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Automatic gait recognition; Gait analysis; Gait
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Related Concepts
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Recognition; »Optical Flow; »Principal Component
Analysis (PCA)

Definition

The way a person walks (or runs) combined with
their posture is known as gait. Recognizing individuals
by their particular gait using automated vision-based
algorithms is known as gait recognition.

Background

Gait has few important advantages over other forms of
biometric identification. It can be acquired at a distance
when other biometrics are obscured or the resolution
is insufficient. It does not require subject cooperation
and can be acquired in a noninvasive manner. It is easy

to observe and hard to disguise as walking is neces-
sary for human mobility. Gait can be acquired from
a single still image or from a temporal sequence of
images (e.g., a video).

Shakespeare made several references to the individ-
uality of gait, e.g., in The Tempest [Act 4 Scene 1],
Cares observes “High’st Queen of state, Great Juno
comes; I know her by her gait” and in Henry IV Part I
[Act 2, Scene 3], “To seem like him: so that, in speech,
in gait, in diet, in affections of delight, in military rules,
humors of blood, he was the mark and glass, copy
and book.”

The aim of medical research has been to classify
the components of gait for the treatment of patholog-
ically abnormal patients. Murray et al. [17] created
standard movement patterns for pathologically nor-
mal people. Those patterns were then used to identify
pathologically abnormal patients.

The biomechanics literature makes observations
concerning identity: “A given person will perform his
or her walking pattern in a fairly repeatable and char-
acteristic way, sufficiently unique that it is possible to
recognize a person at a distance by their gait” [27].

Psychophysiological studies such as [5, 11] have
shown that humans can recognize friends and the sex
of a person solely by their gait with 70-80 % accuracy.
These and similar studies have inspired the use of gait
as a biometric trait.

Recently, there has been a rapid growth in the num-
ber of surveillance systems, aimed to improve safety
and security. These systems are yet to include recog-
nition capabilities, and gait recognition could be a
most suitable choice. The primary aim of surveillance
videos is to monitor people. However, the video data
can be of a low quality (poor resolution, time lapse,

K. Ikeuchi (ed.), Encyclopedia of Computer Vision, DOI 10.1007/978-0-387-31439-6,
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etc.), and the subject can try to conceal the more
conventional biometrics. Nevertheless, such video can
provide sufficient data for gait recognition technology,
and there is already research in using gait biomet-
rics as a forensic tool [4]. Gait recognition could be
employed at a border crossing or any high-throughput
environment. Gait contains very rich information and
is considered to be unique. Studies have shown that
gait can also be used to reveal a person’s identity,
gender, emotional state, etc.

Recognition by gait is one of the newest biomet-
rics since its development only started when computer
memory and processing speed became sufficient to
process sequences of image data with reasonable per-
formance. The potential for gait recognition is great,
and hence there is a vast interest in computer vision
research in extracting gait features.

Theory

A gait recognition system primarily consists of a com-
puter vision system. A gait signature is created by
extracting images of a walking subject which is then
compared to the signatures of known subjects. Figure 1
shows an example of some of the basic steps in a gait
recognition system.

Step 1: Data can be acquired using a single or multiple
cameras. If data is acquired using a single cam-
era, recognition can be performed using a 2D gait
signature such as the Gait Energy Image (GEI —
shown in step 4). However; if multiple but synchro-
nized cameras are used, the number of possibilities
is greater. Examples of the usage of multiple-
synchronized cameras include:

e Producing a 3D gait model and using it for
recognition.

* 3D information can be used to improve recog-
nition for a 2D approach by producing a non-
normalized version of a 2D signature.

e Achieving a view-invariant recognition. A gait
signature from any view can be re-created using
3D data which can be mapped to a signature
acquired in an outdoor environment where typ-
ically only a single and nonoptimal view is
available.

Step 2: An example of preprocessing step is back-
ground subtraction or background segmentation.

Gait Recognition

The subject can be acquired easily and reliably by
using chroma-keying if there are clear color dif-
ference between the subject and the background.
Background subtraction can measure the naturally
occurring scene behind the walking subject using
one of the plethora of computer vision techniques.

Step 3: As human gait is periodic, a gait sequence
(sample) can consist of multiple gait cycles. Iden-
tifying the most suitable cycle can lead to bet-
ter recognition rates. Signal processing techniques
can be applied to the foreground signal (sum of
foreground pixels) in the case of binary image.

Step 4: There are number of approaches to produce a
gait signature, some of ‘which are described later.
A baseline gait signature was proposed in [22]. An
example of a signatureis shown in step 4.

Step 5: A gait signature can be used directly within a
classifier. Alternatively, features can be extracted
from a signature, and those features can be used
for classification. Again, there is a selection of clas-
sification techniques; in the simplest case, a clas-
sifier such as k-nearest neighbor (using Euclidian
distance) can be used.

Databases

A database can be collected for various purposes. Pri-
mary concerns include uniqueness and practicality.
A database should contain enough subjects to allow for
an estimate of inter- and intra-subject variation. The
current databases contain smaller number of subjects
compared to databases used to evaluate performance
of other biometrics (e.g., face, fingerprint). However,
there are databases that include covariate factors and
application potential. Some of the most well-known
databases together with some of their characteristics
are shown in Table 1.

Approaches to Gait Recognition

The approaches to gait recognition can be divided in
two main groups: model-based and model-free (see
Table 2). Model-based approaches use the human
body structure, and model-free methods use the whole
motion pattern of the human body. Which approach
is adopted depends on the acquisition conditions.
Model-free (appearance-based) approaches use the

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128
129
130
131
132
133
134
135
136
137
138

139

140
141
142
143
144
145
146



147
148
149
150
151
152
153
154
155
156
157

158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

ECV 375 — 2013/3/29 — 17:41 — page 3 — #5

Gait Recognition

input images directly to produce a gait signature with-
out fitting a model. These approaches can perform
recognition at lower resolutions which makes them
suitable for outdoor applications, where a subject
can be at a large distance from the camera. Model-
based approaches typically require higher resolution
images of a subject to be able to fit the model accu-
rately.

The table is taken from [18, 19]. Example papers
for all of the approaches can be found in the original
sources.

Model-Free Approaches

The model-free approaches derive the human sil-
houette by separating the moving object from the
background. The subject can then be recognized by
measurements that reflect shape and/or movement. The
simplest approach is to simply form an average of
the silhouettes over a complete gait cycle [15]. The
approach is called the Gait Energy Image (GEI), and
it is shown in Fig. 2. Motion Silhouette Image (MSI) is
a similar representation to the GEI. The value of each
pixel is computed as a function of motion of that pixel
in the temporal dimension over all silhouettes that are
part of a single gait cycle. Both the GEI and MSI are
easy to compute, but they are vulnerable to appearance
changes of the human silhouette. Frieze pattern rep-
resents the information contained in a gait sequence
by horizontal and vertical projections of the silhou-
ettes. Its extension, SVB Frieze patterns, use key frame
subtraction in order to mitigate the effects of appear-
ance changes on the silhouette (see Fig. 2). The Gait

Entropy Image (GEnl) is another example of a com-

pact gait representation (signature). GEnl is computed

by calculating the Shannon entropy for each pixel.

Shannon entropy measures the uncertainty associated

with a random variable.

The gait signatures for the approaches shown in
Fig. 2 are usually used directly for classification. There
are additional ways of extracting gait signatures with-
out using a model. Some examples are described
below:

e Little and Boyd [14] derive a dense optical flow
for each image sequence. Scale-independent scalar
features of each flow, based on moments of the
moving point, characterize the spatial distribution of

the flow. The periodic structure of these sequences
of scalars is analyzed. The scalar sequences for an
image sequence have the same fundamental period
but differ in phase, which is used as a feature for
recognition of individuals by the shape of their
motion.

BenAbdelkader et al. [2] use background model-
ing to track the subject for a number of frames
and extract a sequence of segmented images of the
person. A self-similarity plot is computed via cor-
relation of each pair of images in this sequence.
For recognition, PCA (principal component anal-
ysis) is used to reduce the dimensionality of the
plots. A k-nearest neighbor rule is used on the
reduced space for classification. Another silhouette-
based gait recognition technique using PCA has
been proposed by Liang et al. [13]. Eigenspace
transformation based on principal component anal-
ysis (PCA) is applied to time-varying distance sig-
nals derived from a sequence of silhouette images
to reduce the dimensionality of the input feature
space. Supervised pattern classification techniques
are performed in the lower-dimensional eigenspace
for recognition.

Hayfron-Acquah et al. [8] proposes a method for
automatic gait recognition based on analyzing the
symmetry of human motion. The Generalised Sym-
metry Operator is used to locate features according
to their symmetrical properties rather than relying
on the boarders of a shape. The symmetry operator
is used on the optical flow image to produce a gait
signature. For purposes of classification, the simi-
larity differences between the Fourier descriptions
of the gait signatures are calculated using Euclidean
distance.

Gait is a temporal sequence and can be modeled
using hidden Markov models (HMM). The statisti-
cal nature makes the model relatively robust. The
postures that an individual adopts are regarded as
states of the HMM and are typical to that individual
and provide means of discrimination [24].

Kale et al. [10] use two different image features to
directly train a HMM: the width of the outer contour
of a binary silhouette and the entire binary silhouette
itself.
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Model-Based Approaches

The advantages of the previous approaches (silhouette

or features derived from it) are speed and simplic-

ity. However, model-based approaches are better at
handling occlusion, noise, scale, and rotation. Model-
based approaches require a high resolution therefore
not very suitable for outdoor surveillance.

Model-based approaches incorporate knowledge of
the shape and dynamics of the human body into the
extraction process. These approaches extract features
that fit a physical model of the human body. A gait
model consists of shapes of various body parts and
how those shapes move relative to each other (motion
model). The shape model for a human subject can use
ellipse to describe the head and the torso, quadrilater-
als to describe the limbs, and rectangles to describe the
feet. Alternatively, arbitrary shapes could be used to
describe the edges of the body parts. The motion model
describes the dynamics of the motion of the different
body parts. Using a model ensures that only image data
corresponding to allowable human shape and motion is
extracted, reducing the effect of noise. The models can
be 2- or 3-dimensional. Most of the current models are
2-dimensional, but deliver good results on databases of
more than 100 subjects.

Some examples of model-based approaches are
described below:

* Yam et al. [28] have used pendular motion and the
understanding of biomechanics of human locomo-
tion to develop two models: a bilateral symmet-
ric and analytical model (employs the concept of
forced couple oscillator). See Fig. 3. The gait signa-
ture is the phase-weighted magnitude of the Fourier
description of both the thigh and knee rotation.

* Bouchrika and Nixon [3] have proposed a new
approach to extract human joints. Spatial model
templates for human motion are derived from the
analysis of gait data collected from manual label-
ing. Motion templates describing the motion of the
joints are parameterized using the elliptic Fourier
descriptors

ao
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where « is the rotation angle, s, and s, are the

scaling factors across the horizontal and vertical

axes, respectively, and X (¢) and Y (¢) are the Fourier
summation. Hough transform is used in the feature
extraction process.

* Wang et al. [26] have proposed an algorithm
based upon the fusion of static and dynamic body
information. The static body information is in a
form of a compact representation obtained by Pro-
crustes shape analysis. The dynamic information is
obtained by a model-based approach which tracks
the subject and recovers joint-angle trajectories of
lower limbs. A fusion at the decision level is used
to improve recognition results. Figure 1 shows an
example of the results obtained.

There have been moves towards developing 3D gait
models. Examples of work in this fields are [7, 25].
Guoying et al. [7] use video sequences from mul-
tiple cameras to construct 3D human models. The
motion is tracked by applying a local optimization
algorithm. The length of key segments is extracted
as.static parameters, and the motion trajectories of
lower limbs are used as dynamic features. Linear time
normalization is used for matching and recognition.
Three-dimensional approaches are robust to changes
in viewpoint and have a great potential. However at
present, experiments only on small databases are pos-
sible mainly due to high computational requirements.

Gait is dependent on large number of parameters
(joint angles and body segment size) which leads to
complex models with many free parameters. Finding
the best fit model for a subject leads to searching a
high-dimensional parameter space. Therefore, there is
a trade off between the accuracy of the model (com-
plexity) and computational cost. The models are often
simplified based on certain acceptable assumptions,
e.g., a system could assume constant walking speed.
However, as computing power increases, the problems
arising of high complexity can be mitigated.

Experimental Results

The current state of the art achieves very high recogni-
tion rates (close to 100 %) on relatively large databases
(>300 subjects) when the training and test data are
recorded under similar conditions. An example of pro-
gression in performance over time is shown in Table 2.
However, recognition rate can drop with change of
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clothing, shoes, walking surface, and pose. Many cur-
rent studies focus on solving these problems. Recent
major achievements in gait recognition are described
in [16, 20]. Matovski et al. [16] have shown that
elapsed time does not affect gait recognition and that
gait can be used as a reliable biometric over time
and at a distance. The world’s largest gait database
of more than 1,000 people has been constructed to
enable statistically reliable performance evaluation of
gait recognition performance [20] (Table 3).

The HumanID gait challenge problem [22] was set
up to outline a baseline algorithm for gait recogni-
tion and propose a number of difficult experiments for
the existing gait matchers. The gallery set consists of
122 subjects walking on a grass surface recorded by a
single camera.

Table 4 shows the differences of the probe set com-
pared to the gallery set for each of the challenge
experiments.

The results in Fig. 5 show the progress in gait recog-
nition over a period of 2 years for the experiments
shown in Table 4.

Application

Gait research is currently at an evaluation stage rather
than an application stage. However, the potential for
gait recognition is great. The complete unobtrusive-
ness without any subject cooperation or contact for
data acquisition makes gait particularly attractive for
identification purposes. It could‘be used in applica-
tions including forensics, security, immigration, and
surveillance.

Many surveillance systems capture only a low-
resolution video at varying lighting conditions, and
gait recognition might be the only plausible choice for
automatic recognition. A bank robber may wear a mask
so you cannot see his face, wear gloves so you cannot
get fingerprints, and wear a hat so you cannot get DNA
evidence — but they have to walk or run into the bank,
and they could be identified from their gait.

Gait recognition has been used as evidence for con-
viction in some criminal cases. A man in Bolton (UK)
was convicted based on his distinctive gait. A CCTV
footage of the burglar captured near the crime scene
was compared to a video captured at the police station
by a podiatrist specializing in gait analysis. In 2004,
a perpetrator robbed a bank in Denmark. The Institute

of Forensic Medicine in Copenhagen was contacted by
the police to perform gait analysis, as they thought the
perpetrator had a unique gait. The institute instructed
the police to establish a covert recording of the suspect
from the same angles as the surveillance recordings for
comparison. The gait analysis revealed several charac-
teristic matches between the perpetrator and the sus-
pect. For example, both the perpetrator (to the left) and
the suspect showed inverted left ankle (white arrow)
during left leg’s stance phase and markedly outward
rotated feet (see Fig. 6). The suspect was convicted of
robbery, and the court found that gait analysis is a very
valuable tool [12].

One system named the Biometric Tunnel [23] has
led to the first live demonstration of gait as a bio-
metric and could indicate a possible route for future
deployment of the technology. The left side of Fig. 7
depicts the system. It consists of a simple corridor with
12 synchronized and fixed cameras. The subjects are
asked to walk through the middle, and the lighting and
background are controlled to facilitate analysis. The
right side of Fig. 7 shows the details of the arrange-
ment. The system is designed with a high-throughput
environment in mind.

Open Problems

Although a large number of gait recognition algo-
rithms have been reported, it is important to note that
gait biometrics is still in its infancy. The majority of
studies achieve good recognition rates on gallery and
probe acquired in similar conditions. However, it is
very challenging to extract gait features that are invari-
ant to change in appearance as well as to conditions
that affect a person’s gait. Examples of things that
can change and negatively affect the effectiveness of
current gait algorithms are change of clothing, shoe
type, carrying a load, and injuries/medical conditions.
Clothing for instance can change the observed pattern
of motion and make it difficult to accurately locate
joint position. Furthermore, there are certain factors
that are related to the environment and not the sub-
jects themselves that can cause difficulties for current
gait matchers. Examples of environmental confound-
ing factors are camera viewing angle, background, and
illumination.

Recently, studies have reported progress in solv-
ing some of the issues outlined above. A study by
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Goffredo et al. [6] describes a self-calibrating view-
invariant gait recognition algorithm. Hossain et al. [9]
have developed a clothing invariant gait matcher.
Agqmar et al. [1] are the most recent approach focussed
on speed variation.

Currently, gait recognition can deliver very high
recognition rates in a constrained environment and if
certain factors are controlled. A move towards devel-
oping algorithms invariant to change over time is
needed. Furthermore, additional work is required to
translate the research to outside environment and to
explore how scalable it is. Attempts so far suggest that
developing highly reliable gait-based human identifi-
cation system in a real-world application is, and will
continue to be, very challenging. In the short term,
some of the challenges associated with gait recog-
nition can be addressed by fusing gait with other
biometrics [29].
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Step 1—Acquire a Step 2 — Pre-processing Step 3 — Find a suitable
gait sample Gait Cycle
Step 4 — Create a gait Step 5 — Classification
signature

Gait Recognition, Fig. 1 General steps of a gait recognition system

RAL.

Gait Entropy Motion Silhouette Gait Energy SVB Frieze Pattern

Gait Recognition, Fig. 2 Examples of model-free gait signatures

m = mass
6 = angular displacement
= length of the limb

Subscripts T and K denote high and lower
leg respectively.

Gait Recognition, Fig. 3 Example of a gait model — the dynamically coupled pendulum model [28]
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Gait Recognition, Fig. 4 Example of results [26]
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Gait Recognition, Fig. 5 The progress from the baseline over 2 years for the various experiments shown in Table 4 [22]
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Gait Recognition, Fig. 6 Bank robbery

Gait Gait Gait Gait

Exit Ear
Break-beam

Entry

Gait Gait Gait

Gait Recognition, Fig. 7 The biometric tunnel
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Gait Recognition, Table 1 Details of some of the well-known gait databases

Name Subjects Sequences
HumanID (USF) 122 1,870
SOTON 2002 114 >2,500
CMU MoBo 100 600
MIT 2002 24 194
UMD 2002 44 176
CASIA 2006 124 1,240
SOTON multimodal [21]*1 >300 >5, 000
Osaka University 1,035 2,070

Gait Recognition, Table 2 Approaches to gait recognition

Model-free analysis

Moving shape

Unwrapped silhouette;
silhouette similarity;
relational statistics;
self-similarity; key
frame analysis; frieze

patterns; area;
symmetry; point

Shape + motion
Eigenspace sequences;
hidden Markov model;
average silhouette;
moments; ellipsoidal
fits; kinematic features;
gait style and content

distribution models; key

poses

Gait Recognition, Table 3 Progression of gait recognition systems

Time period
1990s

2000s

Recent (2010)
Recent (2010)

No of subjects Source

~10 [SN@

~120 HiD, CASIA, Southampton
>300 Southampton multimodal
>1000 Osaka University

Covariates Viewpoints
Y 2
Y 2
Y 6
Y 1
N 1
Y 11
Y 12
N 2

Model-based analysis
Structural

Stride parameters;
human parameters; joint
trajectories

Recognition rate Notes

95.2

75-99 %

95-100 %

90 % No covariates

Gait Recognition, Table 4 Some experiments comprising the HumanID gait challenge problem

Experiment

QTmg QW

Probe

Different camera view than gallery
Subjects wore different shoes

Different camera view and different shoes
Subjects walked on a different surface

Different shoes and different walking surface

Different walking surface and different camera view

# of subjects
122
54
54
121
60
121

Different walking surface, different shoes, and different camera view 60

Indoor(I)/outdoor(O)
(6]

1/0

I (treadmill)

lialialle)le!

Modeled

Articulated model; dual
oscillator; linked feature
trajectories

Recognition rate depends on covariates
Includes time-dependent covariates

Difference

View

Shoe

Shoe, view

Surface

Surface, shoes
Surface, view
Surface, shoe, view
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