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ABSTRACT

Inference of biological networks from high-throughput data is a central problem in bioin-
formatics. Particularly powerful for network reconstruction is data collected by recent
studies that contain both genetic variation information and gene expression profiles from
genetically distinct strains of an organism. Various statistical approaches have been applied
to these data to tease out the underlying biological networks that govern how individual
genetic variation mediates gene expression and how genes regulate and interact with each
other. Extracting meaningful causal relationships from these networks remains a challenging
but important problem. In this article, we use causal inference techniques to infer the pre-
sence or absence of causal relationships between yeast gene expressions in the framework of
graphical causal models. We evaluate our method using a well studied dataset consisting of
both genetic variations and gene expressions collected over randomly segregated yeast strains.
Our predictions of causal regulators, genes that control the expression of a large number of
target genes, are consistent with previously known experimental evidence. In addition, our
method can detect the absence of causal relationships and can distinguish between direct and
indirect effects of variation on a gene expression level.
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1. INTRODUCTION

Inference of biological networks from high-throughput genomic data is a central problem in bioin-

formatics where many different types of methods have been proposed and applied to a wide diversity of

datasets (Markowetz and Spang, 2007). Several recent studies have collected data in model organisms such

as yeast and mouse which contain both genetic variations as well as gene expressions from a set of genetically

distinct group of individuals. Originally, these ‘‘genetical genomics’’ datasets were used to identify genetic

variations located at specific genomic locations that affect expression levels in the form of linkages or

associations (Brem et al., 2002; Brem and Kruglyak, 2005). These studies treated expression levels as
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quantitative traits and each associated genomic location is called an expression quantitative trait locus

(eQTL). More recently, various statistical approaches have been applied to these datasets demonstrating them

as being particularly powerful for teasing out the underlying biological networks that govern how genetic

variations mediate differential gene expression and how genes regulate and interact with each other (Lee

et al., 2006; Robinson et al., 2002; Ghazalpour et al., 2006; Subramanian et al., 2005). Some of these methods

build on pioneering work in using graphical models to model gene regulatory networks (Friedman et al.,

2000; Pe’er et al., 2001; Segal et al., 2003; Friedman, 2004; Hartemink et al., 2001).

Extracting meaningful causal relationships from these networks has been a challenging but important

area of genetical genomics. What differs genetical genomics studies from traditional microarray analysis

and what makes causal inference possible is the idea to model genetic variations as random perturbations to

the underlying regulatory network. A principled way of representing the causal relationships in a biologicla

network is using graphical causal models (Pearl, 1988, 2000). Such models represent causal relationships

between random variables by means of a directed acyclic graph called a causal graph, where a directed

edge between two variables represents direct causal influence. The data-generating process represented by a

causal graph imposes a variety of constraints, such as conditional independence constraints, on the ob-

served data. A rich theory of causal inference has been developed (Pearl, 2000; Spirtes et al., 2000) which

attempts to reconstruct aspects of the graph from the pattern of constraints in the observations. Causal

relationships can then be read off directly from the reconstructed graph.

The advantage of the causal inference paradigm is that predictions made are in fact causal, and so can be

directly verified with knockout, siRNA or allele swap experiments. Compared to other methods such as co-

expression networks which aim to capture the global structure in the regulatory network, causal inference

methods attempt to identify the actual biological mechanisms regulating gene expression. Furthermore, for

many applications where the final goal is to perturb the biological system in some way, causal networks are

advantageous because they naturally predict the effect of possible interventions. The resulting models can

be perturbed in silico to help guide which experimental perturbations to apply.

The disadvantage of these methods is that existing causal inference theory is a large sample theory, and is

only guaranteed to work asymptotically. Unfortunately, in the case of inferring biological networks from

gene expression data, there are far fewer samples than genes, which means practical applications must be a

successful synthesis of ideas from both causal inference and small sample statistics.

There are two main approaches to learning causal graphs in biological networks. Score-based methods

assign scores to models which both produce high likelihood of the observed data, and have limited

complexity, and search for the highest scoring model (Suzuki, 1993; Lam and Bacchus, 1994). These

methods have been used in identifying causal regulators in yeast (Friedman et al., 2000; Pe’er et al., 2001;

Segal et al., 2003; Zhu et al., 2008; Bing and Hoeschele, 2005; Kulp and Jagalur, 2006) and causal mediators

of disease in mice (Schadt et al., 2005). Constraint-based methods rule out those causal graphs inconsistent

with patterns of conditional independence constraints in the observations. These methods have been applied

to discovering causal relationship between pairs of genes (Chen et al., 2007).

In this article, we discover the presence and absence of causal relationships between genes in yeast by

examining their expression levels over a set of individuals with random genetic variations. Causal dis-

covery is challenging in our case because there are several thousand genes, while the number of samples is

very limited. In particular, most conventional conditional independence tests or model selection algorithms

are not reliable in the small sample case, since conditioning severely reduces the number of samples

available, and as a result we cannot infer independence with high confidence, limiting our ability to induce

features of the causal graph.

Our approach is to rely on basic properties of graphical models to infer or exclude edge directionality

based on either simple unconditional independence tests which are possible to perform even in the small

sample case, or on results of simple model selection amongst small causal sub-graphs of the overall causal

model which have particularly strong signals. Our philosophy is that due to the small number of samples, it

is impossible to accurately recover the complete causal graph. We opt to predict only the subset of the

network where our predictions are likely to be correct.

We take advantage of prior biological knowledge that genetic variations affect gene expressions, but not

vice versa. This knowledge can be expressed graphically as forbidding directed paths from gene expres-

sions to genetic variations. While in general it is not possible to recover most causal structures based on

unconditional independence tests, the availability of prior knowledge allows us to ‘‘bootstrap’’ certain edge

orientations, which in turn allows us to orient more paths as causal using basic properties of d-separation
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(described below). Moreover, we can also rule out certain edge orientations using the same principals, thus

identifying the absence of certain causal relationships.

Our method is inherently conservative, only predicting the existence and orientation of edges in the

causal graph if there is strong support from the sample data. As expected, our approach predicts only a

small fraction of the complete causal regulatory network of yeast. However, the actual predictions made by

the method are surprisingly consistent with previous experimentally validated knowledge of yeast gene

regulation.

We demonstrate the utility of our method by analyzing the Brem et al. (2002) yeast strains. The 112 yeast

strains in this dataset was created by crossing a laboratory strain with a wild strain of S. cerevisiae. Both

genetic variations and gene expressions from each offspring have been collected. We focus our analysis on

an interesting feature of this dataset known as ‘‘regulatory hotspots’’ or regions in the genome in which a

genetic variation is correlated with the expression levels of many genes. Compared to traditional eQTL

mapping techniques that first identified these ‘‘regulatory hotspots,’’ our method provides much richer

causal information that simple correlation can not capture. First, our method allows us to infer causal

relationships between pairs of genes to identify global regulators that control the gene expression of target

genes correlated with a ‘‘regulatory hotspot’’. Second, our method can exclude causal relationships between

genes. Third, even when considering only variation-expression pairs, our method can distinguish whether a

variation has a direct or an indirect effect on expression. While several other methods attempt to infer

causal relationships between genes (Zhu et al., 2008; Chen et al., 2007), our method is the first to be able to

exclude causal relationships and distinguish between direct and indirect effects of a variation.

We evaluate our method’s ability to infer regulatory relationships by comparing it directly to two other

competing methods as well as verifying our results with previous experimental validations. Using our

method, of the 12 genes for which there is some experimental evidence that they behave as master

regulators (Yvert et al., 2003; Zhu et al., 2008), we recover 9 of them. Furthermore, for one of our

predictions, ILV 6, a competing method by Zhu et al., 2008 (2008) was not able to identify the gene as a

causal regulator based on expression data alone. The gene was only identified when additional transcription

factor binding data was incorporated. Combined with our method’s ability to exclude specific causal

relationships, we used gene set enrichment analysis to find that gene targets not causally affected by a

regulator to be enriched for different pathways and biological processes than gene targets affected by the

same regulator.

To evaluate our ability to distinguish between direct and indirect effects of a genetic variation on gene

expression, we take advantage of the fact that most expression transcripts are affected directly by a few

variations close to the gene through a mechanism called cis-regulation. Since our method does not rely on

information about the relative positions of a genetic variation and its effected gene, an enrichment of cis-

effects in our predictions for direct causal effects validates our method.

A shorter version of this article has previously been published as part of a conference proceeding (Kang

et al., 2009). In this article, we provide more details on our causal inference procedure by providing the

exact likelihoods for each gene in a triplet. We also updated our results by systematically identifying

‘‘regulatory hotspots’’ using a previously published method based on dividing the genome into discrete

sections and approximating the appearance of a linkage as a Poisson process (Brem et al., 2002). Using this

method, we identified 9 ‘‘regulatory hotspots’’ and 38 regulator genes which mediate the genetic variations.

Finally, we provide two additional visualizations for the causal relationships we discover. We use a spring

embedded algorithm to construct the yeast causal network and show that the ‘‘regulatory hotspots’’ overlap

well with the inherent hub structures. We also use a representation grouped by the ‘‘regulatory hotspots’’ to

show that there is significant cross talk between hotspots.

2. METHODOLOGY

2.1. Causal graphs for genetical genomics

We first introduce the machinery of causal inference needed to formalize our approach to inferring causal

relationships between a genetic variation (a SNP) and the expression of a pair of genes. Our primary object

of study is the probabilistic causal model (Pearl, 2000).

Definition 1. A probabilistic causal model (PCM) is a tuple M¼hU, V, F, P(u)i, where
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� U is a set of background or exogenous variables, which cannot be observed or experimented on, but

which can influence the rest of the model.
� V is a set fV1, . . . , Vng of observable or endogenous variables. These variables are considered to be

functionally dependent on some subset of U[V.
� F is a set of functions ff1, . . . , fng such that each fi is a mapping from a subset of U[V \{Vi} to Vi,

and such that
S

F is a function from U to V.
� P(u) is a joint probability distribution over the variables in U.

PCMs represent causal relationships between observable variables in V by means of the functions in F: a

given variable Vi is causally determined by fi using the values of the variables in the domain of fi. Causal

relationships entailed by a given PCM have an intuitive visual representation using a graph called a causal

diagram. In this graph, each node is represented by a vertex, and a directed edge is drawn from a variable X

to a variable Vi if X appears in the domain of fi. A graph obtained in this way from a model is said to be

induced by said model.

A node Y is an ancestor of node Z in a causal diagram G if there is a directed path from Y to Z. Causal

diagrams are generally assumed to be acyclic. While we expect the full yeast regulatory network to have

causal cycles (they serve as common regulatory mechanisms), in this paper we concentrate our efforts on

the fragments of the overall network where acyclicity holds.

One advantage of causal graphs, and graphical models in general (Pearl, 1988; Jordan and Weiss, 2002)

is their ability to represent conditional independence relations between variables in a qualitative and

intuitive way using the notion of path blocking known as d-separation (Pearl, 1988). Two variables X, Y are

d-separated if all causal and confounding paths from X to Y contain at least one variable whose value is

known, and the value of no common effect of both X and Y is known. Every d-separation statement

involving two nodes (or sets of nodes) in the graph corresponds to a conditional independence among the

corresponding sets of variables. That is, if every path from X to Y is blocked or d-separated by Z in a causal

diagram G, then X and Y are conditionally independent given Z in every probability distribution compatible

with G (Pearl, 1988). Furthermore in stable (Pearl and Verma, 1991) or faithful (Spirtes et al., 1993) models

the converse is also true: conditional independencies in the observations imply the corresponding d-

separation statement holds in the underlying causal graph. The faithfulness assumption thus allows us to

infer aspects of the generating causal graph from conditional independence constraints apparent in the data,

and is crucial for inductive causal inference. Faithfulness holds in ‘‘most’’ causal models, and can thus be

justified on Occam’s Razor grounds (Pearl, 2000).

Constraint-based inference of correct edge orientations in a causal diagram has two fundamental limits in

practical applications. The first is that it can be difficult to collect sufficient samples to perform reliable

conditional independence tests, and the second is that some causal diagrams may disagree on orientations

of particular edges while entailing the same set of conditional independence constraints (such causal

diagrams are called Markov-equivalent [Verma and Pearl, 1990]).

In this article, we will use causal graphs to represent causal interactions between genetic variations

and gene expression levels in yeast. In our case, the genetic variations is the set of single nucleotide

polymorphisms (SNPs). In this article, we limit our focus to inferring the presence or absence of a

causal relationship between gene expression levels based on independence tests and model selection we

can actually perform. We will be relying on the following three (elementary) theorems in graphical

models.

Theorem 1. Let G be a causal graph where X is d-connected to Y via a path ending in an arrow

pointing to Y, X is d-connected to Z, and X and Z are d-separated by Y. Then Y is an ancestor of Z.

If we assume faithfulness, this theorem implies we can infer causal directionality based on the result of

two unconditional independence tests, and one conditional independence test. In our case, X is a SNP, Y is

the expression level of a gene and Z is the expression level of a second gene. We are using our prior

knowledge that expression levels do not affect SNP values to satisfy one of the preconditions of the

theorem, namely that the d-connected path must end in an arrow pointing to Y. In particular, if Y is a gene

expression value, and X is a SNP value correlated with on Y, then Y cannot cause X. Using this theorem, we

are able to infer a causal relationship between the expression levels of genes Y and Z.

Unfortunately, testing whether X is conditionally independent of Z given Y in the small sample case is

not feasible. An alternative approach which is more appropriate in our case is to use a model selection

method, that is rather than performing the independence test, find the causal model over the local
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variables of interest, and read off causal directionality from its graph. In general, if we restrict ourselves

to a small part of a large causal model which contains three variables X, Y, Z, the causal diagram which

captures conditional independencies in the corresponding marginal distribution, that is P(x, y, z), will be

a mixed graph containing both directed and bidirected arcs, called a latent projection (Verma and Pearl,

1990). In latent projections, a directed arc from X to Y corresponds to a d-connected path which starts

with an arrow pointing away from X and ends with an arrow pointing towards Y in the original, larger

graph such that every node on the path other than X and Y is marginalized out or latent. Similarly, a

bidirected arc from X to Y corresponds to a d-connected path in the larger graph which starts with an

arrow pointing to X, ends with an arrow pointing to Y, and every node on the path other than X and Y is

marginalized out or latent.

If we restrict ourselves to local models of three variable marginal distributions, where certain causal

relationships are excluded due to prior knowledge (e.g., genes cannot cause SNPs), the complete set of

causal hypotheses is captured by a small set of latent projections.

Theorem 2. Let G be a causal graph where X is an ancestor of Y and Z. Then the latent projection

which represents conditional independencies of P(x, y, z) is one of the graphs in Figure 3a.

Theorem 2 allows us to select the graph in Figure 3a which best fits the available data (we use a version

of the likelihood ratio test), and use this graph to conclude causal directionality. The next theorem allows us

to conclude the opposite, that a variable cannot be a causal ancestor of another.

Theorem 3. Let G be a causal graph where X is d-connected to Y, and X and Z are d-separated. Then Y

cannot be an ancestor of Z.

As before, faithfulness allows us to apply this theorem to conclude the absence of causal directionality

based on the results of two unconditional independence tests. In our case SNP X is associated with the

expression level of gene Y, and SNP X is either independent of the expression level of gene Z or condi-

tionally independent given some other gene. In this case we can rule out a direct causal relation between

expression levels of genes Y and Z. In our case, the possible models are shown in Figure 3b. In the small

sample case, we again use a maximum likelihood method to perform such tests.

In the next section, we describe our statistical methodology in more detail.

2.2. Inference algorithm overview

Our algorithm for inferring the presence or absence of causal relationships of gene expression proceeds

in four steps. First, we find for every gene expression, the set of potential causal SNPs using the standard

F-test. Second, we infer the presence of causal relationships between pairs of genes correlated with the same

SNP by comparing the likelihoods of possible models. Third, we distinguish between direct and indirect

effects of genetic variation on gene expression. Fourth, we infer the absence of causal relationships based

on the results of step one and Theorem 3.

2.3. Finding potential causal SNPs

In the first step, we attempt to find, for every gene expression level, the set of potential causal SNPs, in

other words the set of SNPs which are either causal or which are confounded with causal SNPs.

To examine the (potential) causal relationship between SNP Si and expression level Ej in our small

sample case, we assume the following linear relationship between the two: Ej¼ aSiþ e. We use an arrow

notation to signify potential causality (?) and the negation (9) as no potential causality. Under the null

hypothesis of no potential causal relationship between the SNP and expression levels (Si 9 Ej), we expect

a¼ 0 (H0). Under the alternate hypothesis of a potential causal relationship (Si?Ej), we expect a= 0 (H1).

To decide between these hypotheses, one could calculate the likelihood ratio statistic xij¼ � 2 log L(H0)
L(H1)

or use the standard F-test which is related to the likelihood ratio statistic Fij¼ (N � 2)e
xij
N � 1 and follows

asymptotically the F distribution with 1, k� 2 degrees of freedom where k is the number of samples. We

calculate the F statistic Fij for every SNP=expression pair (Si, Ej). To assign significance, we shuffle the

labels of the individuals B times to obtain the null statistics F0
ijb, b¼ 1, 2, . . . , B. Then the p-value of each

SNP and expression pair can be calculated by looking at the ranking of the statistic of the pair in the

permuted null statistic distribution.

We can easily estimate the false discovery rate (FDR) for our statistic using previous approaches (Storey

and Tibshirani, 2003). To limit the number of potential causal networks to evaluate in subsequent steps, we

filter the SNP=expression pairs for those with a FDR of q< 0.01.
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Due to linkage disequilibrium or local correlation of variation, the SNPs which are correlated with ex-

pressions are not likely to be actually causal, but instead correlated with causal SNPs in the same geno-

mic region. Since all of the SNPs are correlated in a region, this does not affect our ability to make

inferences about the causal regulatory network, but we must keep in mind that the SNPs which we predict

to have direct effects are likely proxies for the true causal variants.

2.4. Finding causal relationships between genes

The next stage of our algorithm consists of inferring causal directionality between gene expressions by

using Theorems 1 and 2. Since the two unconditional independence tests have already been performed

in the first step, all that remains is to test conditional independence. Unfortunately, conditional tests present

a problem in the small sample case since conditioning further limits the number of samples we have to test.

An alternative approach is to consider multiple models consistent with the results of the unconditional

independence tests where in some models the conditional independence holds, and in others it does not. If a

model where the conditional independence test holds is the best fit for the data, and moreover accounts for

more of the fit compared to a ‘‘default’’ model making no conditional independence assumptions, then we

assume the conditional independence is likely true.

In our case, we are considering fragments of the causal graph consisting of a single SNP S and two

expression levels Ei, Ej dependent on S (due to step 1). Figure 3a shows the nine possible causal models in

the case that all of the elements are pairwise correlated. In H1 the SNP affects both expression levels

independently. In H2 and H3, there is a direct causal relationship between the two expression levels. The

‘‘default’’ models H4 through H9 impose no constraints on the data and are indistinguishable based on

conditional independence tests. Since they are all equivalent, for simplicity, we only consider H4 below.

We obtain information about the network whenever we predict a triplet to have a model H1, H2, or H3.

To distinguish between the three hypothesis H1, H2 and H3, we compute likelihood ratio statistics for each

hypothesis against the alternative H4, and conclude that a hypothesis is likely true if the corresponding ratio

exceeds the other ratio (e.g., fits better than the other simple hypothesis) and is close to unity (e.g., a simpler

hypothesis accounts for the observations). The fact that the likelihood ratio is close to unity means that the

missing edge in the triplet does not hurt the likelihood of the model compared to ‘‘default’’ model (H4).

This is equivalent to the standard approach of performing a likelihood ratio test for model selection taking

into account a complexity penalty. In this case, the complexity penalty would be applied to H4 since the

model has an additional degree of freedom. We also pairwise compare the likelihoods between H1, H2 and

H3 against each other and only consider triplets where the most likely hypothesis is more likely than the

others using a threshold.

We compute the likelihood for each model by computing the likelihoods at each target node. Since we

are interested only in the causal effects on individual genes, we can represent the causal effects on an

individual gene using a linear model assuming Gaussian noise. For every triplet, we can write the following

linear model for genes g1 and g2 and the common associated SNP s.

g1¼ l1þ bg2
g2þ bs1sþ e1 (1)

g2¼ l2þ bg1
g1þ bs2sþ e2 (2)

where m1 and m2 are the means for g1 and g2 repectively, and bg2, bs1, bg1, and bs2 are causal coefficients for

g2, s, g1, and s to their causal target nodes respectively, and e1 and e2 represent noise terms which follow

Gaussian distribution. In this model, all coefficients are estimated by maximum likelihood estimation. The

regression coefficients are interpreted as the Wright’s rule (Wright, 1921) sum of path products of coef-

ficients in the underlying (and unknown) true causal graph.

Since we assume that each gene expression is independently sampled from a underlying generative

model, computing the likelihood of the model given data is done by multiplying all the gaussian density of

errors calculated by least square method. We can represent this mathematically as follows:

L(MjD)¼
Yk

i¼1

1

r̂r
ffiffiffiffiffiffi
2p
p exp � (Xi� l̂l)2

2r̂2r2

� �
(3)

where, Xi is the data sample, and k is the number of samples, and r̂r and l̂l is computed by maximum

likelihood estimation from given data.
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2.5. Distinguishing between direct and indirect effects of variation

If a SNP S is associated with two genes Ei and Ej, the nine possible models are H1, H2, H3 and the

‘‘default’’ models H4 through H9. The models H2 and H3 explain the associations as a direct effect of

the SNP on one gene and an indirect effect on the other. Model H1 suggests that the SNP directly affects

the expression levels of both genes. Since our statistical methodology uses H4 as the default model, we are

unable to distinguish between direct and indirect effects if we can not classify a triplet as one of either H1,

H2, or H3.

Establishing direct and indirect effects in causal analysis is always done with respect to particular model

granularity. This is because it is generally always possible to observe intermediate variables between any

direct cause and its effect—finer granularity removes directness of causation. In our case, when distinguish-

ing direct versus indirect effects, the specific triplet that we are observing determines whether or not an effect

is direct or indirect. Consider the following motivating example of a SNP S and three genes with the under-

lying network S?E1?E2?E3. If we consider the triplet (S, E2, E3), the correct structure of the subgraph

is H2 and S will have a direct effect on E2 and an indirect effect on E3. Now if we consider the triplet

(S, E1, E2), the correct structure is again H2 and S will have a direct effect on E1 and an indirect effect on E2.

Intuitively, this is because when we consider the triplet (S, E2, E3), E1 is unobserved. Thus each prediction

of a triplet as H2 or H3 induces a partial order on the causal relationships between gene pairs. After examining

all pairs, we return the minimum set of causal relationships which are consistent with all of the triplet predic-

tions.

More complicated networks introduce ambiguity into our ability to distinguish between direct and

indirect effects. For example, if we add the edge S?E3 in our example, we can still identify E1?E2 as a

direct effect from the triplet (S, E1, E2), but are unable to identify E2?E3 as a direct effect. This is because

we will predict the structure of each triplet containing E3 and either E1 or E2 as H4 where the effects are

ambiguous. However, if there is an additional edge in the graph E3?E4, the triplet (S, E3, E4) would

identify E3?E4 as a direct effect.

2.6. Excluding causal relationships between genes

The ability to exclude certain causal relationships between genes, an inherent advantage of causal

analysis, is important to obtaining a more complete understanding of genetic regulation. For example, a

gene might be causal to a number of genes enriched for a biological process but not causal to a number

genes enriched for a different biological process even though it is correlated with both sets of genes. We

attempt to determine the absence of causal relationships by looking at a SNP and a pair of genes where the

SNP is the potential cause of one gene, but not the other. In this case, basic properties of d-separation

(Theorem 3) guarantee that there are only four possibilities H10 through H13 (Fig. 3b).

In H10, the SNP affects gene expression Ei, but gene expression Ej is completely independent from both

the SNP and gene expression Ei. In H11, both the SNP and gene expression Ej affect gene expression Ei

simultaneously. In H12, the SNP affects gene expression Ei, and gene expression Ei and gene expression Ej

has a hidden common causal parent. In H13, both the SNP and gene expression Ej affect gene expression

Ei and at the same time, gene expression Ei and gene expression Ej has a hidden common causal parent. In

none of these models, gene expression Ei affects gene expression Ej.

We model the association between a SNP and a gene expression using a linear gaussian model as in

Section 3.2. We correct multiple hypothesis testing problem by computing the false discovery rate (FDR)

(Storey and Tibshirani, 2003). We identify pairs of genes Ei and Ej where we can exclude causal rela-

tionships using the following criterion: a SNP is significantly associated with Ei (FDR of q< 0.01) and not

associated with Ej (FDR of q> 0.9).

3. RESULTS

We applied our method to an expression dataset of 5534 genes and a genotyping dataset of 2956 SNPs

collected over 112 genetic segregants of yeast. After step 1, we found 42331 (SNP, expression) pairs where

the SNP is causal to the expression at a FDR of q< 0.01. We constructed triplets from these causal pairs to

significantly reduce the number of possible causal models to evaluate for causal relationships between the

genes in step 2. For each triplet, we considered the four possible models H1, H2, H3 and H4 and identified
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the most likely as described above. We find the most likely of H1, H2 and H3 and required that the log

likelihood difference of the best model be within 2 of H4. This is equivalent to penalizing the likelihood

of H4 and applying using the likelihood ratio for model selection. Inferring causal relationships with few

samples can result in directional and causal conflicts. A directional conflict occurs when the direction of

causation predicted between two genes is inconsistent using different SNPs. A causal conflict occurs when

the presence and absence of a causal relationship predicted between two genes is inconsistent using

different SNPs. We examined the robustness of our method by quantifying the number of directional and

causal conflicts. Directional conflicts result when triples containing the same pair of genes and different

SNPs predict different directional causal relations between the genes. Causal conflicts result when different

triples both predict and exclude the same causal edge. As Table 1 shows, consistent across complexity

penalties, fewer than 3% of predicted causal relationships are in conflict. These prediction conflicts are due

to the limited number of samples available. We exclude all conflict predictions from our final result.

The genetic variations inherent in the individuals we study can be seeing as naturally occurring random

perturbations to the underlying regulatory networks that ultimately give rise to subtle differences in gene

expression. We present our results in the context of these regulatory networks by identifying genes that are

directly effected by the SNPs, regulators and those genes that are controlled by the regulators, targets.

Formally, we call a gene a regulator if there exists a directed edge from a cis SNP to the gene and a gene a

target if there exists a directed edge from a regulator to the gene. Intuitively, the requirement for a causal

cis SNP ensures a high probability that the SNP directly perturbs the gene expression of the regulator. In

our data, we found 3370 causal relationships consisting of 212 causal regulator genes and 1396 affected

target genes. Table 1 shows the number of causal relationships, causal regulators and affected target genes

discovered using various model complexity penalties for H4.

One way to make sense of the large number of causal relationships detected is to look for causal

regulators that affect a number of genes or ‘‘causal hubs.’’ Of particular interest is identifying causal

regulators that are associated with ‘‘regulatory hotspots,’’ defined as regions of the yeast genome linked to

the expression of a large number of genes. Presumably, these ‘‘causal hubs’’ are important regulatory

elements that lead to subtle changes in expression of genes belonging to a number of different biological

processes and functions. Previous analyses have identified several ‘‘regulatory hotspots’’ in the yeast

genome but very little is known about the corresponding ‘‘causal hubs’’ because of the limited resolution of

genotyping studies. In a few isolated cases, several groups have performed experimental knock out studies

to confirm the existence of causal regulators and allele swap studies to further show that these regulators are

perturbed by the corresponding ‘‘regulatory hotspot’’ (Yvert et al., 2003; Zhu et al., 2008).

We first identified 9 ‘‘regulatory hotspots’’ similar to previous methods (Brem et al., 2002) by dividing

the genome into 611 bins and approximating the number of linkages expected in each bin as a Poisson

process. Figures 1 and 2 show the complete causal network inferred by our method with regulators and

targets colored by the ‘‘regulatory hotspots’’ they belong to. Gray nodes indicate that a gene does not

belong to any identified ‘‘regulatory hotspot.’’ Figure 1 shows the spring embedded network where the

position of the nodes are determined so that the Euclidean distance is approximately proportional to the

geodesic distance between two nodes (Kamada and Kawai, 1989). Several regulatory hotspots overlap

remarkably well with the inherent hub structures that are present in this representation including hotspot 2

(bright red), hotspot 3 (bright green), and hotspot 9 (light blue). Figure 2 shows the same causal network

but with the nodes grouped in a circle by the ‘‘regulatory hotspot’’ they belong to. This representation

shows that there is significant cross talk between the regulatory hotspots and there is a significant number of

genes, indicated by the gray nodes, that are not part of any regulatory hotspot in our causal network.

Table 1. Summary Statistics for Different Likelihood Thresholds

Complexity

penalty

No. causal

regulators

No. affected

genes

No. causal

relationships

No. direction

conflicts

No. causal

conflicts

1 146 1106 2135 34 (1.6%) 7 (.3%)

1.5 183 1272 2794 30 (1.1%) 11 (.4%)

2 212 1396 3370 44 (1.3%) 13 (.4%)

2.5 240 1524 3983 59 (1.5%) 18 (.5%)

3 266 1615 4571 81 (1.8%) 20 (.4%)
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We further summarize our results by examining each regulatory hotspot in detail. The 38 genes which

are involved in the nine regulatory hotspots among the top 45 genes which have the largest number of

targets are summarized in Table 2. The seven genes which don’t belong to nine hotspots include

SDS24(60), LYS2(17), URA3*(17), GAS2(19), NMA111(20), NAM9þ(14), and YML133C(30). Both Chen

et al. (2007) and Zhu et al. (2008) applied causal inference methods to the same data allowing us to perform

a direct comparison of the results. Among the genes suspected to be global regulators in the hotspots, there

are a total of 12 causal regulators with some experimental evidence. Nine were proposed by the original

group that collected the data: AMN1, MAK5, LEU2, MATALPHA1, URA3, GPA1, HAP1, SIR3, and CAT5

(Yvert et al., 2003). Three additional were validated in Zhu et al. (2008): ILV6, SAL1, and PHM7. Our

method discovers all but 3 of these (MAK5, SIR3, and CAT5). We note that SIR3 and CAT5 have much

weaker experimental evidence than the others and none of the comparison methods—neither Chen et al.

(2007) nor Zhu et al. (2008)—were able to find these three. The best validation of our method is that we

were able to find ILV6 which was experimentally validated in Zhu et al. (2008). However, Zhu et al. (2008)

FIG. 1. Complete causal network in yeast with the nine regulatory hotspots colored. Circles designate regulators,

squares designate targets and diamonds designate genes that are both regulators and targets. The spring-embedded view

of the causal network shows that some hotspots, hotspots 2 (red), 3 (bright green), and 9 (light blue), overlap well with

the hub like structures of the network where regulators are positioned in the middle and targets surround the causal hub.
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used additional types of data (incorporating TFBS data from ChIP-chip experiments, phylogenetic con-

servation, and protein protein interaction data (PPI)) in order to discover ILV6 and they claim that they

would not have been able to discover ILV6 if they used only the data that we used. We note that ILV6 was

also suggested as a regulator for this hotspot by Kulp et al. (2006). We recover the highlighted genes from

Chen et al. (2007) including NAM9 which was not found by Zhu et al. (2008) and is supported by

‘‘bioinformatics type evidence’’ (GO analysis, etc). A direct comparison to Chen et al. (2007) is difficult

because their results are organized in a different way, yet our results are consistent with Chen et al. (2007)

in that they highlight their discovery of 6 of the experimentally validated regulators which we also discover.

Table 2 summarizes our results. Experimentally validated predictions are shown in bold. Regulators with

an asterisk (*) were found by Zhu et al. (2008). Regulators marked with a plus (þ) were found in Chen et al.

(2007) study and unlabeled regulators are novel predictions. In parentheses after the name of the regulator

is the number of targets that we found. We note that in most cases the experimentally validated regulator is

at the top of the list. We also observed that with various model complexity cut off, the ranking of predicted

genes is maintained, if the model complexity cut off is less than a certain threshold. Of particular interest are

a group of regulators linked to chromosome 14 which is enriched for mitochondrial genes. Previous published

studies in yeast did not identify any putative regulators in this region (Yvert et al., 2003). We found a number

FIG. 2. Complete causal network in yeast with the nine regulatory hotspots colored. Circles designate regulators,

squares designate targets and diamonds designate genes that are both regulators and targets. Causal network grouped by

hotspot shows that some regulators and targets (indicated by gray) are not part of known regulatory hotspots.
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of genes in this region (including three previously identified genes, SAL1, NAM9 and TOP2) and several

proteins of unknown function (including NMA111 and YNL035C).

We validate our ability to distinguish between direct and indirect effects of variation by considering the

genomic positions of SNPs and the locations of genes that they are associated with. Variation that affects

expression can be classified into two broad categories: cis-regulation which is an effect of a variation near a

gene that affects expression of the gene and trans-regulation which is an effect of variation located in one

region of the genome affecting expression of genes in other regions. It is suspected that most cis-regulation

is direct while trans-regulation may be either direct or indirect. Of the 42, 331 SNP gene pairs where the

SNP is associated with the expression of the gene, 11, 328 are predicted as cis-regulated gene while 31, 003

are trans-regulated gene. Using our approach, out of the 11, 328 cis-regulated genes, we predict 9, 385 of

them to have a direct effect on expression. Out of 31, 003 the trans-regulated genes, 20, 509 of the SNP gene

pairs have indirect effects. Thus cis-regulated genes are enriched in our predicted set of directly affected

genes, while trans-regulated genes are enriched in indirectly affected genes.

We speculate that the identified causal regulators are likely to either directly control or perturb biological

processes. However, step 3 of our analysis also identifies a collection of genes that are causally irrelevant to

other genes. Combining results from these two steps can help us identify specific biological processes that

are either regulated or not regulated by these causal regulators. We examined those eight significant causal

regulators from our results with previous experimental validation. For each regulator, we construct two sets

of genes, those that are causal targets and those that are causally irrelevent. We then use the hypergeometric

distribution to assess the statistical significance of overlap of each gene set to known gene sets. Table 3

shows the different GO pathways that are enriched when we performed this analysis. The eight regulators

appear to be involved in very different biological processes. For example, AMN1 is a causal regulator for

Table 2. Regulatory Hotspots and Corresponding Regulators

Hot

spot

SNP

Chr

SNP

Loc Regulators

No.

targets

1 2 370000 TAT1(49) 49

2 2 530000 AMN1*þ(226), YSW1þ(190), TBS1*(177), CNS1*þ(166), ARA1*(162),

SUP45*(31), AGP2(17), TOS1*(16), YBR137W(16)

303

3 3 90000 NFS1*(106), CIT2*(100), LEU2*þ(77), HIS4(66), ILV6*þ(29) 169

4 3 200000 MATALPHA1*(40), MATALPHA2 (24) 41

5 8 110000 GPA1*þ(15) 15

6 12 640000 HAP1*(22), MAP1*(22) 40

7 12 1060000 YLR464W*(32), YRF1-4* (30), YRF1-5*(22) 33

8 14 503000 SAL1*þ(138), LAT1(77), COG6(69), TOP2*(62), MSK1(38),

YNL035C(38), SWS2(17)

320

9 15 150000 PHM7*þ(227), RFC4(96), NDJ1*(69), HAL9*(66), ZEO1(55),

WRS1(38), SKM1(28), YOL092W(18)

263

Table 3. Significantly Enriched Processes for Causal and Not Causal Genes

Regulated targets Unregulated targets

Gene GO pathway p value GO Pathway p value

AMN1 Ribosome biogenesis and assembly 1.7�10�34 Establishment of localization 2.3�10�7

LEU2 Organic acid metabolic process 3.0�10�7 Ribosome biogenesis and assembly 3.5�10�10

MATa1 Biological regulation 5.9�10�6 Ribosome biogenesis and assembly 3.6�10�11

URA3 De novo pyrimidine base

biosynthetic process

4.6�10�6 Ribosome biogenesis and assembly 5.0�10�6

HAP1 Mitochondrial electron transport chain 2.4�10�10 Translation 3.6�10�13

ILV6 Amine biosynthetic process 2.4�10�17 Ribosome biogenesis and assembly 2.9�10�16

SAL1 Translation 7.9�10�30 Chromosome organization

and biogenesis

1.3�10�6

PHM7 Carbohydrate metabolic process 3.7�10�9 Translation 2.0�10�8
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ribosome biogenesis and assembly while four other regulators LEU2, MATALPHA1, URA3, and ILV6 are

causally irrelevant for the process. Similarly, SAL1 is a causal regulator for the process of translation while

HAP1 and PHM7 are causally irrelevant for the process. We notice that all significant processes are crucial

for cell growth and survival but are controlled by different global regulators. The causal analysis shows that

most of these global regulators participate specifically in certain biological processes. The one example of

multiple regulators from the same regulatory hotspot includes LEU2 and ILV6. In this case, these two regu-

lators participate in similar biological processes of organic acid metabolic process and amine biosynthetic

process respectively. We further confirmed the specificity of these global regulators by enrichment analysis

for localization of the causal and causally irrelevant targets. For example, SAL1’s causal targets are enriched

for localization to the ribosome while HAP1’s targets are enriched for localization to the mitochondrial

membrane. Furthermore, both PHM7 and HAP1’s causally irrelevant targets localized to cytosolic region of

the cell where translation takes place. Similarly, although LEU2 and ILV6’s causal targets are not enriched

for a specific cellular compartment, their causally irrelevant targets are both enriched for the nucleolus where

ribosome biogenesis and assembly takes place.

4. DISCUSSION

In this article, we combined a principled representation of causality using graphical causal models with

small sample statistical methods to infer the presence and absence of causal relationships between yeast

genes. Working with a dataset of genetically identical yeast strains allowed us to make strong causal

assumptions about edge directionality in the underlying causal model. These assumptions, in turn, allowed

us to take maximum advantage of the limited samples we had available by employing either unconditional

independence tests, or simple model selection to discover or exclude causal directionality between gene

expressions. This work motivates theoretical questions about the limits of causal inference based on either

restricting or eliminating conditional independence tests, and relying strictly on unconditional tests. In

addition, our method does not explicitly account for hidden confounding effects and could potentially make

erroneous predictions. Detecting causal relationships with latent variables is a challenging and active area

of both theoretical and applied research. Promising new techniques have been suggested and can potentially

be incorporated into our method.

We demonstrated the usefulness of our method by examining yeast expressions collected over a seg-

regated population derived from two parental strains to identifying many experimentally validated causal
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FIG. 3. Possible causal graphs relating a triplet considering a SNP S with the level of gene expression for genes Ei

and Ej. Bidirected edges denote hidden common causes. (a) Nine possible causal models consistent with S being a causal

ancestor of Ei and Ej (models H4 through H9 are indistinguishable from observations of the triplet). (b) Four possible

causal models consistent with S being a causal ancestor of Ei while being uncorrelated with Ej.
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regulators. In addition, our approach is able to distinguish between direct and indirect variations and exclude

causal relationships between genes. These results provide a rich description of the yeast gene regulation

network beyond any previous results from mapping studies, coexpression analysis and competing causal

methods.

Several interesting extensions can be applied to our method. One can either empirically or theoretically

characterize the strength of effects recoverable by our method to hypothesize about the strength of regulation

between genes. Many biological networks are in fact cyclical in nature and the assumption of certain type

of noise structures has been shown to be useful in identifying cycles in causal graphs. Finally, incorporating

additional phenotype information can potentially help us understand the genetic basis of complex phe-

notypes.
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