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In the 21st century the high altitude gas balloon remains an indispensable tool in atmo-
spheric science, meteorology and other applications requiring stratospheric observations. A
pre-requisite of the effectiveness of many types of balloon operations is an accurate trajec-
tory forecasting capability, complete with appropriate error estimates. This is particularly
important in targeted flights, sample return missions or flights of expensive instruments,
whose recovery is essential. The ASTRA (Atmospheric Science Through Robotic Aircraft)
initiative led to the development of such a forecast model, which is at the centre of the
present paper. A key source of error in such models is our incomplete understanding of the
drag opposing the rise of balloons in the free atmosphere – here we propose a new, stochas-
tic model based on empirical data derived from thousands of radiosonde flights. We also
examine other sources of prediction error affecting the accuracy of the flight path forecast,
such as uncertainties in the wind profile and balloon envelope manufacturing variability. A
Monte Carlo framework is used to provide probabilistic touchdown point estimates taking
these error sources into account. The above elements have been integrated into a web
service, which can be used as a flight planning tool – here we review the key features of its
architecture.

I. Introduction

Satellite soundings and increasingly ubiquitous radar and lidar observations have been the headline addi-
tions to the atmospheric scientist’s list of data sources in recent decades. Alongside such new capabilities,

however, instrument packages carried aloft by gas balloons, widely used since the end of the 19th century, are
set to remain essential tools both for routine updating of operational numerical weather prediction models
and for research observations. The main argument in the favour of such systems is an economic one: their
broad altitude range (from the boundary layer to over 40km), over which the accuracy of the instruments is
constant, comes at a comparatively low operating cost, especially in the case of light payloads designed for
short missions.

In this paper we shall focus on standard, variable volume, rubber weather balloons with highly elastic
envelopes (though much of the discussion is applicable to other types of balloons too). While their basic
design has changed little in aeronautical terms over the last half century, improved tracking, communications
and on-board data processing capabilities, as well as developments in sensor technology have revitalised this
old concept and enabled new missions. For example, lightweight and reliable trackers now facilitate the
recovery of payloads. In turn, this makes possible:

a) Significant cost savings. In essence, recoverability enables the use of expensive instruments, where the
user cannot afford the high attrition rates associated with standard radiosondes. Cost savings could also
be made on the latter, if routine recovery was possiblea: of the approximately 75 000 radiosondes released
annually in the US, only about 20% are found and returned for reconditioning.1

b) Sample return missions.
c) Increased resolution. On a recoverable payload the amount of observational data recorded is no longer

limited by the (often meagre) bandwidth of the telemetry system.

∗Senior Lecturer, Aeronautics, Astronautics and Computational Engineering Unit, AIAA Member
†Research Fellow, Institute of Sound and Vibration Research
‡Undergraduate Student, AIAA Student Member
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aFor example through the involvement of the geocaching community, a model already used by some businesses operating

unmanned balloon platforms.
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d) Reducing the environmental impact of balloon launches. The circuitry, batteries, etc. of some ‘fire-
and-forget’ payloads, such as the conventional radiosonde, can become pollutants if left unrecovered.

The effective planning of recoverable payload missions demands an accurate flight simulation capability
– for certain research missions the location of the desired landing area can determine the choice of the type
of balloon and parachute and the amount of lifting gas used.

Accurate trajectory simulation is usually also the pre-requisite of mobile launch facility based operations,
including matching experiments, where consecutive balloon payloads are flown through the same parcel of
air at different times (in order to add a time dimension to observations) or when a localised phenomenon
(such as an aerosol cloud) has to be observed at a specific location in the upper atmosphere.

Some elements of the flight profile have other uses too – for instance, an accurate model of the rate
of ascent in quiescent air can assist in the more accurate derivation of vertical air motion from observed
rate of ascent variations. Possible applications include observations of tropospheric updrafts (McHugh et
al.2), estimating gravity wave energies (Wang and Geller3) or Brunt-Väisälä frequencies (Dolas and Kishore
Kumar4).

From the perspective of building an accurate meteorological balloon trajectory prediction model, an
understanding of the variation of the drag coefficient of the balloon throughout its ascent is essential. This
usually features a drag crisis partway through the ascent, which marks the transition between two boundary
layer regimes. In Section III we take an empirical approach to derive a probabilistic picture of the location
and magnitude of the drag crisis – we use high resolution flight data to this end, derived from thousands of
high altitude soundingsb. We also used a large number of soundings to construct the data set that underpins
another critical element of the trajectory analysis: the model of the horizontal drift of the balloon as a
result of the winds encountered during its ascent. We discuss this in Section IV, along with a number of
other engineering and operational factors that influence the flight path. Section V summarizes some of
the open questions of the physics of high altitude balloon flight. In Section VI we turn our attention to
the architectural details of the web service implementation of the model described here, with Section VII
containing a few parting thoughts. Let us begin, however, with a short review of the basic physics of the
flight of variable volume meteorological balloons.

II. Equations of Motion

It is convenient to separate the motion of a balloon into a horizontal drift component in a plane defined
by a latitude (x) and longitude (y) axis and a vertical ascent component (along a z axis). We shall compute
the drift based on the Lagrangian assumption that the horizontal motion of the balloon is identical to that
of the parcel of air surrounding it, so in an Earth-bound coordinate system

dx

dt
= −w(z)cos [φ(z)]

dy

dt
= −w(z)sin [φ(z)] (1)

where w(z) and φ(z) are the speed and direction respectively of the wind at altitude z (defined according to
the meteorological ‘direction from’ convention). We shall return to drift modeling in Section IV – for now,
let us focus on the ascent component. Its equation is simply a statement of buoyancy opposing weight and
drag:

(mbal +mpay +mgas)
d2z

dt2
= B − (mbal +mpay) g −D, (2)

where the mass components relate to the balloon, its payload (including strings, parachutes, de-reelers,
light sticks, etc.) and the lifting gas. They are assumed to be constant throughout the ascent (that is, no
ballast is released). The mass of the lifting gas can be determined by metering during the filling process,
though the far more common method is to estimate it indirectly from the nozzle lift LN generated by the

bObtained from the National Oceanic and Atmospheric Administration (NOAA) via the Stratospheric Processes and Their
Role in Climate (SPARC) project within the World Climate Research Programme (WCRP), URL: http://www.sparc.sunysb.edu.
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filled balloon on the groundc. If we use the 0 superscript to refer to launch site conditions

mgas = ρ0
gas

LN/g +mbal

ρ0
air − ρ0

gas

, (3)

where the densities are calculated using the ideal gas assumption, that is, ρ0
gas = p0M/RT 0 [with appropri-

ately weighted M values, see equations (7) and (8) in the Appendix]. The buoyancy term of Equation (2)
varies with the altitude z (as the volume, pressure, density and temperature all change with altitude) and is
computed as:

B = V (z) [ρair(z) − ρgas(z)] . (4)

Perhaps the most interesting part of Equation (2) is the drag term. For the purposes of this analysis we define
the drag D as the vertical aerodynamic force opposing the buoyancy of the balloon, and the drag coefficient
CbD as the dimensionless result of dividing this force by the dynamic pressure of the flow encountered by the
balloon and by the projected frontal area A(z) of a sphere with the same volume as the (nearly spherical)
balloon. Formally:

D =
1

2
ρ(z)(dz/dt)2 CbD(Re)A(z). (5)
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Figure 1. Atmospheric temperatures above eight locations, averaged
over the period 1999–2009. The width of the grey band either side of
the (white) average temperature curves represents plus and minus one
standard deviation respectively. The heavy black lines represent the
International Standard Atmosphere model. Reproduced from Ref 5.

Once again we are dealing with a
force subject to the complicated im-
pact of several parameters that vary
with altitude. Density, tempera-
ture, viscosity and pressure (and,
as a result, the volume and there-
fore the frontal area of the bal-
loon) all change and experimen-
tal evidence suggests that they also
have an effect on CbD (most read-
ily encapsulated by a variation with
Reynolds number). Understanding
this CbD(Re) relationship lies at the
heart of this paper and will be de-
veloped further in Section III.

Equation (2) does admit an an-
alytical solution (see, e.g., Ref. 6),
provided that a sufficiently simple
CbD(Re) relationship is postulated
and the physics of the atmosphere
is assumed to be represented by
the International Standard Atmo-
sphere (ISA) model. However, the
latter assumption would severely
limit the practical usefulness of
the trajectory prediction. Con-
sider the actual atmospheric tem-
peratures alone: as illustrated by
Figure 1, they deviate very signif-
icantly from the ISA and the devia-
tion varies from day to day, as well
as with latitude. Additionally, we
are seeking a model capable of sim-

ulating flights with a variety of gas venting schedules, another major stumbling block in the path of fast
analytical solutions.

The vertical motion of the balloon [Equation (2)] thus has to be resolved numerically given the forecast
(or actual) atmospheric conditions on the day, as well as taking into account any venting manouvres that

cThe nozzle lift is the upward force measured on the nozzle of the inflated balloon, without the payload being attached.
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may be required. Similarly, the drift equations (1) have to be solved numerically using forecast (or actual)
winds.

The time domain integration in both the vertical (ascent) and the horizontal (drift) dimensions is often
complicated somewhat by the presence of launch and venting transients, as well as relatively abrupt changes
in the environmental conditions (wind- and temperature shears, etc.), which can stiffen the equations. Com-
bined with the need for rapid integration (especially in the light of uncertainties often demanding relatively
large Monte Carlo ensembles), this led us to employ LSODA, an ordinary differential equation solver capable
of adapting to such changes ‘on the fly’. In stiff cases, backward differentiation schemes, such as that imple-
mented in the Livermore Solver for Ordinary Differential Equations (LSODE7), yield stable solutions, with
step size adaptation ensuring high speed. Further speed-ups are possible, however, when a non-stiff case
is detected – in such cases LSODA (which is a later development of LSODE) switches to a faster implicit
Adams method.

The boundary conditions are provided by the relevant temperature, pressure, humidity and wind profile
of the atmosphere [the predictor, to be described in more detail in Section VI, obtains these from NOAA’s
National Operational Model Archive and Distribution System (NOMADS)], as well as by the ambient con-
ditions and geographical location of the balloon inflation process.

III. Balloon Drag Estimates

The wealth of experimental data available on the drag of spherical objects is of limited use when it comes
to modelling the drag opposing the ascent of a weather balloon. First, the fluids used in these experiments
are somewhat inadequate as surrogates of the free atmosphere. Second, the shape of weather balloons often
deviates to some extent from the spherical. Third, these results would need to be corrected for the surface
friction drag of increasingly strained latex. Nevertheless, the dependence of the drag of weather balloons
on Reynolds number appears to exhibit a feature it shares with smooth spheres: a drag crisis, typically
somewhere in the 3 × 105 to 4 × 105 range of Reynolds numbers.

Consider, for instance, the sharp drop in ascent rate evident in Figure 2 (showing the ascent profile of a
typical sounding balloon flight) as the balloon passes through this putative transition region. From an average
of around 6 m/s throughout much of the troposphere, the vertical speed of the balloon begins to fluctuate
significantly at an altitude of around 7 km, before settling around 4.5 m/s for the next kilometer or so. This
period of change in the rate of ascent roughly coincides with the general trend of the Reynolds number
(derived here from an estimated balloon diameter variation) intersecting the edges of the

[
3 × 105, 4 × 105

]
band (shown in grey). This is consistent with a drag crisis occurring in this domain, which the balloon exits
with a significantly increased drag coefficient.

While anecdotal evidence of the sort presented in Figure 2 offers little more than an illustration at this
point (some other effect may, theoretically, have slowed the ascent in this case), we shall see shortly that
this sharp change in the rate of ascent in this particular Reynolds number range occurs consistently across a
very large number of flights and therefore adopting a drag model that features a drag coefficient crisis here
is, at the very least, practically useful in predicting balloon trajectories.

The physics of the drag crisis could be summarised as follows. The Reynolds number of an ascending
weather balloon is dominated by the ambient density and the viscosity, so, in spite of the diameter of the
balloon increasing sometimes by an order of magnitude during the ascent, the general Reynolds number
trend of the balloon will be a decreasing one. 6 × 105 to 8 × 105 are typical numbers seen early on, in the
planetary boundary layer, so the boundary layer of the balloon will be fully turbulent. As the Reynolds
number reaches the 3 × 105 to 4 × 105 range (typically about halfway through the troposphere, though the
exact height can vary significantly), a laminar region will begin to emerge in the boundary layer near the
crown of the balloon. This will have the effect of bringing the boundary layer separation band nearer to the
crown and will thus increase drag.
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Figure 2. Typical sounding balloon flight. As the balloon passes the transition region (marked by the grey band on
the Reynolds number plot), the ascent rate declines significantly. It then increases dramatically for short bursts as
the balloon flies through the jetstream, possibly as a result of turbulence accompanying the high gradient shear layers
around the jetstream [Wilmington (IL), 15 April 2008, mean tropospheric lapse rate 3.66oC/km (ISA 6.49oC/km), the
thick dashed line indicates the location of the tropopause].
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Figure 3. Postulated balloon drag coefficient variation around the drag
crisis band.

In the interest of building a
generic balloon flight model, we pa-
rameterise the drag variation out-
lined above and then attempt a
probabilistic estimate of these pa-
rameters. The complexity and ro-
bustness of the parameter estima-
tion process – which we shall pose as
an optimization problem – increases
(exponentially) with the number of
parameters, so we distill the com-
plex physical process of the drag cri-
sis to the simple model shown in
Figure 3. More formally, we pos-
tulate that in the region of interest
from the perspective of weather balloon operations, the drag coefficient of the ascending balloon has the
form:

Cbd

(
Re, Cld,Relc,∆Rec, C

t
d

)
=


Cld if Re < Relc

Cld − (Cld − Ctd)
Re−Relc
∆Rec

if Relc ≤ Re ≤ Relc + ∆Rec

Ctd if Re > Relc + ∆Rec

(6)

The superscripts b, l, and t in the equation above stand for ‘balloon’, ‘laminar’ and ‘turbulent’ respectively,
while the subscript c stand for ‘crisis’.

In order to estimate the four unknown parameters of Equation (6) we consider a large empirical data
set comprising 2 093 sounding balloon flights with helium-filled, 700g latex balloons. These were conducted
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by the US National Weather Service at eight different sitesd spread across the United States, representing a
range of climatic and topographic conditions. For each flight we compute those values of the four parameters
that minimize the (root mean squared) difference between the ascent rate profile predicted by the solution of
Equation (2) and the actual ascent rate profile of the flight. As the trajectory simulation for each putative
quartet of parameters takes roughly 30 seconds, this is a relatively expensive optimization process – a
Nelder-Mead-type simplex heuristic was used.

Figure 4 depicts the histograms of all values of all four parameters recorded during the flight, with
the central tile of the image representing the drag model based on the estimated means of each of these
distributions (Table 1 records the parameters of these distributions). It is interesting to compare this
model with the wind tunnel measurements taken over smooth spheres by Achenbach,8 as well as the recent
experiments of Son et al.9 These data demonstrate the well known fact that the location of the critical
transition region is dependent on turbulence levels in the free stream – specifically, the more turbulent the
free stream, the lower the critical Reynolds number will bee. It is interesting to note that the mean values
of the transition location and width resulting from the analysis of the balloon flights are very closely aligned
with the 0.45% turbulence intensity data of Achenbach.8 The right hand tails of the distributions of the two
transition point values (top and bottom tiles of Figure 4) stretch beyond the transition point observed by
Achenbach, indicating atmospheric turbulence levels lower than 0.45% on a number of flights.

Cld Relc ∆Rec Ctd
µ 0.225 3.296 × 105 0.363 × 105 0.425

σ 0.036 0.511 × 105 0.054 × 105 0.054

Table 1. Results of the model fitting process on 2 093 flights with helium-filled, 700g balloons.

A note on the interpretation of these results: the distributions are shown merely to provide an intuitive
feel for the physical significance of the data (by comparison against available sphere drag measurements)
and their depictions are not to be taken to imply that they are statistically independent. For instance, some
factor peculiar to a specific launch may equally have affected both the pre-transition and post-transition
drag. From the point of view of constructing a Monte-Carlo flight simulator this means that the parameter
sets for each point have to be drawn from the joint distribution of the 2 093 Cld,Relc,∆Rec and Ctd quartets.

IV. Other Sources of Uncertainty and a Monte Carlo Simulation

In addition to the uncertainties associated with the ascent drag crisis, a number of other sources of
uncertainty widen the inherent error margins of a balloon flight trajectory forecast. The flight planning tool
described in this paper accounts for four of these in its error estimates – we discuss them here in turn.

A. Winds Aloft and a Lagrangian Drift Model

Simulating the drift element of the motion of a weather balloon relies on the assumption postulated in
Equation (1) that the horizontal components of the motion are the same as those of the parcel of air sur-
rounding it. Strong vertical wind speed gradients may conspire with the inertia of the payload to violate this
assumption, but experience indicates that such effects have a limited impact on the shape of the trajectory.

A more significant cause of trajectory modelling uncertainty lies within the uncertainties associated with
the wind vector field itself. Two common sources of wind data used in balloon flight prediction are forecast
winds aloft [extracted from a numerical weather prediction model (NWP)] and recent soundings taken in
the vicinity of the launch site. While for longer range planning there is no alternative to NWP model
data, for launch day analysis the observational data has some advantages, even if they were recorded some
distance away from the launch site (both in space and time). Most importantly, soundings extend far into
the stratosphere (typically up to about 30-35 km, when taken with a 700g balloon) beyond the upper limit
of some NWP grids. Their vertical resolution is also higher.

dWilmington (IL), Anchorage (AK), Denver (CO), Newport (NC), Buffalo (NY), Greensboro (NC), Chanhassen (MN) and
Quad Cities (IA).

eThere is another, more subtle effect: the drag coefficient of a sphere immersed in turbulent flow tends to increase as the
integral length scale increases.10
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Figure 4. 2 093 flights with helium-filled, 700g balloons – the continuous line depicts the instance of Equation
6 that results from the sample means of the four distributions 2 093 parameter estimates. Also shown are the
experimental sphere drag measurements of Achenbach8 and Son et al.9 taken at various free stream turbulence
levels.
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Let us now consider the uncertainties associated with using the observational data of a sounding for the
drift calculation element of a balloon flight simulation, arising from the time elapsed since the latest available
sounding, as well as from the distance between the launch site of the flight being planned and the location
where the sounding was taken. A relatively straightforward way of accounting for these uncertainties in a
Monte Carlo framework is as follows:

• We construct a historical database of soundings taken at different sites spaced at mesoscale distances.

• We compute the differences between pairs of neighbouring soundings taken simultaneously, as well as
differences between consecutive soundings (typically taken at 12 hour intervals) taken at the same site.

• For each flight in the Monte Carlo simulation we perturb the baseline soundings with a randomly
selected entry from this database of variations (scaled with the actual distance between the launch site
and the baseline sounding, as well as with the time elapsed between that sounding and the time of
launch.

Figure 5 shows the basic statistics of the database (comprising around 3 500 historical soundings) we have
created for the simulations described in this paper. The two plots show the positive and negative deviations
within pairs of soundings, averaged across the whole database. The differences have been computed sepa-
rately for the U and V components of the wind vectorsf at levels spaced 1 000m apart up to an altitude of
30km.
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Figure 5. Positive and negative variations between consecutive sound-
ings taken at the same site (left) and simultaneous soundings at neigh-
bouring sites (right), normalised by the time between the soundings
and the distance between the launch sites respectively. The data are
averaged across a database of around 3 500 pairs of soundings taken at
various sites.

The widening gap between the
positive and negative deviations at
around 10km marks an increasing
uncertainty associated with the jet-
stream (this concurs with the ob-
servations of Box et al.,11 who con-
ducted a similar exercise as part of
the development of a rocket flight
simulation code).

B. Burst diameter

In spite of the high quality stan-
dards most meteorological balloons
are manufactured to, a certain vari-
ability and the presence of small
flaws (perhaps exacerbated by long
pre-flight storage periods) is in-
evitable. The key metric upon
which such geometrical and chem-
ical uncertainties have an impact is
the burst diameter of the balloon.
Of course, this is just one of the
factors that influence the burst di-
ameter (though probably the most
important). Others include the in-
flation technique, pre-launch con-
tamination leading to stress concen-
trations, the payload attachment
method, icing, encounters with hail and other forms of precipitation, strong windshears, etc.

In the general uncertainty framework of a balloon flight trajectory forecast model it is thus important
to take burst diameter variability into account and, in order to estimate the associated probability density
function, we examined 3 199 flights conducted with nominally identical 700g balloons filled with Helium and
launched by NOAA as part of routine upper atmosphere sounding operations (these flights are part of the
same dataset as that used for the drag estimation in Section III).

fUsing meteorological convention, U represents the East-West component (positive to the East) and V represents the North-
South component (positive to the North).
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Figure 6. Estimated burst diameters on 3 199 flights of 700g latex
balloons.

Figure 6 is a histogram of the
burst diameters of these balloons as
estimated from the key elements of
the launch data (inflation tempera-
ture and quantity of lifting gas), the
environmental conditions recorded by
the radiosonde carried by the balloon
and the burst altitude. The set has
a sample mean of 7.06m (comfort-
ably above the manufacturer’s nomi-
nal value of 6.53m) and a standard
deviation of 0.72m. The Weibull
distribution that best fits this data
has the parameters k = 14.3577 and
λ = 7.3293, such that the prob-
ability density function value (also
shown in Figure 6, superimposed on
the histogram) for a diameter d is

(k/λ) (d/λ)
k−1

e[−(d/λ)k].
In order to enable the model to

estimate distributions for other bal-
loon sizes too we scaled the distribution found for 700g balloons according to the nominal burst diameters
of these – this should be a reasonable approximation based on the assumption that the general architecture
of the balloon is independent of its size. Figure 7 shows some of these distributions, covering the balloon
mass range between 100g and 3,000g.

C. Descent Uncertainties

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Burst diameter [m]

 

 
100g
300g
500g
700g
1000g
1500g
2000g
3000g

Figure 7. Burst diameter probability density functions used in the
model. The curves correspond to balloons of weights ranging from
100g to 3kg.

Most high altitude balloon operations
involve a parachute descent of the
payload. This adds additional un-
certainty to flight time estimates, as
well as broadening the error margins
of the landing zone prediction.

The mechanics of the disintegra-
tion of the balloon play an impor-
tant role here. In most cases the
balloon will burst into long, narrow
shreds, but the extent to which these
shreds separate from the neck of the
balloon (to which the payload and
the parachute are attached) varies:
in some cases all of the rubber re-
mains attached, sometimes only the
neck returns. The data available on
return fractions is extremely sparse
and therefore the best we can do is
to assume that the neck will always
return (this accounts for about 3%
of the overall mass of the balloon)
and the probability of any fraction of
the remaining 97% returning is equal.
For most flights (especially those with very light payloads) this will account for a substantial proportion of
the overall descent mass of the train.

Another source of uncertainty on the descent is the drag of the parachute. Based on the available data,
as well as on our own experimental observations, we estimate a drag coefficient of between 0.6 and 0.8 –
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once again, we assume that values within this range are equally probable (the actual value determined by
the extent to which the parachute has deployed).

D. Monte Carlo Ensembles

The flight path forecasting tool described here is equipped with the ability to generate Monte Carlo ensembles
of arbitrary size, based on solving Equations (1) and (2) with the distributions postulated above, as well as
on the drag distributions discussed in Section III. The only factor limiting the sizes of these ensembles is
the computational budget of the analyst. In our experience 50-100 runs are generally sufficient for practical
operational purposes (flight planning), though thousands may be required for rigorous comparative studies.

An example output generated with the code is shown in Figure 8. Ensembles of predicted trajectories
were computed five days, three days and one day before a flight, as well as on launch day. The actual
trajectory is shown in red on the panels on the left hand side of the Figure 8, with the right hand side
depicting landing point density contours. From an operational planning point of view these can be regarded
as surrogates for landing probabilities, with the most probable landing zones shown in red.

Touchdown location probability estimation algorithms used in other applications often rely upon the
assumption that the distribution of the landing point ensemble is likely to be (close to) Gaussian. Specifically,
the contours used in flight planning are those of a normal distribution fitted to the landing point ensemble
data. As Figure 8 shows, however, this is not an option in the case of meteorological balloon flight planning,
where multimodal landing point distributions are common in Monte Carlo ensembles. Sharp wind shears in
the atmosphere are amongst the factors that can split distributions in this way.

V. Open Questions

The above discussion hints at the complex interactions that govern the ascent of rubber balloons (con-
trasting the apparent simplicity of the system!). There is, however, additional complexity in the process,
which, for reasons of computational expediency and/or the lack of sufficient experimental evidence, is not ac-
counted for here. Here is a selection of such possible areas needing better uncertainty quantification (largely
through a better understanding of the physics involved).

1. Balloon Geometry

Most meteorological balloons feature spherical envelopes; that is, they can probably be considered spherical
for most practical purposes when neutrally buoyant in still air, unloaded (that is, no payload attached)
and inflated at least to the extent that the surface begins to stretch. None of these conditions are present,
however, in practical balloon operations in the free atmosphere. While the very reason we employ an
empirically derived drag model instead of explicitly assuming sphericity is that we cannot be certain of the
exact shape, deviations from a perfect spherical shape have a subtle effect on our analysis when it comes
to calculating the frontal area of the ascending balloon (here we do assume a spherical lifting gas bubble).
Additionally, a better understanding of the shape variations during the flight may facilitate more germane
parameterisations of the drag versus Reynolds number curve, so it is worth considering some of the effects
that may play a role in distorting the shape of the balloon.

First, larger balloons (heavier than about 500g) destined for high altitude flights (above 30km) will
almost inevitably have to be launched in a flaccid, under-inflated state and they will not reach their fully
stretched condition until well into the flight. In these early stages, while the leading half of the balloon will
be reasonably well inflated by the bubble of lifting gas within, the trailing half is likely to be more flaccid,
potentially exhibiting unsteady behaviour.

Second, the payload train weight vector, applied at the neck of the balloon, may have the tendency
to elongate it, as the buoyancy opposing it is more uniformly distributed. However, the frontal pressure
associated with the ascent has the opposite (compressive) effect and there is some evidence that the resulting
shape is actually an oblate spheroid.4

Third, all this is further complicated by dynamic effects induced by possible oscillations. Some of these
are likely to be caused by environmental effects, such as zones of vertical or horizontal windshear, internal
gravity waves, etc.

The interesting question arising from all this is whether deviations from sphericity have a strong impact
on the location and the nature of the drag crisis. In fact, the transition itself, associated with the crown
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Figure 8. Landing zone predictions computed on launch day (top two panels) and one, three and five days
before launch (second, third and bottom rows of panels). The panels in the left hand column show Monte
Carlo ensembles of predicted trajectories (in blue), as well as the actual trajectory of the flight (in red). The
panels on the right show landing point density contours. The green dot on each panel represents the actual
landing site.
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boundary layer being laminar and some of the aft part being turbulent, may, in turn, induce its own
distortions.

2. Thermodynamics

The analysis presented in this paper neglects a number of thermal effects that may affect the ascent rate of
a high altitude balloon. Perhaps the most important of these is the heating of the lifting gas as a result of
solar radiation (limited, in practice, by the fact that most meteorological balloons are white).

Additionally, as the latex bubble separating the lifting gas from the ambient air has an extremely thin
wall, we assume that the temperature of the lifting gas is uniform and equals that of the ambient air at
all times during the ascent. The safety of this assumption clearly depends on the ascent rate, though the
critical threshold value (beyond which more sophisticated analysis would be required) is not known. An
additional challenge here is the potential computational cost of more detailed thermal analysis, which may
have to be traded against the decreased accuracy of smaller Monte Carlo ensembles and therefore a poorer
understanding of how uncertainties propagate to the landing site location estimate.

3. Effusion and Icing

Another metric of relevance from a balloon dynamics standpoint is the rate of effusion, that is, the rate of
passage of the lifting gas through the porosities of the envelope. With the quantity of lifting gas reducing
through effusion during the ascent, the buoyancy will drop, and, as a result, so will the rate of ascent. This,
in turn, will affect the accuracy of the landing site prediction.

The rate of effusion is inversely proportional to the square root of the molar mass of the gas (Graham’s
law, see, e.g., Ref. 12). Considering the two lifting gases most frequently used in high altitude balloon
applications, the relative effusion rates of helium and hydrogen are thus

√
MHe/MH2

≈ 1.41, or, considering
the contamination ratios stated in the notes accompanying this paper (see the Appendix), around 1.49. In
other words, hydrogen effuses roughly one and a half times faster than helium (with a bond length of 0.74 Å,
H2 is the smallest molecule13).

In either case, actual effusion rates are poorly understood. On the one hand, the impact of the gradual
stretching and thinning of the envelope on the effusion rate of either type of gas is unclear, in particular
considering the large ambient temperature variations (up to 110oC in some cases) in the course of the
flight. The effect of other environmental factors also needs further study, both at a microscopic level – in
particular, the effect of humidity on the permeability of latex, considering the possibility of very small ice
crystals forming in the pores – and at a microscopic level – the possibility of temporary ice sheets accreting
across parts of the surface.

Incidentally, both of these mechanisms may also have an effect on the surface roughness and thus on the
behaviour of the boundary layer.

Furthermore, it is likely that substantial accretion is limited by the continuous stretching of the latex, a
natural de-icing mechanism nearly identical in principle to the de-icing boots employed on medium-altitude
propeller-driven aircraft.

4. The Aerodynamics of the Descent

We have already hinted at some of the challenges of modelling the descent with uncertain balloon mass
fractions. An additional issue here is the uncertain drag of the remains of the balloon, with each remaining
strand of latex potentially acting as a streamer during the descent. This is an extremely difficult modelling
problem, as both the geometry and the drag coefficient of the burst balloon are highly uncertain.

It is also difficult to account for the possibility of the parachute(s) only deploying partially, as well as
for the fact that in some conditions they may be partially immersed in the wake of the payload. With the
descent sometimes accounting for as much as 30% of the overall flight time, this is an important source of
uncertainty.

An alternative engineering solution, allowing for more accurate modelling and more mission planning
freedom is to keep the balloon intact, by venting much of the lifting gas before the burst altitude is reached,
retaining the amount that ensures the buoyancy required for a desired descent rate.
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VI. Web Service Implementation – Computational Architecture

In order to make the model described here available to the scientific community, a virtual cloud compute
server has been set up, capable of running a large number of Monte Carlo ensembles at any given time.
With a Windows Azure server processing the simulations, low power devices can be used as user interfaces
– including mobile phones and tablets, a useful feature when performing simulations at remote launch sites.
Figure 9 shows a screen shot illustrating the graphical interface where the user can specify the launch
parameters. Figure 10 is a system diagram illustrating the architecture of the service, which comprises three
main components.

Figure 9. iPad screenshot of the results of a Monte Carlo en-
semble simulated using the model described in this paper.

The web interface is responsible of in-
teracting with the user, acquiring the in-
put data, requesting a simulation from the
server, acquiring the progress of the simu-
lation, loading data, displaying results and
grabbing exported data files for the user to
download, if required. This is the layer that
initiates all actions and informs the server
about them.

PHP server scripts are responsible for
dealing with requests incoming from the
web interface, returning the appropriate re-
sults and running server processes. They
store the input data, create temporary fold-
ers on the server’s file system, communicate
with the Python back-end to run a flight
simulation, inform the web interface of the
progress of the simulation and of the file
paths to all the output data.

The simulator itself is standalone and
works independently of the interface. It re-
ceives input from the PHP scripts, runs the
simulation, updates the progress file and stores the results in the server’s file system. It can optionally be
used with its own Python interface, without using the web, for custom results processing.

VII. In Conclusion

Much remains to be understood about the complex aerodynamics and thermodynamics of high altitude
balloon trains and advances in this direction may, in turn, end up enhancing our understanding of atmo-
spheric processes (mainly through analysing deviations between forecast and actual balloon trajectories).
The present paper is a step in this direction, demonstrating how applying some fundamental physical prin-
ciples and examining large bodies of empirical evidence can help elucidate some of the phenomena involved,
while also providing a practical means of forecasting the trajectories of uncontrolled balloon trains.

We make the planning tool described here is free at the point of use – it can be accessed from the ASTRA
initiative web pages at www.soton.ac.uk/~astra.
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Figure 10. Flight planning tool system architecture.
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Appendix – Notes on Lifting Gases

The two commonly used meteorological ballooning lifting gases are monatomic helium (He) and diatomic
hydrogen (H2). They are both an order of magnitude lighter than air. The molecular mass of helium
(MHe = 0.004 kg/mol) is roughly twice that of hydrogen (MH2

= 0.00201 kg/mol)g, though this only trans-
lates to a minimal performance advantage in hydrogen’s favour, as the mass of the lifting gas is usually
relatively small compared to the overall mass of a balloon and its payload. Considering balloon grade
helium and hydrogen, contaminated with air fractions of cair

He =0.055 and cair
H2

=0.015 respectivelyh and as-
suming perfect gas behaviour (R = 8.31447 m3Pa mol−1K−1), in ISA sea level conditions (pstd = 101 325 Pa,
Tstd = 288.15 K) the densities of the two gases are

ρHe = pstd
[(

1 − cair
He

)
MHe + cair

airMair

]
/RTstd = 0.22733 kg/m3 (7)

and
ρH2 = pstd

[(
1 − cair

H2

)
MH2 + cair

airMair

]
/RTstd = 0.10235 kg/m3. (8)

Under the same conditions ρair = 1.22479 kg/m3, so for a volume of V = 1 m3 the buoyancy equation yields
free lift values of

LHe = V (ρair − ρHe) = 0.99746 kg (9)

and
LH2

= V (ρair − ρH2
) = 1.12244 kg. (10)
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