Key controls on the seasonal and interannual variations of the carbonate system and air-sea CO₂ flux in the Northeast Atlantic (Bay of Biscay)

Zong-Pei Jiang,1 David J. Hydes,1 Toby Tyrrell,1 Sue E. Hartman,1 Mark C. Hartman,1 Cynthia Dumousseaud,1 Xose Antonio Padin,2 Ingunn Skjelvan,3 and César González-Pola4

Received 31 August 2012; revised 11 January 2013; accepted 16 January 2013; published 13 February 2013.

1Biogeochemical variations of surface water in the Northeast Atlantic (Bay of Biscay) were examined using high-frequency underway measurements combined with monthly sampling of carbon-related variables. The mechanisms controlling seasonal CO₂ variability were investigated by distinguishing the contributions of biological and physical processes to the monthly changes in dissolved inorganic carbon (DIC) and partial pressure of CO₂ (pCO₂). The seasonality of DIC (47–81 μmol kg⁻¹) had a single peak with a winter maximum primarily driven by vertical mixing and a summer minimum driven by spring biological removal. Non-Redfield C:N uptake was observed in the nutrient-depleted summer but not during the spring bloom. In the North Atlantic, pCO₂ seasonality shows a latitudinal transition: from the temperature-dominated oligotrophic subtropical gyre to the subpolar region where pCO₂ is dominated by changing concentrations of DIC. In the midlatitude Bay of Biscay, the annual cycle of pCO₂ (61–75 μatm) showed a double-peak distribution. The summer pCO₂ peak was mainly driven by temperature increase, while the winter peak resulted from the dominant effect of entrainment of subsurface water. Interannual variations of DIC were more pronounced in winter and were driven by the changes in the strength of winter mixing. Higher wintertime concentrations and seasonal amplitudes of DIC were observed in cold years when the mixed-layer depths were deeper, which appears to be associated with negative phases of the North Atlantic Oscillation. The Bay of Biscay shows a decrease of CO₂ uptake in 2008–2010 (−0.97 and −0.75 mol m⁻² yr⁻¹) compared to 2002–2004 (−1.47 and −1.68 mol m⁻² yr⁻¹).

1. Introduction

[2] The ocean is an important sink taking up about a quarter of the anthropogenic CO₂ released each year [Le Quere et al., 2009; McKinley et al., 2011]. Oceanic carbon uptake slows the build-up of atmospheric CO₂ and mitigates human-driven climate change [Fung et al., 2005; Tyrrell, 2011]. Meanwhile, the CO₂ invasion is acidifying the ocean and could have deleterious impacts on marine ecosystems [Gattuso and Hansson, 2011; Orr et al., 2005]. There are large spatial and temporal variations in surface seawater biogeochemistry and air-sea CO₂ exchange across heterogeneous ocean regions [Takahashi et al., 2009]. Knowledge of this spatiotemporal variability is critical in order to understand the current carbon cycle and to predict the future oceanic response to climate change.

[3] The North Atlantic is one of the strongest ocean sinks for natural and anthropogenic atmospheric CO₂ [Sabine et al., 2004; Takahashi et al., 2009; Watson et al., 2009]. Much invaluable knowledge has been gained from the long-term measurements of carbon-related variables at marine time series stations in the North Atlantic, such as at BATs (Bermuda Atlantic Time-series Study) in the western North Atlantic subtropical gyre [Bates, 2001, 2007; Bates et al., 1996], at ESTOC (European Station for Time Series in the ocean) in the eastern part of the North Atlantic subtropical gyre [González-Dávila et al., 2003, 2007;
Santana-Casiano et al., 2007], and at OWSM (Ocean Weather Station M) in the Norwegian Sea [Skjelvan et al., 2008]. In recent years, acquisition of surface ocean CO2 partial pressure (pCO2) has been greatly expanded by the use of Ships of Opportunity (SOO, or Volunteer Observing Ship, VOS) equipped with underway measuring systems. Based on the observations obtained from time series stations and coordinated networks of SOO, several studies have tracked the changing CO2 sink in the North Atlantic basin [Corbieri et al., 2007; Schuster et al., 2009; Watson et al., 2009]. These studies suggested substantial variations in the carbonate system and annual CO2 fluxes on seasonal to decadal scales in the North Atlantic and also showed that interannual variability tends to be influenced by changes in large-scale climatic patterns.

[5] The Bay of Biscay is situated on the eastern side of the North Atlantic at midlatitudes; it is bounded by the Azores current from the subtropical gyre and the North Atlantic current from the subpolar gyre [Lavin et al., 2006]. The water masses of the Bay of Biscay mostly originate from the North Atlantic, and it is an area of deep winter mixing due to strong vertical convection [Lavin et al., 2006; Pollard et al., 1996]. Using data obtained from SOOs, Padin et al. [2008] examined the variability of oceanic CO2 concentrations and CO2 flux in the Bay of Biscay during 2002–2004. Based on an empirical algorithm developed from in situ observations, Padin et al. [2009] estimated the seawater pCO2 from remotely sensed sea surface temperature (SST) and chlorophyll-a (Chl-a). However, most SOO measurements were limited to pCO2 and basic ancillary environmental parameters such as temperature and salinity. Tracking the mechanisms controlling the variability of pCO2 and CO2 flux was difficult because of the lack of information on other important biogeochemical variables.

[6] To overcome this problem, monthly sampling of carbon-related variables in addition to high-frequency underway measurements were carried out since 2003 along the route of the MV Pride of Bilbao between Portsmouth (UK) and Bilbao (Spain) (http://www.noc.soton.ac.uk/ops/ferrybox/index.php) [Hydes et al., 2003, 2009]. This operation enabled some earlier studies of biogeochemical dynamics of surface waters on this route, particularly analyses of new production based on dissolved oxygen (DO) [Bargeron et al., 2006], variability of the carbonate system during 2005–2007 [Dumousseaud et al., 2010], and seasonal changes in the morphotypes of the coccolithophore Emiliania huxleyi [Smith et al., 2012].

[7] In this study, the records of two full annual cycles (SOO observations coupled with satellite data and subsurface data from Argo floats, September 2008 to September 2010) provide more details on the seasonal variations of the carbonate system, nutrients, and air-sea CO2 flux in the Bay of Biscay. The mechanisms controlling seasonal carbon variability were investigated by separating the contributions of biological and physical processes to the monthly changes in dissolved inorganic carbon (DIC) and pCO2. The data also allow us to follow the elemental stoichiometry of biological uptake of carbon and nutrients to evaluate the existence of "carbon overconsumption" [Sambrotto et al., 1993; Toggweiler, 1993] in the Northeast Atlantic. To examine the regional differences in seasonal patterns in the carbonate system in the North Atlantic, the data from the Bay of Biscay are compared to the time series observation results at BATS [Bates, 2001, 2007; Bates et al., 1996, http://bats.bios.edu/], ESTOC [González-Dávila et al., 2003, 2007; Santana-Casiano et al., 2007], and OWSM [Skjelvan et al., 2008]. Furthermore, trends in 2008–2010 are compared to those inferred from the 2005–2007 data along the same route [Dumousseaud et al., 2010] and the 2002–2004 data along an orthogonal route [Padin et al., 2008] (Figure 1). This extends the time series over which we can compare interannual variations to cover the years from 2002 to 2010. The interannual variability was investigated focusing on the role of winter mixing and its link with the large-scale climate variability such as the North Atlantic Oscillation (NAO) and the Eastern Atlantic pattern (EA).

2. Materials and Methods

2.1. Observations and Measurements

[7] The observational data in this study were obtained mainly from the MV Pride of Bilbao, which crossed various characteristic oceanographic regions from the English Channel to the Iberian Shelf [Bargeron et al., 2006]. Here we focus on the Bay of Biscay defined as latitudes 45–46.5°N along the ferry’s route (Figure 1) where the riverine influence is relatively small. Starting in April 2002, high-resolution observations of SST, salinity, DO (since February 2005), and Chl-a fluorescence have been made continuously by an onboard “Ferrybox” system with an intake depth of 5 m below the surface [Hydes et al., 2003, 2009]. Discrete samples for DIC, total alkalinity (TA), nitrate plus nitrite (NOX), silicate (DSi), phosphate (DIP), and coccolithophore abundance were collected monthly when possible from February 2005 onwards (nutrients from March 2003). The DIC and TA were
2.3. Calculations

The physical oceanography active archive center of the data were collected from the QuikSCAT product provided by the stability of a buoy moored in the Bay of Biscay (45.3°N). The in situ wind speed data came from the Gascogne Greenhouse Gases (http://gaw.kishou.go.jp/wdcgg/wdcgg.html). Details of these analytical methods were previously described by Dumousseaud et al. [2010] and are summarized in Table 1.

2.2. External Data

A number of other data sources were used to develop our interpretation of the data from the MV Pride of Bilbao. Argo floats (http://www.coriolis.eu.org) provide temperature profiles in the Bay of Biscay for the estimation of the mixed-layer depth (MLD) following the fitting algorithm developed by González-Pola et al. [2007]. The monthly area-averaged Chl-a data (45–46°N, 5–3°W) from the 4 km global products of MODIS-Aqua (Giovanni online data system by the NASA GES DISC, http://reason.gsfc.nasa.gov/Giovanni/) provide a consistent indication of the phytoplankton biomass processes. A number of other data sources were used to develop our interpretation of the data from the MV Pride of Bilbao. Argo floats (http://www.coriolis.eu.org) provide temperature profiles in the Bay of Biscay for the estimation of the mixed-layer depth (MLD) following the fitting algorithm developed by González-Pola et al. [2007]. The monthly area-averaged Chl-a data (45–46°N, 5–3°W) from the 4 km global products of MODIS-Aqua (Giovanni online data system by the NASA GES DISC, http://reason.gsfc.nasa.gov/Giovanni/) provide a consistent indication of the phytoplankton biomass processes [Abril et al., 1999, 2003, 2004]. Suggested by the salinities of the discrete samples (Figure 2b) and the underway salinity measurements along the ship’s route (Figure S1 in the supplement), using of equation (1) for salinity normalization did not significantly affect our discussion, as we only discussed the changes in DIC and pCO2 during this period in a qualitative fashion (see section 4).

2.3. Calculations

Salinity Normalization: normalization to a constant salinity is commonly used to correct for the influence of freshwater addition and removal on the marine carbonate data:

\[nX = \frac{X - X_{\text{obs}}}{S_{\text{obs}} \times S_{\text{ref}}} \times S_{\text{ref}} \]

(1)

where \(X \) is the measured variable (i.e., TA, DIC), \(S_{\text{obs}} \) is the measured salinity, and \(S_{\text{ref}} \) is the reference salinity (the mean observed value of 35.6 in our study). To account for the non-zero freshwater end member associated with the inputs of carbon and alkalinity from river, a region-specific term for \(S_{\text{ref}} \) was suggested to be used [Cai et al., 2010; Friis et al., 2003]:

\[nX = \frac{(X - X_{\text{obs}})}{S_{\text{obs}} \times S_{\text{ref}}} \times S_{\text{ref}} + X_{\text{obs}} \]

(2)

Although our study region is potentially affected by riverine freshwater, we used equation (1) to normalize DIC and TA because of the high uncertainties of the \(X_{\text{obs}} \) of the river end members and their changes in the estuary processes [Abril et al., 1999, 2003, 2004]. Suggested by the salinities of the discrete samples (Figure 2b) and the underway salinity measurements along the ship’s route (Figure S1 in the supplement), using of equation (1) for salinity normalization did not significantly affect our discussion, as we only discussed the changes in DIC and pCO2 during this period in a qualitative fashion (see section 4).

Carbonate Chemistry Calculation: concentrations of different components of the carbonate system were calculated using the program “CO2SYS” [Lewis and Wallace, 1998] from the measured DIC, TA, and ancillary data. The carbonate and HSO4 dissociation constants were chosen as “Mehrbach et al., 1973 refitted by Dickson and Millero, 1987” [Dickson and Millero, 1987; Mehrbach et al., 1973] and “Dickson” [Dickson, 1990], respectively.

DO Anomaly: The DO anomaly (DOanom) was calculated as the difference between the measured DO

Table 1. Methodology and Accuracy of the Measured Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Type</th>
<th>Methodology</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea surface temperature (SST)</td>
<td>underway</td>
<td>Aanderaa 4050 temperature sensor and SeaBird SBE48 hull temperature sensor</td>
<td>±0.05°C</td>
</tr>
<tr>
<td>Salinity</td>
<td>underway</td>
<td>Calculated from temperature (Aanderaa 4050 sensor) and conductivity (Aanderaa 3919 sensor), calibrated by the discrete samples measured by a Guildline Autosol salinometer (8400 B)</td>
<td>±0.03</td>
</tr>
<tr>
<td>Dissolved oxygen (DO)</td>
<td>underway</td>
<td>Aanderaa 3930 sensor, calibrated by the discrete samples measured by onboard Winkler titration</td>
<td>±1 mmol m⁻³</td>
</tr>
<tr>
<td>Dissolved inorganic carbon (DIC)</td>
<td>discrete</td>
<td>Coulometric titration by Marianda VINDTA 3C, corrected by Certified Reference Materials from Scripps Institution of Oceanography</td>
<td>±2 μmol kg⁻¹</td>
</tr>
<tr>
<td>Total alkalinity (TA)</td>
<td>discrete</td>
<td>HCl titration by Marianda VINDTA 3C, corrected by Certified Reference Materials from Scripps Institution of Oceanography</td>
<td>±2 μmol kg⁻¹</td>
</tr>
<tr>
<td>Nutrients</td>
<td>discrete</td>
<td>SEAL AutoAnalyzer</td>
<td>±0.1 μmol kg⁻¹ for nitrate and nitrite; ±0.1 μmol kg⁻¹ for silicate; ±0.02 μmol kg⁻¹ for phosphate</td>
</tr>
</tbody>
</table>
concentration (DO_{obs}) and the saturated value (DO_{sat}) [Benson and Krause, 1984]:

\[\text{DO}_{\text{anom}} = \frac{\text{DO}_{\text{obs}}}{C_0} \cdot \text{DO}_{\text{sat}} \] (3)

Air-Sea Flux: The air–sea flux of CO\(_2\) (\(F_{\text{CO}_2}\)) and O\(_2\) (\(F_{\text{O}_2}\)) were calculated as:

\[F_{\text{CO}_2} = k_{(\text{CO}_2)} \times \alpha \times \Delta p_{\text{CO}_2,\text{sea-air}} ; F_{\text{O}_2} = k_{(\text{O}_2)} \times \text{DO}_{\text{anom}} \] (4)

where \(\alpha\) is the gas solubility of CO\(_2\) as a function of seawater temperature and salinity [Weiss, 1974], \(\Delta p_{\text{CO}_2,\text{sea-air}}\) is the partial pressure difference of CO\(_2\) between the seawater (calculated from the measured DIC and TA using "CO2SYS") and the atmosphere (measured by the adjacent land stations), and \(k\) is the gas transfer velocity which can be calculated from Schmidt number of CO\(_2\) or O\(_2\) and wind speed [Wanninkhof, 1992]. The wind speed data were obtained from in situ buoy measurement or remote sensing (QuikSCAT). In addition, three algorithms [McGillis et al., 2001; Nightingale et al., 2000; Sweeney et al., 2007] were

Figure 2. The biogeochemical variations of the surface water in the Bay of Biscay from September 2008 to September 2010: (a) SST and MLD, (b) salinity and TA, (c) DO_{anom} and remotely sensed Chl-\(a\) concentration, (d) DIC and NO\(_3\), (e) *Emiliania huxleyi* cellular abundance and \(\Omega_{\text{calcite}}\), (f) DSi and DIP, (g) \(p_{\text{CO}_2}\) calculated from DIC and TA, and (h) calculated in situ pH in total scale. The monthly averaged values were connected for a better visualization of the seasonal trend. The annual cycle was divided into three periods with different dominant controlling mechanism on DIC and \(p_{\text{CO}_2}\) variability (see the text for details).
used for calculation, and the results were compared to assess the uncertainty resulting from different parameterizations of the gas transfer velocity.

14 Contributions to the Monthly DIC Changes: The observed changes in the concentration of salinity-normalized DIC (ΔDICobs) in the mixed-layer can be attributed to three groups of physical and biogeochemical processes-gas exchange (ΔDICgas), biological production (ΔDICBP), and mixing processes (ΔDICmix):

\[ΔDIC_{obs} = ΔDIC_{gas} + ΔDIC_{BP} + ΔDIC_{mix} \] (5)

15 Since ΔDICgas and ΔDICBP can be estimated from the measurements but ΔDICmix is difficult to estimate directly, ΔDICmix was calculated by difference as:

\[ΔDIC_{mix} = ΔDIC_{obs} - ΔDIC_{gas} - ΔDIC_{BP} = ΔDIC_{obs} - F_{C0}/MLD - NCP_{MLD}/MLD \] (6)

where ΔDICmix is estimated from the air-sea CO2 flux and MLD and NCP_{MLD} is the MLD-integrated net community production (NCP). For the biological term ΔDICBP, we only considered the effect of NCP but ignored the influence of calcification because of the relatively low coccolithophore abundance [Smith et al., 2012]. NCP_{MLD} can be estimated from the changes in the concentrations of NOx, DIC, or DO. The frequency of DO measurements (1–3 days at a given position) have better temporal resolution than those of NOx and DIC (monthly) in this study. Therefore, NCP_{MLD} was calculated from the changes in the gas transfer-corrected DO anom (DO_{anom}^{GasCorr}):

\[DO_{anom}^{GasCorr} = DO_{anom} + ΔDO_{gas} = DO_{anom} + F_{C0}/MLD \] (7)

where the DO_{anom} is corrected for the effect of gas exchange (ΔDO_{gas}). Considering the relative quick equilibration time of oxygen, the monthly air-sea O2 flux (F_{C0}) was calculated as the mean value of the 3-day fluxes. NCP_{MLD} was then estimated as:

\[NCP_{MLD} = (DO_{anom}^{GasCorr}_{m+1} - DO_{anom}^{GasCorr}_{m}) / (MLD_{m+1} + MLD_{m}) / 2 \times (C:O)_{NCP} \] (8)

where (DO_{anom}^{GasCorr}_{m+1} - DO_{anom}^{GasCorr}_{m}) is the difference in DO_{anom}^{GasCorr} between two consecutive months, (MLD_{m+1} + MLD_{m}) / 2 is the average MLD in those 2 months, and the Redfield (C:O)_{NCP} ratio of 106:138 was used to convert the changes in oxygen to those of carbon.

16 During the spring bloom, the effect of entrainment was insignificant (shoaling of MLD) and the riverine influence was also minor (relatively low salinity, Figure 2b). Therefore, our estimates of NCP_{MLD} during spring were little affected by the mixing effects. During autumn and winter with a deepening MLD, equation (8) underestimated the NCP_{MLD} since it did not account for the portion of production that balances the DO decrease induced by convection. However, this did not affect our ability to identify the major controlling factor of DIC variations (see section 4.1). In the stratified conditions from May to September/October, changes in concentrations of DIC are sensitive to small changes in biological or physical processes (including the riverine influence) acting on the small volume of water above the summer thermocline. Consequently, we did not separate the biological and mixing effects in this period and their combined effect was presented instead (ΔDIC_{BP, mix} in Figure 5a).

17 Temperature Effect on pCO2: The thermally forced pCO2 variation (pCO2,Temp) was calculated under isothermal conditions (DIC and TA fixed at their mean values of 2093 and 2350 μmol kg−1, respectively) but with CO2 solubility varying as a function of the measured temperature. Additionally, the temperature-normalized pCO2 (pCO2,NT) was calculated from the measured DIC and TA at the mean temperature (16.0°C).

18 Contributions to the Monthly Changes in pCO2: Seawater pCO2 is mainly a function of temperature, DIC, TA, and salinity [Takahashi et al., 1993]. All the processes affecting DIC in equation (5) would result in corresponding changes in pCO2, and pCO2 is further modulated by the changes in TA and temperature. In a similar way to equation (5), we broke down the monthly variability of the calculated pCO2 into the contributions of different biological and physical processes:

\[ΔpCO2 = ΔpCO2_{(ΔDIC_{gas})} + ΔpCO2_{(ΔDIC_{BP})} + ΔpCO2_{(ΔDIC_{mix})} + ΔpCO2_{(ΔTA_{mix})} + ΔpCO2_{(ΔTemp)} \] (10)

where the subscripts of ΔpCO2 correspond to the factors controlling variations in pCO2 resulting from the changes in DIC (ΔDIC_{gas}, ΔDIC_{BP}, ΔDIC_{mix}), TA (ΔTA_{mix}), and temperature (ΔTemp). ΔDIC_{gas}, ΔDIC_{BP}, and ΔDIC_{mix} were estimated from the equation (5). ΔTA_{mix} was calculated from changes in the observed TA which were corrected for the uptake or release of nutrients according to the nutrient-H+ compensation principle [Wolf-Gladrow et al., 2007]. ΔTemp was calculated from the observed temperature changes.

19 Each term in equation (10) was calculated on a monthly basis assuming that each process acted on the seawater carbonate system individually. The changes in DIC, TA, and temperature caused by each process were considered in turn while the other variables were held constant. The difference in pCO2 between the original state and the modified conditions were then calculated. Uncertainties of the calculations of equations (5) and (10) were estimated from the errors of measurements (Table 1) and as their propagation through the calculations [Taylor, 1982].

3. Seasonal Variations

20 The plots in Figure 2 show the seasonal cycles in the Bay of Biscay covering the two full annual cycles between September 2008 and September 2010.
3.1. Hydrography and Environmental Variables

[21] The seasonal amplitudes of the monthly mean SST (Figure 2a) were 8.4 °C and 8.9 °C in the 2 years, respectively. Winter minima in SST occurred in February 2009 (11.9 °C) and March 2010 (11.8 °C), and summer maxima occurred in August in both years (20.3 °C and 20.6 °C). The seasonal evolution of MLD was coupled to the changes in SST (Figure 2a). The deepening of the MLD progressed from autumn along with decreasing SST and developed to 400–500 m in the coldest months. A transition from deep water mixing to shallow stratification was observed in spring, and stable stratification (~20 m) developed in May and then remained throughout the summer. The monthly mean salinity ranged from 35.46 to 35.68 without an obvious seasonal trend, but most low salinities were observed during the post-bloom summer months (Figure 2b and Figure s1 in the supplement). The low salinity surface water along this SOO route and its movement relating to the wind and current was discussed by Kelly-Gerreyn et al. [2006].

[22] The remotely sensed Chl-a (Figure 2c) peaked during the spring blooms (up to 1.2 and 1.7 mg m⁻³ in 2009 and 2010, respectively) compared to the low concentrations in other seasons (~0.3 mg m⁻³). Coccolithophore abundance showed a similar pattern to that of Chl-a (Figures 2c, 2d). The concentration of the dominant species of coccolithophores (Emiliania huxleyi) peaked in April (2.77 × 10⁵ and 0.46 × 10⁵ cells L⁻¹ in 2009 and 2010, respectively) but well below bloom levels (10⁶ cells L⁻¹). Together with the increasing phytoplankton biomass, DOₐnom increased during spring reaching 33.4 μmol kg⁻¹ in May 2009 and 35.5 μmol kg⁻¹ in April 2010. It then decreased toward winter to a slight undersaturation in February (Figure 2c).

3.2. Carbonate System and Nutrients

[23] The ranges of the monthly averaged TA were 15 and 26 μmol kg⁻¹ in 2008/2009 and 2009/2010, respectively, but there was not a clear seasonal trend in TA variations (Figure 2b). Salinity normalization (nTA₃₅.₆, Figure 3b) did not explain the TA variations. The local calcification influence on TA was expected to be minor because of the low abundance of coccolithophores (Figure 2d). The small difference between nTA₃₅.₆ and the potential TA (pTA = nTA + NO₃) in Figure 3b indicated that uptake or release of nutrients during the organic production also did not have a significant influence on the TA variability. Therefore, mixing processes (i.e., riverine influence or advection of water mass with calcification signals) appear to be more important than the local biological processes affecting the TA concentration in our study region. The measured values of TA were generally higher than those predicted using a published algorithm for the north Atlantic open ocean based on SST and salinity (TA_Lee in Figure 3a) [Lee et al., 2006]. This suggests additional TA sources to our study region, which may be related to the high TA concentrations of the rivers Loire and Gironde and the addition of TA in the estuary [Abril et al., 1999, 2003, 2004].

[24] In contrast, DIC showed a clear seasonality (Figure 2e) that varied inversely with SST and MLD (Figure 2a). The concentrations of DIC increased in autumn and winter, at a time when there was decreasing SST and deepening of the MLD. The annual maximum concentrations of DIC in February (2137 μmol kg⁻¹ in 2009 and 2134 μmol kg⁻¹ in 2010) were followed by decreases through spring to summer minima in July (2057 μmol kg⁻¹ in 2009 and 2072 μmol kg⁻¹ in 2010) (Figure 2e). Figure 2d presents the calculated saturation state of the calcite form of CaCO₃ (Ω): Ωcalcite = [Ca²⁺] × [CO₃²⁻]/Ksp(calcite), where [Ca²⁺] and [CO₃²⁻] are the concentrations of Ca²⁺ and CO₃²⁻, and Ksp(calcite) is the stoichiometric solubility product of calcite. Higher values of Ω favor the formation of CaCO₃ shells and skeleton, while values lower than 1 are corrosive to CaCO₃ [Feely et al., 2008]. The Ω(calcite) was constantly above 1 in our study region, and its seasonal cycle was opposite to that of DIC with higher values in summer (~5.2) and lower values in winter (~3.6). The potential effects of these changes on coccolithophores have been considered in the associated study of Smith et al. [2012].

[25] Similar to DIC, concentrations of nutrients (Figures 2e, 2f) increased from autumn to maxima in late winter (7.6 and 7.3 μmol kg⁻¹ for NO₃, 0.43 and 0.48 μmol kg⁻¹ for DIP, 2.20 and 2.22 μmol kg⁻¹ for DSI in 2008/2009 and 2009/2010, respectively). During spring, nutrients showed parallel declines associated with DIC drawdown and corresponding increases in Chl-a and DOₐnom (Figure 2). Concentrations of NO₃ and DIP decreased to a depleted level at the onset of stratification and remained low throughout the summer (<0.15 μmol kg⁻¹ for NO₃ and <0.05 μmol kg⁻¹ for DIP, respectively), while the concentrations of DSI remained at ~0.5 μmol kg⁻¹ in the summer (Figures 2e, 2f).

Figure 3. Alkalinity versus salinity: (a) measured TA and TA_Lee predicted from SST and salinity using Lee et al.’s [2006] algorithm and (b) TA normalized to the mean salinity of 35.6 (nTA₃₅.₆) and potential TA (pTA = TA + NO₃).
In contrast to the single annual peak in DIC, the calculated seawater $p\text{CO}_2$ was characterized by a double-peak annual cycle (Figure 2g). One peak in $p\text{CO}_2$ was observed in the late winter (386 and 385 μatm in February 2009 and 2010, respectively) together with the annual maxima of DIC and nutrients, while the second peak in summer (379 and 390 μatm in August 2009 and 2010, respectively) corresponded to the annual maximum SST. The corresponding two minima in respectively) corresponded to the annual maximum SST. The corresponding two minima in $p\text{CO}_2$ were observed in early winter (337 and 346 μatm in November 2009 and 2010, respectively) and late spring (311 and 329 μatm in May 2009 and 2010, respectively). The calculated in situ pH ranged from 8.02 to 8.17, showing a mirror image of the distribution of $p\text{CO}_2$ (Figure 2h).

3.3 Air-Sea CO_2 Flux

The air-sea CO_2 exchange is driven by the $p\text{CO}_2$ differences across the air-sea interface ($\Delta p\text{CO}_2,\text{sea-air}$ in Figure 4a). The atmospheric $p\text{CO}_2$ showed a seasonal variability of ~16 μatm in 2008–2010 (not shown), which is lower than that in the seawater (75 and 61 μatm, Figure 2g). Therefore, $\Delta p\text{CO}_2,\text{sea-air}$ were determined more by the greater variations in the seawater $p\text{CO}_2,\text{sea}$. Figure 4a shows that surface seawater in the Bay of Biscay was undersaturated in $p\text{CO}_2$ in autumn (October to November) and spring (March to June) in both years. In contrast, $p\text{CO}_2$ in seawater was close to equilibrium with the atmosphere in winter (December to February) and became slightly supersaturated in $p\text{CO}_2$ in summer (July to September). The second factor determining the rate of CO_2 exchange is wind speed [Wanninkhof, 1992].

Over the Bay of Biscay, winds tend to be governed by the Azores High and Iceland Low [Lavin et al., 2006]. The wind speeds measured at the Gascogne Buoy had similar patterns in both years (Figure 4b): higher in winter and weaker in spring and summer. The QuikSCAT wind speeds showed similar trends when compared to the buoy measurements and were ~0.5 m s$^{-1}$ lower than the in situ wind speed.

Due to the similarity of the patterns in variation of $\Delta p\text{CO}_2,\text{sea-air}$ and wind speed between years, the air-sea CO_2 flux seasonal patterns were also similar in 2008/2009 and 2009/2010 (Figure 4c). Two periods of greater oceanic CO_2 uptakes were observed: at the end of spring bloom and at the onset of winter turnover. The former period was mainly associated with more negative $\Delta p\text{CO}_2,\text{sea-air}$ and the other with high wind speed. The Bay of Biscay became neutral or turned into a weak CO_2 source to the atmosphere at the times of the two peaks in $\Delta p\text{CO}_2,\text{sea}$ toward the end of winter and in summer (Figure 4c).

The annual CO_2 flux was integrated from the monthly fluxes. The three algorithms of gas transfer calculation [McGillis et al., 2001; Nightingale et al., 2000; Sweeney et al., 2007] and the two sets of wind speed data (in situ buoy measurement and remotely QuikSCAT data) were used to estimate the uncertainty for the CO_2 flux estimation (Table 2). When the in situ wind speed was used, the annual CO_2 fluxes calculated following the three algorithms were -1.05 ± 0.04 and -0.88 ± 0.06 mol m$^{-2}$ yr$^{-1}$ in 2008/2009 and 2009/2010, respectively. The annual fluxes estimated from the QuikSCAT data were -1.01 ± 0.03 mol m$^{-2}$ yr$^{-1}$ in 2008/2009 and -0.81 ± 0.05 mol m$^{-2}$ yr$^{-1}$ in 2009/2010 (gaps in the QuikSCAT record in 2009/2010 were filled by estimation based on the in situ measurements and their correlation with QuikSCAT data during 2005–2009, $R^2 = 0.89$).

Figure 4d shows the gas transfer-induced DIC changes and their relationship with the air-sea CO_2 flux and MLD. It suggests that gas exchange had little influence on changing concentrations of DIC between December and April as the CO_2 influx from gas exchange was diluted into

<table>
<thead>
<tr>
<th>Wind speed Parameterization</th>
<th>QuikSCAT</th>
<th>Buoy measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N00</td>
<td>M01</td>
</tr>
<tr>
<td></td>
<td>N00</td>
<td>M01</td>
</tr>
<tr>
<td>2002/2003</td>
<td>-1.47</td>
<td>-1.60</td>
</tr>
<tr>
<td>2003/2004</td>
<td>-1.68</td>
<td>-1.80</td>
</tr>
<tr>
<td>2008/2009</td>
<td>-0.97</td>
<td>-1.02</td>
</tr>
<tr>
<td>2009/2010</td>
<td>-0.75</td>
<td>-0.85</td>
</tr>
</tbody>
</table>

*The wind speed data were from QuikSCAT remote sensing and in situ buoy measurement (no available data in 2002–2004). Three parameterizations of the gas transfer velocity were used: McGillis et al. [2001] (M01), Nightingale et al. [2000] (N00), Sweeney et al. [2007] (S07).
a large volume of water as the mixed-layer was relatively deep. In contrast, CO$_2$ invasion from the atmosphere noticeably increased concentrations of DIC in the post-bloom period (May to July) and autumn (October and November). These were times of a high air-sea CO$_2$ flux entering a shallow mixed-layer.

4. Controlling Mechanisms of the Seasonal Variations of DIC and pCO$_2$

[31] To better examine the seasonal variability, we divided the annual cycle into three periods (Figures 2 and 5). This is similar to the division in “pre-bloom, bloom, and post-bloom” periods made by Padin et al. [2008] but is here based on the evolution of MLD and concentrations of nutrients. The first period “MLD deepens” covers autumn and winter with the progressive deepening of the MLD (October to February/March). The second period “spring bloom” is from the month with the maximum nutrient concentrations to when nutrients were depleted (February/March to May). The third period “post-bloom” is summer with surface stratification from June to September. In Figure 5, monthly changes in DIC and pCO$_2$ were partitioned into the contribution from the individual biological and physical controlling factors using equations (5) and (10).

4.1. Key Controls on the Seasonality of DIC

[32] During the period of “MLD deepens,” concentrations of DIC showed an increasing trend along with the deepening of the MLD (Figure 2). As DIC increases with depth (Figure s2 in the supplement), the entrainment of deep water enriched in CO$_2$ elevated the concentration of DIC in the surface layer. As shown in Figure 5a, the net increases in DIC during this period mainly resulted from the effect of mixing processes (ΔDIC$_{mix}$), which overcame the influences of biological activities (ΔDIC$_{BP}$) and gas transfer (ΔDIC$_{gas}$). If a well-mixed state of the upper 470 m (the maximum MLD in the two winters) water column was assumed, the DIC concentration (2132 μmol kg$^{-1}$) calculated from the vertical profiles (measured in September 2005, Figure s2 in the supplement) corresponded well with the observed winter peaks (2137 and 2134 μmol kg$^{-1}$ in 2009 and 2010 in Figure 2e). Therefore, the convection-induced DIC increase was the major driver of the increasing DIC concentration in the “MLD deepens” period.

[33] During the “spring bloom” period, concentrations of Chl-a increased significantly fueled by the nutrients supplied from the preceding winter mixing (Figure 2). The autotrophic biological production (ΔDIC$_{BP}$ in Figure 5a) resulted in declines in DIC and nutrients (Figures 2e, 2f) accompanied by the production of DO (Figure 2c). Meanwhile, the mixing effect (ΔDIC$_{mix}$ in Figure 5a) is small as the MLD is shoaling. Photosynthetic uptake was thus the dominant process resulting in the drawdown of DIC and nutrients in the productive “spring bloom” period.

[34] The mixed-layer during the “post-bloom” period was characterized by depleted nutrients and strong stratification, and the concentration of DIC was unusually prone to change because of the shallow MLD. During this period, biological production was limited by nutrient scarcity; vertical mixing was suppressed by stratification; but the salinity data suggested the influence of river water (Figure 2b). DIC variability in the “post-bloom” period was controlled by a combination of biological and physical effects without a single dominant controlling factor. Therefore, the effects of biological and mixing were not separated in this period and their combined effect was presented (ΔDIC$_{BP+mix}$ in Figure 5a).

Figure 5. (a) Contributions to monthly changes in the salinity-normalized DIC (ΔDIC) from individual processes as indicated by the subscripts: gas exchange (“gas”), mixing (“mix”), biological production (“BP”). The biological and mixing influence were not separated during the stratified post-bloom period and their combined effect (“BP + mix”) was shown. (b) The corresponding changes in pCO$_2$ resulted from these changes in DIC were presented together with those resulted from the changes in temperature (ΔpCO$_2(\Delta$Temp)) and mixing-induced TA changes (ΔpCO$_2(\Delta$TAmix)). See the text for details.
4.2. Key Controls on the Seasonality of pCO_2

[35] The seasonal ranges in SST in the Bay of Biscay resulted in corresponding thermally driven pCO_2 variations (pCO_2Temp in Figure 6a) of 126 and 136 μatm in 2008/2009 and 2009/2010, respectively. On the other hand, the temperature-normalized $pCO_{2,NT}$ (Figure 6a) reflects the influence of nonthermal processes (i.e., air-sea CO2 transfer, biological activity, and mixing) on pCO_2 variability [Körtzinger et al., 2008]. $pCO_{2,NT}$ displays an annual cycle similar to the concentration changes in DIC (Figure 2e), and its seasonal amplitudes were 154 and 143 μatm in 2008/2009 and 2009/2010, respectively (Figure 6a). The opposite trend between $pCO_{2,Temp}$ and $pCO_{2,NT}$ (Figure 6a) suggests a competing effect of temperature and the nonthermal driver of the seasonal cooling (ΔT) [36]. Considering the contributions of the various processes to the monthly changes in pCO_2 (equation 10), the result shown in Figure 5b suggests that the influence of temperature (ΔpCO_2,Temp), biological production (ΔpCO_2,BP), and mixing-induced changes in DIC (ΔpCO_2,DICmix) were more important than gas transfer (ΔpCO_2,DICgas) and mixing-induced changes in TA (ΔpCO_2,TAmix) throughout the annual cycle. During the “MLD deepens” period, ΔpCO_2,DICmix was the dominant driver of the pCO_2 increases (Figure 5b). The entrainment of the CO2-rich subsurface water led to a net increase in pCO_2 overriding the pCO_2 decreases resulting from the seasonal cooling (ΔpCO_2,ATemp) and biological ΔpCO_2,DICmix. During the “spring bloom” period, pCO_2 drawdown was mostly explained by the photosynthetic uptake of ΔpCO_2,BP, which exceeded the increasing tendency due to surface warming (Figure 5b). From autumn to spring, the major controlling factors on pCO_2 were the same as those acting on concentrations of DIC; therefore, pCO_2 varied in phase with DIC during these periods (Figures 2e, 2g). However, the ΔpCO_2,BP and CO2 invasion (ΔpCO_2,DICgas) exceeded the combined effects of biological production and mixing (ΔpCO_2,DICmix) during the stratified summer conditions (Figure 5b). The dominance of the temperature effect over other nonthermal processes resulted in the summer pCO_2 peak occurring at the same time as the highest SST.

[37] The key controls on the double-peak distribution of the pCO_2 annual cycle were also shown by the relationship between pCO_2 and NOx (Figures 6b, 6c). The peaks of pCO_2 and NOx (as well as DIC) in late winter were mainly generated by convection-driven winter increases and biological-induced spring decreases. In contrast, low biological production in the nutrient-depleted surface seawater during the stratified “post-bloom” period results in temperature becoming the dominant control on the pCO_2 variations in summer.

5. C:N Stoichiometry

[38] The Redfield stoichiometry [Redfield et al., 1934] is a basic paradigm in ocean biogeochemistry relating the fluxes of carbon and nutrients through the production and remineralization cycle. Recent studies have suggested that the stoichiometry of NCP may differ from the Redfield ratio. “Carbon overconsumption,” i.e., the elevated consumption of carbon relative to the Redfield equivalent of nutrient uptake (C:N = 6.6), has been reported for the surface ocean including the North Atlantic [Sambrotto et al., 1993; Toggweiler, 1993]. The C:N ratio of NCP, (C:N)$_{NCP}$,
estimated from the mixed-layer regression of DIC and nitrate in the 1989 North Atlantic Bloom Experiment (NABE) was well above the Redfield value (up to 14.2 ± 0.2 [Sambrotto et al., 1993]). Along an Atlantic transect (30–60°N, 20°W) covering different trophic states with migrating spring bloom conditions, Körtzinger et al. [2001] reported an increasing (C:N)NCP from pre- or early bloom condition (5–6) to the post-bloom/oligotrophic system (10–16). At a single point, the (C:N)NCP estimated from observations of pCO2 and nitrate on a mooring (49°N, 16.5°W) was 11.0 ± 0.7 [Körtzinger et al., 2008]. On a basin-integrated scale in the North Atlantic (40–65°N), the C:N ratio of new production estimated from climatological data (11.4 ± 1.4) also far exceeds the Redfield value [Koeve, 2006]. However, a reanalysis of the NABE data and the 20°W transect data [Koeve, 2004] suggested that the average seasonally integrated cumulative (C:N)NCP between winter mixing and the end of bloom is not significantly different from the Redfield ratio. Koeve [2004] also suggested that the elevated (C:N)NCP in the temperate and subarctic Northeast Atlantic was probably generated from carbon overconsumption in summer rather than during spring bloom.

[39] The NABE data are only from observations over a 2-week period [Sambrotto et al., 1993], and extrapolation from spatial patterns along the 20°W transect to a model for seasonal progression [Körtzinger et al., 2001] is open to question. Koeve [2004] also pointed out that the estimations of (C:N)NCP critically depend on determination of the preformed winter DIC and nutrient concentrations. In this study, we directly observed the wintertime concentrations of DIC and nutrients and the subsequent changes in their concentrations month by month. This enables a reliable and direct evaluation of the progression of elemental stoichiometry of (C:N:P)NCP.

[40] To accurately estimate the (C:N:P)NCP, the salinity-normalized DIC concentrations were corrected for the air-sea exchange (nDICGasCorr Figures 7a, 7b) to account for the biasing effect of gas exchange. The effect of calcification was neglectable on the basis of the low coccolithophores abundance and the small TA variability as discussed above. The relative changes in nDICGasCorr, NOx and DIP during the three periods are shown in Figure 7. The slopes estimated from linear regression during the spring bloom period reflect the time integrated uptake ratios of DIC and nutrients. The samples with NOx concentrations lower than 0.5 μmol kg⁻¹ were discarded in the regression to avoid the effect of nutrient limitation [Sambrotto et al., 1993].

[41] The ratios of (C:N)NCP were 5.77 ± 0.45 (R² = 0.96) and 6.56 ± 0.71 (R² = 0.89) in the 2 years (Figures 7a, 7b), respectively. These values did not show “carbon overconsumption” during the spring bloom when nutrients were not limiting. However, closer inspection shows that DIC continued to decrease after the end of bloom when NOx was undetectable (Figures 2, 7a, 7b). So we appear to be seeing non-Redfield consumption of carbon versus nitrogen in the “post-bloom” period with nutrient stress. This may possibly be attributed to the riverine influence, or preferential recycling of nutrients [Bozec et al., 2006; Koeve, 2006] or other potential nutrient inputs such as nitrogen fixation [Chou et al., 2006; Rees et al., 2009] and the short-lived transportation of nutrient from deep stocks [Johnson et al., 2010].

[42] Our observations confirm Koeve’s [2004] suggestion that apparent overconsumption of carbon relative to nitrogen occurs after the spring bloom in the Northeast Atlantic.

Figure 7. The concentrations of salinity-normalized DIC corrected for gas exchange (nDICGasCorr) and NOx in different periods in year 2008–2009 (a) and 2009–2010 (b); the concentrations of NOx and DIP in different periods in year 2008–2009 (c) and 2009–2010 (d). The regressions were based on data collected during the spring bloom period with NOx concentration higher than 0.5 μmol kg⁻¹.
Moreover, (C:N)_{NCP} ratio in our study would have been overestimated if it had been calculated simply based on DIC and NO₃ at two timepoints, which included the “post-bloom” period. This demonstrates that care needs to be taken when using sparse data sets to infer discrepancies relative to the Redfield ratio. Meanwhile, the (N:P)_{NCP} in the 2 years (15.19 ± 0.62 and 16.76 ± 1.52; Figures 7c, 7d) was not significantly different from the classic Redfield ratio value of 16, apparently contrary to the suggestions that “bloom-formers” should have low N:P ratio (<10) [Klausmeier et al., 2004; Quigg et al., 2003].

6. Comparison of the Seasonal Carbon Variability in the North Atlantic

[43] In Figure 8 and Table 3, the seasonal variations of SST, DIC, and pCO₂ in the Bay of Biscay are compared to other time series observations in the North Atlantic from the subtropical gyre (BATS, ESTOC) and from the subpolar region (OWSM). The SST is lower at high latitudes and shows a similar seasonal pattern at all three locations in the North Atlantic (Figure 8a). In all areas, the seasonality of DIC is similarly characterized by winter-spring maxima associated primarily with entrainment of subsurface water and summer-summer minima generated from biological uptake. The DIC concentrations at OWSM and in the Bay of Biscay were generally higher than those at BATS especially during the winter (Figure 8b). This mainly resulted from the higher CO₂ solubility (due to the lower SST) and the stronger intensity of winter mixing at higher latitudes. Winter maxima in nutrients also have higher values in the high latitude regions (Table 3) because of the stronger winter convection. As a result of higher winter-preformed concentrations of DIC and stronger biological removal stimulated by the higher winter upward nutrient supply, the seasonal amplitudes of DIC at OWSM and in the Bay of Biscay were higher than those at BATS (Figure 8b).

[44] As shown in Figure 8c, the seasonal variation in pCO₂ has a different pattern at different latitudinal locations. In the oligotrophic subtropical gyre with low biological production rate (BATS and ESTOC), seawater pCO₂ is dominated by temperature with a single summer maximum and a single winter minimum (Bates et al., 1996; González-Dávila et al., 2003). In contrast, in the high-latitude North Atlantic, it has generally been reported that changes in pCO₂ occur in parallel to those of DIC with a single-peak annual cycle, which is opposite to that in the oligotrophic subtropical gyre [Körting et al., 2008; Olsen et al., 2008; Takahashi et al., 1993].

[45] The Bay of Biscay is located in the transition region between the northern seasonally stratified subtropical gyre and the southern permanently stratified subtropical gyre [McKinley et al., 2011]. The double-peak annual cycle of pCO₂ in the Bay of Biscay displayed a seasonal evolution between the DIC-dominated variability and the temperature-dominated variability (Figure 8c). As discussed in section 4.2, the pCO₂ variations in the Bay of Biscay followed the changes in DIC from autumn to spring, which was similar to that at OWSM. However, the winter upward supply of nutrients in the Bay of Biscay was lower than that at OWSM (Table 3), which resulted in an earlier nutrient depletion (started from May associated with surface stratification, Figure 2). During the post-bloom period, the nutrient-depleted and stratified condition in the Bay of Biscay was similar to that in the oligotrophic subtropical gyre. Therefore, the pCO₂ variability displayed a temperature-dominated pattern in summer months similar to the BATS (Figure 8c).

7. Interannual Variability of DIC, pCO₂, and Air-Sea CO₂ Flux

[46] The time series of carbon system observations in the Bay of Biscay can be extended back from 2010 to 2002 by including earlier observations [Padin et al., 2008; Dumousseaud et al., 2010]. The available data from 2002 to 2010 are shown in Figure 9, and the key points are summarized in Table 4. The evolutions of SST, MLD, DIC, and nutrients in the Bay of Biscay showed similar seasonal trends in all years in 2002–2010 as described in section 3. However, their seasonal amplitudes showed notable year-to-year variations, which were mainly due to the differences in winter conditions (Figure 9 and Table 4). The winter minima in SST ranged from 11.8 °C to 13.1 °C from 2002 to 2010. Higher winter SSTs were observed in the warmer winters of 2006/2007 and 2007/2008 when the surface air temperature was the warmest on record for 50 years [Luterbacher et al., 2007]. The SST anomalies were related...
to the changes in oceanic convection: a regression analysis of winter minima in SST and maxima in MLD results in a negative correlation ($R^2 = 0.80$). In the warmer-than-average years, shallower winter MLDs were developed and decreased winter mixing results in lower wintertime concentrations and seasonal amplitudes of DIC and nutrients (Figure 9 and Table 4). Similar correlations between the winter anomalies of SST, MLD, and DIC have also been established in the North Atlantic subtropical gyre [Bates, 2007; González-Dávila et al., 2007; Gruber et al., 2002]. In contrast, in the North Atlantic subpolar gyre the largest differences in DIC between years have tended to be observed during summer [Corbier et al., 2007; Findlay et al., 2008; Skjelvan et al., 2008].

[47] In the Bay of Biscay, seasonal patterns of pCO_2 in 2008–2010 and 2002–2004 were similar: with high values observed later in winter and summer (Figure 9f). The seasonal ranges in 2008–2010 (75 and 61 µatm) were also similar to those in 2002–2004 (63 and 45 µatm). Compared to the simple correlation between variations of DIC and winter mixing, the interannual variability in seawater pCO_2 is more complicated due to the counteracting effects of temperature versus nonthermal processes. The net changes in pCO_2 depend on the balance of the opposing effects of changes in SST and DIC, which may cancel each other out. For example, higher SST in a warmer winter will support a higher pCO_2, but the decreased concentrations of DIC will lead to a lower pCO_2.

[48] An increase in annual averaged seawater pCO_2 was found from 2002–2004 (340 ± 18 and 336 ± 14 µatm, annual mean ± standard deviation of the monthly values) to 2008–2010 (359 ± 22 and 369 ± 19 µatm). This rise of 20–30 µatm is considerably more rapid than the rate of increase in the atmosphere over the same time interval (-13 µatm estimated from measurements at land stations). In order to examine the changes in the annual air-sea CO_2 flux, we have applied an identical calculation method to all the data sets obtained between 2002 and 2010 in the Bay of Biscay. The annual flux estimated using the QuikSCAT wind data and the Nightingale et al. [2000] parameterization (Table 2) suggests that the capacity of CO_2 uptake of the Bay of Biscay has decreased from 2002–2004 (-1.47 and -1.68 mol m$^{-2}$ yr$^{-1}$) to 2008–2010 (-0.97 and -0.75 mol m$^{-2}$ yr$^{-1}$). These results are similar to those obtained in several other studies which also found reduced rates of ocean CO_2 uptake in the North Atlantic in recent years [Corbier et al., 2007; Schuster et al., 2009; Watson et al., 2009]. However, a study based on data from 1981 to 2009 [McKinley et al., 2011] suggests that trends in oceanic CO_2 concentration converge with atmospheric trends over the 29-year period, overcoming the influence of variability on decadal scale.

8. Interannual Variability and Its Link With Large-Scale Climate Variations

[49] Understanding of the link between local interannual variability and large-scale climate patterns is thought to be critical for improving our knowledge of both the controls on natural ocean biogeochemistry and the potential impact of future climate change [Bates, 2007; Corbier et al., 2007]. The North Atlantic Oscillation (NAO) is the dominant mode of the atmospheric pressure variation over

Table 3. Comparison of the Seasonal Biogeochemical Variations of the Surface Water in the North Atlantic

<table>
<thead>
<tr>
<th>Region/Site</th>
<th>SST (°C)</th>
<th>Type</th>
<th>MLD (m)</th>
<th>DIC (µmol kg$^{-1}$)</th>
<th>TA (µmol kg$^{-1}$)</th>
<th>pCO_2 (µatm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTOCa, 64°N, 6°W</td>
<td>18 to 24</td>
<td>variation range</td>
<td>19 to 28</td>
<td>36 to 37</td>
<td>25 to 26</td>
<td>-320 to -400</td>
</tr>
<tr>
<td>BATSa, 50°N, 6°W</td>
<td>18 to 20</td>
<td>seasonal amplitude</td>
<td>18 to 20</td>
<td>36 to 36</td>
<td>20 to 22</td>
<td>-400 to -500</td>
</tr>
<tr>
<td>Bay of Biscayb</td>
<td>18 to 20</td>
<td>seasonal amplitude</td>
<td>18 to 20</td>
<td>36 to 36</td>
<td>20 to 22</td>
<td>-400 to -500</td>
</tr>
<tr>
<td>OWSMd, 45°N, 4°W</td>
<td>15 to 16</td>
<td>variation range</td>
<td>15 to 16</td>
<td>36 to 37</td>
<td>20 to 22</td>
<td>-400 to -500</td>
</tr>
<tr>
<td>OWSMd, 64°N, 6°W</td>
<td>15 to 16</td>
<td>seasonal amplitude</td>
<td>15 to 16</td>
<td>36 to 37</td>
<td>20 to 22</td>
<td>-400 to -500</td>
</tr>
</tbody>
</table>

the North Atlantic [Marshall et al., 2001; Visbeck et al., 2003]. In the western North Atlantic subtropical gyre, interannual variations of SST, MLD, DIC, and NCP appear to be correlated with the variability of NAO [Bates, 2001, 2007; Gruber et al., 2002]. Gruber et al. [2002] concluded that the carbon variability at BATS is largely driven by variations in winter SST and MLD linked to the NAO and suggested that the entire North Atlantic may vary in a basin-wide coordinated pattern. However, studies at ESTOC suggested that the oceanic response in the eastern North Atlantic subtropical gyre is apparently delayed by 3 years relative to the shifts in the NAO and was instead more directly related to the East Atlantic pattern (EA) [González-Dávila et al., 2003, 2007; Santana-Casiano et al., 2007].

The NAO is most strongly expressed in the atmosphere in winter with a positive phase associated with positive SST anomalies and less vigorous winter mixing in the northern European marginal seas [Cayan, 1992; Cullen et al., 2001]. In the Bay of Biscay, Padin et al. [2008] suggested that the meteorological conditions during the formation of winter MLD have a significant influence on the biogeochemical behavior. Changes in MLD and hydrographic structure and their effect on the marine ecosystem and biogeochemistry in the southern Bay of Biscay have

Figure 9. The interannual variability in the Bay of Biscay from 2002 to 2010: (a) SST and MLD; (b) salinity and TA; (c) DIC and NO$_x$; (d) remotely sensed Chl-a concentration and underway fluorescence; (e) DO$_{anom}$ and mixed-layer integrated net community production (NCP$_{MLD}$); (f) atmospheric pCO$_2$$_{air}$ and seawater pCO$_2$$_{sea}$; (g) air-sea CO$_2$ flux. Comparison between the remotely sensed Chl-a concentration and the underway fluorescence suggested an outlier in the remotely sensed Chl-a in spring 2008, which was highlighted as a cross in Figure 9d.

797
been related to the atmospheric forcing [Cabrillo et al., 2011; Somavilla et al., 2009]. A reconstruction of MLD variability in the southern Bay of Biscay over the past 60 years suggested that decadal variability in MLD seems to follow the NAO, while the negative phase of EA may result in intense episodes of cooling and deep mixing [Cabrillo et al., 2011; Somavilla et al., 2009].

[51] As shown in Table 4, we examined the link between the wintertime indices of NAO and EA (averaged throughout December to March) and the biogeochemical variability in the Bay of Biscay. According to our analysis, the interannual variability of winter mixing is likely to be more affected by the NAO: the winter maximum MLD shows a negative correlation with the winter mean NAO index ($R^2 = 0.66$, $p = 0.05$), but its correlation with winter mean EA index is not significant ($R^2 = 0.04$, $p = 0.71$). Positive wintertime NAO index tends to coincide with shallower winter MLDs in the Bay of Biscay, especially in the 2006/2007 and 2007/2008 with warm winters. This is similar to that at BATS [Bates, 2001, 2007; Gruber et al., 2002] but is opposite to that in the subpolar gyre [Carton et al., 2008; Henson et al., 2009]. As shown in Table 4 and Figure 9, the warm winters and shallow winter MLDs corresponded to lower winter concentrations and seasonal amplitudes of DIC and NO$_x$, as well as reduced Chl-a concentrations and NCP$_{MLD}$ in the following spring bloom. In contrast, higher seasonal ranges of DIC and NO$_x$ were observed in cold years with deep winter mixing, which appear to be associated with the negative winter NAO indices.

[52] It is predicted that shallower winter MLDs in the future, under global warming, would result in a consequent reduction in primary production and oceanic CO$_2$ uptake in low and midlatitudinal oceans [Bopp et al., 2001; Sarmiento et al., 1998] as well as in the North Atlantic [Gruber et al., 2002]. However, our study in the Bay of Biscay has shown that a reduction in NCP associated with a shallow winter MLD does not necessarily result in a decrease in CO$_2$ uptake by the ocean. Following the reduced winter convection in 2006/2007, the NCP$_{MLD}$ did indeed decrease during the bloom period, but the integrated CO$_2$ sink was nevertheless stronger than those in other years (Table 4). As discussed by Dumousseaud et al. [2010], this is mainly explained by a smaller amount of seasonal warming from winter to summer which resulted in a smaller pCO$_2$ rise, together with higher wind speeds which facilitated gas exchange.

9. Conclusions

[53] In the midlatitude Northeast Atlantic (Bay of Biscay), the seasonality of DIC is shaped by the winter increase due to deep convection followed by the spring biological drawdown. The stoichiometry of carbon and nutrient utilization did not show “carbon overconsumption” during the bloom period when nutrients were not limiting, but non-Redfield uptake was observed in the post-bloom summer with nutrient stress. Determined by the balance of the competing effect of temperature and nonthermal processes on pCO$_2$, the annual cycle of pCO$_2$ in the Bay of Biscay was characterized by a double-peak distribution. The temperature-dominated summer pCO$_2$ peak is similar to that in the North Atlantic subtropical gyre, while the winter pCO$_2$ peak following the DIC changes is similar to the observations in
subpolar North Atlantic. Similar to results at BATS in the western North Atlantic subtropical gyre, the interannual DIC variations in the Bay of Biscay were mainly modulated by the changes in the strength of winter mixing. The seasonal amplitudes of DIC and NO$_3$ were higher in years with cold winters and deep MLDs, apparently in response to the negative phases of the NAO. The Bay of Biscay was overall an atmospheric CO$_2$ sink because of greater CO$_2$ uptake in autumn and spring compared to the states of equilibrium or slight CO$_2$ oversaturation in winter and summer. An increase in annual mean seawater pCO$_2$ was observed from 2002–2004 to 2008–2010 (340 and 336 µatm to 359 and 369 µatm) associated with decreased rates of oceanic CO$_2$ uptake (~1.47 and ~1.68 mol m$^{-2}$ yr$^{-1}$ to ~0.97 and ~0.75 mol m$^{-2}$ yr$^{-1}$).

[54] Acknowledgments. This work was supported by the UK DEFRAfH, the EU EPOCA projects, and the EU FP7 project CARBOMAP. Changes in carbon uptake and emissions by oceans in a changing climate funded by the European Community’s Seventh Framework Programme (no. 264879). Swire Education Trust is thanked for providing Zong-Pei Jiang’s scholarship. We thank all the technicians and students who contributed to the POB project. We are grateful for the assistance of the P&O Ferries Ltd. and the captain and crews of Pride of Bilbao. Maureen Pagnoni is thanked for the help on processing the MLD data. We thank three anonymous reviewers for their comments, which significantly improved the quality of this paper.

References

