-derived parents share the

same value, which allows us to conclude they are the same random variable.

The intuition here is that while intervention and observation are not the same

operation, they have the same effect if the relevant U variables happen to react

in the same way to both the given intervention, and the given observation (this

is the essence of the Axiom of Composition [Pea00].) In this case, U variables
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react the same way because the parallel worlds share all unobserved variables.

There is one additional subtlety in performing the merge of the triplet Z, Zx, Zd.

If we examine the query P (yx|x
′, zd, d), we notice that Zd, or more precisely its

value, appears in it. When I merge nodes, only one name out of the original two is

used. It’s possible that some of the old names appear in the query, which means

I must replace all references to the old, pre-merge nodes to the new post-merge

name I picked. Since I picked the name Z for the newly merged node, I replace

the reference to Zd in the query by the reference to Z, so the modified query is

P (yx|x
′, z, d). Since the variables were established to be the same, this is a safe

syntactic transformation.

After Wd, W , and the Z, Zx, Zd triplet are merged, the resulting graph appears

in Fig. 5.4 (b). Finally, I apply Lemma 2 one more time to conclude Y and Yd are

the same variable, using the same reasoning as before. After performing this final

merge, I obtain the graph in Fig. 5.4 (c). It’s easy to see that Lemma 2 no longer

applies to any node pair: W and Wx differ in their X-derived parent, and Y , and

Yx differ on their W -derived parent, which was established inductively. The final

operation which make-cg performs is restricting the graph in Fig. 5.4 (b) to

variables actually relevant for computing the (potentially syntactically modified)

query it was given as input, namely P (yx|x
′, z, d), in other words those variables

which are ancestral to variables in the query in the final intermediate graph I

obtained. In this case, I remove nodes W and Y (and their adjacent edges) from

consideration, to finally obtain the graph in Fig. 5.2 (c), which is a counterfactual

graph for the original query.
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function ID*(G, γ)

INPUT: G a causal diagram, γ a conjunction of counterfactual events

OUTPUT: an expression for P (γ) in terms of P∗ or FAIL

1 if γ = ∅, return 1

2 if (∃xx′.. ∈ γ), return 0

3 if (∃xx.. ∈ γ), return ID*(G, γ \ {xx..})

4 (G′, γ′) = make-cg(G, γ)

5 if γ′ = INCONSISTENT, return 0

6 if C(G′) = {S1, ..., Sk},

return
∑

V(G′)\γ′

∏
i ID*(G, si

v(G′)\si)

7 if C(G′) = {S} then,

8 if (∃x,x′) s.t. x 6= x′,x ∈ sub(S),x′ ∈ ev(S),

throw FAIL

9 else, let x =
⋃

sub(S)

return Px(var(S))

Figure 5.5: An identification algorithm for joint counterfactual distributions.
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function IDC*(G, γ, δ)

INPUT: G a causal diagram, γ, δ conjunctions of counterfactual events

OUTPUT: an expression for P (γ|δ) in terms of P∗, FAIL, or UNDEFINED

1 if ID*(G, δ) = 0, return UNDEFINED

2 (G′, γ′ ∧ δ′) = make-cg(G, γ ∧ δ)

3 if γ′ ∧ δ′ = INCONSISTENT, return 0

4 if (∃yx ∈ δ′) s.t. (Yx ⊥ γ′)G′
yx

,

return IDC*(G, γ′
yx

, δ′ \ {yx})

5 else, let P ′ = ID*(G, γ′ ∧ δ′). return P ′/P ′(δ)

Figure 5.6: An identification algorithm for conditional counterfactual distribu-

tions.
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5.5 Counterfactual Identification Algorithms

Having constructed a graphical representation of worlds mentioned in counter-

factual queries, I can turn to identification. I construct two algorithms for this

task, the first is called ID* and works for unconditional queries, while the sec-

ond, IDC*, works on queries with counterfactual evidence and calls the first as

a subroutine. These are shown in Figs. 5.5 and 5.6.

These algorithms make use of the following notation: sub(.) returns the set

of subscripts, var(.) the set of variables, and ev(.) the set of values (either set or

observed) appearing in a given counterfactual, while val(.) is the value assigned

to a given counterfactual variable. As before, C(G′) is the set of maximal C-

components of G′, except I don’t count nodes in G′ fixed by interventions as

part of any C-component. V (G′) is the set of observable nodes of G′. Following

[Pea00], G′
yx

is the graph obtained from G′ by removing all outgoing arcs from

Yx; γ′
yx

is obtained from γ′ by replacing all descendant variables Wz of Yx in γ′

by Wz,y. A counterfactual sr, where s, r are value assignments to sets of nodes,

represents the event “the node set S attains values s under intervention do(r).”

Finally, I take xx.. to mean some counterfactual variable derived from X where x

appears in the subscript (the rest of the subscript can be arbitrary), which also

attains value x.

The notation used in these algorithms is somewhat intricate, so I give an in-

tuitive description of each line. I start with ID*. The first line states that if

γ is an empty conjunction, then its probability is 1, by convention. The second

line states that if γ contains a counterfactual which violates the Axiom of Ef-

fectiveness [Pea00], then γ is inconsistent, and I return probability 0. The third

line states that if a counterfactual contains its own value in the subscript, then

it is a tautological event, and it can be removed from γ without affecting its
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probability. Line 4 invokes make-cg to construct a counterfactual graph G′, and

the corresponding relabeled counterfactual γ′. Line 5 returns probability 0 if an

inconsistency was found during the construction of the counterfactual graph, e.g.,

if two variables found to be the same in γ had different value assignments. Line 6

is analogous to Line 4 in the ID algorithm, it decomposes the problem into a set

of subproblems, one for each C-component in the counterfactual graph. In the

ID algorithm, the term corresponding to a given C-component Si of the causal

diagram was the effect of all variables not in Si on variables in Si, in other words

Pv\si
(si), and the outermost summation on line 4 was over values of variables

not in Y,X. Here, the term corresponding to a given C-component Si of the

counterfactual graph G′ is the conjunction of counterfactual variables where each

variable contains in its subscript all variables not in the C-component Si, in other

words v(G′)\ si, and the outermost summation is over variables not in γ′. Line 7

is the base case, where the counterfactual graph has a single C-component. There

are two cases, corresponding to line 8 and line 9. Line 8 says that if γ′ contains

a “conflict,” that is an inconsistent value assignment where at least one value is

in the subscript, then I fail. Line 9 says if there are no conflicts, then its safe to

take the union of all subscripts in γ′, and return the effect of the subscripts in γ′

on the variables in γ′.

The IDC*, like its counterpart IDC is shorter. The first line fails if δ is

inconsistent. IDC did not have an equivalent line, since I can assume P (v) is

positive. The problem with counterfactual distributions is there is no simple

way to prevent non-positive distributions spanning multiple worlds from arising,

even if the original P (v) was positive – hence the explicit check. The second

line constructs the counterfactual graph, except since make-cg can only take

conjunctions, I provide it with a joint counterfactual γ ∧ δ. Line 3 returns 0 if

an inconsistency was detected. Line 4 is the central line of the algorithm and
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is analogous to line 1 of IDC. In IDC, I moved a value assignment Z = z

from being observed to being fixed if there were no back-door paths from Z to

the outcome variables Y given the context of the effect of do(x). Here, I move

a counterfactual value assignment Yx = y from being observed (that is being a

part of δ), to being fixed (that is appearing in every subscript of γ′) if there are

no back-door paths from Yz to the counterfactual of interest γ′. Finally, line 5

is the analogue of line 2 of IDC, we attempt to identify a joint counterfactual

probability, and then obtain a conditional counterfactual probability from the

result.

I illustrate the operation of these algorithms by considering the identification

of the query P (yx|x
′, zd, d) I mentioned earlier. Since P (x′, zd, d) is not incon-

sistent, I proceed to construct the counterfactual graph on line 2. Suppose I

produce the graph in Fig. 5.2 (c), where the corresponding modified query is

P (yx|x
′, z, d). Since P (yx, x

′, z, d) is not inconsistent I proceed to the next line,

which moves z, d (with d being redundant due to graph structure) to the subscript

of yx, to obtain P (yx,z|x
′). Finally, I call ID* with the query P (yx,z, x

′). The

first interesting line is 6, where the query is expressed as
∑

w P (yx,z,w, x′)P (wx).

Note that x is redundant in the first term, so a recursive call reaches line 9 with

P (yz,w, x′), which is identifiable as Pz,w(y, x′) from P∗. The second term is triv-

ially identifiable as Px(w), which means the query P (yx, x
′, z, d) is identifiable as

P ′ =
∑

w Pz,w(y, x′)Px(w), and the conditional query is equal to P ′/P ′(x′).

5.6 Soundness and Completeness

The definitions of ID*, and IDC* reveal their close similarity to algorithms

ID and IDC in the previous section. The major differences lie in the failure

and success base cases, and slightly different subscript notation. This is not a
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coincidence, since a counterfactual graph can be thought of as a causal graph for

a particular large causal model which happens to have some distinct nodes have

the same causal mechanisms. This means that all the theorems and definitions

used in the previous sections for causal diagrams transfer over without change

to counterfactual graphs. Using this fact, I will show that ID*, and IDC* are

sound and complete for identifying P (γ), and P (γ|δ) respectively.

Theorem 12 (soundness) If ID* succeeds, the expression it returns is equal to

P (γ) in a given causal graph. Furthermore, if IDC* does not output FAIL, the

expression it returns is equal to P (γ|δ) in a given causal graph, if that expression

is defined, and UNDEFINED otherwise.

Proof outline: The first line merely states that the probability of an empty con-

junction is 1, which is true by convention. Lines 2 and 3 follow by the Axiom of

Effectiveness [GP98]. The soundness of make-cg has already been established,

which implies the soundness of line 4. Line 6 decomposes the problem using c-

component factorization. The soundness proof for this decomposition, also used

in the previous section, is in the appendix. Line 9 asserts that if a set of coun-

terfactual events does not contain conflicting value assignments to any variable,

obtained either by observation or intervention, then taking the union of all ac-

tions of the events results in a consistent action. The probability of the set of

events can then be computed from a submodel where this consistent action has

taken place. Full proof of this is in the appendix. �

To show completeness, I follow the same strategy I used in the previous sec-

tion. I catalogue all difficult counterfactual graphs which arise from queries which

cannot be identified from P∗. I then show these graphs arise whenever ID* and

IDC* fail. This, together with the soundness theorem I already proved, implies

that these algorithms are complete.
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The simplest difficult counterfactual graph arises from the query P (yx, y
′
x′)

named “probability of necessity and sufficiency” by [Pea00]. This graph, shown

in Fig. 5.1 (b) with variable relabeling, is called the “w-graph” due to its shape

[ASP05]. This query is so named because if P (yx, y
′
x′) is high, this implies that

if the variable X is forced to x, variable Y is likely to be y, while if X is forced

to some other value, Y is likely to not be y. This means that the action do(x) is

likely a necessary and sufficient cause of Y assuming value y, up to noise. The

w-graph starts the catalogue of bad graphs with good reason, as the following

lemma shows.

Lemma 4 Assume X is a parent of Y in G. Then P∗, G 6⊢id P (yx, y
′
x′), P (yx, y

′)

for any value pair y, y′.

Proof: I construct two causal models M1, M2 that agree on P∗ but disagree on

the counterfactual distributions in question. In fact, I only need two variables.

The two models agree on the following: X is the parent of Y , UX , X and Y are

binary variables, UY be a ternary variable, fX = UX , and P (uX), and P (uY ) are

uniform. The two models only differ on the functions fY , which are given by

Table 5.6. It’s easy to verify the claim holds for the two models for any values

x∗ 6= x of X. �

The intuitive explanation for this result is that P (yx, y
′
x′) is derived from

the joint distribution over the counterfactual variables in the w-graph, while if I

restrict myself to P∗, I only have access to marginal distributions – one marginal

for each possible world. Because counterfactual variables Yx and Yx′ share an

unobserved parent U , they are dependent, and their joint distribution cannot

be decomposed into a product of marginals. This means that the information

encoded in the marginals is insufficient to uniquely determine the joint we are

interested in. This intuitive argument can be generalized to a counterfactual
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Table 5.1: The functions f 1
Y and f 2

Y

X UY Y = f1
Y (x, uY ) Y = f2

Y (x, uY )

0 1 0 1

0 2 1 1

0 3 1 0

1 1 1 1

1 2 0 0

1 3 0 0

(a)

X

Y ZW W
1 2

(b)

Y ZW W1 2

x x’

Figure 5.7: (a) Causal diagram (b) Corresponding counterfactual graph for the

non-identifiable query P (Yx, W
1, W 2, Zx′).

graph with more than two nodes, the so-called “zig-zag graphs” an example of

which is shown in Fig. 5.7 (b).

Lemma 5 Assume G is such that X is a parent of Y and Z, and Y and Z

are connected by a bidirected path with observable nodes W 1, ..., W k on the path.

Then P∗, G 6⊢id P (yx, w
1, ..., wk, zx′), P (yx, w

1, ..., wk, z) for any value assignments

y, w1, ..., wk, z.

The w-graph in Fig. 5.1 (b) and the zig-zag graph in Fig. 5.7 (b) have very

special structure, so I don’t expect my characterization to be complete with just

these graphs. In order to continue, I must provide two lemmas which allow me
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to transform difficult graphs in various ways by adding nodes and edges, while

retaining the non-identifiability of the underlying counterfactual from P∗.

Lemma 6 (downward extension lemma) Assume P∗, G 6⊢id P (γ).

Let {y1
x1 , ..., yn

xm} be a subset of counterfactual events in γ. Let G′ be a graph ob-

tained from G by adding a new child W of Y 1, ..., Y n. Let γ′ = (γ\{y1
x1 , ..., yn

xm})∪

{wx1 , ..., wxm}, where w is an arbitrary value of W . Then P∗, G
′ 6⊢id P (γ′).

The first result states that non-identification on a set of parents (causes)

translates into non-identification on children (effects). The intuitive explanation

for this is that it is possible to construct a one-to-one function from the space of

distributions on causes to the space of distributions on effects. If a given P (γ)

cannot be identified from P∗, this implies that there exist two models which agree

on P∗, but disagree on P (γ), where γ is a set of counterfactual causes. It is then

possible to augment these models using the one-to-one function in question to

obtain disagreement on P (δ), where δ is a set of counterfactual effects of γ. A

more detailed argument is found in the appendix.

Lemma 7 (contraction lemma) Assume P∗, G 6⊢id P (γ). Let G′ be obtained

from G by merging some two nodes X, Y into a new node Z where Z inherits all

the parents and children of X, Y , subject to the following restrictions:

• The merge does not create cycles.

• If (∃ws ∈ γ) where x ∈ s, y 6∈ s, and X ∈ An(W )G, then Y 6∈ An(W )G.

• If (∃ys ∈ γ) where x ∈ s, then An(X)G = ∅.

• If (Yw, Xs ∈ γ), then w and s agree on all variable settings.
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Assume |X|×|Y | = |Z| and there’s some isomorphism f assigning value pairs

x, y to a value f(x, y) = z. Let γ′ be obtained from γ as follows. For any ws ∈ γ:

• If W 6∈ {X, Y }, and values x, y occur in s, replace them by f(x, y).

• If W 6∈ {X, Y }, and the value of one of X, Y occur in s, replace it by some

z consistent with the value of X or Y .

• If X, Y do not occur in γ, leave γ as is.

• If W = Y and x ∈ s, replace ws by f(x, y)s\{x}.

• otherwise, replace every variable pair of the form Yr = y, Xs = x by Zr,s =

f(x, y).

Then P∗, G
′ 6⊢id P (γ′).

This lemma has a rather complicated statement, but the basic idea is very

simple. If I have a causal model with a graph G where some counterfactual P (γ)

is not identifiable, then a coarser, more “near-sighted” view of G which merges

two distinct variables with their own mechanisms into a single variable with a

single mechanism will not render P (γ) identifiable. This is because merging nodes

in the graph does not alter the model, but only our state of knowledge of the

model. Therefore, whatever model pair was used to prove P (γ) non-identifiable

will remain the same in the new, coarser graph. The complicated statement

of the lemma is due to the fact that I cannot allow arbitrary node merges, I

must satisfy certain coherence conditions. For instance, the merge cannot create

directed cycles in the graph.

It turns out that whenever ID* fails on P (γ), the corresponding counterfac-

tual graph contains a subgraph which can be obtained by a set of applications of
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the previous two lemmas to the w-graph and the zig-zag graphs. This allows an

argument that shows P (γ) cannot be identified from P∗.

Theorem 13 (completeness) If ID* or IDC* fail, then the corresponding

query is not identifiable from P∗.

5.7 Corollaries

Since ID* is complete for P (γ) queries, I can give a graphical characterization

of counterfactual graphs where P (γ) cannot be identified from P∗.

Theorem 14 Let Gγ, γ
′ be obtained from make-cg(G, γ). Then P∗, G 6⊢id P (γ)

iff there exists a C-component S ⊆ An(γ′)Gγ
where some X ∈ Pa(S) is set to x

while at the same time either X is also a parent of another node in S and is set

to another value x′, or S contains a variable derived from X which is observed

to be x′.

Proof: This follows from Theorem 13 and the construction of ID*. �
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CHAPTER 6

Path-specific Effects

In this chapter, I consider the problem of identifying path-specific effects. I show

how path-specific effects, though understood to be causal effects along a sub-

set of causal paths nevertheless can be represented using nested counterfactual

variables. I will use this representation to express every path-specific effect in

terms of counterfactual distributions considered in Chapter 5, and give complete

graphical conditions for identifying these distributions in graphs without bidi-

rected arcs. Furthermore, I will use the results on counterfactual identification

found in Chapter 5 to give a powerful identification condition for path-specific

effects in graphs with bidirected arcs as well. 1

6.1 Natural Effects

Consider the study of UC Berkeley’s alleged gender bias in admissions, as de-

scribed in [PJ75], and Chapter 4 of [Pea00]. This case was interesting since

the data “paradoxically” showed males were more likely to be admitted overall,

while each department was more likely to admit females. Let’s assume the causal

diagram in Fig. 6.1 (a) is a coarse (but correct) representation of the admis-

sion situation: the applicants’ gender influences their life goals, these goals along

with their gender shape their decisions to apply at particular departments, while

1Some of the results in this chapter were derived as a joint work with Chen Avin.
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Figure 6.1: Causal diagram for the Berkeley discrimination domain (adopted

from [Pea00]).

each department has its own admission procedure which incorporates the appli-

cant competence (an unmeasured confounder between goals and admission), and

possibly gender itself. To exonerate the university, we must show that the link

between gender and admission is in some sense vacuous, in which case admission

decisions are not based directly on gender. In other words, we must show that

the admission decision would have stayed the same had gender been different,

but everything else stayed the same.

[Pea01] introduces a special subscript notation to represent such hypothetical

questions. Specifically, Yx,Zx∗
(u) is taken to mean the value achieved by Y when

the background variables achieve values u, we fix X to x, and Z to whatever

value it would have attained when X is fixed to x∗. If we are uncertain about

the values of u, we have to deal with Yx,Zx∗
as a random variable. In such cases,

there is no unique value z in the subscript. Instead, we must average over all

possible value assignments to Z. In other words, P (Yx,Zx∗
) is a shorthand for

∑
z P (Yx,z, Zx∗ = z).

In the model, we are interested in the probability
∑

d P (admissiongender=male,department=d, departmentgender=female = d), which is the

probability of admission of a male given that all other known causes of admission

assumed values consistent with being female. One way to describe this proba-
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bility is as a direct effect of gender on admissions. In Chapter 4, I defined the

direct effect of X on Y by considering how do(x) affects Y , when all other par-

ents W of Y are fixed to specific values w. The sort of direct effect I discuss

here, where we average over possible parent settings under a setting of X to a

default value x∗ is called natural direct effect in [Pea01]. Aside from being a more

faithful formalization of the intuitive quantity relevant to discrimination cases,

natural direct effects have another advantage over conventional direct effects –

they allow a symmetric definition of an intuitive definition of “indirect effects.”

In the discrimination case, an indirect effect would correspond to all ways gender

can influence admission – except any direct influence. The conventional direct

effect definition cannot be extended to handle indirect effects, however natural

effects easily express indirect effects by merely changing reference values. For in-

stance the indirect effect of being male on admission would be represented by the

expression
∑

d P (admissiongender=female,department=d, departmentgender=male = d).

I can represent natural effects graphically by marking “forbidden” edges whose

parents behave as if the control variable was set to a reference value. For instance,

Fig. 6.1 (b) represents the natural direct effect of gender on admission, so the edge

from department to admission is crossed out. Being able to “forbid” arbitrary

paths when considering causal effects is a powerful notion, which comes up in

situations other than discrimination.

6.2 An Example of Path-specific Effect

Consider the following example, inspired by [Rob97]. A study is performed on the

effects of the AZT drug on AIDS patients. AZT is a harsh drug known to cause

a variety of complications. For the purposes of the model, I restrict my attention

to two – pneumonia and severe headaches. In turn, pneumonia can be treated
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Figure 6.2: Causal model for the AZT domain.

with antibiotics, and severe headache sufferers can take painkillers. Ultimately,

all the above variables, except headache, are assumed to have a direct effect on

the survival chances of the patient. The graphical causal model for this situation

is shown in Fig. 6.2.

Say we are interested in the interactions between antibiotics and AZT that

negatively affect survival. To study such interactions, we might consider the effect

of administering AZT on survival in the idealized situation where the antibiotics

variable behaved as if AZT was not administered, and compare this to the effect

of AZT on survival (where side effects are present). Graphically this amounts

to “forbidding” the direct edge between antibiotics and survival. This is shown

graphically in Fig. 6.3 (a). Similarly, the path-specific effect in Fig. 6.3 (b)

represents the idealized situation where AZT has no side-effects on painkiller

medication.

6.3 Counterfactual Definition of Path-Specific Effects

Path-specific effects in a model M as they were defined in Chapter 3, and in

[Pea01], are really total effects in a causal model M∗ modified from the original

by replacing certain causal mechanisms. It is awkward to use this definition

directly if we are interested in identifying path-specific effects, since my arguments
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Figure 6.3: Path-specific effects in the AZT domain

must rest on the bedrock of algebraic manipulations. Therefore, I provide a

generalization of Pearl’s subscript notation for natural effects, which I show will

be sufficient to represent arbitrary path-specific effects in terms of counterfactual

distributions of the original causal model M .

Definition 9 (nested counterfactual variable) Let M be a causal model. A

nested counterfactual variable is defined inductively as either a counterfactual

variable Yx(u), (where Y is a variable, and X is a variable set in M), or a

variable Yx,z1,...,zk(u), where z1, ..., zk are values attained by nested counterfactual

variables Z1(u), ..., Zk(u).

Note that the domain of a nested counterfactual variable always corresponds

to a domain of some variable in the original causal model. Thus, the index nota-

tion I use is meaningful. The difference between nested counterfactual variables

and ordinary counterfactual variables defined in Chapter 3, is that the values

which occur in the subscripts of the former are not given constants, but are at-

tained inductively from other nested counterfactual variables. I will avoid deep

subscript nesting by referring to nested counterfactual variables by a single name

such as Z i
.. and summarize the nesting in the subscript by the ellipsis, rather than

by listing its entire expression.
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If we are uncertain about the values u of background nodes, nested counterfac-

tual variables, like their ordinary counterparts, become random variables. Since

writing Yx,z1,...,zk(u) is equivalent to writing Yx,Z1
..(u),...,Zk

..(u)(u), by definition, I

will use the notation P (Yx,Z1
..,...,Z

k
..

= y) (with nested variables in the subscript) as

a shorthand for
∑

{u|Y
x,Z1

..(u),...,Zk
..(u)

(u)=y} P (u). Note that variables Z i
.. may them-

selves involve nested subscripts, so the overall expression may be quite difficult

to write.

The following lemma shows how nested counterfactual random variables can

be expressed in terms of distributions over counterfactual events.

Lemma 8 P (Yx,Z1
..,...,Z

k
..
) =

∑
z1,...,zk P (Yx,z1,...,zk, Z1

.. = z1, ..., Zk
.. = zk), where

Z i
.. = zi stands for the event “nested counterfactual variable Z i

.. assumes values

zi.”

I can use Lemma 8 to express every nested counterfactual in terms of joint

probability distributions over ordinary counterfactual variables.

Theorem 15 Let Yx,Z1
..,...,Z

k
..

be a nested counterfactual variable (with Z1
.., ..., Z

k
..

nested counterfactual variables as well). For every nested counterfactual vari-

able Wm,S1
..,...,S

k
..

used in the inductive definition of Yx,Z1
..,...,Z

k
..
, let Wm,s1,...,sk be the

corresponding “unrolled” ordinary counterfactual (s1, ..., sk are values attained by

S1
.., ..., S

k
..).

Then P (Yx,Z1
..,...,Z

k
..
) =

∑
s P (

∧
i W

i
m,s1,...,sk), where the index i ranges over all

“unrolled” ordinary counterfactuals attained from nested counterfactuals which

occur in Yx,Z1
..,...,Z

k
..
, and s is the set of values attained by all nested counterfactuals

in Yx,Z1
..,...,Z

k
..
, except Yx,Z1

..,...,Z
k
..

itself.

This result shows that nested counterfactuals are quantities obtainable from

joint distributions over ordinary counterfactual variables. What I now show is
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that every path-specific effect of a single variable X on another single variable Y is

expressible as a nested counterfactual, and thus as a counterfactual distribution.

Theorem 16 Let g be a subset of “allowed edges.” Let Yx(u) − Yx∗(u) be a

path-specific effect in Mg. Then both (sets of) random variables Yx,Yx∗ can be

expressed in terms of a nested counterfactual in the original model M .

Corollary 3 Let g be a subset of “allowed edges.” Let Yx(u) − Yx∗(u) be a

path-specific effect in Mg. Then both (sets of) random variables Yx,Yx∗ can be

expressed in terms of counterfactual distributions in the original model M .

6.4 Effect-invariant Transformations

Path-specific effects have two complementary representations, as quantities de-

rived from counterfactual distributions, and as marked graphs. The marked graph

representation is by far the more intuitive, so it would be preferable to operate

on graphs rather than distributions. In this section, I introduce three rules which

allow us to make changes to the marked graphs without affecting either the value

or the identifiability of the corresponding path-specific effect. Systematic ap-

plication of these three rules will allow me to derive a complete identification

condition for path-specific effects of a single variable X on a single outcome Y in

Markovian graphs (that is, graphs without bidirected arcs).

Definition 10 (rule 1) Rule 1 applies to a marked graph Gg at V if all arrows

outgoing from V which start directed paths from V to Y are forbidden. The

marked graph GRv
1(g) obtained from Gg by the application of rule 1 forbids all

incoming arrows to V and allows all previously marked outgoing arrows from V ,

leaving the status of other edges unchanged. See Fig. 6.4.
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The important invariant with path-specific effects is the set of all allowed

paths, that is paths consisting only of allowed edges, from X to Y , and this set is

not changed by the application of rule 1, since any path which contains a newly

forbidden edge incoming to V must have had a forbidden edge leaving V .

Definition 11 (rule 2) Rule 2 applies to a marked graph Gg at V if there is a

forbidden edge e leaving V , and all directed paths from X to V contain forbidden

edges. The marked graph GRv
2(g) obtained from Gg by the application of rule 2

allows the formerly forbidden edge e, leaving the status of other edges unchanged.

See Fig. 6.5.

Rule 2 also preserves the set of all allowed paths since any path containing

the newly allowed edge e cannot be an allowed path.

Definition 12 (rule 3) Rule 3 applies to a marked graph Gg at V if there is

a forbidden edge e entering V , and V 6∈ An(Y ), or there is a forbidden edge e

leaving V , and V 6∈ De(X). The marked graph GRv
3(g) obtained from Gg by the

application of rule 3 allows the formerly forbidden edge e, leaving the status of

other edges unchanged. See Fig. 6.6.

I want to prove a result which will lets us conclude that arbitrary changes

of the marked graph using rules 1, 2, and 3 do not change the underlying path-

specific effect. To prove this, I need one utility lemma.

Lemma 9 Let V.. be a nested counterfactual where all constant subscripts are the

same and equal to x. Then V.. = Vx.

Proof: This follows by definition of nested counterfactuals. �
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Figure 6.4: Rule 1

V

Z

W

V

Z

W

Figure 6.5: Rule 2 (marked thick arrows correspond to forbidden directed paths).

Theorem 17 If rule 1 applies to Gg at V , then the path-specific effect in Gg is

equal to the path-specific effect in GRv
1(g). If rule 2 applies to Gg at V , then the

path-specific effect in Gg is equal to the path-specific effect in GRv
2(g). If rule 3

applies to Gg at V , then the path-specific effect in Gg is equal to the path-specific

effect in GRv
3(g).

Since R1 moves forbidden edges closer to the manipulated variables and R2, R3

remove redundant forbidden edges, it is not surprising that these two rules cannot

be applied forever in a marked graph.

Y

Z

Y

Z

Figure 6.6: Rule 3

74



Lemma 10 Let Gg be a marked graph. Then rules 1, 2 and 3 can only be applied

finitely many times.

6.5 Completeness for Single-Source Single-Outcome Path-

specific Effects

I will use the two rules defined in the previous section to obtain a completeness

result for identification of path-specific effects from a single variable X to a single

outcome Y in Markovian graphs. The general strategy will be similar to that

used in the previous chapters. I will show that a particular, simple kind of

counterfactual distribution is not identifiable, and then show that this distribution

arises in all marked graphs of a certain form. I will then repeatedly use the two

rules to reduce a given marked graph to a form where identification becomes

simple to establish.

I start with a non-identifiable counterfactual distribution which already made

an appearance in Chapter 5.

Lemma 4 Assume X is a parent of Y in G. Then P∗, G 6⊢id P (yx, y
′
x′), P (yx, y

′)

for any value pair y, y′.

The next theorem shows how a particular path-specific effect leads to prob-

lematic counterfactuals from the previous lemma.

Theorem 18 The g-specific effect of Z on Y as described in Fig. 6.7 (a) is not

P∗-identifiable.

It turns out that anytime a path-specific effect of X on Y is not identifiable,

the corresponding marked graph looks similar to the graph in Fig. 6.7 (a), in
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Figure 6.7: (a) The simplest non-identifiable path-specific effect (b) The kite

graph (thick arrows correspond to directed paths)

fact it looks like the graph in Fig. 6.7 (b), where thick arrows are interpreted as

directed paths. Whenever the graph has this “kite” structure, I say it satisfies

the recanting witness criterion.

Definition 13 (recanting witness criterion) Let R 6= Z be a node in G, such

that there exists a directed path in g from Z to R, a directed path from R to Y in

g, and a direct path from R to Y in G but not g. Then Z, Y , and g satisfy the

recanting witness criterion with R as a witness

The name “recanting witness” comes from the behavior of the variable R in

the center of the “kite.” This variable, in some sense, “tries to have it both

ways.” Along one path from R to Y , R behaves as if the variable Z was set to

one value, but along another path, R behaves as if Z was set to another value.

This “changing of the story” of R is what causes the problem, and as I will show

it essentially leads to the the existence of a non P∗-identifiable counterfactual in

Theorem 4.

I now show that repeated applications of rules 1, 2, and 3 to a marked graph

with a single source X and a single outcome Y result in either the “kite” graph,

or a marked graph where all marked arrows leave X.
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Theorem 19 Assume Gg is a marked graph with a single source X and a single

outcome Y , such that rules 1,2, and 3 do not apply. Then either Gg satisfies the

recanting witness criterion, or all marked edges emanate from X.

What I have left to show is that the kite graph always results in a non-

identifiable path-specific effect, and a graph where all marked nodes leave X

results in an identifiable path-specific effect.

Theorem 20 Assume rules 1, 2, and 3 do not apply to Gg, and Gg satisfies

the recanting witness criterion. Then the g-specific effect of X on Y is not P∗-

identifiable.

Theorem 21 If rules 1, 2, and 3 do not apply to Gg and all marked arrows

emanate from X, then the path-specific effect of X on Y along g is identifiable

in Markovian models.

6.6 General Path-specific Effects

In the previous section, I developed a complete characterization of identifiable

path-specific effects from a single source X to a single outcome Y in terms of

marked Markovian graphs. It turns out that it is possible to generalize the graph-

ical condition developed in the previous section for the case of multiple sources

and multiple outcomes. Unfortunately, if the marked graph is semi-Markovian,

there is no longer a straightforward graphical representation of identifiable path-

specific effects, since individual counterfactuals in the counterfactual distribution

representation of path-specific effects are no longer independent. However, I can

use the results I developed in Chapter 5 to give identification conditions in this
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more general setting as well, although such conditions are not necessarily com-

plete.

First, I need to generalize distributions over a single nested counterfactual to

range over multiple such counterfactuals.

Definition 14 (nested counterfactual distributions) Let Y 1
.. , ...Y

k
.. be a set

of nested counterfactual variables. Then I define P (Y 1
.. = y1, ..., Y k

.. = yk) as a

shorthand for
∑

{u|Y 1
.. (u)=y1,...,Y k

.. (u)=yk} P (u).

It turns out that I can generalize Theorem 15 to show that every nested coun-

terfactual distribution can be expressed in terms of distributions over ordinary

counterfactual variables.

Theorem 22 P (Y 1
.. = y1, ..., Y k

.. = yk) =
∑

s P (
∧

i W
i
..), where the index i ranges

over all “unrolled” ordinary counterfactuals attained from nested counterfactuals

which occur in Y 1
.. , ..., Y

k
.. , and s is the set of values attained by all nested coun-

terfactuals in Y 1
.. , ..., Y

k
.. , except those in the set {Y 1

.. , ..., Y
k
.. }.

Proof: The proof is a straightforward generalization of the proof of Theorem 15.

�

If I restrict myself to Markovian graphs, I need not reason on the level of

counterfactual distributions, but can deal instead with marked graphs, as in the

previous section. However, I need to generalize the three graph transformation

rules I used to work in the multi-source multi-outcome setting. It turns out that

rule 1 carries over to this setting without changes, while rules 2 and 3 merge into

a new rule.

Definition 15 (unmarking rule) The unmarking rule applies to a marked graph

Gg at a marked edge e emanating from node V if either there are no allowed di-
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rected paths from X to V , or V 6∈ An(Y). The marked graph GRe
4(g) obtained

from Gg by the application of the unmarking rule allows the formerly forbidden

edge e, leaving the status of other edges unchanged.

As with the other rules, applications of the unmarking rule are “safe,” in the

sense that the path-specific effect is preserved.

Theorem 23 If the unmarking rule applies to Gg at e, then path-specific effect

in Gg is equal to the path-specific effect in GRe
4(g).

As before, rule 1, and the unmarking rule can only be applied finitely many

times in a given marked graph, and if they can no longer be applied, the resulting

graph will be in one of two forms. The first form will generalize the “kite graph”

from the previous section, while in the second form all marked edges emanate

from X.

Theorem 24 Assume Gg is a marked graph, we are interested in a g-specific

effect of X on Y, and neither rule 1, nor the unmarking rule are applicable to

Gg. Then either all marked edges emanate from nodes in X, or there is a node

R such that there is an allowed directed path from X to R, an allowed directed

path from R to Y, and a forbidden directed path from R to Y. See Fig. 6.8.

What remains to show is that the first form, corresponding to the generalized

kite graph always results in a non-identifiable path-specific effect, while the second

form results in identifiable path-specific effects in Markovian graphs.

Theorem 25 Assume Gg contains the patterns shown in Fig. 6.8. Then the

g-specific effect of X on Y is not P∗-identifiable.
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Figure 6.8: The generalized kite graph (Y1, Y2 may be the same node). Thick

arrows correspond to directed paths.

Theorem 26 Assume all marked arrows emanate from X in Gg. Then the path-

specific effect of X on Y is identifiable in Markovian models.

Having established a complete condition for identification of path-specific ef-

fects with multiple sources and multiple outcomes in Markovian graphs, we turn

to the semi-Markovian case. Unfortunately, while most of the reasoning carries

over without change, I can no longer establish independence of each counterfac-

tual term, as in the proof of the Theorem 26. This means that there is no longer

a complete condition for identification which can be expressed in a straightfor-

ward way using the marked graph. However, I can use the results developed in

Chapter 5 to obtain a condition for identification using the ID∗ algorithm.

Corollary 4 Let Gg be a marked graph, X the set of sources, Y the set of out-

comes. Let P ′ be the counterfactual distribution corresponding to a path-specific

effect of X on Y due to Corollary 3. Then the path-specific effect is identifiable

if P ′ is identifiable by ID∗.

80



CHAPTER 7

Dormant Independence

In this chapter, I consider dormant independencies, in other words conditional

independencies in interventional distributions. I develop an algorithm which,

given two arbitrary sets of variables, determines in polynomial time if there is an

identifiable dormant independence between them. I show that this algorithm is

complete in a sense that if it fails, there is no “good graphical reason” for there to

be a dormant independence (although it might still exist in some models). I also

show how dormant independencies can be used for model testing and induction,

in a way similar to conditional independencies, by giving an algorithm which tests

for the presence of extraneous edges in causal diagrams.

7.1 An Example of Dormant Independence

Consider the causal graph in Fig. 7.1 (a). Any model which induces this graph

is subject to certain constraints on its observable distribution. Some of these

constraints are due to conditional independence. For instance, in any such model

X ⊥⊥ Z|W , which means P (x|w) must equal P (x|w, z). However, there is an

additional constraint implied by this graph which cannot be expressed in terms of

conditional independence in the observable distribution. This constraint, noted

in [VP90], states that the distribution
∑

w P (y|z, w, x)P (w|x) is a function of

only y and z, but not x. The key insight that motivates this chapter is that this
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Figure 7.1: (a) The “P” graph. (b) The graph of the submodel Mz derived from

the “P” graph.

constraint does emanate from conditional independencies, albeit not the original

observable distribution, but rather in an interventional distribution.

Consider a model M inducing the graph in Fig. 7.1 (a). If we intervene on

Z, we obtain the submodel Mz inducing the graph in Fig. 7.1 (b). Moreover, the

distribution of the unfixed observables in this submodel, Pz(x, w, y), is identifiable

and equals to P (y|z, w, x)P (w|x)P (x). It’s not difficult to establish by inspecting

the graph in Fig. 7.1 (b) that X is d-separated from Y , and so X ⊥⊥ Y in

Pz(x, w, y). This implies that Pz(y|x) = Pz(y). But it’s not hard to show that

Pz(y|x) is equal to
∑

w P (y|z, w, x)P (w|x), which means this expression depends

only on z and y. Thus, the identifiability of Pz(x, w, y) leads to a constraint on

observational distributions in the original, unmutilated model M .

Enumerating constraints of this type can be used to infer features of the

causal graphs, just as conditional independencies are used for this purpose by

causal induction algorithms. For example, establishing that X is independent of

Y in Pz(x, w, y) allows us to conclude that the causal graph lacks an edge between

X and Y , assuming that the submodel Mz is stable [PV91], [Pea00], or faithful

[SGS93]. Moreover, since Pz(x, w, y) is identifiable from P (v) in the graph in

question, we can conclude the edge absence without relying on interventions.

In the remainder of this chapter, I show how to achieve a full enumeration of

conditional independencies in identifiable interventional distributions entailed by
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the structure of the graph, and how to use these independencies to infer features

of the graph.

7.2 Dormant Independence and d*-separation

I call a conditional independence dormant if it exists in an interventional distri-

bution.

Definition 16 (dormant independence) A dormant independence exists be-

tween variable sets X,Y in P (v) obtained from the causal graph G if there exist

variable sets Z,W such that P (y|x, z, do(w)) = P (y|z, do(w)). Furthermore, if

P (v), G ⊢id P (y, x|z, do(w)), the dormant independence is identifiable and I de-

note this as X ⊥⊥w Y|Z. If an identifiable dormant independence does not exist

between X,Y I write X 6⊥⊥∗ Y.

I would like to represent dormant independence using graphs. Fortunately,

every concept I used in the definition of dormant independence has a graphi-

cal interpretation: ordinary conditional independence can be represented using

d-separation, the effect of interventions on a graph can be represented by cut-

ting incoming arrows to intervened nodes, and complete graphical conditions for

identification of interventions has been developed in Chapter 4. Using these in-

terpretations together allows us to generalize d-separation in appropriate way to

mirror dormant independence. I call the resulting notion d*-separation.

Definition 17 (d*-separation) Let G be a causal diagram. Variable sets X,Y

are d*-separated in G given Z,W (written X ⊥w Y|Z), if we can find sets Z,W,

such that X ⊥ Y|Z in Gw, and P (v), G ⊢id P (y, x|z, do(w)). If X,Y are not

d*-separable, we write X 6⊥∗ Y.
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Note that despite the presence of probability notation in the definition, this

is a purely graphical notion, since identification can be determined using only

the graph by the back-door hedge criterion. Consequently, I can prove a theorem

analogous to Theorem 1 for identifiable dormant independencies, which allows us

to reason about such independencies graphically.

Theorem 27 Let G be a causal diagram. Then in any model M inducing G, if

X ⊥w Y|Z, then X ⊥⊥w Y|Z.

Proof: This follows from the fact that Gw is the graph induced by the submodel

Mw, and any submodel is just an ordinary causal model where Theorem 1 holds.

�

In the following two sections I will develop a complete condition for d*-

separation of two disjoint sets of variables X and Y, and a corresponding algo-

rithm which returns the conditioning set Z and intervention set W which witness

this d*-separation. In this way I capture all identifiable dormant independencies

which have a “graphical reason” to exist.

7.3 D*-separation Among Singletons

In this section, I consider a simpler problem of determining if variables X and

Y can be rendered conditionally independent in some identifiable interventional

distribution. To characterize identifiable dormant independence between X and

Y , it makes sense to consider the “difficult” neighborhoods of X, Y , in a sense that

no intervention on those neighborhoods is identifiable. I call such neighborhoods

ancestral confounding sets.

Definition 18 Let Y be a variable in G. A set S is ancestral confounded (ACS)
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for Y if S = An(Y )GS
= C(Y )GS

.

Ancestral confounded sets are “difficult” because they can be used to form a

Y -rooted C-tree, and I know from Chapter 4 that the effect of any intervention

in this structure on Y is not identifiable.

Theorem 28 Let S be ancestral confounded for Y . Then for any S ′ ⊆ S \ {Y },

P (v), G 6⊢id P (y|do(s′)).

Proof: It’s trivial to construct a Y-rooted C-tree T from S. But it is known

from Theorem 3 that for any set S ′ of nodes in T that does not contain Y ,

P (v), G 6⊢id P (y|do(s′)). �

In my search for suitable variables to intervene on, in order to separate X

and Y , I can exclude ancestral confounded sets for X and Y . But there can be

potentially many such sets. It would be preferable to exclude all such sets at

once. Fortunately, the following results allows us to accomplish just that.

Theorem 29 For any variable Y in G, there exists a unique maximum ancestral

confounded set (MACS) Ty.

Ty contains all ancestral confounded sets for Y , which means if I can find

an efficient procedure for computing Ty, I could rule out all “difficult” sets from

consideration at once. Such an algorithm exists, and is given in Fig. 7.2.

Theorem 30 Find-MACS(G, Y ) outputs the MACS of Y in polynomial time.

In the effort to d*-separate X and Y no interventions on nodes in in Tx

and Ty can be made, since these interventions are not identifiable. Furthermore,
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function Find-MACS(G, Y )

INPUT: G, a causal diagram, Y a node in G.

OUTPUT: Ty, the MACS for Y in G.

1 If (∃X 6∈ An(Y )G),

return Find-MACS(GAn(Y ), Y ).

2 If (∃X 6∈ C(Y )G),

return Find-MACS(GC(Y ), Y ).

3 Else, return G.

Figure 7.2: An algorithm for computing the MACS of a node.

conditioning on Ty or Tx does not d-separate paths from Y out of Ty which consist

entirely of colliders, although all paths with a non-collider are blocked. In order

to block some all-collider paths out of Tx, Ty we can attempt to intervene on the

set Pa(Tx∪Ty)\ (Tx∪Ty). It turns out these interventions are sufficient to create

identifiable dormant independence among singletons, if one exists.

Theorem 31 Let Tx, Ty be the MACSs of X, Y . Let Ix,y = Pa(Tx∪Ty)\(Tx∪Ty).

Then if either X is a parent of Ty, Y is a parent of Tx or there is a bidirected

arc between Tx an Ty, then X, Y are not d*-separable. Otherwise, X ⊥ix,y
Y |Tx∪

Ty \ {X, Y }.

To illustrate this theorem, consider the graph in Fig. 7.3. Here, Ty =

{K, L, N, Y }, and Tx = {W, X}. By Theorem 31, X ⊥z Y |W, K, L, N .

Thus, the MACSs turn out to be key structures for determining d*-separation

between two variables. In the next section, we generalize my results to handle
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Figure 7.3: (a) A graph where X ⊥z Y |W, K, L, N . (b) A graph where X ⊥z Y ,

X ⊥k L, but X 6⊥∗ {Y, L}.

d*-separation among sets of variables.

7.4 D*-separation Among Sets

To determine if two arbitrary disjoint sets can be d*-separated I consider a multi-

node generalization of MACS. Unfortunately a MACS, as it is defined in the pre-

vious section, is not guaranteed to exist for sets of nodes (consider for instance a

set consisting of two nodes with no path connecting them). In order to generalize

the notion of a MACS appropriately, I must consider a partition of an arbitrary

set where a MACS can be defined for each element in the partition. I start with

a straightforward generalization of ancestral confounded sets for sets of variables.

Definition 19 Let Y be a variable set in G. A set S is ancestral confounded for

Y if for every Y ∈ Y, S = An(Y)GS
= C(Y )GS

.

I want to define an appropriate partition of an arbitrary set, where each

element of the partition has an ACS. I will show the following definition will

work for this purpose.

Definition 20 (AC-component) A set Y of nodes in G is an ancestral con-

founded component (AC-component) if
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• Y = {Y }, e.g., Y is a singleton set, or

• Y is a union of two distinct AC-components Y1,Y2 which have ancestral

confounded sets S1, S2, respectively, and S1, S2 are connected by a bidirected

arc

Lemma 11 Every AC-component has an ancestral confounded set.

AC-components behave just as singleton sets do with respect to ACS. In fact,

there is a unique MACS for every AC-component, and the algorithm to find it is

the familiar Find-MACS with set inputs.

Theorem 32 Let Y be an AC-component. Then there exists a unique MACS Ty

for Y, and Find-MACS (shown in Fig. 7.4) finds it in polynomial time.

Proof: The proof is a straightforward generalization of the proof of Theorems 30

and 29. �

What I have shown is that certain special sets of nodes have a MACS, just

as singletons do. While I cannot show the same for arbitrary sets, I can show

the next best thing, namely that there exists a unique partition of any set into

AC-components.

Lemma 12 Let Y be a variable set, Y ∈ Y. Then there is a unique maximum

AC-component which both contains Y and is a subset of Y.

Theorem 33 Any variable set Y has a unique partition p, called the AC-partition,

where each element S in p is a maximal AC-component in a sense that no superset

of S which is also a subset of Y is an AC-component.
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There is a simple algorithm, shown in Fig. 7.4, which, given an arbitrary

set Y, finds the unique AC-partition p of Y, and finds the MACS for each AC-

component in p.

Theorem 34 Find-AC-Partition(G,Y) outputs the unique AC-partition of

Y, and the set of MACSs for each element in the partition.

I want to prove a result analogous to Theorem 31 for sets. To do so, I must

generalize the notion of an inducing path to sets.

Definition 21 (inducing paths for sets) Let X,Y be sets of variables in G.

A path p between X and Y is called an inducing path if the following two condi-

tions hold

• The path forms a collider for every non-terminal node

• Every non-terminal node is an ancestor of X or Y.

Not surprisingly, inducing paths characterize d-separability for sets just as

they do for singleton variables.

Theorem 35 X cannot be d-separated from Y in G if and only if there exists

an inducing path from X to Y in G,

I can now prove the generalization of Theorem 31 for sets. The idea is to find

the AC-partition of X∪Y, and generalize the two conditions for d*-separability

in Theorem 31 for this AC-partition.

Theorem 36 Let X,Y be arbitrary sets of variables. Let p be the AC-partition

of X∪Y. Then if either elements of both X and Y share a single AC-component
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function Find-AC-Partition(G,Y)

INPUT: G, a causal diagram, Y a set of nodes in G.

OUTPUT: p, the unique partition of Y into AC-components, and the unique

MACS Ts for each S ∈ P .

1 Let p be the partition of Y containing all singleton subsets of Y.

2 For each Y ∈ Y, let Ty = Find-MACS(G, {Y }).

3 Repeat until no merges are possible: If ∃Y1,Y2 ∈ p such that Ty1
, Ty2

share a bidirected arc, merge Y1,Y2 into Y′ in p, and let Ty′ = Find-

MACS(G,Y′).

4 return p, and the set of MACSs for each element in p.

function Find-MACS(G,Y)

INPUT: G, a causal diagram, Y an AC-component in G.

OUTPUT: Ty, the MACS for Y in G.

1 If (∃X 6∈ An(Y)G),

return Find-MACS(GAn(Y),Y).

2 If (∃X 6∈ C(Y )G),

return Find-MACS(GC(Y),Y).

3 Else, return G.

Figure 7.4: An algorithm for computing the AC-partition (and the corresponding

sets of MACSs) of Y.
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Figure 7.5: (a) The true causal graph. (b) A possible valid graph for the same

domain.

in p, or some element of X is a parent of the MACS of some AC-component

containing elements of Y (or vice versa), then X cannot be d*-separated from

Y. Otherwise, let Tp be the union of all MACSs of elements in p, and let Ip =

Pa(Tp) \ Tp. Then, X ⊥ip Y|Tp \ (X ∪Y).

I conclude this section by noting that just as was the case with conditional

independence, identifiable dormant independence among subsets does not entail

dormant independence on sets. For example, in the graph shown in Fig. 7.3 (b),

X ⊥z Y , X ⊥k L, but X 6⊥∗ {Y, L}.

Having given a complete solution to the problem of determining if arbitrary

sets can be d*-separated, I show in the next section how to use dormant inde-

pendence to test aspects of the causal diagram.

7.5 Testing Causal Structure

To illustrate the usefulness of identifiable dormant independencies for induction

and testing of causal structures, I consider the problem of detecting if certain

edges in a particular causal graph are extraneous. I call graphs where every edge

is either correct or extraneous valid.
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Definition 22 (valid graph) A causal graph G is valid for a model M if every

edge in the graph induced by M is present in G.

It is possible to rule out out the presence of certain extraneous edges using

conditional independence tests. In order to do so, an additional property of

stability [PV91], [Pea00], or faithfulness [SGS93] is assumed. In faithful models,

lack of d-separation implies dependence. In other words, X ⊥ Y|Z iff X ⊥⊥ Y|Z.

This property allows us to reach graphical conclusions from probabilistic premises.

For instance, the presence of a conditioning set Z such that X ⊥⊥ Y |Z implies

X and Y cannot share an edge. Systematic use of conditional independence

tests to rule out adjacencies in this way is an important part of causal inference

algorithms such as IC [VP90], [Pea00] and FCI [SGS93].

The advantage of dormant independencies is their ability to rule out edges

even if all conditional independence tests fail. For instance, it is possible to rule

out the edge from X to Y in Fig. 7.5 (b) as extraneous since X ⊥z Y , though

no conditional independence test can succeed in doing the same, since there is an

inducing path from X to Y .

However, in order to reach graphical conclusions from dormant independen-

cies, I need to extend the faithfulness property to hold in interventional settings.

Definition 23 (experimental faithfulness) A model M is experimentally faith-

ful, or P∗-faithful if every submodel Mx of M is faithful (that is d-connectedness

in Gx implies dependence).

Experimental faithfulness states that no “numerically coincidental indepen-

dencies” are introduced by interventions. I use dormant independence tests to

rule out extraneous edges in valid graphs of experimentally faithful models. To

test if an edge between X and Y is extraneous, I must find sets Z,W such that
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function Test-Edges(G, P (v))

INPUT: G, a valid graph of an experimentally faithful model M , P (v), a

corresponding probability distribution.

OUTPUT G′, a valid graph with some extraneous edges removed.

• Let π be a topological order of edges in G, where (X, Y ) ≺π (W, Z) if

X, Y ∈ An({W, Z})G. Let G′ equal G.

• For every edge (X, Y ) in π, if we can find sets Z,W using Theorem 31 such

that X ⊥w Y |Z in G′ \ (X, Y ), and

X ⊥⊥w Y |Z in P (v), G′, remove (X, Y ) from G′.

• return G′.

Figure 7.6: An algorithm for testing edges in valid graphs.

X ⊥⊥w Y |Z. A naive brute-force approach to this problem is intractable since I

must try all subsets Z,W. However, if I assume the edge I am testing is absent

in the graph, I can use the Find-MACS algorithm to propose a dormant inde-

pendence to test in polynomial time. Since this independence is guaranteed to

be identifiable, the test can be performed on the observational distribution alone.

There is an additional complication, namely that certain edges ancestral to X and

Y may themselves be extraneous. This may result in a situation where X 6⊥∗ Y

if the ancestral extraneous edges are present, while a dormant independence can

be established if they are removed. Fortunately, since I restrict myself to acyclic

graphs, I can establish a topological order among edges based on ancestry, and

test for extraneous edges using this order. The resulting algorithm is shown in

Fig. 7.6
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It is not difficult to establish that Test-Edges is sound.

Theorem 37 Test-Edges terminates in polynomial time, and any edge it re-

moves from G′, valid for an experimentally faithful model M , is extraneous.

To illustrate the operation of the algorithm, consider the valid graph G′ in

Fig. 7.5 (b). If the graph G in Fig. 7.5 (a) represents the true causal model,

Test-Edges will be able to remove the edges (X, Y ) and (X, L), but not the

edge (L, Y ). In the case of (X, Y ), X ⊥z Y in G′ \ (X, Y ) and the corresponding

dormant independence holds since the true model induces G. Similarly, for (X, L),

X ⊥k L in G′ \ (X, L) and the corresponding dormant independence holds. On

the other hand, even though (Y, L) is an extraneous edge, Test-Edges cannot

remove it, since the algorithm cannot establish dormant independence between Y

and L, even though P (y, l|do(z, k)) is identifiable in the true model. The intuition

here is that this identification relies on the absence of the very edge we are trying

to test (since P (y, l|do(z, k)) is not identifiable in G′).

Similarly, if the graph G shown in Fig. 7.3 (a) is the true causal graph, and

the valid graph contains an extra edge from X to Y , Test-Edges will be able

to remove this edge since X ⊥z Y |W, K, L, N in G, and P (v), G′ ⊢id Pz(v \ z),

where G′ is G plus any edge from X to Y .
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CHAPTER 8

Conclusions

In this thesis, I have considered the problem of evaluating a variety of causal

queries (causal effects, counterfactuals and path-specific effects) from available in-

formation, represented as observational or interventional distributions, and causal

assumptions, represented in the form of a graph. I have presented complete al-

gorithms for all identification problems I considered, and used these algorithms

to derive graphical characterizations of identifiable and non-identifiable queries.

Furthermore, I considered the notion of dormant independence, namely con-

ditional independence in interventional distributions. I showed how certain al-

gebraic constraints induced on the observable distribution by the causal graph

arise due to identifiable dormant independencies. I have provided a graphical

notion of d*-separation which mirrors identifiable dormant independence, and

given a complete algorithm which determines if two disjoint sets of variables can

be d*-separated. Finally, I have used dormant independence to construct another

algorithm which tests for the presence of extraneous arcs in a causal graph.
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APPENDIX A

Proofs for Chapter 4 (Causal Effects)

Theorem 2 P (v), G 6⊢id P (y|do(x)) in G shown in Fig. 3.1 (a).

Proof: I construct two causal models M1 and M2 such that P 1(X, Y ) = P 2(X, Y ),

and P 1
x (Y ) 6= P 2

x (Y ). The two models agree on the following: all 3 variables

are boolean, U is a fair coin, and fX(u) = u. Let ⊕ denote the exclusive or

(XOR) function. Then the value of Y is determined by the function u ⊕ x

in M1, while Y is set to 0 in M2. Then P 1(Y = 0) = P 2(Y = 0) = 1,

P 1(X = 0) = P 2(X = 0) = 0.5. Therefore, P 1(X, Y ) = P 2(X, Y ), while

P 2
x (Y = 0) = 1 6= P 1

x (Y = 0) = 0.5. Note that while P is non-positive, it is

straightforward to modify the proof for the positive case by letting fY functions

in both models return 1 half the time, and the values outlined above half the

time. �

Theorem 3 Let G be a Y -rooted C-tree. Let X be any subset of observable nodes

in G which does not contain Y . Then P (v), G 6⊢id P (y|do(x)).

Proof: I generalize the proof for the bow arc graph. I can assume without loss

of generality that each unobservable U in G has exactly two observable children.

I construct two models with binary nodes. In the first model, the value of all

observable nodes is set to the bit parity (sum modulo 2) of the parent values.

In the second model, the same is true for all nodes except Y , with the latter

being set to 0 explicitly. All U nodes in both models are fair coins. Since G is

a tree, and since every U ∈ U has exactly two children in G, every U ∈ U has
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exactly two distinct downward paths to Y in G. It’s then easy to establish that

Y counts the bit parity of every node in U twice in the first model. But this

implies P 1(Y = 1) = 0.

Because bidirected arcs form a spanning tree over observable nodes in G, for

any set of nodes X such that Y 6∈ X, there exists U ∈ U with one child in

An(X)G and one child in G\An(X)G. Thus P 1
x(Y = 1) > 0, but P 2

x(Y = 1) = 0.

It is straightforward to generalize this proof for the positive P (v) in the same

way as in Theorem 2. �

Theorem 4 P (v), G 6⊢id P (y|do(pa(y))) if and only if there exists a subgraph of

G which is a Y -rooted C-tree.

Proof: From [Tia02], I know that whenever there is no subgraph G′ of G, such

that all nodes in G′ are ancestors of Y , and G′ is a C-component, Ppa(Y )(Y ) is

identifiable. From Theorem 3, I know that if there is a Y -rooted C-tree containing

a non-empty subset S of parents of Y , then Ps(Y ) is not identifiable. But it is

always possible to extend the counterexamples which prove non-identification of

Ps(Y ) with additional variables which are independent. �

Theorem 5 Let F, F ′ be subgraphs of G which form a hedge for P (y|do(x)).

Then P (v), G 6⊢id P (y|do(x)).

Proof: I first show Px(r) is not identifiable in F . As before, I assume each U has

two observable children. I construct two models with binary nodes. In M1 every

variable in F is equal to the bit parity of its parents. In M2 the same is true,

except all nodes in F ′ disregard the parent values in F \ F ′. All U are fair coins

in both models.

As was the case with C-trees, for any C-forest F , every U ∈ U∩F has exactly

two downward paths to R. It is now easy to establish that in M1, R counts the

bit parity of every node in U1 twice, while in M2, R counts the bit parity of

97



every node in U2 ∩F ′ twice. Thus, in both models with no interventions, the bit

parity of R is even.

Next, fix two distinct instantiations of U that differ by values of U∗. Consider

the topmost node W ∈ F with an odd number of parents in U∗ (which exists

because bidirected edges in F form a spanning tree). Then flipping the values of

U∗ once will flip the value W once. Thus the function from U to V induced by

a C-forest F in M1 and M2 is one to one.

The above results, coupled with the fact that in a C-forest, |U| + 1 = |V|

implies that any assignment where
∑

r (mod 2) = 0 is equally likely, and all

other node assignments are impossible in both F and F ′. Since the two models

agree on all functions and distributions in F \ F ′,
∑

f ′ P 1 =
∑

f ′ P 2. It follows

that the observational distributions are the same in both models.

As before, I can find U ∈ U with one child in An(X)F , and one child in

F \ An(X)F , which implies the probability of odd bit parity of R is 0.5 in M1,

and 0 in M2.

Next, I note that the construction so far results in a non-positive distribu-

tion P . To rid this proof of non-positivity, I “soften” the two models with new

unobservable binary UR for every R ∈ R which assumes value 1 with very small

probability p. Whenever UR is 1, the node R flips its value, otherwise it keeps

the value as defined above. Note that P (v) will remain the same in both mod-

els because the augmentation is the same, and the previous unsoftened models

agreed on P (v). It’s easy to see that the bit parity of R in both models will be

odd only when an odd number of UR assume values of 1. Because p is arbitrarily

small, the probability of an odd parity is far smaller than the probability of even

parity. Now consider what happens after do(x). In M2, the probability of odd

bit parity stays the same. In M1 before the addition of UR, the probability was
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0.5. But it’s easy to see that UR nodes change the bit parity of R in a completely

symmetric way, so the probability of even parity remains 0.5.

This implies Px(r) is not identifiable. Finally, to see that Px(y) is not identi-

fiable, augment the counterexample by nodes in I = An(Y) ∩ De(R). Without

loss of generality, assume every node in I has at most one child. Let each node I

in I be equal to the bit parity of its parents. Moreover, each I has an exogenous

parent UI independent of the rest of U which, with small probability p causes it

to flip it’s value. Then the bit parity of Y is even if and only if an odd number

of UI turn on. Moreover, it’s easy to see P (I|R) is positive by construction. I

can now repeat the previous argument. �

Next, I provide the proof of soundness of ID and IDC using do-calculus. This

both simplifies the proofs and allows us to infer do-calculus is complete from

completeness of these algorithms. I will invoke do-calculus rules by just using

their number, for instance “by rule 2.” First, I prove that a joint distribution

in a causal model can be represented as a product of interventional distributions

corresponding to the set of c-component in the graph induced by the model.

Lemma 13 (c-component factorization) Let M be a causal model with graph

G. Let y, x be value assignments. Let C(G \X) = {S1, ..., Sk}. Then Px(y) =
∑

v\(y∪x)

∏
i Pv\si

(si).

Proof: A proof of this was derived by [Tia02]. Nevertheless, I reprove this result

using do-calculus to help with the subsequent completeness results. Assume

X = ∅, Y = V \X, C(G) = {S1, ..., Sk}, and let Ai = An(Si)G \ Si. Then

∏

i

Pv\si
(si) =

∏

i

Pai
(si) =

∏

i

∏

Vj∈Si

Pai
(vj|v

(j−1)
π \ ai)
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=
∏

i

∏

Vj∈Si

P (vj |v
(j−1)
π ) =

∏

i

P (vi|v
(i−1)
π ) = P (v)

The first identity is by rule 3, the second is by chain rule of probability.

To prove the third identity, I consider two cases. If A ∈ Ai \ V
(j−1)
π , I can

eliminate the intervention on A from the expression Pai
(vj|v

(j−1)
π ) by rule 3, since

(Vj ⊥ A|V (j−1)
π )Gai

.

If A ∈ Ai∩V
(j−1)
π , consider any back-door path from Ai to Vj . Any such path

with a node not in V
(j−1)
π will be d-separated because, due to recursiveness, it

must contain a blocked collider. Further, this path must contain bidirected arcs

only, since all nodes on this path are conditioned or fixed. Because Ai ∩ Si = ∅,

all such paths are d-separated. The identity now follows from rule 2.

The last two identities are just grouping of terms, and application of chain

rule. Having proven that c-component factorization holds for P (v), I want to

extend the result to Px(y). First, let’s consider Px(v \ x). This is just the distri-

bution of the submodel Mx. But Mx is just an ordinary causal model inducing

G \ X, so I can apply the same reasoning to obtain Px(v \ x) =
∏

i Pv\si
(si),

where C(G \X) = {S1, ..., Sk}. As a last step, it’s easy to verify that Px(y) =
∑

v\(x∪y) Px(v \ x). �

Lemma 14 Let X′ = X ∩ An(Y)G. Then Px(y) obtained from P in G is equal

to P ′
x′(y) obtained from P ′ = P (An(Y)) in An(Y)G.

Proof: Let W = V\An(Y)G. Then the submodel Mw induces the graph G\W =

An(Y)G, and its distribution is P ′ = Pw(An(Y)) = P (An(Y)) by rule 3. Now

Px(y) = Px′(y) = Px′,w(y) = P ′
x′(y) by rule 3. �

Lemma 15 Let W = (V \X) \ An(Y)Gx
. Then Px(y) = Px,w(y), where w are

arbitrary values of W.
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Proof: Note that by assumption, Y ⊥W|X in Gx,w. The conclusion follows by

rule 3. �

Lemma 16 When the conditions of line 6 are satisfied, Px(y) =
∑

s\y

∏
Vi∈S P (vi|v

(i−1)
π ).

Proof: If line 6 preconditions are met, then G local to that recursive call is

partitioned into S and X, and there are no bidirected arcs from X to S. The

conclusion now follows from the proof of Lemma 13. �

Lemma 17 Whenever the conditions of the last recursive call of ID are satis-

fied, Px obtained from P in the graph G is equal to P ′
x∩S′ obtained from P ′ =

∏
Vi∈S′ P (Vi|V

(i−1)
π ∩ S ′, v

(i−1)
π \ S ′) in the graph S ′.

Proof: It is easy to see that when the last recursive call executes, X and S

partition G, and X ⊂ An(S)G. This implies that the submodel Mx\S′ induces

the graph G \ (X \ S ′) = S ′. The distribution Px\S′ of Mx\S′ is equal to P ′ by

the proof of Lemma 13. It now follows that Px = Px∩S′,x\S′ = P ′
x∩S′. �

Theorem 38 (soundness) Whenever ID returns an expression for Px(y), it is

correct.

Proof: If x = ∅, the desired effect can be obtained from P by marginalization,

thus this base case is clearly correct. The soundness of all other lines except the

failing line 5 has already been established. �

Having established soundness, I show that whenever ID fails, we can recover

a hedge for an effect involving a subset of variables involved in the original effect

expression P (y|do(x)). This in turn implies completeness.
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Theorem 39 Assume ID fails to identify Px(y) (executes line 5). Then there

exist X′ ⊆ X, Y′ ⊆ Y such that the graph pair G, S returned by the fail condition

of ID contain as edge subgraphs C-forests F, F ′ that form a hedge for Px′(y
′).

Proof: Consider line 5, and G and y local to that recursive call. Let R be the

root set of G. Since G is a single C-component, it is possible to remove a set of

directed arrows from G while preserving the root set R such that the resulting

graph F is an R-rooted C-forest.

Moreover, since F ′ = F ∩ S is closed under descendants, and since only

single directed arrows were removed from S to obtain F ′, F ′ is also a C-forest.

F ′ ∩X = ∅, and F ∩X 6= ∅ by construction. R ⊆ An(Y)Gx
by lines 2 and 3 of

the algorithm. It’s also clear that y,x local to the recursive call in question are

subsets of the original input. �

Theorem 6 ID is complete.

Proof: By the previous theorem, if ID fails, then Px′(y′) is not identifiable in a

subgraph H = GAn(Y)∩De(F ) of G. Moreover, X∩H = X′, by construction of H .

As such, it is easy to extend the counterexamples in Theorem 39 with variables

independent of H , with the resulting models inducing G, and witnessing the

unidentifiability of Px(y). �

Next, I prove the results necessary to establish completeness of IDC.

Lemma 18 If rule 2 of do-calculus applies to a set Z in G for Px(y|w) then

there are no d-connected paths to Y that pass through Z in neither G1 = G \X

given Z,W nor in G2 = G \ (X ∪ Z) given W.

Proof: Clearly, there are no d-connected paths through Z in G2 given W. Con-

sider a d-connected path through Z ∈ Z to Y in G1, given Z,W. Note that this
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path must either form a collider at Z or a collider which is an ancestor of Z. But

this must mean there is a back-door path from Z to Y, which is impossible, since

rule 2 is applicable to Z in G for Px(y|w). Contradiction. �

Theorem 8 For any G and any conditional effect Px(y|w) there exists a unique

maximal set Z = {Z ∈W|Px(y|w) = Px,z(y|w \ {z})} such that rule 2 applies to

Z in G for Px(y|w). In other words, Px(y|w) = Px,z(y|w \ z).

Proof: Fix two maximal sets Z1,Z2 ⊆ W such that rule 2 applies to Z1,Z2 in

G for Px(y|w). If Z1 6= Z2, fix Z ∈ Z1 \ Z2. By Lemma 18, rule 2 applies for

{Z} ∪ Z2 in G for Px(y|w), contradicting the original assumption.

Thus if I fix G and Px(y|w), any set to which rule 2 applies must be a

subset of the unique maximal set Z. It follows that Z = {Z ∈ W|Px(y|w) =

Px,z(y|w \ {z})}. �

Lemma 19 Let F, F ′ form a hedge for Px(y). Then F ⊆ F ′ ∪X.

Proof: It has been shown that ID fails on Px(y) in G and returns a hedge if and

only if Px(y) is not identifiable in G. In particular, edge subgraphs of the graphs

G and S returned by line 5 of ID form the C-forests of the hedge in question. It

is easy to check that a subset of X and S partition G. �

I rephrase the statement of Theorem 9 somewhat, to reduce “algebraic clut-

ter.”

Theorem 9 Let Px(y|w) be such that every W ∈ W has a back-door path to

Y in G \ X given W \ {W}. Then Px(y|w) is identifiable in G if and only if

Px(y,w) is identifiable in G.

Proof: If Px(y,w) is identifiable in G, then we can certainly identify Px(y|w) by

marginalization and division. The difficult part is to prove that if Px(y,w) is not
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Figure A.1: Inductive cases for proving non-identifiability of Px(y|w, w′).

identifiable then neither is Px(y|w).

Assume Px(w) is identifiable. Then if Px(y|w) were identifiable, I would be

able to compute Px(y,w) by the chain rule. Thus the conclusion follows.

Assume Px(w) is not identifiable. I also know that every W ∈ W contains

a back-door path to some Y ∈ Y in G \ X given W \ {W}. Fix such W and

Y , along with a subgraph p of G which forms the witnessing back-door path.

Consider also the hedge F, F ′ which witnesses the non-identifiability of Px′(w′),

where X′ ⊆ X,W′ ⊆W.

Let H = GDe(F )∪An(W′)G
x′

. I will attempt to show that Px′(Y |w) is not

identifiable in H ∪ p. Without loss of generality, I make the following three

assumptions. First, I restrict my attention to W′′ ⊆ W that occurs in H ∪ p.

Second, I assume p is a path segment which starts at H and ends at Y , and does

not intersect H . Third, I assume all observable nodes in H have at most one

child.

Consider the models M1, M2 from the proof of Theorem 5 which induce H . I

extend the models by adding to them binary variables in p. Each variable X ∈ p

is equal to the bit parity of its parents, if it has any. If not, X behaves as a fair

coin. If Y ∈ H has a parent X ∈ p, the value of X is added to the bit parity

computation Y makes.
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Figure A.2: Inductive cases for proving non-identifiability of Px(y|w, w′).

Call the resulting models M1
∗ , M2

∗ . Because M1, M2 agreed on P (H), and

variables and functions in p are the same in both models, P 1
∗ = P 2

∗ . I will

assume w′′ assigns 0 to every variable in W′′. What remains to be shown is that

P 1
∗x(y|w

′′) 6= P 2
∗x(y|w

′′). I will prove this by induction on the path structure of

p. I handle the inductive cases first. In all these cases, I fix a node Y ′ that is

between Y and H on the path p, and prove that if Px′(y′|w′′) is not identifiable,

then neither is Px′(y|w′′).

Assume neither Y nor Y ′ have descendants in W′′. If Y ′ is a parent of Y

as in Fig. A.1 (a), then Px′(y|w′′) =
∑

y′ P (y|y′)Px′(y′|w′′). If Y is a parent of

Y ′, as in Fig. A.1 (b) then the next node in p must be a child of Y ′. Therefore,

Px′(y|w′′) =
∑

y′ P (y|y′)Px′(y′|w′′). In either case, by construction P (Y |Y ′) is a 2

by 2 identity matrix. This implies that the mapping from Px′(y′|w′′) to Px′(y|w′′)

is one to one. If Y ′ and Y share a hidden common parent U as in Fig. A.2 (b),

then the result follows by combining the previous two cases.

The next case is if Y and Y have a common child C which is either in W′′ or

has a descendant in W′′, as in Fig. A.2 (a). Now Px′(y|w′′) =
∑

y′ P (y|y′, c)Px′(y′|w′′).

Because all nodes in W′′ were observed to be 0, P (y|y′, c) is again a 2 by 2 identity

matrix.

Finally, I handle the base cases of the induction. In all such cases, Y is the
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Figure A.3: Base cases for proving non-identifiability of Px(y|w, w′).

first node not in H on the path p. Let Y ′ be the last node in H on the path p.

Assume Y is a parent of Y ′, as shown in Fig. A.3 (a). By Lemma 19,

I can assume Y 6∈ An(F \ F ′)H . By construction, (
∑

W′′ = Y + 2 ∗
∑

U)

(mod 2) in M1
∗ , and (

∑
W′′ = Y + 2 ∗

∑
(U ∩ F ′)) (mod 2) in M2

∗ . If every

variable in W′′ is observed to be 0, then Y = (2 ∗
∑

U) (mod 2) in M1
∗ , and

Y = (2 ∗
∑

(U ∩ F ′)) (mod 2) in M2
∗ . If an intervention do(x) is performed,

(
∑

W′′ = Y + 2 ∗
∑

(U∩F ′)) (mod 2) in M2
∗x, by construction. Thus if W′′ are

all observed to be zero, Y = 0 with probability 1. Note that in M1
x as constructed

in the proof of Theorem 5, (
∑

w′′ = x +
∑

U′) (mod 2), where U′ ⊆ U consists

of unobservable nodes with one child in An(X)F and one child in F \ An(X)F .

Because Y 6∈ An(F \ F ′)H , I can conclude that if W′′ are observed to be 0,

Y = (x +
∑

U′) (mod 2) in M1
∗x′. Thus, Y = 0 with probability 0.5. Therefore,

P 1
∗x′(y|w′′) 6= P 2

∗x′(y|w′′) in this case.

Assume Y is a child of Y ′. Now consider a graph G′ which is obtained from

H∪p by removing the (unique) outgoing arrow from Y ′ in H . If Px′(Y |w′′) is not

identifiable in G′, I am done. Assume Px′(Y |w′′) is identifiable in G′. If Y ′ ∈ F ,

and R is the root set of F , then removing the Y ′-outgoing directed arrow from

F results in a new C-forest, with a root set R ∪ {Y ′}. Because Y is a child of

Y ′, the new C-forests form a hedge for Px′(y,w′′). If Y ′ ∈ H \ F , then removing
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the Y ′-outgoing directed arrow results in substituting Y for W ∈W′′∩De(Y ′)H .

Thus in G′, F, F ′ form a hedge for Px′(y,w′′ \ {w}). In either case, Px′(y,w′′) is

not identifiable in G′.

If Px′(w′′) is identifiable in G′, I am done. If not, consider a smaller hedge

H ′ ⊂ H witnessing this fact. Now consider the segment p′ of p between Y and

H ′. I can repeat the inductive argument for H ′, p′ and Y . See Fig. A.3 (b).

If Px′(w′′) is identifiable in G′, I am done. If not, consider a smaller hedge

H ′ ⊂ H witnessing this fact. Now consider the segment p′ of p between Y and

H ′. I can repeat the inductive argument for H ′, p′ and Y . See Fig. A.3 (b). If

Y and Y ′ have a hidden common parent, as is the case in Fig. A.3 (c), I can

combine the first inductive case, and the first base case to prove the result.

I conclude the proof by introducing a slight change to rid us of non-positivity

in the distributions P 1, P 2 in the counterexamples. Specifically, for every node

I in p ∪ (De(R) ∩ An(Y)), add a new binary exogenous parent UI which is

independent of other nodes in U, and has an arbitrarily small probability of

assuming the value 1, and causing its child to flip its current value. I let Podd

be the probability an odd number of UI nodes assume the value 1. Because

P (UI = 1) is vanishingly small for every I, Podd is much smaller than 0.5. It’s

easy to see that P is positive in counterexamples augmented in this way. In the

base case when Y is a parent of Y ′, I modify my equations to account for the

addition of UI . Specifically, (
∑

W′′ = Y +2∗
∑

U+
∑

UI) (mod 2) in M1
∗ , and

(
∑

W′′ = Y +2∗
∑

(U∩F ′)+
∑

UI) (mod 2) in M2
∗ , where UU is the set of nodes

added. If every variable in W′′ is observed to be 0, then Y = (2 ∗
∑

U +
∑

UI)

(mod 2) in M1
∗ , and Y = (2∗

∑
(U∩F ′)+

∑
UI) (mod 2) in M2

∗ . So prior to the

intervention, P (Y = 1|w′′) = Podd. But because P 1
x′(Y = 1|w′′) = 0.5, adding UI

nodes to the model does not change this probability. Because P 2(Y = 1|w′′) =
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P 2
x(Y = 1|w′′), the conclusion follows.

In the inductive cases above, I showed that Px(Y
′ = Y |W′′) = 1 in our coun-

terexamples. It’s easy to see that with the addition of UI , Px(Y
′ = Y |W′′) = Podd.

This implies that if P 1
x(Y ′|W′′) 6= P 2

x(Y ′|W′′), then P 1
x(Y |W′′) 6= P 2

x(Y |W′′).

This completes the proof. �
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APPENDIX B

Proofs for Chapter 5 (Counterfactuals)

Lemma 16 If the preconditions of line 7 are met, P (S) = Px(var(S)), where

x =
⋃

sub(S).

Proof: Let x =
⋃

sub(S). Since the preconditions are met, x does not contain

conflicting assignments to the same variable, which means do(x) is a sound action

in the original causal model. Note that for any variable Yw in S, any variable in

(Pa(S)\S)∩An(Yw)S is already in w, while any variable in (Pa(S)\S)\An(Yw)S

can be added to the subscript of Yw without changing the variable. Since Y ∩X =

∅ by assumption, Yw = Yx. Since Yw was arbitrary, The result follows. �

For convenience, I show the soundness of ID* and IDC* asserted in Theorem

12 separately.

Theorem 12 a If ID* succeeds, the expression it returns is equal to P (γ) in a

given causal graph.

Proof: The proof outline in section 3 is sufficient for everything except the base

cases. In particular, line 6 follows by Lemma 13. For soundness, we only need to

handle the positive base case, which follows from Lemma 16. �

The soundness of IDC* is also fairly straightforward.

Theorem 12 b If IDC* does not output FAIL, the expression it returns is

equal to P (γ|δ) in a given causal graph, if that expression is defined, and UN-
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DEFINED otherwise.

Proof: Theorem 8 shows how an operation similar to line 4 is sound by rule 2

of do-calculus [Pea95] when applied in a causal diagram. But I know that the

counterfactual graph is just a causal diagram for a model where some nodes share

functions, so the same reasoning applies. The rest is straightforward. �

To show completeness of ID* and IDC*, I first prove a utility lemma which

will make it easier to construct counterexamples which agree on P∗ but disagree

on a given counterfactual query.

Lemma 20 Let G be a causal graph partitioned into a set {S1, ..., Sk} of C-

components. Then two models M1, M2 which induce G agree on P∗ if and only if

their submodels M1
v\si

,

M2
v\si

agree on P∗ for every C-component Si, and value assignment v \ si.

Proof: This follows from C-component factorization: P (v) =
∏

i Pv\si
(si). This

implies that for every do(x), Px(v) can be expressed as a product of terms

Pv\(si\x)(si \ x), which implies the result. �

The next result generalizes Lemma 4 to a wider set of counterfactual graphs

which result from non-identifiable queries.

Lemma 5 Assume G is such that X is a parent of Y and Z, and Y and Z

are connected by a bidirected path with observable nodes W 1, ..., W k on the path.

Then P∗, G 6⊢id P (yx, w
1, ..., wk, zx′), P (yx, w

1, ..., wk, z) for any value assignments

y, w1, ..., wk, z.

Proof: I construct two models with graph G as follows. In both models, all

variables are binary, and P (u) is uniform. In M1, each variable is set to the bit

parity of its parents. In M2, the same is true except Y and Z ignore the values

of X. To prove that the two models agree on P∗, I use Lemma 20. Clearly the
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two models agree on P (X). To show that the models also agree on Px(V \X)

for all values of x, note that in M2 each value assignment over V \X with even

bit parity is equally likely, while no assignment with odd bit parity is possible.

But the same is true in M1 because any value of x contributes to the bit parity

of V \ X exactly twice. The agreement of M1
x , M2

x on P∗ follows by the graph

structure of G.

To see that the result is true, I note firstly that P (ΣiW
i +Yx +Zx′ (mod 2) =

1) = P (ΣiW
i +Yx +Z (mod 2) = 1) = 0 in M2, while the same probabilities are

positive in M1, and secondly that in both models distributions P (yx, w
1, ..., wk, zx′)

and P (yx, w
1, .., wk, z) are uniform. Note that the proof is easy to generalize for

positive P∗ by adding a small probability for Y to flip its normal value. �

To obtain a full characterization of non-identifiable counterfactual graphs,

I augment the difficult graphs I obtained from the previous two results using

certain graph transformation rules which preserve non-identifiability. These rules

are given in the following two lemmas.

Lemma 6 Assume P∗, G 6⊢id P (γ). Let {y1
x1, ..., yn

xm} be a subset of counterfactual

events in γ. Let G′ be a graph obtained from G by adding a new child W of

Y 1, ..., Y n. Let γ′ = (γ \ {y1
x1 , ..., yn

xm}) ∪ {wx1 , ..., wxm}, where w is an arbitrary

value of W . Then P∗, G
′ 6⊢id P (γ′).

Proof: Let M1, M2 witness P∗, G 6⊢id P (γ). I will extend these models to witness

P∗, G
′ 6⊢id P (γ′). Since the function of a newly added W will be shared, and

M1, M2 agree on P∗ in G, the extensions will agree on P∗ by Lemma 20. I have

two cases.

Assume there is a variable Y i such that yi
xj , yi

xk are in γ. By Lemma 4,

P∗, G 6⊢id P (yi
xj , yi

xk). Then let W be a child of just Y i, and assume |W | = |Y i| =

c. Let W be set to the value of Y i with probability 1− ǫ, and otherwise it is set
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to a uniformly chosen random value of Y i among the other c− 1 values. Since ǫ

is arbitrarily small, and since Wxj and Wxk pay attention to the same U variable,

it is possible to set ǫ in such a way that if P 1(Y i
xj , Y i

xk) 6= P 2(Y i
xj , Y i

xk), however

minutely, then P 1(Wxj , Wxk) 6= P 2(Wxj , Wxk).

Otherwise, let |W | =
∏

i |Y
i|, and let P (W |Y 1, ..., Y n) be an invertible stochas-

tic matrix. The result follows. �

Lemma 7 Assume P∗, G 6⊢id P (γ). Let G′ be obtained from G by merging some

two nodes X, Y into a new node Z where Z inherits all the parents and children

of X, Y , subject to the following restrictions:

• The merge does not create cycles.

• If (∃ws ∈ γ) where x ∈ s, y 6∈ s, and X ∈ An(W )G, then Y 6∈ An(W )G.

• If (∃ys ∈ γ) where x ∈ s, then An(X)G = ∅.

• If (Yw, Xs ∈ γ), then w and s agree on all variable settings.

Assume |X|×|Y | = |Z| and there’s some isomorphism f assigning value pairs

x, y to a value f(x, y) = z. Let γ′ be obtained from γ as follows. For any ws ∈ γ:

• If W 6∈ {X, Y }, and values x, y occur in s, replace them by f(x, y).

• If W 6∈ {X, Y }, and the value of one of X, Y occur in s, replace it by some

z consistent with the value of X or Y .

• If X, Y do not occur in γ, leave γ as is.

• If W = Y and x ∈ s, replace ws by f(x, y)s\{x}.

• otherwise, replace every variable pair of the form Yr = y, Xs = x by Zr,s =

f(x, y).

112



Then P∗, G
′ 6⊢id P (γ′).

Proof: Let Z be the Cartesian product of X, Y , and fix f . I want to show that

the proof of non-identification of P (γ) in G carries over to P (γ′) in G′.

I have four types of modifications to variables in γ. The first clearly results

in the same counterfactual variable. For the second, due to the restrictions I

imposed, wz = wz,y,x, which means I can apply the first modification.

For the third, I have P (γ) = P (δ, yx,z). By my restrictions, and rule 2 of do-

calculus [Pea95], this is equal to P (δ, yz|xz). Since this is not identifiable, then

neither is P (δ, yz, xz). Now it’s clear that this modification is equivalent to the

fourth.

The fourth modification is simply a merge of events consistent with a single

causal world into a conjunctive event, which does not change the overall expres-

sion. �

I am now ready to show the main completeness results for counterfactual iden-

tification algorithms. Again, I prove this results separately for ID* and IDC*

for convenience.

Theorem 13 a ID* is complete.

Proof: I want to show that if line 8 fails, the original P (γ) cannot be identified.

There are two broad cases to consider. If Gγ contains the w-graph, the result

follows by Lemmas 4 and 6. If not, I argue as follows.

Fix some X which witnesses the precondition on line 8. I can assume X is a

parent of some nodes in S. Assume no other node in sub(S) affects S (effectively

I delete all edges from parents of S to S except from X). Because the w-graph

is not a part of Gγ, this has no ramifications on edges in S. Further, I assume X

has two values in S.
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If X 6∈ S, fix Y, W ∈ S ∩ Ch(X). Assume S has no directed edges at all.

Then P∗, G 6⊢id P (S) by Lemma 5. The result now follows by Lemma 6, and by

construction of Gγ, which implies all nodes in S have some descendant in γ.

If S has directed edges, I want to show P∗, G 6⊢id P (R(S)), where R(S) is the

subset of S with no children in S. I can recover this from the previous case as

follows. Assume S has no edges as before. For a node Y ∈ S, fix a set of childless

nodes X ∈ S which are to be their parents. Add a virtual node Y ′ which is a

child of all nodes in X. Then P∗, G 6⊢id P ((S \ X) ∪ Y ′) by Lemma 6. Then

P∗, G 6⊢id P (R(S ′)), where S ′ is obtained from S by adding edges from X to Y

by Lemma 7, which applies because no w-graph exists in Gγ. I can apply this

step inductively to obtain the desired forest (all nodes have at most one child) S

while making sure P∗, G 6⊢id P (R(S)).

If S is not a forest, I can simply disregard extra edges so effectively it is a

forest. Since the w-graph is not in Gγ this does not affect edges from X to S.

If X ∈ S, fix Y ∈ S ∩ Ch(X). If S has no directed edges at all, replace

X by a new virtual node Y , and make X be the parent of Y . By Lemma 5,

P∗, G 6⊢id P ((S \ x) ∪ yx). I now repeat the same steps as before, to obtain

that P∗, G 6⊢id P ((R(S) \ x) ∪ yx) for general S. Now I use Lemma 7 to obtain

P∗, G 6⊢id P (R(S)). Having shown P∗, G 6⊢id P (R(S)), I conclude the result by

inductively applying Lemma 6. �

Theorem 13 b IDC* is complete.

Proof: The difficult step is to show that after line 5 is reached, if P∗, G 6⊢id P (γ, δ)

then P∗, G 6⊢id P (γ|δ). If P∗, G ⊢id P (δ), this is obvious. Assume P∗, G 6⊢id P (δ).

Fix the S which witnesses that for δ′ ⊆ δ, P∗, G 6⊢id P (δ′). Fix some Y such that

a back-door, i.e. starting with an incoming arrow, path exists from δ′ to Y in

Gγ,δ. I want to show that P∗, G 6⊢id P (Y |δ′). Let G′ = GAn(δ′)∩De(S).
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Assume Y is a parent of a node D ∈ δ′, and D ∈ G′. Augment the counterex-

ample models which induce counterfactual graph G′ with an additional binary

node for Y , and let the value of D be set as the old value plus Y modulo |D|. Let

Y attain value 1 with vanishing probability ǫ. That the new models agree on P∗

is easy to establish. To see that P∗, G 6⊢id P (δ′) in the new model, note that P (δ′)

in the new model is equal to P (δ′ \D, D = d) ∗ (1− ǫ) + P (δ′ \D, D = (d − 1)

(mod |D|)) ∗ ǫ. Because ǫ is arbitrarily small, this implies the result. To show

that P∗, G 6⊢id P (Y = 1|δ′), I must show that the models disagree on P (δ′|Y =

1)/P (δ′). But to do this, I must simply find two consecutive values of D, d, d+1

(mod |D|) such that P (δ′ \ D, d + 1 (mod |D|))/P (δ′ \ D, d) is different in the

two models. But this follows from non-identification of P (δ′).

If Y is not a parent of D ∈ G′, then either it is further along on the back-

door path or it’s a child of some node in G′. In case 1, I must construct the

distributions along the back-door path in such a way that if P∗, G 6⊢id P (Y ′|δ′)

then P∗, G 6⊢id P (Y |δ′), where Y ′ is a node preceding Y on the path. The proof

follows closely the one in Theorem 9. In case 2, I duplicate the nodes in G′ which

lead from Y to δ′, and note that I can show non-identification in the resulting

graph using reasoning in case 1. I obtain the result by applying Lemma 7. �

115



APPENDIX C

Proofs for Chapter 6 (Path-specific Effects)

Lemma 8 P (Yx,Z1,...,Zk) =
∑

z1,...,zk P (Yx,z1,...,zk, Z1 = z1, ..., Zk = zk), where

Z i = zi stands for the event “nested counterfactual variable Z i assumes values

zi.”

Proof: By definition, P (Yx,Z1,...,Zk = y) =
∑

{u|Y
x,Z1(u),...,Zk(u)

(u)=y} P (u), and

P (Yx,z1,...,zk, Z1 = z1, ..., Zk = zk) =
∑

{u|Yx,z1,...,zk(u)∧Z1(u)=z1∧...∧Zk(u)=zk} P (u).

But Yx,Z1(u),...,Zk(u)(u) = y is shorthand for Yx,z1,...,zk(u) = y, where Z1(u) =

z1, ..., Zk(u) = zk. The conclusion follows. �

Theorem 15 Let Yx,Z1,...,Zk be a nested counterfactual variable (with Z1, ..., Zk

nested counterfactual variables as well). For every nested counterfactual vari-

able Wm,S1,...,Sk used in the inductive definition of Yx,Z1,...,Zk, let Wm,s1,...,sk be the

corresponding “unrolled” ordinary counterfactual (s1, ..., sk are values attained by

S1, ..., Sk).

Then P (Yx,Z1,...,Zk) =
∑

s P (
∧

i W
i
m,s1,...,sk), where the index i ranges over all

“unrolled” ordinary counterfactuals attained from nested counterfactuals which

occur in Yx,Z1,...,Zk, and s is the set of values attained by all nested counterfactu-

als in Yx,Z1,...,Zk, except Yx,Z1,...,Zk itself.

Proof: This result follows by inductive application of the argument used to es-

tablish Lemma 8. �

Theorem 16 Let g be a subset of “allowed edges.” Let Yx(u) − Yx∗(u) be a
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path-specific effect in Mg. Then both random variables Yx,Yx∗ can be expressed

in terms of a nested counterfactual in the original model M .

Proof: It’s not difficult to see that P (Yx∗) in Mg corresponds to P (Yx∗) in M .

The base case is if W has no observable parents in G. In this case, the

distribution over W is just P (W ), a (trivial) counterfactual distribution, so W

can be represented as a nested counterfactual.

In the inductive case, I partition the parent set of W into four sets. Pa+
x (W )

are the parents of W along “allowed” edges in G which are also in X. Similarly,

Pa−
x (W ) are the parents of W along “forbidden” edges in G which are in X.

Pa+
x (W ) are the parents of W along “allowed” edges in G which are not in X,

and Pa−
x (W ) are the parents of W along “forbidden” edges in G which are not in

X. Let x+ be the values attained by Pa+
x (W ) in x, and x− be the values attained

by Pa−
x (W ) in x.

I claim that P (Wx+,x−,Z1,...,Zk) represents the effect of x on W in Mg. Here

Z1, ..., Zk are nested counterfactuals representing Pa+
x (W ) and Pa−

x (W ). Every

Z ∈ Pa−
x (W ) can be represented by a nested counterfactual since it just equals

Zx∗ by definition. Similarly, every Z ∈ Pa+
x (W ) is expressible by a nested coun-

terfactual by the inductive hypothesis. The claim now follows by definition of

Mg and by the inductive hypothesis. �

Corollary 3 Let g be a subset of “allowed edges.” Let Yx(u) − Yx∗(u) be a

path-specific effect in Mg. Then both random variables Yx,Yx∗ can be expressed

in terms of counterfactual distributions in the original model M .

Proof: The result trivially follows for P (Yx∗). It holds for P (Yx) due to Theo-

rems 15 and 16. �

Theorem 17 If rule 1 applies to Gg at V , then the path-specific effect in Gg is

equal to the path-specific effect in GRv
1(g). If rule 2 applies to Gg at V , then the
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path-specific effect in Gg is equal to the path-specific effect in GRv
2(g). If rule 3

applies to Gg at V , then the path-specific effect in Gg is equal to the path-specific

effect in GRv
3(g).

Proof: I want to show that in either case, the nested counterfactuals correspond-

ing to variables with incoming edges which changed status did not change after

the rule was applied. Since no other nested counterfactual variables involved in

the path-specific effect is affected by the marked graph modification, our result

will follow.

This is easiest to show for rule 3. If V 6∈ De(X), V = Vx∗ = Vx, so the

result follows. If V 6∈ An(Y ), then no nested counterfactual V.. corresponding to

V appears in any nested counterfactual corresponding to variables in Y , so the

result follows.

Next, consider rule 2. The only variable to consider is the node W which is the

child of V via the arrow e considered in that rule. The nested counterfactual W..

for W has a single modification in its subscript, that of the nested counterfactual

V.. corresponding to V . But by Lemma 9, V.. = Vx∗, so our conclusion follows.

Next, consider rule 1. I want to show the the nested counterfactual W.. cor-

responding to any Y -ancestral child W of V does not change after rule 1. Before

rule 1, W.. = WZ1
..,...,Z

k
..,Vx∗

, where Z1, ..., Zk are other parents of W . After rule 2,

W.. = WZ1
..,...,Z

k
..,VY 1

x∗
,...Y m

x∗

. But the nested counterfactuals V.. in both expressions

are equal by Lemma 9, which implies the result. �

Theorem 18 The g-specific effect of Z on Y as described in Fig. 6.7 (a) is not

P∗-identifiable.

Proof: I extend models M1 and M2 from the previous proof with additional

variables V , Y , and UY . I assume P (uY ) is uniform, and both P (V, Y |R) and

the functions which determine V and Y are the same in both models.
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Note that since all variables are discrete, the conditional probability distri-

butions can be represented as tables. If I require |R| = |V | and |Y | = |V | ∗ |R|,

then the conditional probabilities are representable as square matrices. I fix the

functions fV and fY , as well as the exogenous parents of V and Y such that the

matrices corresponding to P (y|v, r) and P (v|r) matrices are invertible.

Call the extended models M3 and M4. Note that by construction, the two

models are Markovian. Since M1 and M2 have the same P∗, and since the two

extended models agree on all functions and distributions not in M1 and M2, they

must also have the same P∗.

Consider the g-specific effect shown in Fig. 6.7 (a). From Theorem 3 I can

express the path-specific effect in M3
g in terms of M3. In particular:

P (yz)M3
g

=
∑

rv

P (yrv ∧ rz∗ ∧ vz)M3

=
∑

r,v,r′

P (yrv ∧ rz∗ ∧ vr′ ∧ r′z)M3

=
∑

r,v,r′

P (yrv)M3P (vr′)M3P (rz∗, r
′
z)M3

The last step is licensed by the independence assumptions encoded in the parallel

worlds model of yrv ∧ rz∗ ∧ vr′ ∧ r′z. The same expression can be derived for

P (yz)M4
g
. Note that since P∗ is the same for both models they have the same

values for the interventional distributions P (yrv) and P (vr′). Note that since

P (Y |R, V ) and P (V |R) are square matrices, the summing out of P (Y |R, V )

and P (V |R) can be viewed as a linear transformation. Since the matrices are

invertible, the transformations are one to one, and so if their composition. Since

P (yrv) = P (y|r, v) and P (vr′) = P (v|r′), and since P (rz∗ ∧ r′z) is different in

the two models, I obtain that P (yz)M3
g
6= P (yz)M4

g
. Since adding directed or

bidirected edges to a graph cannot help identifiability, the result also holds in

semi-Markovian models. �
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Theorem 19 Assume Gg is a marked graph with a single source X and a single

outcome Y , such that rules 1,2, and 3 do not apply. Then either Gg satisfies the

recanting witness criterion, or all marked edges emanate from X.

Proof: Assume some marked edge does not leave X, and Gg does not satisfy

the recanting witness criterion. Since rule 3 is not applicable, the marked edge

must be in An(Y ) ∩De(X). Consider the nodes from which all marked edges in

An(Y ) ∩ De(X) emanate. Since the graph is acyclic, I can arrange these nodes

in topological order. Pick the last node in the order, call it R. Since rule 1 is

not applicable, there is an unmarked arrow leaving R in An(Y ) ∩ De(X). By

construction, there is a path from R to Y involving this arrow, and since R is

the last node in the order, this path contains no marked edges. Since rule 2 is

not applicable, there exists an allowable path from X to R. But this implies Gg

satisfies the recanting witness criterion, which is a contradiction. �

Theorem 20 Assume rules 1, 2, and 3 do not apply to Gg, and Gg satisfies

the recanting witness criterion. Then the g-specific effect of X on Y is not P∗-

identifiable.

Proof: Consider the marked subgraph G′
G of Gg which just contains the paths

which witness the recanting witness criterion. Let R be the “witness” node. Let

Y.. be a nested counterfactual corresponding to the path-specific effect of X on

Y in G′
g. Since R has the only marked edge leaving it, Y.. will contain two nested

counterfactuals corresponding to R, the ordinary nested counterfactual R.. which

ultimately terminates with an x subscript, and Rx∗ . Note that since the only

value subscript in R.. is x, R.. = Rx by Lemma 9.

Let Y ′
.. be the nested counterfactual where R.. is replaced by Rx. By Theorem

3, Y ′
.. can be expressed in terms of a counterfactual distribution. Moreover, by

the method of construction used in the proof of Theorem 3, this distribution will
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contain a term for Rx and a term for Rx∗ , and each term will have as subscripts

all parents of the corresponding variable in G′
g. Since G′

g is Markovian, each

term is thus independent of other terms. For every node W with parent Z on the

path from R to Y , I can inductively apply the argument in Theorem 18 involving

one-to-one linear maps. Specifically P (Wz) is equal to P (W |z). Moreover, since

W is not Y , I am summing it out, which means I can arrange for P (W |z) to be a

one-to-one linear map. In this way, the conditional distributions of nodes on the

two paths from R to Y compose with P (Ypa(y)G′
g
) to construct a one-to-one map

from P (Rx, Rx∗) to P (Y..). But I know P (Rx, Rx∗) is not identifiable, so neither

is P (Y..).

To see that this translates into non-identification of P (Y..) in Gg, note that I

can arrange it so all nodes not in G′
g are independent of nodes in G′

g, and so do

not affect my reasoning. �

Theorem 21 If rules 1, 2, and 3 do not apply to Gg and all marked arrows

emanate from X, then the path-specific effect of X on Y along g is identifiable

in Markovian models.

Proof: Let W be the set of children of X connected to X via a marked ar-

row, and Z the other children. Let Y.. be a nested counterfactual corresponding

to the path-specific effect in question. Since the only node with both marked

and unmarked outgoing arrows is X (or possibly not even X), each variable in

De(X)∩An(Y ) gives rise to a single nested counterfactual in Y... Using Theorem

3, I can express P (Y..) in terms of a counterfactual distribution. Moreover, since

each counterfactual contains all parents as suffixes, and since the original graph

is Markovian, all terms are independent of all other terms. But this means the

expression is experimentally identifiable. �

Theorem 23 If the unmarking rule applies to Gg at e, then path-specific effect
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in Gg is equal to the path-specific effect in GRe
4(g).

Proof: As before, I want to show that in either case, the nested counterfactuals

corresponding to variables with incoming edges which changed status did not

change after the rule was applied. Since no other nested counterfactual variables

involved in the path-specific effect is affected by the marked graph modification,

the result will follow.

If there is no marked directed path from X to V , then we can partition X into

two subsets X1,X2, where e is not a descendant of nodes in X1, while all directed

paths from X2 to e are blocked by a marked edge. Let V be the node from which

e emanates. Then, V = Vx∗

1
. Furthermore, if I apply the unmarking rule to

e, the nested counterfactual W.., where W is the child of V via e, has a single

modification in its subscript, that of the nested counterfactual V.. corresponding

to V . But since there are no allowed path from X2 to V , V.. = Vx∗

2
.

If V 6∈ An(Y), a nested counterfactual corresponding to V does not appear

in any nested counterfactuals corresponding to nodes in Y, so the result follows.

�

Theorem 24 Assume Gg is a marked graph, I am interested in a g-specific

effect of X on Y, and neither rule 1, nor the unmarking rule are applicable to

Gg. Then either all marked edges emanate from nodes in X, or there is a node

R such that there is an allowed directed path from X to R, an allowed directed

path from R to Y, and a forbidden directed path from R to Y. See Fig. 6.8.

Proof: Assume such an R does not exist, and some marked edge does not emanate

from X. Consider the nodes which all such marked edges emanate. Since the

graph is acyclic, I can arrange these nodes in topological order. Pick the last

node in the order, call it R. Since the unmarking rule is not applicable, R is both

ancestral to Y, and there is a directed path from X to R. Since rule 1 is not
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applicable, there is an unmarked arrow leaving R which is a part of a directed

path from R to Y , and by construction this path contains no marked edges. By

construction, there is a path from R to Y involving e, which means I have a

contradiction. �

Theorem 25 Assume Gg contains the patterns shown in Fig. 6.8. Then the

g-specific effect of X on Y is not P∗-identifiable.

Proof: The proof is almost identical to that of Theorem 20. I first show that the

counterfactual distribution representing the effect of interest must contain the

terms Rx, Rx∗ , for some X. I then use induction on the path of the generalized kite

graph that this implies the path-specific effect of X on {Y1, Y2} is not identifiable

from P∗. By making sure that all nodes in Gg outside the generalized kite are

independent of nodes inside the generalized kite, I conclude the non-identifiability

of the effect of X on Y. �

Theorem 26 Assume all marked arrows emanate from X in Gg. Then the

path-specific effect of X on Y is identifiable in Markovian models.

Proof: The proof is almost identical to that of Theorem 21. The only difference is

that since there are multiple variables in Y, a given node can give rise to multiple

nested counterfactuals. However, since the only nodes with both marked and

unmarked outgoing arrows are those in X, and they do not give rise to nested

counterfactuals, any node not in X will give rise to multiple nested counterfactuals

which are syntactically identical, and so are duplicate events. Since the graph is

Markovian, each counterfactual with its parents fixed is independent of all others.

Thus, the whole expression is P∗-identifiable. �
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APPENDIX D

Proofs for Chapter 7 (Dormant Independence)

Theorem 29 For any variable Y in G, there exists a unique maximum ancestral

confounded set (MACS) Ty.

Proof: Maximal ancestral confounded sets exist for any Y since I only consider

finite graphs. Assume there is Y with two distinct maximal ancestral confounded

sets S1, S2. I claim that S = S1 ∪ S2 is an ancestral confounded set, which is

a contradiction. By construction, S is a C-component in GS, since any node

X ∈ S1 and any node Z ∈ S2 can be connected by a bidirected path constructed

by appending the bidirected path from X to Y in GS1 (guaranteed to exist since S1

is a C-component in GS1) to the bidirected path from Z to Y in GS2 (guaranteed

to exist since S2 is a C-component in GS2). Since S1 ∈ An(Y )GS1
, and S2 ∈

An(Y )GS2
, S ∈ An(Y )GS

. �

Theorem 30 Find-MACS(G, Y ) outputs the MACS of Y in polynomial time.

Proof: The algorithm is polynomial since determining An(.) and C(.) sets can

be done in polynomial time, and each recursive call eliminates at least one node

from the graph. Since the MACS of Y is unique, all ancestral confounding sets

of Y are contained in it (otherwise, I can repeat the argument in Theorem 29).

First, I show that the output set S of Find-MACS is an ancestral confounding

set of Y . If not, then either S 6= An(Y )GS
or S 6= C(Y ). But the algorithm

only returns if there is no element in S outside An(Y )GS
, and no element in S

outside C(Y )GS
. To show that S is maximum, assume this isn’t the case, and let
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Z ⊆ Ty \ S be the first node set in Ty removed by Find-MACS. Let G′ be the

graph at the stage where Z is removed. By assumption, Ty is contained in G′,

and either Z 6⊂ An(Y )G′ or Z 6⊂ C(Y )G′ . But Z ⊂ An(Y )GTy
, and Z ⊂ C(Y )GTy

by definition of Ty. Contradiction. �

Theorem 31 Let Tx, Ty be the MACSs of X, Y . Let Ix,y = Pa(Tx∪Ty)\(Tx∪Ty).

Then if either X is a parent of Ty, Y is a parent of Tx or there is a bidirected

arc between Tx an Ty, then X, Y are not d*-separable. Otherwise, X ⊥ix,y
Y |Tx∪

Ty \ {X, Y }.

Proof: Assume either X is a parent of Ty or Tx, Ty are connected by a bidirected

arc. It’s easy to verify, by definition of Ty, that the the above imply the presence

of an inducing path [VP90] from X to Y . Thus, no conditioning set can d-

separate X and Y . I want to show that identifiable interventions don’t help.

Consider disjoint subsets S, S ′ of Ty. A result in [SP06a] implies that P (v), G 6⊢id

P (y|s′, do(s)) iff P (v), G 6⊢id P (y, t|do(s, t′)), where T, T ′ is a certain partition of

S ′. By Theorem 28, P (v), G 6⊢id P (y|do(w)) for any subset W of Ty, which in

turn implies P (v), G 6⊢id P (y, t|do(s, t)). But if P (v), G 6⊢id P (y|s′, do(s)), then

P (v), G 6⊢id P (y, x|s′, do(s)). It is not difficult to construct a model where for

any superset Z of S ′, and superset W of S, P (v), G 6⊢id P (y, x|z, do(w)) (by for

instance letting nodes outside Ty be mutually independent). This implies the

result.

To show the other direction, consider Gix,y
, and a possible d-connected path

from X to Y . This path starts with an arrow leaving X or an arrow entering

X. Assume the arrow is leaving X. X cannot have conditioned descendants in

Gix,y
unless X was a parent of Ty or x ∈ Ty, both of which are impossible by

assumption. This means the path from X is just a set of directed arrows from

X. But such a path must run into nodes fixed by Ix,y, unless X was a parent of
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Ty or in Ty, which is impossible. Thus, no path starting with an outgoing arrow

from X can be d-connected to Y .

Assume the path starts with an incoming arrow into X. If the arrow is

directed, the corresponding parent Z of X is either in Tx or in Ix,y (and in

neither case can Z be equal to Y ). In either case, the path is not d-connected to

Y . If the arrow is bidirected, I have two cases. Either the next node Z in the

path is in Ty or outside both Ty and Ix,y (Z cannot be in Ix,y since then the path

will not be d-connected). For the first case, I repeat the argument until I reach

the second case. For the second case, Z cannot be in Tx, else there is a bidirected

path from Tx to Ty, which is ruled out by assumption. Note that Z cannot have

conditioned descendants in Gix,y
unless Z was a parent of Tx or Ty or was in Tx

or Ty. But I ruled all these cases out. Therefore, the subsequent arrows on the

path are directed arrows away from Z. As before, these arrows must eventually

reach Ix,y, which means the path is not d-connected. �

Lemma 11 Every AC-component has an ancestral confounded set.

Proof: If an AC-component is a singleton, this is obvious. Otherwise, Y is a union

of AC-components Y1,Y2 with ancestral confounded sets S1, S2. Let S = S1∪S2.

Since there is a bidirected arc from S1 to S2, for every node X ∈ S, S = C(X)S.

Moreover, by construction S = An(Y)S. Thus, S is an ancestral confounded set

for Y. �

Lemma 12 Let Y be a variable set, Y ∈ Y. Then there is a unique maximum

AC-component which both contains Y and is a subset of Y.

Proof: Some such AC-component exists, since Y itself is a trivial AC-component.

Since Y is finite there is a maximal such AC-component. Assume there are

two distinct maximal AC-components containing Y which are subsets of Y, say

Y1,Y2. Let S1, S2 be the corresponding MACSs. Since these AC-components
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have the node Y in common, S1 and S2 have a node in common, and so are

connected by a bidirected arc. This implies Y1 ∪Y2 is an AC-component, which

is a contradiction. �

Theorem 33 Any variable set Y has a unique partition p, called the AC-

partition, where each element S in p is a maximal AC-component in a sense

that no superset of S which is also a subset of Y is an AC-component.

Proof: To see that there is a unique AC-partition p, start with some node Y ∈ Y,

find it’s unique maximum AC-component which is still a subset of Y, and repeat

the process for the nodes which have not been made part of some AC-component.

The set of AC-components obtained in this way is a partition where each element

is a maximal AC-component. Since each AC-component is also maximum and

unique, p is unique. �

Theorem 34 Find-AC-Partition(G,Y) outputs the unique AC-partition of

Y, and the set of MACSs for each element in the partition.

Proof: I first show that p, the output of Find-AC-Partition, consists of a

partition of AC-components (not necessarily maximal). Clearly this is true at

the initialization step, since a singleton is a trivial AC-component. It’s also

clear by definition that any merge of Y1,Y2 results in an AC-component Y′.

Furthermore, by Theorem 7, Ty′ is the MACS of Y′.

Let p∗ be the AC-partition of Y. I claim that p∗ must be coarser than p, in

a sense that every element in p∗ is a union of a set of elements in p. Note that

this definition holds if p∗ is equal to p. Assume not. Then there are some sets

S ∈ p, S ′ ∈ p∗ such that some elements in S are in S ′ and some are not. Let

Z ∈ S∩S ′. By Lemma 12, there is a unique maximum AC-component containing

Z which is also a subset of Y. By definition of p∗, S ′ is this AC-component. But

if S is not contained in S ′, I can derive a contradiction by repeating the argument
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in the proof of Lemma 12.

Finally, I want to show p∗ is equal to p. Assume this isn’t the case, and fix some

element S ′ in p∗ which is a union of two or more elements in p. Since each AC-

component is either a singleton, or constructed from two smaller AC-components,

I can construct a binary tree T , where each leaf is a node in S ′, and each non-leaf

represents an AC-component obtained from the AC-component corresponding to

the left subtree of the non-leaf and the AC-component corresponding to the right

subtree of the non-leaf.

I want to find an AC-component A in T with the property that its left subtree

corresponds to a subset of some element S1 in p, and its right subtree corresponds

to a subset of another element S2 in p. This AC-component must exist, since

leaves in T are singletons, and the root of T corresponds to S ′, which spans

multiple elements in p. This implies that the MACS of a subset of S1 is connected

to the MACS of a subset of S2 by a bidirected arc. But the MACS of S1 and

the MACS of S2 are supersets of these connected MACS, so they are themselves

connected by a bidirected arc. But then p could not have been the output of

Find-AC-Partition. �

Theorem 35 X cannot be d-separated from Y in G if and only if there exists

an inducing path from X to Y in G,

Proof: Assume there is no inducing path from X to Y. Let A = An(X ∪Y) \

(X∪Y). I claim that X ⊥ Y|A. It’s not hard to see that if there is a d-connected

path from X to Y, then it does not have any nodes not in A. Assume otherwise.

Then some node on this path not in A must contain a collider. But this implies

the path is not d-connected, since this node does not have descendants in A.

Since I condition on A, the d-connected path must consist exclusively of

colliders. Moreover, by definition every node on the path is an ancestor of either
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X or Y. But this means the path is inducing. Contradiction.

Assume the inducing path from X to Y . I want to show I cannot d-separate

X from Y. First, I show that X 6⊥ Y.

I have three cases. The inducing path contains either entirely bidirected arcs,

or one directed arc following by zero or more bidirected arcs, or one directed arc,

following by zero or more bidirected arcs, followed by a directed arc.

Let A be the first node on the inducing path after X, B be the first node

on the inducing path after Y . If all nodes on the inducing path are ancestors

of X, then B is an ancestor of X. But the edge between Y and B is either

bidirected, or directed from Y to B. In either case, the ancestral path from X

to B plus this edge forms a d-connected path from X to Y . The same argument

applies if all nodes on the inducing path are ancestors of Y. Otherwise, find two

neighboring nodes C, D on the inducing path where C is an ancestor of X, and

D is an ancestor of Y. Then the ancestral path from X to C, along with the

edge along the inducing path from C to D, along with the ancestral path from

Y to D form a d-connected path from X to Y.

What I have to show is that regardless of which sets of nodes I condition on,

some d-connected path between X and Y remains. Let p′ the subpath of p such

that nodes on p′ are either conditioned on themselves, or their descendants are

conditioned on. If p′ = p, I am done since p is d-connected. Otherwise, consider

every pair of nodes A, B on p \ p′ such that all nodes on p between A and B

are in p′. By construction, the fragment of p between A and B is a d-connected

path, terminating with arrowheads on both ends. To show that there is a d-

connected path between X and Y, we repeat the above d-connection argument,

except rather than considering the path p, I consider the path p \ p′, and instead

of the d-connected paths between every node pair A, B as above, I consider a
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bidirected arc. �

Theorem 36 Let X,Y be arbitrary sets of variables. Let p be the AC-partition

of X∪Y. Then if either elements of both X and Y share a single AC-component

in p, or some element of X is a parent of the MACS of some AC-component

containing elements of Y (or vice versa), then X cannot be d*-separated from

Y. Otherwise, let Tp be the union of all MACSs of elements in p, and let Ip =

Pa(Tp) \ Tp. Then, X ⊥ip Y|Tp \ (X ∪Y).

Proof: What I want to show is that the conditions for the absence of d*-separation

of sets X,Y imply that there is an inducing path between X and Y, and that no

interventions on nodes in that inducing path are identifiable, at least if either X

or Y are the effect variables.

I first want to show that if Z is an AC-component, then for any disjoint

subsets S, S ′ of the MACS Tz, P (v), G 6⊢id P (z|s′, do(s)). By a result from

[SP06a], P (v), G 6⊢id P (z|s′, do(s)) iff P (v), G 6⊢id P (z, t|do(s, t′)), where T, T ′ is

a particular partition of S ′. But if P (v), G 6⊢id P (z|do(s, t′)), then P (v), G 6⊢id

P (z, t|do(s, t′)). Without loss of generality, then, I will prove that P (v), G 6⊢id

P (z|do(s)). By Theorem 28, this is true if Z = {Z}. Assume this is true for

AC-components Z1,Z2. I want to show this also holds for the AC-component

Z obtained from these two AC-components. Clearly, the result also holds for

T = Tz1 ∪Tz2 . I want to show the same is true for Tz. By construction, Tz can be

used to construct a C-forest [SP06b] for Z. The same is true for T . Then T, Tz

form a hedge [SP06b] for P (z|do(s′)), for any set S ′ ⊆ Tz \ T , which means the

result holds for Tz.

If there is an AC-component containing both elements of X and Y, then

an inducing path between X and Y exists by the definition of AC-component.

Similarly, if some element of X is a parent of the MACS of some AC-component
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which is a subset of Y, then an inducing path between X and Y exists by the

definition of AC-component.

If there is an AC-component C containing both elements of X and Y, then

by above reasoning for any disjoint subsets S, S ′ of Tz, P (v), G 6⊢id P (c|s′, do(s)).

Similarly, if there is an element of X which is a parent of the MACS of some

AC-component Y′ which is a subset of Y, then by above reasoning for any

disjoint subsets S, S ′, P (v), G 6⊢id P (y′|s′, do(s)). As before, it is not difficult

to construct a model where for any superset Z of S ′ and superset W of S,

P (v), G 6⊢id P (c|z, do(w)) (in the first case), or P (v), G 6⊢id P (y′|z, do(w)), (in

the second case). In either case, no combination of fixing and conditioning can

get rid of the inducing path, and the result follows.

To prove the other direction, consider a d-connected path in Gip
from X ∈ X

to Y ∈ Y. Without loss of generality, assume no elements in X,Y, other than

the end points are on this path.

The path either starts with an outgoing arrow, an incoming arrow, or a bidi-

rected arrow. Assume it starts with an outgoing arrow into a node Z. If Z is

inside some MACS, the next edge on the path can be assumed to be bidirected.

This is because this MACS cannot contain any nodes in Y, and because the next

node Z is conditioned on by assumption. Since the arrow is bidirected, I handle

this case in the “bidirected arrow” situation. If Z is outside any MACS, it is

either in Ip, in which case the path is not d-connected, or it does not have any

conditioned descendants, since the parents of every MACS are fixed. This means

the segment of the path from Z is just a set of directed arrows pointing away

from Z. But such a path must run into nodes fixed by Ip, which is impossible.

Thus there are no d-connected path starting with an outgoing arrow from X.

Assume the path starts with an incoming arrow into X. If the arrow is
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directed, the corresponding parent Z of X is either in Tp. or in Ip. If it is in Ip,

the path is not d-connected, since no element of Y can be a parent of the MACS

of an AC-component containing X by assumption. If it is in Tp, it is conditioned

on, and the path is not d-connected.

If the arrow is bidirected, I have two cases. Either the next node Z in the

path is in the MACS of an AC-component containing X, or outside both this AC-

component, and Ip. For the first case, I repeat the argument until I reach the sec-

ond case. For the second case, Z cannot be in any other MACS. Otherwise, there

is a bidirected arc between distinct MACSs returned by Find-AC-Partition

which is impossible by Theorem 34. Note that Z cannot have conditioned descen-

dants in Gip
unless Z was in Ip, which is impossible. Therefore, the subsequent

arrows on the path are directed arrows away from Z. As before, these arrows

must eventually reach Ip, which means the path is not d-connected. �

Theorem 37 Test-Edges terminates in polynomial time, and any edge it re-

moves from G′, valid for an experimentally faithful model M , is extraneous.

Proof: The first claim is simple to establish since all input graphs are acyclic, and

using Theorem 32. Let G be the true causal graph. Assume an edge (X, Y ) is not

extraneous but is removed from G′ by Test-Edges. Assume sets Z,W witness

the removal. But X ⊥⊥w Y |Z, and since the submodel Mw of M is faithful, this

implies (X, Y ) must be extraneous. �
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