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Abstract: There is interest in identifying novel materials for use in radioactive waste applications and 

studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi2O7) exists 

naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, 

and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has 

been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this 

study we probed the high pressure structural properties of this pyrochlore-like structure to study its 

phase transformations and possible amorphization behavior. Combined synchrotron X-ray 

diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. 

Starting from the ambient pressure monoclinic structure an intermediate phase with P21/m 

symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide 

coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a 

cotunnite-related structure appears that is recoverable to ambient conditions. We examine the 

similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore 

systems under pressure. 

 

Introduction 

Zirconolite is found as an accessory mineral in deep-seated volcanic rocks including kimberlites and 

carbonatites that can be diamond-bearing, and as a detrital phase following weathering. It is also 

proposed as a main component of the synthetic rock assemblage SYNROC designed to immobilise 

large actinide ions derived from high level radioactive waste products that can be incorporated 

within the refractory ceramic structure.1, 2 

The zirconolite structure can be considered as a derivative of the A2B2O7 pyrochlore structure, where 

A and B represent large 8-coordinate and small 6-coordinate cations, respectively (Figure 1).3-7 The 

zirconolite and pyrochlore structures share a common hexagonal tungsten bronze (HTB) motif, 

forming (111) planes in the cubic (Fd-3m) pyrochlore structure. Compression along the [111] 
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direction of the pyrochlore structure results in the monoclinic (C2/c) zirconolite-2M structure, in 

which the HTB layers lie perpendicular to the [001] direction.3-7 Writing the general zirconolite 

structure as ABC2O7, the HTB layers comprise two octahedral sites (C1 and C3) forming six 

membered rings, within which are located five- coordinate (C2) sites that are 50% occupied; the A 

and B cation sites are 8- and 7-coordinate, respectively, and form an ordered array between the HTB 

layers.3-7 Various zirconolite polytypes with complex superstructures have been described depending 

upon the cation site occupancy, vacancy distribution and relative displacement of HTB layers.3-7 

 

Figure 1. Structural model of the starting ambient phase of CaZrTi2O7 (C2/c). Colour code: Ca atoms, large and 

in dark grey, Zr atoms and ZrO7 polyhedra in green, Ti atoms and TiO6 polyhedra in light grey, Ti(Zr)O4 

tetrahedra in purple. 

In the context of radioactive waste applications, natural specimens of zirconolite have been 

demonstrated to retain their actinide inventory and they show very limited evidence of alteration 

over geological time scales.8, 9 Synthetic analogues of natural zirconolite, based on the formula 

CaZrTi2O7, target substitution of trivalent and tetravalent actinides and lanthanide fission products 

on the Ca and Zr sites based on the comparable ionic radii of these species, with charge 

compensation introduced on the Ti site as necessary.10-15 

Actinide species incorporated within host crystalline lattices undergo alpha decay processes 

resulting in substantial structural damage that may eventually result in a radiation amorphized or 

"metamict" material as reviewed by Weber et al.16  For example, α-decay of Pu-239 affords an 

energetic (5.2 MeV) α-particle and a U- -

particle deposits its energy in ionisation processes causing relatively few atomic displacements, but 

recoil of the daughter atom produces 103 atomic displacements through ballistic collisions, within a 

102 nm cascade.16 Defect accumulation and cascade overlap eventually result in amorphization of 

the initially crystalline host material. In the case of zirconolites the radiation amorphized structure 

appears to be stabilized by formation of TiO5 polyhedra at the expense of the TiO6 polyhedra initially 

present.17, 18  Many experimental and simulation studies have been carried out to investigate the 

nature of the disordering process and the properties of the metamict materials.16 It is useful to 

compare the results with the properties and formation mechanisms of amorphous materials 

produced by other methods. Usually glass formation involves quenching from a high temperature 



liquid state. Another method involves pressure-induced amorphization (PIA), where static or 

dynamic high pressures are applied to cause structural disordering within crystalline solids.19-21 

The present study was initiated to investigate the possibility of PIA occurring among synthetic 

zirconolite samples. Initial results obtained by Raman spectroscopy in a diamond anvil cell indicated 

an irreversible disordering process occurring above P~30 GPa. However, subsequent X-ray diffraction 

(XRD) studies showed that the disordering process was associated with a kinetically impeded crystal-

crystal phase transformation. We have recently observed a similar effect during compression of 

Bi2Ti2O7 and Bi2Sn2O7 pyrochlore materials in which metastable defective fluorite-related structures 

were obtained at high pressure.22 This study reveals new relationships between zirconolite, 

pyrochlore, fluorite and perovskite-related structure types that can be encountered during 

metastable pressurization and radiation-induced metamictization processes. 

Experimental 

Zirconolite samples (CaZrTi2O7) were prepared by ball milling a stoichiometric mixture of the 

component oxides CaO, ZrO2 and TiO2, then pressing into a pellet and sintering at 1450 °C for 8 

hours.  XRD and Raman investigations indicated that a pure phase of CaZrTi2O7 (C2/c) was obtained. 

Additional fluorescence lines were recorded during our initial Raman studies using 785 nm laser 

radiation; these are due to low levels of rare earth ions (mainly Nd3+) incorporated as ppm level 

impurities within the starting materials. Selected area electron diffraction (SAED) patterns of 

CaZrTi2O7 were obtained, down specific crystallographic zone axes, using a Philips EM 420 

transmission electron microscope (TEM), operating at 120 keV. SAED patterns were acquired from a 

number of different grains and the composition of all the grains were confirmed to be consistent 

with the proposed stoichiometry by qualitative energy dispersive spectroscopy (EDX). The sample 

was prepared for TEM by conventional mechanical thinning, followed by ion beam milling using a 

Gatan Precision Ion Polishing System (PIPS) to achieve electron transparency. For high pressure 

measurements powdered samples were placed inside membrane driven cylindrical diamond anvil 

cells (DACs) using 200 or 300 m culet diamonds.  Rhenium gaskets were laser drilled to provide the 

sample chamber.  A ruby chip was placed alongside the sample to act as a pressure calibrant.23 The 

Raman and laser-excited fluorescence spectroscopy was carried out using home-built24 and 

Renishaw optical systems.  For optical spectroscopy studies samples were loaded into DACs using 

cryogenic techniques with N2 as a pressure-transmitting medium (PTM). There is no or minimal 

contribution from the N2 PTM in our optical studies in the region of interest.  During initial X-ray 

experiments samples were loaded without any PTM present in order to promote highly non-

hydrostatic conditions and thus engage the presumed onset of PIA. However, we later recognized 

that disordered crystalline phase transitions were occurring instead of PIA, and further experiments 

were carried out using a He PTM to determine the equation of state and examine the compression 

behavior under near-hydrostatic conditions. Synchrotron angle dispersive X-ray diffraction studies 

were carried out at high pressure beamlines ID27 (European Synchrotron Radiation Facility, France, 

= 0.3738 Å) and I15 (Diamond Light Source, UK, = 0.4421 Å).  Diffraction patterns were recorded 

as 2-D angle-dispersive data sets using a MAR image plate or CCD detectors and analyzed using Fit2D 

and EXGUI GSAS software packages.25-27 

  



Results 

Electron diffraction results for starting materials 

The ABC2O7 zirconolite structure exhibits a wide range of polytypes constructed from two HTB layers 

with an intervening layer of A and B cations.3-7 Intergrowth defects are also commonly observed 

giving rise to variation in the stacking relationship between adjacent structural modules.  The 

occurrence of polytypes and intergrowth defects thus depends sensitively on the chemical 

composition, and even a small concentration of dopant species (particularly rare earth cations) may 

be sufficient to result in complex intergrowth defects that are not readily detectable using X-ray 

powder diffraction techniques.  However, such intergrowth defects are readily evidenced in zone 

axis electron diffraction patterns by characteristic streaking associated with structural disorder in the 

corresponding real space direction.  The zirconolite samples studied here incorporated adventitious 

Nd3+ species, at low (ppm level) concentration, as evidenced by the initial Raman/luminescence 

studies. It was considered appropriate to confirm the presence or absence of such intergrowth 

defects, to evaluate their possible influence on the phase transformation behavior during 

compression.  The zone axis electron diffraction patterns shown in Figure 2 were indexed in the C2/c 

space group for the zirconolite-2M structure reported by Gatehouse et al.3 No evidence of streaking 

was apparent, demonstrating the absence of significant intergrowth defects. This observation shows 

that we can ignore the presence of minor impurities on the compression results. 

 

Figure 2. Zone axis electron diffraction patterns, indexed in the C2/c space group for the zirconolite-2M 

structure
3
 (a) [100], (b) [010], and (c) [110] zone axes. 

Raman and fluorescence spectroscopy results 

The starting zirconolite sample was examined using 514.5 and 785nm laser excitation. The 514.5 nm 

spectrum showed only the main phonon peaks below 800 cm-1 (Figure 3), with additional weak 

features near 1500 and 3200 cm-1. These were readily identified as electronic transitions occurring 

among the 4f sublevels of trace amounts of Nd3+ incorporated adventitiously within the sample: 785 

nm laser excitation showed additional strong Nd3+ fluorescence peaks appearing near 1500 cm-1. 

These are due to the 4F3/2-
4I9/2 transition following excitation into the 4F3/2 manifold. Laser excited 

fluorescence techniques could provide a powerful method for studying the local site symmetry of 

rare earth or actinide ions incorporated within ceramic structures. However, this technique could 

not be applied in our high pressure studies because of overlap between the luminescence signal and 

first order Raman scattering from the diamond windows. 



 

Figure 3. Vibrational Raman and electronic fluorescence spectra collected at ambient conditions for CaZrTi2O7 

zirconolite samples using 785 nm and 514 nm laser excitation. The strong peaks observed above 1000 cm
-1

 

with  the red laser line are due to electronic transitions of a rare earth cation (likely Nd
3+

) present as a trace 

impurity within the sample. The inset shows the vibrational Raman spectra obtained with both laser 

excitations. 

The ambient pressure Raman spectrum exhibits a main peak at 780 cm-1 due to symmetric stretching 

of TiO6 groups. The intensity of this peak is significantly greater using the green (514.5 nm) laser 

excitation indicating a possible resonance enhancement and as the highest frequency vibration 

observed and must be due to stretching of the lightest ion (O2-) against the metal (Ti) to which it is 

strongly bound. This peak is present up to 41 GPa (Figure 4). Below 700 cm-1 other TiO6 stretching 

and bending vibrations occur as well as modes associated with the ZrO7 and CaO8 polyhedral 

vibrations. 

 

Figure 4. The Raman spectra of zirconolite during compression at ambient temperature in N2 pressure 

transmitting medium obtained using 514.5 nm laser radiation. The full spectral compression data up to a final 

pressure of 62 GPa are shown with selected patterns highlighting the appearance of new Raman peaks 

associated with the onset of a phase transition. 



As the pressure is increased, the peaks in the 150-550 cm-1 region became broadened but all the 

features of the low pressure zirconolite phase could still be identified up to P ~ 13 GPa (Figure 4). 

Above this pressure a new feature appears around 650 cm-1 (as indicated by the black arrow in 

Figure 4) and the spectrum is dominated by three strong bands near 800, 450 and 220 cm-1 (two of 

which are indicated by the red arrows in Figure 4). The appearance of these new modes and the 

intensity variations are associated with a phase transition identified by X-ray diffraction.  In the 30 

GPa spectrum these three features are diminished in intensity and a broad feature appears at ~350 

cm-1. 

By 41 GPa all of the crystalline peaks have been lost and the spectrum contains only broad bands 

(Figure 4) Such behavior is often used to indicate the occurrence of PIA, in which the crystal 

structure has collapsed under extreme pressurization.20, 28 The broad features are preserved upon 

decompression to ambient conditions (Figure 5). The broad band profile changes slightly during 

decompression, with a doublet emerging from within the high frequency band (600-800 cm-1), and 

enhanced intensity observed in the lower wavenumber region (<400 cm-1) (Figure 5). That could 

suggest some structural changes occurring within the "amorphous" material, which have been linked 

to the phenomenon of "polyamorphism" in previous studies.20, 29, 30 

 

Figure 5. The Raman spectra of zirconolite during decompression at ambient temperature in N2 pressure 

transmitting medium obtained using 514.5 nm laser radiation. 

However, apart from the possible occurrence of PIA, other interpretations of the Raman data can be 

advanced. It is well known that crystalline materials with ordered atomic arrangements but 



extensive vacancies can exhibit extreme broadening in their Raman and IR spectra, due to disruption 

of the phonon propagation relations, to result in observation of a vibrational density of states (VDOS) 

pattern: such effects have been described well for TiN1-x materials.31-33 Ti-bearing oxides including 

perovskites such as BaTiO3 and SrTiO3 can exhibit electron-phonon coupling and second order 

Raman scattering effects that can also result in broadening of spectral lines.34, 35 A similar broadening 

was observed in the Raman spectra of Bi2Hf2O7 on heating as it underwent phase changes from a 

pyrochlore-based structure with ordered bismuth displacements, to one in which bismuth atoms are 

statistically distributed across a number of sites within a crystallographically more symmetrical unit 

cell.  The Raman spectral changes were observed to be correlated with structural phase 

transformations recorded by X-ray diffraction.36 

Synchrotron X-ray diffraction studies 

Compressibility of the C2/c zirconolite phase. 

The unit cell parameters were refined using a Le Bail approach assuming the monoclinic structure 

was maintained until ~15 GPa. The cell parameters undergo little variation upon initial compression 

until above P ~3 GPa. The monoclinic angle remains approximately constant throughout the pressure 

range up to ~14 GPa. The main compression occurs along the a axis, which becomes reduced by 

approximately 3% over this pressure range (Figure 6). 

 

Figure 6. A plot of the lattice parameters of CaZrTi2O7 (C2/c) as a function of pressure up to 14 GPa.  The black 

square, red circle and green triangle are representative of the a, b and c lattice parameters respectively. The 

values have been determined using Le Bail refinement. 

Using the C2/c structure the V(P) relations were analyzed using a third order Birch-Murnaghan 

equation of state (Figure 7 (left)),37, 38 as defined by: 
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to obtain values for the bulk modulus (K0) and its pressure derivative (K0'), as well as to examine 

details up to the polymorphic transformations at higher pressure. K0 and K' were then subsequently 

refined using a linearized version of the Birch-Murnaghan relation using finite strain (f) and 

normalized pressure (F) variables. The volume strain is expressed by: 
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and the normalized pressure F by: 



F  P(3 f (12 f )5/2)1  (3) 

This linearized extrapolation using a finite-strain equation permits the value of the y-axis intercept 

and the gradient of the fit to determine K0 and K0' respectively (Figure 7 (right)).39, 40 A gradient of 

zero for the linear fit describes a value of K0' = 4 and constrains the Birch-Murnaghan EOS to a third 

order.41 The values obtained were K0 = 188(15) GPa and K0' = 3.6(1) for initial compression of the 

C2/c zirconolite phase. These are comparable with the compressibility properties of related 

structures of Bi2Ti2O7 (K0 = 202 GPa; K0'  = 2.9)22 and Sm2Ti2O7 (K0 = 164 GPa; K0'  = 4).42  

 

Figure 7. (left) A V(P) plot for the C2/c phase of CaZrTi2O7 up to P ~ 15 GPa. Data were fitted using a third order 

Birch Murnaghan equation of state.  (right) The compressibility are further refined using a reduced variable 

normalized pressure (F) vs. Eulerian strain (f) providing compressibility values of K0 = 188(15) GPa; K0' = 3.6(1) 

C2/c   P 21/m phase transition at 15-16 GPa 

Samples studied under both hydrostatic and non-hydrostatic conditions exhibited a structural 

transformation into a new high density phase at high pressure (C2/c   P21/m). This is most clearly 

observed to occur at P = 15.6 GPa using He as a highly hydrostatic PTM surrounding the 

polycrystalline sample (Figure 8). The structural transformation is associated with a large hysteresis 

during recovery experiments, and persistence of the metastable co-existing structures was recorded 

up to 35 GPa during compression, indicating the presence of a first order transition into a new phase 

that we term zirconolite-II for convenience. During further compression the P21/m phase remained 

stable until 57 GPa (Figure 9). 



 

Figure 8. XRD diffraction collected at ESRF ID27 ( = 0.3738 Å) for zirconolite (CaZrTi2O7) at high pressure in a 

DAC using a He as a pressure transmitting medium. A clear change in the diffraction pattern is observed 

between 13.9 and 15.6 GPa indicating transformation into a high-pressure phase (zirconolite-II). 

Due to the prolonged co-existence range of the two phases, initial indexing of the X-ray diffraction 

data was carried out at 40 GPa during pressurisation, to ensure that no remnants of the low pressure 

pattern were present. All assigned peaks were fitted individually to provide an indexed solution.  

Several different unit cell shapes were generated using tetragonal to orthorhombic structures 

although close inspection of the diffraction data revealed some small additional peaks that indicated 

a lowered symmetry. The higher symmetry cells also had large cell volumes that would have to be 

described using a supercell solution. Structure solutions with a high figure of merit were obtained 

using monoclinic cells. The best Le Bail fit to the data used a monoclinic cell that described all 

observed peak positions, with lattice parameters of a=9.626(4) Å, b=6.672(3) Å, c=8.855(3) Å and 

=102.8(2) (wRp = 6.7 % and Rp = 5.0 %.) at 40 GPa (Figure 10). Only two space groups (P21, P21/m) 

could satisfy the observed pattern of systematic absences (0k0: k = 2n).
43

 We chose to use the higher 

symmetry description within space group P21/m.  One complication in using data from this phase 

arose from the presence of overlapping Re diffraction contributions from the DAC gasket: these 

were excluded from the indexing and refinement procedure. This however led to further 

complication when attempting to elucidate a complete structure solution of the new phase from 

Rietveld analysis. A full structural search was conducted attempting to identify other systems with 

similar stoichiometry and unit cell shape and symmetry.  However, this was infeasible from the 

quality of the high pressure data due to limited data range, uncertainties in the intensities and 

strong overlap with the gasket. Another problem was that because of the long pressure range of co-

existence from ~15 GPa to ~35 GPa the indexing approach for identifying the crystal shape was 

carried out at the higher end of this pressure range.  This introduces additional peak broadening and 

issues of deviatoric stress, even in a He PTM, making peak fitting more difficult and uncertain. 



 

Figure 9. Angle dispersive X-ray diffraction data of CaZrTi2O7 up to a pressure of 80 GPa without any pressure 

transmitting medium present in the cell.  These data were collected at DLS I15 (= 0.4421 Å). 

 

Figure 10. A Le Bail refinement carried out at 40 GPa of the high pressure phase of zirconolite-II (CaZrTi2O7). 

The unit cell is defined as monoclinic with a, b, c as 9.626(4) Å, 6.672(3) Å, 8.855(3) Å respectively and  as 

102.8(2). There are two indistinguishable space groups that fulfill the reflection conditions (0k0: k = 2n) ie. 

systematic absences; P21 and P21/m .  Data points and Le Bail fit are presented in black and red respectively.  

The upper set of tick marks are the allowed reflection positions and the lower set the reflection positions of 

rhenium from the DAC gasket. 

Formation of a disordered phase at higher pressure and its recovery to ambient pressure 

At above P ~41 GPa we observed dramatic changes occurring in the Raman spectrum with loss of 

identifiable crystalline features that were replaced by broad bands indicative of an amorphous or 

highly disordered crystalline material. We initially interpreted this result as indicating the potential 

occurrence of PIA within the zirconolite material, and that prompted our further series of X-ray 

diffraction measurements. The XRD studies then showed that the crystalline peaks associated with 

the monoclinic structure (zirconolite-II) were maintained up to 57 GPa, although some broadening 

appeared at the base of the principal reflection that emerges as a shoulder near 9.5° 2θ above ~33 



GPa, and the diffraction lines show a loss in resolution during compression to P ~50 GPa (Figure 9). 

The diffraction spacings shift rapidly throughout this pressure range. 

Different crystal structure solutions were then investigated to model the new high density 

zirconolite-III phase following the transformation, that was initiated at pressures perhaps as low as 

30-40 GPa, from the comparison of X-ray and Raman results under different pressurization 

conditions. This phase transformation was only completed above approximately 70 GPa. The new 

polymorph could be recovered to ambient conditions, and all structural modeling was carried out 

using the diffraction data obtained from the decompressed sample (Figure 11). 

 

Figure 11. A stacked plot of XRD data obtained during decompression from 80 GPa. The high pressure 

zirconolite-II phase identified from analysis of the diffraction data at 40 GPa has fully transformed into a 

further polymorph with a distorted cubic structure (zirconolite-III) by around 70 GPa.  These data show that 

this phase is recoverable to ambient conditions. 

The first structural solution model attempted was that of a face centered cubic lattice (Figure 12 (a)) 

with a fluorite-like unit cell. Such a model has provided a good solution following 

compression/decompression studies of related pyrochlore structured materials.22 However, 

although this model does provide a reasonable initial fit, it does not accurately describe all of the 

Bragg peaks, and especially the shoulder at ~ 10° along with the smaller feature at 10.5°.  The good 

agreement with the data does suggest that the structure is fluorite-related with an overall symmetry 

close to cubic. The cell was then allowed to undergo a rhombohedral distortion, and the data refined 

to obtain an R-3m cell with a= 5.6 Å and  = 94.82o (Figure 12 (b)). 

Another possible transformation that has been observed during pressurization of pyrochlore phases 

is into a defective perovskite structure.44  The peak positions observed for zirconolite-III are close to 

those of a perovskite-type unit cell with ao = 3.9 Å (Figure 12(c)). A slight rhombohedral distortion 

(α~92.5°) also permits a reasonable fit throughout the full pressure range but the fitting statistics 

were less good than those found for the rhombohedrally distorted fluorite-like solution. 

Our final model was based on the orthorhombic cotunnite structure (Pnma) adopted by materials 

such as PbCl2 and proposed by Zhang et al. as the partially disordered phase formed on 

pressurization of the pyrochlore La2Zr2O7.
45 The dioxides UO2, ThO2, ZrO2 and HfO2 undergo a 

transition into the cotunnite structure at high pressure, and Li2O transforms to an anti-cottunite 

structure. 46-48 Analysis of our results for zirconolite-III using a Pnma cell with a = 5.357(5) Å, b = 

3.128(1) Å and c = 6.372(9) Å provides an excellent fit to the diffraction data, and a full Reitveld 



refinement using this structure model also led to a good fit (Figure 12 (d)). The Ca, Zr and Ti atoms 

were placed on cation sites using statistically averaged positions to result in ¼ (Ca), ¼ (Zr) and ½ (Ti) 

site occupancies, and the atomic coordinates and Uiso parameters were constrained to remain 

constant throughout the refinement. The O2- ions were placed on the anion sites along with an 

averaged vacancy concentration to achieve the A4O7 stoichiometry. The volume-pressure 

relationship and compressibility values for all four structural models are given in Figure 13. 

 

Figure 12. Structural refinement of the recovered zirconolite sample at ambient conditions following its 

subsequent decompression from 80 GPa. The data points, fits and background are represented in black, red 

and green respectively.  = 0.442 Å (a) Le Bail fit using the Fm-3m space group with a = 5.52(2) Å.  Rp = 0.55% 

and wRp= 0.9%. (b) Le Bail fit using the R-3m space group with a = 5.52(2) Å and  = 94.82.  Rp = 0.32% and 

wRp= 0.53%. (c) Le Bail fit using the R-3m space group with a = 3.98(3) Å and  = 92.52(1) degrees Rp = 0.71% 

and wRp= 1.0%. (d) Rietveld fit using the Pnma cotunnite structure with a = 5.357(5) Å, b = 3.128(1) Å and c = 

6.372(9) Å. Rp = 0.87% and wRp= 0.74%. 

Despite the good observed fit to the X-ray data we cannot conclude that this represents a final 

structure solution to the data, because the diffraction features are too broad and it is impossible to 

obtain a statistically significant solution. In their related work on pyrochlore-derived systems, Zhang 

et al. noted that ‘... due to very broad peak width, it is impossible to resolve the structure…’.45 



 

Figure 13. V(P) relations for the decompression of the high pressure phase of CaZrTi2O7 (zirconolite-III) 

analyzed using four different structural models. The bulk modulus values for the four models are as follows: (1) 

Fm-3m fluorite – K0 = 225(19) GPa, K0' = 6.8(0.9).  (2) R-3m fluorite – K0 = 282(12) GPa, K0' = 4.7(0.2). (3) R-3m 

perovskites – K 0 = 208(12) GPa, K0' = 3.5(0.2). (4) Pnma cotunnite – K0 = 239(19) GPa, K0' = 5.1(0.6) 

Discussion 

Several studies have reported that A2B2O7 systems such as Sm2Ti2O7, Gd2Ti2O7 and other related 

materials become amorphous under pressurization at room temperature conditions. 49, 50  These 

conclusions were based on Raman spectroscopic studies that exhibited an irreversible loss of 

crystalline peaks that were replaced by broad phonon features that were recovered to ambient 

pressure.42 The results were interpreted to suggest that at pressures between 40-50 GPa a mixture 

of amorphous and distorted pyrochlore structures was present associated with disordering on the 

anion site. Based on our current findings the same conclusions could be made from just our Raman 

study where we also observe the disappearance of any distinct Raman modes and the notion of 

amorphisation could be implied.  However, it is evident from our XRD studies that the system has 

undergone significant disordering in its high pressure form but is not amorphous. Unlike the titanate 

pyrochlores of Sm and Gd the system maintains its disordered crystalline structure to quenched 

conditions.  

The loss of features in both the Raman and XRD studies are due to the disordering in the anion sites 

that allow the TiO6 octahedra to orientate randomly. There must be some inherent cation ordering 

that still gives rise to the dominant 211 reflections in the ambient phase and then in the high 

pressure structure above 15.6 GPa and present until above 60 GPa.  However, we do not believe that 

the system is amorphous but rather that there is a metastable phase with some residual ordering (or 

an assemblage of co-existing structures derived from the same basic sub-cell) present in the given 

pressure domain. Over this region it can be assumed that the zirconolite material adopts a more 

symmetric structure, most likely within nanocrystalline domains where some of the original complex 

monoclinic features are maintained. We observed a similar phenomenon in the Bi2Ti2O7 system, 



which undergoes a transformation above 33 GPa to a disordered fluorite-like structure with broad 

features.22 We believe some level of similarity is becoming evident in the structural evolution of 

pyrochlore-like systems as a function of pressure. The energetic pathway seems to be towards the 

formation of a disordered phase at the higher pressure limits and that is what causes metastability 

and the repeating claims of amorphous-like behaviour.  

Our structural analysis of the recovered phase suggests that at the highest pressures zirconolite 

forms either a defective fluorite structure or a disordered cottunite-type structure. In the case of the 

fluorite like models, the presence of a distortion that is not observed in the defective fluorite 

material derived from Bi2Ti2O7 under pressure, may be linked to the compression along the [111] 

axis of the parent fluorite structure which is already present in the zirconolite structure.  The need to 

include a rhombohedral distortion in order to fit the peak positions at high pressure would suggest 

that the cation positions have not been fully disordered during the compression process. In the 

cotunnite case the cation positions could be more fully disordered and it is possible to envisage this 

occurring during the phase transition from the fluorite-like lattice that is present in the original 

zirconolite structure and presumably in the intermediate pressure crystalline phase.  Further 

investigations will be required to finally discern which of these structure models is most correct. 

Conclusions 

The high pressure structural behavior of zirconolite (CaZrTi2O7) at geologically relevant pressures has 

been investigated for the first time.  The combination of using both synchrotron X-ray diffraction 

techniques and Raman spectroscopy has led to the observation of two high pressure phases and a 

developing link in understanding the behaviour of similar pyrochlore-like systems at high pressure 

and ambient temperature.  With quasi-hydrostatic loadings in He the onset of an intermediate phase 

is observed via a first order pathway at 15.6 GPa identified with indistinguishable P 21 or P 21/m 

symmetry.  No complete structural solution was identified for this phase partly due to difficulties 

arising from a long pressure co-existence with that of the ambient structure for over 20 GPa. Above 

56 GPa the transformation into a disordered phase is observed that persists up to a maximum 

measured pressure of 80 GPa. Our Raman studies initially suggested the possibility of pressure 

induced amorphization, however synchrotron X-ray data confirm the crystalline but highly 

disordered nature of this high pressure phase. Due to the strong disordering present in this phase 

and consequently the broad data a single structural model could not be confirmed and therefore we 

suggest that the two most likely structural candidates identified are either a defective fluorite 

structure or a disordered cottunite-type structure. A key feature of this disordered high pressure 

phase is that it is fully recoverable to ambient pressure and demands further investigation. 
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