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Synonyms6

Automatic gait recognition; Gait analysis; Gait7

biometrics8

Related Concepts9

�Face Recognition; �Hough Transform; �Iris10

Recognition; �Optical Flow; �Principal Component11

Analysis (PCA)12

Definition13

The way a person walks (or runs) combined with14

their posture is known as gait. Recognizing individuals15

by their particular gait using automated vision-based16

algorithms is known as gait recognition.17

Background18

Gait has few important advantages over other forms of19

biometric identification. It can be acquired at a distance20

when other biometrics are obscured or the resolution21

is insufficient. It does not require subject cooperation22

and can be acquired in a noninvasive manner. It is easy23

to observe and hard to disguise as walking is neces- 24

sary for human mobility. Gait can be acquired from 25

a single still image or from a temporal sequence of 26

images (e.g., a video). 27

Shakespeare made several references to the individ- 28

uality of gait, e.g., in The Tempest [Act 4 Scene 1], 29

Cares observes “High’st Queen of state, Great Juno 30

comes; I know her by her gait” and in Henry IV Part II 31

[Act 2, Scene 3], “To seem like him: so that, in speech, 32

in gait, in diet, in affections of delight, in military rules, 33

humors of blood, he was the mark and glass, copy 34

and book.” 35

The aim of medical research has been to classify 36

the components of gait for the treatment of patholog- 37

ically abnormal patients. Murray et al. [17] created 38

standard movement patterns for pathologically nor- 39

mal people. Those patterns were then used to identify 40

pathologically abnormal patients. 41

The biomechanics literature makes observations 42

concerning identity: “A given person will perform his 43

or her walking pattern in a fairly repeatable and char- 44

acteristic way, sufficiently unique that it is possible to 45

recognize a person at a distance by their gait” [27]. 46

Psychophysiological studies such as [5, 11] have 47

shown that humans can recognize friends and the sex 48

of a person solely by their gait with 70–80 % accuracy. 49

These and similar studies have inspired the use of gait 50

as a biometric trait. 51

Recently, there has been a rapid growth in the num- 52

ber of surveillance systems, aimed to improve safety 53

and security. These systems are yet to include recog- 54

nition capabilities, and gait recognition could be a 55

most suitable choice. The primary aim of surveillance 56

videos is to monitor people. However, the video data 57

can be of a low quality (poor resolution, time lapse, 58
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etc.), and the subject can try to conceal the more59

conventional biometrics. Nevertheless, such video can60

provide sufficient data for gait recognition technology,61

and there is already research in using gait biomet-62

rics as a forensic tool [4]. Gait recognition could be63

employed at a border crossing or any high-throughput64

environment. Gait contains very rich information and65

is considered to be unique. Studies have shown that66

gait can also be used to reveal a person’s identity,67

gender, emotional state, etc.68

Recognition by gait is one of the newest biomet-69

rics since its development only started when computer70

memory and processing speed became sufficient to71

process sequences of image data with reasonable per-72

formance. The potential for gait recognition is great,73

and hence there is a vast interest in computer vision74

research in extracting gait features.75

Theory76

A gait recognition system primarily consists of a com-77

puter vision system. A gait signature is created by78

extracting images of a walking subject which is then79

compared to the signatures of known subjects. Figure 180

shows an example of some of the basic steps in a gait81

recognition system.82

Step 1: Data can be acquired using a single or multiple83

cameras. If data is acquired using a single cam-84

era, recognition can be performed using a 2D gait85

signature such as the Gait Energy Image (GEI –86

shown in step 4). However, if multiple but synchro-87

nized cameras are used, the number of possibilities88

is greater. Examples of the usage of multiple-89

synchronized cameras include:90

• Producing a 3D gait model and using it for91

recognition.92

• 3D information can be used to improve recog-93

nition for a 2D approach by producing a non-94

normalized version of a 2D signature.95

• Achieving a view-invariant recognition. A gait96

signature from any view can be re-created using97

3D data which can be mapped to a signature98

acquired in an outdoor environment where typ-99

ically only a single and nonoptimal view is100

available.101

Step 2: An example of preprocessing step is back-102

ground subtraction or background segmentation.103

The subject can be acquired easily and reliably by 104

using chroma-keying if there are clear color dif- 105

ference between the subject and the background. 106

Background subtraction can measure the naturally 107

occurring scene behind the walking subject using 108

one of the plethora of computer vision techniques. 109

Step 3: As human gait is periodic, a gait sequence 110

(sample) can consist of multiple gait cycles. Iden- 111

tifying the most suitable cycle can lead to bet- 112

ter recognition rates. Signal processing techniques 113

can be applied to the foreground signal (sum of 114

foreground pixels) in the case of binary image. 115

Step 4: There are number of approaches to produce a 116

gait signature, some of which are described later. 117

A baseline gait signature was proposed in [22]. An 118

example of a signature is shown in step 4. 119

Step 5: A gait signature can be used directly within a 120

classifier. Alternatively, features can be extracted 121

from a signature, and those features can be used 122

for classification. Again, there is a selection of clas- 123

sification techniques; in the simplest case, a clas- 124

sifier such as k-nearest neighbor (using Euclidian 125

distance) can be used. 126

Databases 127

A database can be collected for various purposes. Pri- 128

mary concerns include uniqueness and practicality. 129

A database should contain enough subjects to allow for 130

an estimate of inter- and intra-subject variation. The 131

current databases contain smaller number of subjects 132

compared to databases used to evaluate performance 133

of other biometrics (e.g., face, fingerprint). However, 134

there are databases that include covariate factors and 135

application potential. Some of the most well-known 136

databases together with some of their characteristics 137

are shown in Table 1. 138

Approaches to Gait Recognition 139

The approaches to gait recognition can be divided in 140

two main groups: model-based and model-free (see 141

Table 2). Model-based approaches use the human 142

body structure, and model-free methods use the whole 143

motion pattern of the human body. Which approach 144

is adopted depends on the acquisition conditions. 145

Model-free (appearance-based) approaches use the 146



�

ECV 375 — 2013/3/29 — 17:41 — page 3 — #5

�

� �

Corre
cte

d
Pro

of

Gait Recognition 3 G
input images directly to produce a gait signature with-147

out fitting a model. These approaches can perform148

recognition at lower resolutions which makes them149

suitable for outdoor applications, where a subject150

can be at a large distance from the camera. Model-151

based approaches typically require higher resolution152

images of a subject to be able to fit the model accu-153

rately.154

The table is taken from [18, 19]. Example papers155

for all of the approaches can be found in the original156

sources.157

Model-Free Approaches158

The model-free approaches derive the human sil-159

houette by separating the moving object from the160

background. The subject can then be recognized by161

measurements that reflect shape and/or movement. The162

simplest approach is to simply form an average of163

the silhouettes over a complete gait cycle [15]. The164

approach is called the Gait Energy Image (GEI), and165

it is shown in Fig. 2. Motion Silhouette Image (MSI) is166

a similar representation to the GEI. The value of each167

pixel is computed as a function of motion of that pixel168

in the temporal dimension over all silhouettes that are169

part of a single gait cycle. Both the GEI and MSI are170

easy to compute, but they are vulnerable to appearance171

changes of the human silhouette. Frieze pattern rep-172

resents the information contained in a gait sequence173

by horizontal and vertical projections of the silhou-174

ettes. Its extension, SVB Frieze patterns, use key frame175

subtraction in order to mitigate the effects of appear-176

ance changes on the silhouette (see Fig. 2). The Gait177

Entropy Image (GEnI) is another example of a com-178

pact gait representation (signature). GEnI is computed179

by calculating the Shannon entropy for each pixel.180

Shannon entropy measures the uncertainty associated181

with a random variable.182

The gait signatures for the approaches shown in183

Fig. 2 are usually used directly for classification. There184

are additional ways of extracting gait signatures with-185

out using a model. Some examples are described186

below:187

• Little and Boyd [14] derive a dense optical flow188

for each image sequence. Scale-independent scalar189

features of each flow, based on moments of the190

moving point, characterize the spatial distribution of191

the flow. The periodic structure of these sequences 192

of scalars is analyzed. The scalar sequences for an 193

image sequence have the same fundamental period 194

but differ in phase, which is used as a feature for 195

recognition of individuals by the shape of their 196

motion. 197

• BenAbdelkader et al. [2] use background model- 198

ing to track the subject for a number of frames 199

and extract a sequence of segmented images of the 200

person. A self-similarity plot is computed via cor- 201

relation of each pair of images in this sequence. 202

For recognition, PCA (principal component anal- 203

ysis) is used to reduce the dimensionality of the 204

plots. A k-nearest neighbor rule is used on the 205

reduced space for classification. Another silhouette- 206

based gait recognition technique using PCA has 207

been proposed by Liang et al. [13]. Eigenspace 208

transformation based on principal component anal- 209

ysis (PCA) is applied to time-varying distance sig- 210

nals derived from a sequence of silhouette images 211

to reduce the dimensionality of the input feature 212

space. Supervised pattern classification techniques 213

are performed in the lower-dimensional eigenspace 214

for recognition. 215

• Hayfron-Acquah et al. [8] proposes a method for 216

automatic gait recognition based on analyzing the 217

symmetry of human motion. The Generalised Sym- 218

metry Operator is used to locate features according 219

to their symmetrical properties rather than relying 220

on the boarders of a shape. The symmetry operator 221

is used on the optical flow image to produce a gait 222

signature. For purposes of classification, the simi- 223

larity differences between the Fourier descriptions 224

of the gait signatures are calculated using Euclidean 225

distance. 226

• Gait is a temporal sequence and can be modeled 227

using hidden Markov models (HMM). The statisti- 228

cal nature makes the model relatively robust. The 229

postures that an individual adopts are regarded as 230

states of the HMM and are typical to that individual 231

and provide means of discrimination [24]. 232

• Kale et al. [10] use two different image features to 233

directly train a HMM: the width of the outer contour 234

of a binary silhouette and the entire binary silhouette 235

itself. 236
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Model-Based Approaches237

The advantages of the previous approaches (silhouette238

or features derived from it) are speed and simplic-239

ity. However, model-based approaches are better at240

handling occlusion, noise, scale, and rotation. Model-241

based approaches require a high resolution therefore242

not very suitable for outdoor surveillance.243

Model-based approaches incorporate knowledge of244

the shape and dynamics of the human body into the245

extraction process. These approaches extract features246

that fit a physical model of the human body. A gait247

model consists of shapes of various body parts and248

how those shapes move relative to each other (motion249

model). The shape model for a human subject can use250

ellipse to describe the head and the torso, quadrilater-251

als to describe the limbs, and rectangles to describe the252

feet. Alternatively, arbitrary shapes could be used to253

describe the edges of the body parts. The motion model254

describes the dynamics of the motion of the different255

body parts. Using a model ensures that only image data256

corresponding to allowable human shape and motion is257

extracted, reducing the effect of noise. The models can258

be 2- or 3-dimensional. Most of the current models are259

2-dimensional, but deliver good results on databases of260

more than 100 subjects.261

Some examples of model-based approaches are262

described below:263

• Yam et al. [28] have used pendular motion and the264

understanding of biomechanics of human locomo-265

tion to develop two models: a bilateral symmet-266

ric and analytical model (employs the concept of267

forced couple oscillator). See Fig. 3. The gait signa-268

ture is the phase-weighted magnitude of the Fourier269

description of both the thigh and knee rotation.270

• Bouchrika and Nixon [3] have proposed a new271

approach to extract human joints. Spatial model272

templates for human motion are derived from the273

analysis of gait data collected from manual label-274

ing. Motion templates describing the motion of the275

joints are parameterized using the elliptic Fourier276

descriptors277

�
x.t/

y.t/

�
D

�
a0

b0

�
C

�
cos.˛/ � sin.˛/

sin.˛/ cos.˛/

�
278

�
X.t/ � Sx

Y.t/ � Sy

�
279

where ˛ is the rotation angle, sx and sy are the 280

scaling factors across the horizontal and vertical 281

axes, respectively, and X.t/ and Y.t/ are the Fourier 282

summation. Hough transform is used in the feature 283

extraction process. 284

• Wang et al. [26] have proposed an algorithm 285

based upon the fusion of static and dynamic body 286

information. The static body information is in a 287

form of a compact representation obtained by Pro- 288

crustes shape analysis. The dynamic information is 289

obtained by a model-based approach which tracks 290

the subject and recovers joint-angle trajectories of 291

lower limbs. A fusion at the decision level is used 292

to improve recognition results. Figure 1 shows an 293

example of the results obtained. 294

There have been moves towards developing 3D gait 295

models. Examples of work in this fields are [7, 25]. 296

Guoying et al. [7] use video sequences from mul- 297

tiple cameras to construct 3D human models. The 298

motion is tracked by applying a local optimization 299

algorithm. The length of key segments is extracted 300

as static parameters, and the motion trajectories of 301

lower limbs are used as dynamic features. Linear time 302

normalization is used for matching and recognition. 303

Three-dimensional approaches are robust to changes 304

in viewpoint and have a great potential. However at 305

present, experiments only on small databases are pos- 306

sible mainly due to high computational requirements. 307

Gait is dependent on large number of parameters 308

( joint angles and body segment size) which leads to 309

complex models with many free parameters. Finding 310

the best fit model for a subject leads to searching a 311

high-dimensional parameter space. Therefore, there is 312

a trade off between the accuracy of the model (com- 313

plexity) and computational cost. The models are often 314

simplified based on certain acceptable assumptions, 315

e.g., a system could assume constant walking speed. 316

However, as computing power increases, the problems 317

arising of high complexity can be mitigated. 318

Experimental Results 319

The current state of the art achieves very high recogni- 320

tion rates (close to 100 %) on relatively large databases 321

(>300 subjects) when the training and test data are 322

recorded under similar conditions. An example of pro- 323

gression in performance over time is shown in Table 2. 324

However, recognition rate can drop with change of 325
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clothing, shoes, walking surface, and pose. Many cur-326

rent studies focus on solving these problems. Recent327

major achievements in gait recognition are described328

in [16, 20]. Matovski et al. [16] have shown that329

elapsed time does not affect gait recognition and that330

gait can be used as a reliable biometric over time331

and at a distance. The world’s largest gait database332

of more than 1,000 people has been constructed to333

enable statistically reliable performance evaluation of334

gait recognition performance [20] (Table 3).335

The HumanID gait challenge problem [22] was set336

up to outline a baseline algorithm for gait recogni-337

tion and propose a number of difficult experiments for338

the existing gait matchers. The gallery set consists of339

122 subjects walking on a grass surface recorded by a340

single camera.341

Table 4 shows the differences of the probe set com-342

pared to the gallery set for each of the challenge343

experiments.344

The results in Fig. 5 show the progress in gait recog-345

nition over a period of 2 years for the experiments346

shown in Table 4.347

Application348

Gait research is currently at an evaluation stage rather349

than an application stage. However, the potential for350

gait recognition is great. The complete unobtrusive-351

ness without any subject cooperation or contact for352

data acquisition makes gait particularly attractive for353

identification purposes. It could be used in applica-354

tions including forensics, security, immigration, and355

surveillance.356

Many surveillance systems capture only a low-357

resolution video at varying lighting conditions, and358

gait recognition might be the only plausible choice for359

automatic recognition. A bank robber may wear a mask360

so you cannot see his face, wear gloves so you cannot361

get fingerprints, and wear a hat so you cannot get DNA362

evidence – but they have to walk or run into the bank,363

and they could be identified from their gait.364

Gait recognition has been used as evidence for con-365

viction in some criminal cases. A man in Bolton (UK)366

was convicted based on his distinctive gait. A CCTV367

footage of the burglar captured near the crime scene368

was compared to a video captured at the police station369

by a podiatrist specializing in gait analysis. In 2004,370

a perpetrator robbed a bank in Denmark. The Institute371

of Forensic Medicine in Copenhagen was contacted by 372

the police to perform gait analysis, as they thought the 373

perpetrator had a unique gait. The institute instructed 374

the police to establish a covert recording of the suspect 375

from the same angles as the surveillance recordings for 376

comparison. The gait analysis revealed several charac- 377

teristic matches between the perpetrator and the sus- 378

pect. For example, both the perpetrator (to the left) and 379

the suspect showed inverted left ankle (white arrow) 380

during left leg’s stance phase and markedly outward 381

rotated feet (see Fig. 6). The suspect was convicted of 382

robbery, and the court found that gait analysis is a very 383

valuable tool [12]. 384

One system named the Biometric Tunnel [23] has 385

led to the first live demonstration of gait as a bio- 386

metric and could indicate a possible route for future 387

deployment of the technology. The left side of Fig. 7 388

depicts the system. It consists of a simple corridor with 389

12 synchronized and fixed cameras. The subjects are 390

asked to walk through the middle, and the lighting and 391

background are controlled to facilitate analysis. The 392

right side of Fig. 7 shows the details of the arrange- 393

ment. The system is designed with a high-throughput 394

environment in mind. 395

Open Problems 396

Although a large number of gait recognition algo- 397

rithms have been reported, it is important to note that 398

gait biometrics is still in its infancy. The majority of 399

studies achieve good recognition rates on gallery and 400

probe acquired in similar conditions. However, it is 401

very challenging to extract gait features that are invari- 402

ant to change in appearance as well as to conditions 403

that affect a person’s gait. Examples of things that 404

can change and negatively affect the effectiveness of 405

current gait algorithms are change of clothing, shoe 406

type, carrying a load, and injuries/medical conditions. 407

Clothing for instance can change the observed pattern 408

of motion and make it difficult to accurately locate 409

joint position. Furthermore, there are certain factors 410

that are related to the environment and not the sub- 411

jects themselves that can cause difficulties for current 412

gait matchers. Examples of environmental confound- 413

ing factors are camera viewing angle, background, and 414

illumination. 415

Recently, studies have reported progress in solv- 416

ing some of the issues outlined above. A study by 417
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Goffredo et al. [6] describes a self-calibrating view-418

invariant gait recognition algorithm. Hossain et al. [9]419

have developed a clothing invariant gait matcher.420

Aqmar et al. [1] are the most recent approach focussed421

on speed variation.422

Currently, gait recognition can deliver very high423

recognition rates in a constrained environment and if424

certain factors are controlled. A move towards devel-425

oping algorithms invariant to change over time is426

needed. Furthermore, additional work is required to427

translate the research to outside environment and to428

explore how scalable it is. Attempts so far suggest that429

developing highly reliable gait-based human identifi-430

cation system in a real-world application is, and will431

continue to be, very challenging. In the short term,432

some of the challenges associated with gait recog-433

nition can be addressed by fusing gait with other434

biometrics [29].435
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Step 1 – Acquire a 
gait sample 

Step 4 – Create a gait 
signature 

Step 2 – Pre-processing

Step 5 – Classification 

Step 3 – Find a suitable
Gait Cycle

Gait Recognition, Fig. 1 General steps of a gait recognition system

Gait Entropy Motion Silhouette Gait Energy SVB Frieze Pattern

Gait Recognition, Fig. 2 Examples of model-free gait signatures

m = mass

mT

lK

mK

lT

θ = angular displacement

θK

θT l = length of the limb

Subscripts T and K denote high and lower
leg respectively.

h

a

k

Gait Recognition, Fig. 3 Example of a gait model – the dynamically coupled pendulum model [28]
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Gait Recognition, Fig. 4 Example of results [26]
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Gait Recognition, Fig. 5 The progress from the baseline over 2 years for the various experiments shown in Table 4 [22]
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Gait Recognition, Fig. 6 Bank robbery
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t1.1 Gait Recognition, Table 1 Details of some of the well-known gait databases

t1.2 Name Subjects Sequences Covariates Viewpoints Indoor(I)/outdoor(O)
t1.3 HumanID (USF) 122 1; 870 Y 2 O
t1.4 SOTON 2002 114 >2; 500 Y 2 I/O
t1.5 CMU MoBo 100 600 Y 6 I (treadmill)
t1.6 MIT 2002 24 194 Y 1 I
t1.7 UMD 2002 44 176 N 1 O
t1.8 CASIA 2006 124 1; 240 Y 11 I
t1.9 SOTON multimodal [21]�1 >300 >5; 000 Y 12 I

t1.10 Osaka University 1; 035 2; 070 N 2 I

t2.1 Gait Recognition, Table 2 Approaches to gait recognition

t2.2 Model-free analysis Model-based analysis
t2.3 Moving shape Shape + motion Structural Modeled
t2.4 Unwrapped silhouette;

silhouette similarity;
relational statistics;
self-similarity; key
frame analysis; frieze
patterns; area;
symmetry; point
distribution models; key
poses

Eigenspace sequences;
hidden Markov model;
average silhouette;
moments; ellipsoidal
fits; kinematic features;
gait style and content

Stride parameters;
human parameters; joint
trajectories

Articulated model; dual
oscillator; linked feature
trajectories

t3.1 Gait Recognition, Table 3 Progression of gait recognition systems

t3.2 Time period No of subjects Source Recognition rate Notes
t3.3 1990s �10 USC 95.2
t3.4 2000s �120 HiD, CASIA, Southampton 75–99 % Recognition rate depends on covariates
t3.5 Recent (2010) >300 Southampton multimodal 95–100 % Includes time-dependent covariates
t3.6 Recent (2010) >1000 Osaka University 90 % No covariates

t4.1 Gait Recognition, Table 4 Some experiments comprising the HumanID gait challenge problem

t4.2 Experiment Probe # of subjects Difference
t4.3 A Different camera view than gallery 122 View
t4.4 B Subjects wore different shoes 54 Shoe
t4.5 C Different camera view and different shoes 54 Shoe, view
t4.6 D Subjects walked on a different surface 121 Surface
t4.7 E Different shoes and different walking surface 60 Surface, shoes
t4.8 F Different walking surface and different camera view 121 Surface, view
t4.9 G Different walking surface, different shoes, and different camera view 60 Surface, shoe, view
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