

G

Gait Recognition

1 Darko S. Matovski, Mark S. Nixon and
 2 John N. Carter
 3 School of Electronics and Computer Science,
 4 University of Southampton, Southampton,
 5 Hampshire, UK

6 Synonyms

7 Automatic gait recognition; Gait analysis; Gait
 8 biometrics

9 Related Concepts

10 ►Face Recognition; ►Hough Transform; ►Iris
 11 Recognition; ►Optical Flow; ►Principal Component
 12 Analysis (PCA)

13 Definition

14 The way a person walks (or runs) combined with
 15 their posture is known as gait. Recognizing individuals
 16 by their particular gait using automated vision-based
 17 algorithms is known as gait recognition.

18 Background

19 Gait has few important advantages over other forms of
 20 biometric identification. It can be acquired at a distance
 21 when other biometrics are obscured or the resolution
 22 is insufficient. It does not require subject cooperation
 23 and can be acquired in a noninvasive manner. It is easy

to observe and hard to disguise as walking is necessary for human mobility. Gait can be acquired from a single still image or from a temporal sequence of images (e.g., a video).

Shakespeare made several references to the individuality of gait, e.g., in *The Tempest* [Act 4 Scene 1], Cares observes “*High’st Queen of state, Great Juno comes; I know her by her gait*” and in *Henry IV Part II* [Act 2, Scene 3], “*To seem like him: so that, in speech, in gait, in diet, in affections of delight, in military rules, humors of blood, he was the mark and glass, copy and book.*”

The aim of medical research has been to classify the components of gait for the treatment of pathologically abnormal patients. Murray et al. [17] created standard movement patterns for pathologically normal people. Those patterns were then used to identify pathologically abnormal patients.

The biomechanics literature makes observations concerning identity: “A given person will perform his or her walking pattern in a fairly repeatable and characteristic way, sufficiently unique that it is possible to recognize a person at a distance by their gait” [27].

Psychophysiological studies such as [5, 11] have shown that humans can recognize friends and the sex of a person solely by their gait with 70–80 % accuracy. These and similar studies have inspired the use of gait as a biometric trait.

Recently, there has been a rapid growth in the number of surveillance systems, aimed to improve safety and security. These systems are yet to include recognition capabilities, and gait recognition could be a most suitable choice. The primary aim of surveillance videos is to monitor people. However, the video data can be of a low quality (poor resolution, time lapse,

59 etc.), and the subject can try to conceal the more
 60 conventional biometrics. Nevertheless, such video can
 61 provide sufficient data for gait recognition technology,
 62 and there is already research in using gait biomet-
 63 rics as a forensic tool [4]. Gait recognition could be
 64 employed at a border crossing or any high-throughput
 65 environment. Gait contains very rich information and
 66 is considered to be unique. Studies have shown that
 67 gait can also be used to reveal a person's identity,
 68 gender, emotional state, etc.

69 Recognition by gait is one of the newest biomet-
 70 rics since its development only started when computer
 71 memory and processing speed became sufficient to
 72 process sequences of image data with reasonable per-
 73 formance. The potential for gait recognition is great,
 74 and hence there is a vast interest in computer vision
 75 research in extracting gait features.

76 Theory

77 A gait recognition system primarily consists of a com-
 78 puter vision system. A gait signature is created by
 79 extracting images of a walking subject which is then
 80 compared to the signatures of known subjects. [Figure 1](#)
 81 shows an example of some of the basic steps in a gait
 82 recognition system.

83 Step 1: Data can be acquired using a single or multiple
 84 cameras. If data is acquired using a single cam-
 85 era, recognition can be performed using a 2D gait
 86 signature such as the Gait Energy Image (GEI –
 87 shown in step 4). However, if multiple but synchro-
 88 nized cameras are used, the number of possibilities
 89 is greater. Examples of the usage of multiple-
 90 synchronized cameras include:

- 91 • Producing a 3D gait model and using it for
 92 recognition.
- 93 • 3D information can be used to improve recog-
 94 nition for a 2D approach by producing a non-
 95 normalized version of a 2D signature.
- 96 • Achieving a view-invariant recognition. A gait
 97 signature from any view can be re-created using
 98 3D data which can be mapped to a signature
 99 acquired in an outdoor environment where typ-
 100 ically only a single and nonoptimal view is
 101 available.

102 Step 2: An example of preprocessing step is back-
 103 ground subtraction or background segmentation.

The subject can be acquired easily and reliably by 104
 using chroma-keying if there are clear color dif- 105
 ference between the subject and the background. 106
 Background subtraction can measure the naturally 107
 occurring scene behind the walking subject using 108
 one of the plethora of computer vision techniques. 109

Step 3: As human gait is periodic, a gait sequence 110
 (sample) can consist of multiple gait cycles. Iden- 111
 tifying the most suitable cycle can lead to bet- 112
 ter recognition rates. Signal processing techniques 113
 can be applied to the foreground signal (sum of 114
 foreground pixels) in the case of binary image. 115

Step 4: There are number of approaches to produce a 116
 gait signature, some of which are described later. 117
 A baseline gait signature was proposed in [22]. An 118
 example of a signature is shown in step 4. 119

Step 5: A gait signature can be used directly within a 120
 classifier. Alternatively, features can be extracted 121
 from a signature, and those features can be used 122
 for classification. Again, there is a selection of clas- 123
 sification techniques; in the simplest case, a clas- 124
 sifier such as k -nearest neighbor (using Euclidian 125
 distance) can be used. 126

50 Databases

127

A database can be collected for various purposes. Pri- 128
 mary concerns include uniqueness and practicality. 129
 A database should contain enough subjects to allow for 130
 an estimate of inter- and intra-subject variation. The 131
 current databases contain smaller number of subjects 132
 compared to databases used to evaluate performance 133
 of other biometrics (e.g., face, fingerprint). However, 134
 there are databases that include covariate factors and 135
 application potential. Some of the most well-known 136
 databases together with some of their characteristics 137
 are shown in [Table 1](#). 138

70 Approaches to Gait Recognition

139

The approaches to gait recognition can be divided in 140
 two main groups: *model-based* and *model-free* (see 141
[Table 2](#)). Model-based approaches use the human 142
 body structure, and model-free methods use the whole 143
 motion pattern of the human body. Which approach 144
 is adopted depends on the acquisition conditions. 145
 Model-free (appearance-based) approaches use the 146

147 input images directly to produce a gait signature with-
 148 out fitting a model. These approaches can perform
 149 recognition at lower resolutions which makes them
 150 suitable for outdoor applications, where a subject
 151 can be at a large distance from the camera. Model-
 152 based approaches typically require higher resolution
 153 images of a subject to be able to fit the model accu-
 154 rately.

155 The table is taken from [18, 19]. Example papers
 156 for all of the approaches can be found in the original
 157 sources.

158 Model-Free Approaches

159 The model-free approaches derive the human sil-
 160houette by separating the moving object from the
 161 background. The subject can then be recognized by
 162 measurements that reflect shape and/or movement. The
 163 simplest approach is to simply form an average of
 164 the silhouettes over a complete gait cycle [15]. The
 165 approach is called the Gait Energy Image (GEI), and
 166 it is shown in Fig. 2. Motion Silhouette Image (MSI) is
 167 a similar representation to the GEI. The value of each
 168 pixel is computed as a function of motion of that pixel
 169 in the temporal dimension over all silhouettes that are
 170 part of a single gait cycle. Both the GEI and MSI are
 171 easy to compute, but they are vulnerable to appear-
 172 changes of the human silhouette. Frieze pattern rep-
 173 resents the information contained in a gait sequence
 174 by horizontal and vertical projections of the silhou-
 175 ettes. Its extension, SVB Frieze patterns, use key frame
 176 subtraction in order to mitigate the effects of appear-
 177 ance changes on the silhouette (see Fig. 2). The Gait
 178 Entropy Image (GEnI) is another example of a com-
 179 pact gait representation (signature). GEnI is computed
 180 by calculating the Shannon entropy for each pixel.
 181 Shannon entropy measures the uncertainty associated
 182 with a random variable.

183 The gait signatures for the approaches shown in
 184 Fig. 2 are usually used directly for classification. There
 185 are additional ways of extracting gait signatures with-
 186 out using a model. Some examples are described
 187 below:

188 • Little and Boyd [14] derive a dense optical flow
 189 for each image sequence. Scale-independent scalar
 190 features of each flow, based on moments of the
 191 moving point, characterize the spatial distribution of

the flow. The periodic structure of these sequences 192
 of scalars is analyzed. The scalar sequences for an 193
 image sequence have the same fundamental period 194
 but differ in phase, which is used as a feature for 195
 recognition of individuals by the shape of their 196
 motion. 197

- BenAbdelkader et al. [2] use background model- 198
 ing to track the subject for a number of frames 199
 and extract a sequence of segmented images of the 200
 person. A self-similarity plot is computed via cor- 201
 relation of each pair of images in this sequence. 202
 For recognition, PCA (principal component anal- 203
 ysis) is used to reduce the dimensionality of the 204
 plots. A k-nearest neighbor rule is used on the 205
 reduced space for classification. Another silhouette- 206
 based gait recognition technique using PCA has 207
 been proposed by Liang et al. [13]. Eigenspace 208
 transformation based on principal component anal- 209
 ysis (PCA) is applied to time-varying distance sig- 210
 nals derived from a sequence of silhouette images 211
 to reduce the dimensionality of the input feature 212
 space. Supervised pattern classification techniques 213
 are performed in the lower-dimensional eigenspace 214
 for recognition. 215
- Hayfron-Acquah et al. [8] proposes a method for 216
 automatic gait recognition based on analyzing the 217
 symmetry of human motion. The Generalised Sym- 218
 metry Operator is used to locate features according 219
 to their symmetrical properties rather than relying 220
 on the boarders of a shape. The symmetry operator 221
 is used on the optical flow image to produce a gait 222
 signature. For purposes of classification, the simi- 223
 larity differences between the Fourier descriptions 224
 of the gait signatures are calculated using Euclidean 225
 distance. 226
- Gait is a temporal sequence and can be modeled 227
 using hidden Markov models (HMM). The statisti- 228
 cal nature makes the model relatively robust. The 229
 postures that an individual adopts are regarded as 230
 states of the HMM and are typical to that individual 231
 and provide means of discrimination [24]. 232
- Kale et al. [10] use two different image features to 233
 directly train a HMM: the width of the outer contour 234
 of a binary silhouette and the entire binary silhouette 235
 itself. 236

237 **Model-Based Approaches**

238 The advantages of the previous approaches (silhouette
 239 or features derived from it) are speed and simplic-
 240 ity. However, model-based approaches are better at
 241 handling occlusion, noise, scale, and rotation. Model-
 242 based approaches require a high resolution therefore
 243 not very suitable for outdoor surveillance.

244 Model-based approaches incorporate knowledge of
 245 the shape and dynamics of the human body into the
 246 extraction process. These approaches extract features
 247 that fit a physical model of the human body. A gait
 248 model consists of shapes of various body parts and
 249 how those shapes move relative to each other (motion
 250 model). The shape model for a human subject can use
 251 ellipse to describe the head and the torso, quadrilater-
 252 als to describe the limbs, and rectangles to describe the
 253 feet. Alternatively, arbitrary shapes could be used to
 254 describe the edges of the body parts. The motion model
 255 describes the dynamics of the motion of the different
 256 body parts. Using a model ensures that only image data
 257 corresponding to allowable human shape and motion is
 258 extracted, reducing the effect of noise. The models can
 259 be 2- or 3-dimensional. Most of the current models are
 260 2-dimensional, but deliver good results on databases of
 261 more than 100 subjects.

262 Some examples of model-based approaches are
 263 described below:

- 264 • Yam et al. [28] have used pendular motion and the
 265 understanding of biomechanics of human locomotion
 266 to develop two models: a bilateral symmetric and
 267 analytical model (employs the concept of
 268 forced couple oscillator). See [Fig. 3](#). The gait signature
 269 is the phase-weighted magnitude of the Fourier
 270 description of both the thigh and knee rotation.
- 271 • Bouchrika and Nixon [3] have proposed a new
 272 approach to extract human joints. Spatial model
 273 templates for human motion are derived from the
 274 analysis of gait data collected from manual label-
 275 ing. Motion templates describing the motion of the
 276 joints are parameterized using the elliptic Fourier
 277 descriptors

$$278 \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix} + \begin{bmatrix} \cos(\alpha) - \sin(\alpha) \\ \sin(\alpha) \cos(\alpha) \end{bmatrix} \\ 279 \begin{bmatrix} X(t) * S_x \\ Y(t) * S_y \end{bmatrix}$$

280 where α is the rotation angle, s_x and s_y are the
 281 scaling factors across the horizontal and vertical
 282 axes, respectively, and $X(t)$ and $Y(t)$ are the Fourier
 283 summation. Hough transform is used in the feature
 284 extraction process.

- 285 • Wang et al. [26] have proposed an algorithm
 286 based upon the fusion of static and dynamic body
 287 information. The static body information is in a
 288 form of a compact representation obtained by Pro-
 289 crustes shape analysis. The dynamic information is
 290 obtained by a model-based approach which tracks
 291 the subject and recovers joint-angle trajectories of
 292 lower limbs. A fusion at the decision level is used
 293 to improve recognition results. [Figure 1](#) shows an
 294 example of the results obtained.

295 There have been moves towards developing 3D gait
 296 models. Examples of work in this fields are [7, 25].
 297 Guoying et al. [7] use video sequences from mul-
 298 tiple cameras to construct 3D human models. The
 299 motion is tracked by applying a local optimization
 300 algorithm. The length of key segments is extracted
 301 as static parameters, and the motion trajectories of
 302 lower limbs are used as dynamic features. Linear time
 303 normalization is used for matching and recognition.
 304 Three-dimensional approaches are robust to changes
 305 in viewpoint and have a great potential. However at
 306 present, experiments only on small databases are pos-
 307 sible mainly due to high computational requirements.

308 Gait is dependent on large number of parameters
 309 (joint angles and body segment size) which leads to
 310 complex models with many free parameters. Finding
 311 the best fit model for a subject leads to searching a
 312 high-dimensional parameter space. Therefore, there is
 313 a trade off between the accuracy of the model (com-
 314 plexity) and computational cost. The models are often
 315 simplified based on certain acceptable assumptions,
 316 e.g., a system could assume constant walking speed.
 317 However, as computing power increases, the problems
 318 arising of high complexity can be mitigated.

Experimental Results

319

320 The current state of the art achieves very high recogni-
 321 tion rates (close to 100 %) on relatively large databases
 322 (>300 subjects) when the training and test data are
 323 recorded under similar conditions. An example of pro-
 324 gression in performance over time is shown in [Table 2](#).
 325 However, recognition rate can drop with change of

326 clothing, shoes, walking surface, and pose. Many cur-
 327 rent studies focus on solving these problems. Recent
 328 major achievements in gait recognition are described
 329 in [16, 20]. Matovski et al. [16] have shown that
 330 elapsed time does not affect gait recognition and that
 331 gait can be used as a reliable biometric over time
 332 and at a distance. The world's largest gait database
 333 of more than 1,000 people has been constructed to
 334 enable statistically reliable performance evaluation of
 335 gait recognition performance [20] (Table 3).

336 The HumanID gait challenge problem [22] was set
 337 up to outline a baseline algorithm for gait recogni-
 338 tion and propose a number of difficult experiments for
 339 the existing gait matchers. The gallery set consists of
 340 122 subjects walking on a grass surface recorded by a
 341 single camera.

342 Table 4 shows the differences of the probe set com-
 343 pared to the gallery set for each of the challenge
 344 experiments.

345 The results in Fig. 5 show the progress in gait recog-
 346 nition over a period of 2 years for the experiments
 347 shown in Table 4.

348 Application

349 Gait research is currently at an evaluation stage rather
 350 than an application stage. However, the potential for
 351 gait recognition is great. The complete unobtrusive-
 352 ness without any subject cooperation or contact for
 353 data acquisition makes gait particularly attractive for
 354 identification purposes. It could be used in applica-
 355 tions including forensics, security, immigration, and
 356 surveillance.

357 Many surveillance systems capture only a low-
 358 resolution video at varying lighting conditions, and
 359 gait recognition might be the only plausible choice for
 360 automatic recognition. A bank robber may wear a mask
 361 so you cannot see his face, wear gloves so you cannot
 362 get fingerprints, and wear a hat so you cannot get DNA
 363 evidence – but they have to walk or run into the bank,
 364 and they could be identified from their gait.

365 Gait recognition has been used as evidence for con-
 366 viction in some criminal cases. A man in Bolton (UK)
 367 was convicted based on his distinctive gait. A CCTV
 368 footage of the burglar captured near the crime scene
 369 was compared to a video captured at the police station
 370 by a podiatrist specializing in gait analysis. In 2004,
 371 a perpetrator robbed a bank in Denmark. The Institute

of Forensic Medicine in Copenhagen was contacted by
 372 the police to perform gait analysis, as they thought the
 373 perpetrator had a unique gait. The institute instructed
 374 the police to establish a covert recording of the suspect
 375 from the same angles as the surveillance recordings for
 376 comparison. The gait analysis revealed several charac-
 377 teristic matches between the perpetrator and the sus-
 378 pect. For example, both the perpetrator (to the left) and
 379 the suspect showed inverted left ankle (white arrow)
 380 during left leg's stance phase and markedly outward
 381 rotated feet (see Fig. 6). The suspect was convicted of
 382 robbery, and the court found that gait analysis is a very
 383 valuable tool [12].
 384

385 One system named the Biometric Tunnel [23] has
 386 led to the first live demonstration of gait as a bio-
 387 metric and could indicate a possible route for future
 388 deployment of the technology. The left side of Fig. 7
 389 depicts the system. It consists of a simple corridor with
 390 12 synchronized and fixed cameras. The subjects are
 391 asked to walk through the middle, and the lighting and
 392 background are controlled to facilitate analysis. The
 393 right side of Fig. 7 shows the details of the arrange-
 394 ment. The system is designed with a high-throughput
 395 environment in mind.

Open Problems

396

397 Although a large number of gait recognition algo-
 398 rithms have been reported, it is important to note that
 399 gait biometrics is still in its infancy. The majority of
 400 studies achieve good recognition rates on gallery and
 401 probe acquired in similar conditions. However, it is
 402 very challenging to extract gait features that are invari-
 403 ant to change in appearance as well as to conditions
 404 that affect a person's gait. Examples of things that
 405 can change and negatively affect the effectiveness of
 406 current gait algorithms are change of clothing, shoe
 407 type, carrying a load, and injuries/medical conditions.
 408 Clothing for instance can change the observed pattern
 409 of motion and make it difficult to accurately locate
 410 joint position. Furthermore, there are certain factors
 411 that are related to the environment and not the sub-
 412 jects themselves that can cause difficulties for current
 413 gait matchers. Examples of environmental confound-
 414 ing factors are camera viewing angle, background, and
 415 illumination.

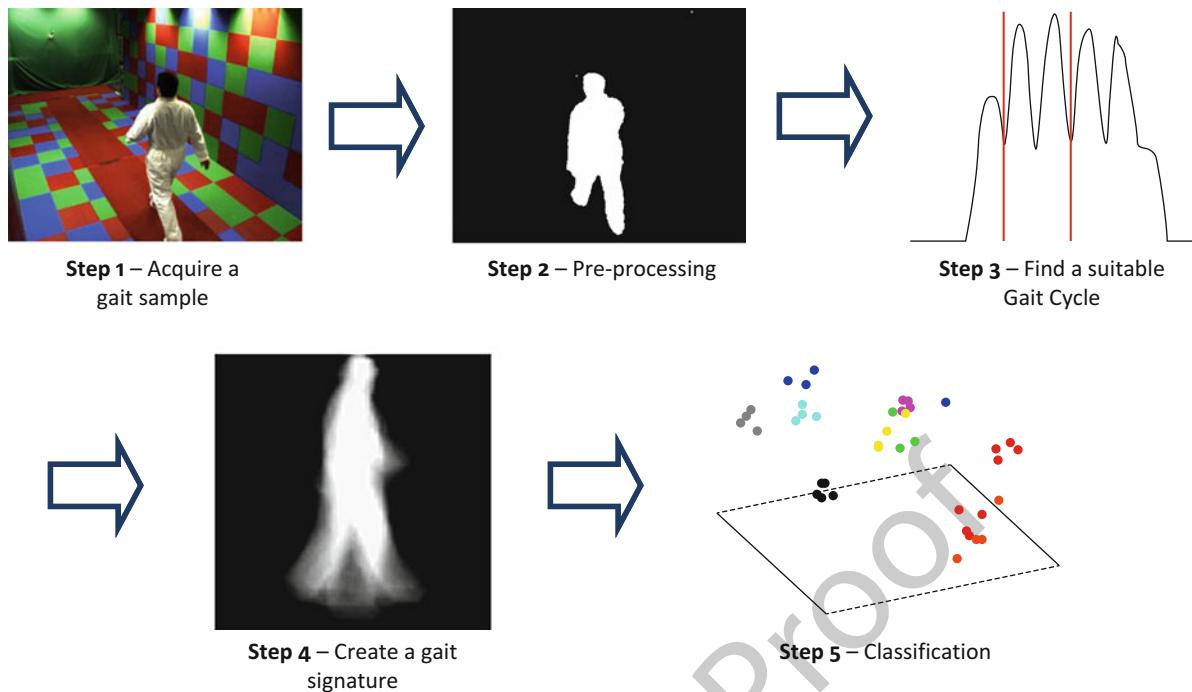
416 Recently, studies have reported progress in solv-
 417 ing some of the issues outlined above. A study by

418 Goffredo et al. [6] describes a self-calibrating view-
 419 invariant gait recognition algorithm. Hossain et al. [9]
 420 have developed a clothing invariant gait matcher.
 421 Aqmar et al. [1] are the most recent approach focussed
 422 on speed variation.

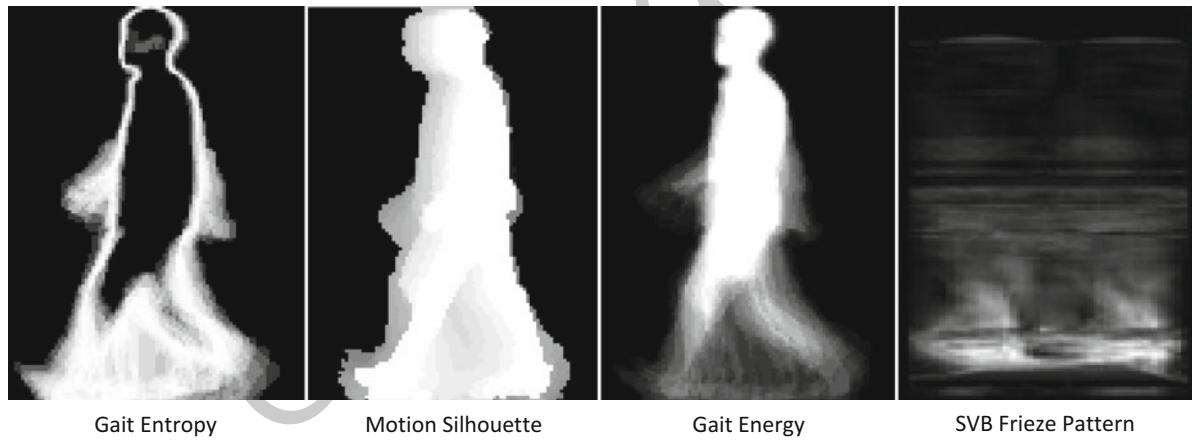
423 Currently, gait recognition can deliver very high
 424 recognition rates in a constrained environment and if
 425 certain factors are controlled. A move towards devel-
 426 oping algorithms invariant to change over time is
 427 needed. Furthermore, additional work is required to
 428 translate the research to outside environment and to
 429 explore how scalable it is. Attempts so far suggest that
 430 developing highly reliable gait-based human identifi-
 431 cation system in a real-world application is, and will
 432 continue to be, very challenging. In the short term,
 433 some of the challenges associated with gait recog-
 434 nition can be addressed by fusing gait with other
 435 biometrics [29].

436 References

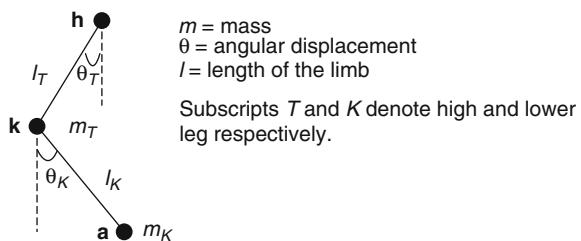
1. Aqmar MR, Shinoda K, Furui S (2010) Robust gait recogni-
 438 tion against speed variation. In: Proceedings of 20th IEEE
 439 international conference on pattern recognition (ICPR),
 440 Istanbul, Turkey
2. Benabdelkader C, Cutler R, Davis L (2002) Motion-based
 442 recognition of people in eigengait space. In: Proceedings of
 443 IEEE international conference automatic face and gesture
 444 recognition (AFGR). IEEE, Piscataway, pp 267–272
3. Bouchrika I, Nixon M (2008) Exploratory factor analy-
 446 sis of gait recognition. In: 8th IEEE international confer-
 447 ence on automatic face and gesture recognition (AFGR),
 448 Amsterdam, The Netherlands
4. Bouchrika I, Goffredo M, Carter JN, Nixon MS (2010) On using gait in forensic biometrics. *Journal of Forensic
 450 Sciences* 56(4):882–889 July 2011
5. Cutting JE, Kozlowski LT (1977) Recognizing friends by
 453 their walk: gait perception without familiarity cues. *Bull
 454 Psychon Soc* 9(5):353–356
6. Goffredo M, Bouchrika I, Carter JN, Nixon MS (2010) Self-
 456 calibrating view-invariant gait biometrics. *IEEE Trans Syst
 457 Man Cybern Part B Cybern* 40(4):997–1008
7. Guoying Z, Guoyi L, Hua L, Pietikainen M (2006) 3D gait
 459 recognition using multiple cameras. In: Proceedings of 7th
 460 IEEE international conference automatic face and gesture
 461 recognition (AFGR), Southampton, pp 529–534
8. Hayfron-Acquah J, Nixon M, Carter J (2003) Automatic gait
 463 recognition by symmetry analysis. *Pattern Recognit Lett*
 464 24(13):2175–2183
9. Hossain MA, Makihara Y, Junqui W, Yagi Y (2010) Clothing-invariant gait identification using part-based cloth-
 466 ing categorization and adaptive weight control. *Pattern Recognt* 43(6):2281–2291
10. Kale A, Sundareshan A, Rajagopalan A, Cuntoor N,
 470 Roy-Chowdhury A, Kruger V, Chellappa R (2004) Identifi-
 471 cation of humans using gait. *IEEE Trans Image Process* 13(9):1163–1173
11. Kozlowski LT, Cutting JE (1977) Recognizing the sex of
 473 a walker from a dynamic point-light display. *Percept Psy-
 474 chophys* 21(6):575–580
12. Larsen PK, Simonsen EB, Lynnerup N (2008) Gait analysis
 476 in forensic medicine. *J Forensic Sci* 53(5):1149–1153
13. Liang W, Tieniu T, Huazhong N, Weiming H (2003) Silhou-
 478 ette analysis-based gait recognition for human identification.
 480 *IEEE Trans Pattern Anal Mach Intell* 25(12):1505–1518
14. Little J, Boyd J (1998) Recognizing people by their gait: the
 481 shape of motion. *Videre: J Comput Vis Res* 1(2):1–32
15. Liu Z, Sarkar S (2004) Simplest representation yet for gait
 483 recognition: averaged silhouette. In: Proceedings of 17th
 484 IEEE international conference pattern recognition (ICPR),
 485 Cambridge, UK, pp 211–214
16. Matovski DS, Nixon MS, Mahmoodi S, Carter JN (2010) The effect of time on the performance of gait biometrics.
 488 In: 4th IEEE international conference biometrics: theory,
 489 applications and systems (BTAS), Washington, DC, USA
17. Murray M, Drought A, Kory R (1964) Walking patterns of
 491 normal men. *J Bone Jt Surg* 46(2):335
18. Nixon MS, Carter JN (2006) Automatic recognition by gait.
 493 *Proc IEEE* 94(11):2013–2024
19. Nixon MS, Tan TN, Chellappa R (2005) Human identifica-
 495 tion based on gait. Springer, New York
20. Okumura M, Iwama H, Makihara Y, Yagi Y (2010) Perfor-
 497 mance evaluation of vision-based gait recognition using a
 498 very large-scale gait database. In: 4th IEEE international
 499 conference biometrics: theory, applications and systems
 500 (BTAS), Washington, DC
21. Samangooei S, Bustard J, Nixon MS, Carter JN (2010) On
 502 acquisition and analysis of a dataset comprising of gait, ear
 503 and semantic data. In: Bhanu B, Govindaraju V (eds) Multi-
 504 biometrics for human identification. Cambridge University
 505 Press, Cambridge. (in press)
22. Sarkar S, Phillips PJ, Zongyi L, Isidro Robledo V, Grother P,
 507 Bowyer KW (2005) The HumanID gait challenge problem:
 508 data sets, performance, and analysis. *IEEE Trans Pattern
 509 Anal Mach Intell* 27(2):162–177
23. Seely R, Samangooei S, Lee M, Carter J, Nixon M (2008) University of Southampton multi-biometric tunnel
 511 and introducing a novel 3d gait dataset. In: Proceedings
 513 of 2nd IEEE international conference biometrics: theory,
 514 applications and systems (BTAS), Washington, DC
24. Sundaresan A, Roychowdhury A, Chellappa R (2003) A
 516 hidden markov model based framework for recognition of
 517 humans from gait sequences. In: Proceedings of IEEE inter-
 518 national conference image processing (ICIP), Barcelona,
 519 pp 93–96
25. Urtasun R, Fua P (2004) 3D tracking for gait characteri-
 521 zation and recognition. In: Proceedings of 6th IEEE inter-
 522 national conference automatic face and gesture recogni-
 523 (AFGR), Seoul, pp 17–22
26. Wang L, Ning H, Tan T, Hu W (2004) Fusion of static and
 525 dynamic body biometrics for gait recognition. *IEEE Trans
 526 Circuits Syst Video Technol* 14(2):149–158
27. Winter DA (2009) Biomechanics and motor control of
 528 human movement. Wiley, Ottawa
28. Yam C, Nixon M, Carter J (2004) Automated person recog-
 530 nition by walking and running via model-based approaches.
 531 *Pattern Recognit* 37(5):1057–1072
29. Zhou X, Bhanu B (2008) Feature fusion of side face and
 533 gait for video-based human identification. *Pattern Recognit*
 534 41(3):778–795



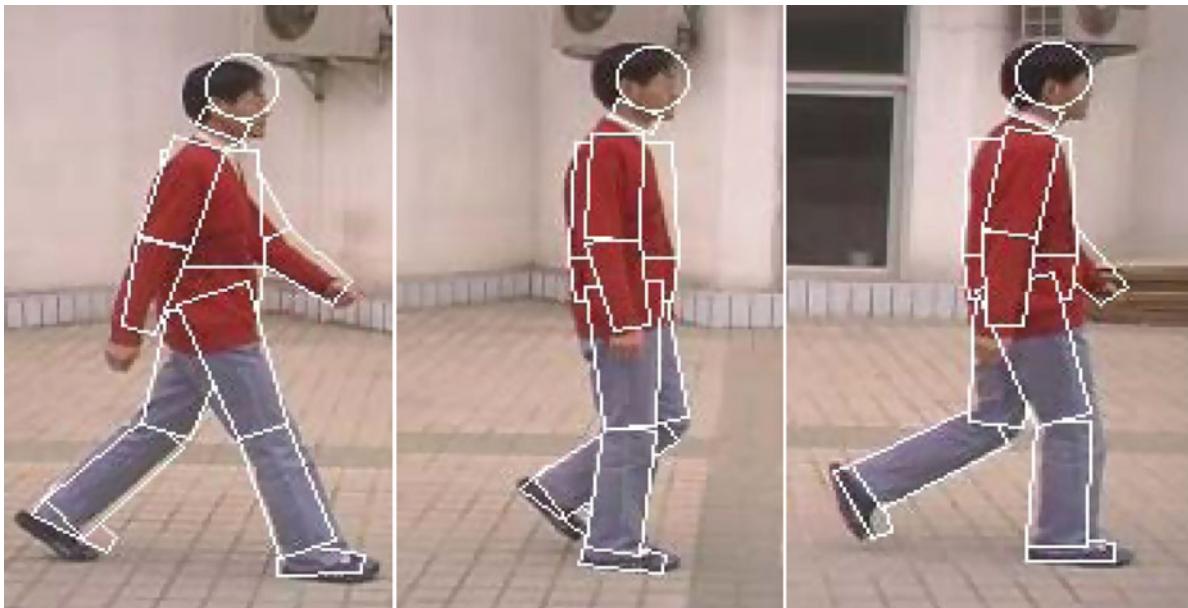
Gait Recognition, Fig. 1 General steps of a gait recognition system



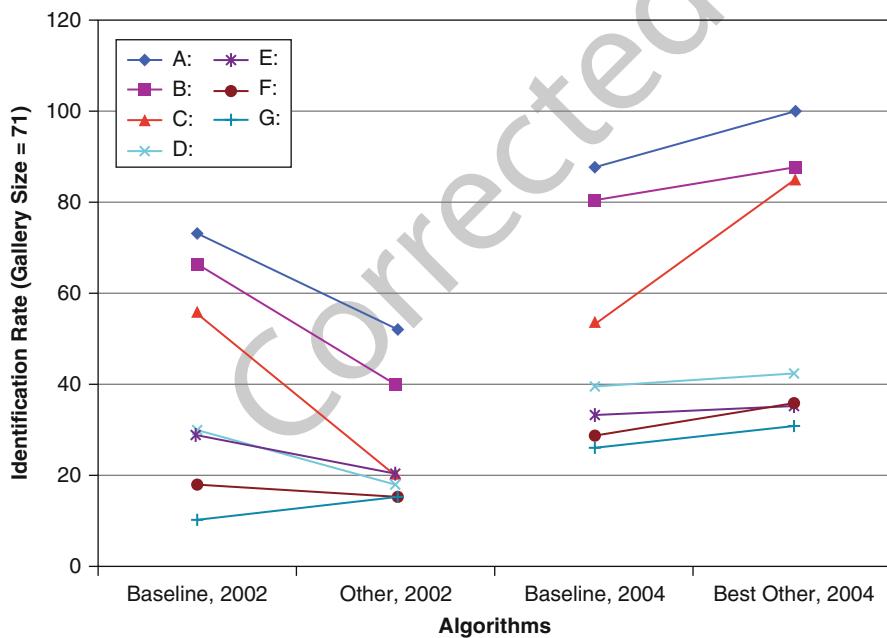
Gait Recognition, Fig. 2 Examples of model-free gait signatures



Gait Recognition, Fig. 3 Example of a gait model – the dynamically coupled pendulum model [28]

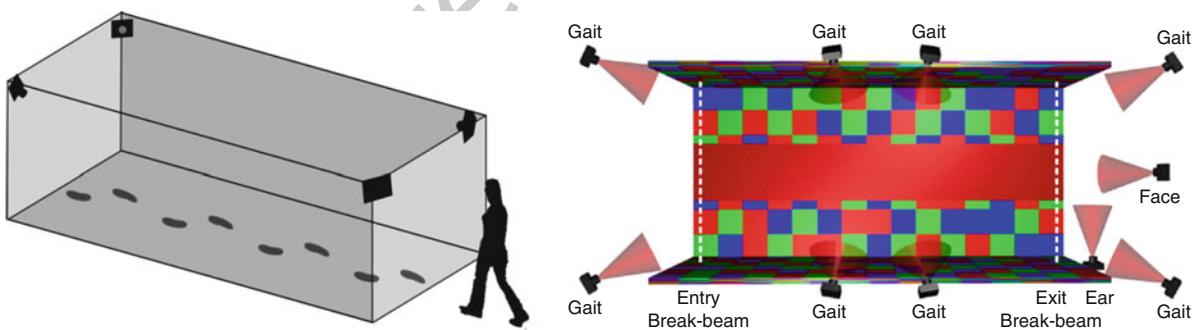


Gait Recognition, Fig. 4 Example of results [26]



Gait Recognition, Fig. 5 The progress from the baseline over 2 years for the various experiments shown in Table 4 [22]

Gait Recognition, Fig. 6 Bank robbery



Gait Recognition, Fig. 7 The biometric tunnel

t1.1 **Gait Recognition, Table 1** Details of some of the well-known gait databases

t1.2	Name	Subjects	Sequences	Covariates	Viewpoints	Indoor(I)/outdoor(O)
t1.3	HumanID (USF)	122	1,870	Y	2	O
t1.4	SOTON 2002	114	>2,500	Y	2	I/O
t1.5	CMU MoBo	100	600	Y	6	I (treadmill)
t1.6	MIT 2002	24	194	Y	1	I
t1.7	UMD 2002	44	176	N	1	O
t1.8	CASIA 2006	124	1,240	Y	11	I
t1.9	SOTON multimodal [21]*1	>300	>5,000	Y	12	I
t1.10	Osaka University	1,035	2,070	N	2	I

t2.1 **Gait Recognition, Table 2** Approaches to gait recognition

t2.2	Model-free analysis	Model-based analysis
t2.3	Moving shape	Structural
t2.4	Unwrapped silhouette; silhouette similarity; relational statistics; self-similarity; key frame analysis; frieze patterns; area; symmetry; point distribution models; key poses	Eigenspace sequences; hidden Markov model; average silhouette; moments; ellipsoidal fits; kinematic features; gait style and content Stride parameters; human parameters; joint trajectories Articulated model; dual oscillator; linked feature trajectories

t3.1 **Gait Recognition, Table 3** Progression of gait recognition systems

t3.2	Time period	No of subjects	Source	Recognition rate	Notes
t3.3	1990s	~10	USC	95.2	
t3.4	2000s	~120	HiD, CASIA, Southampton	75–99 %	Recognition rate depends on covariates
t3.5	Recent (2010)	>300	Southampton multimodal	95–100 %	Includes time-dependent covariates
t3.6	Recent (2010)	>1000	Osaka University	90 %	No covariates

t4.1 **Gait Recognition, Table 4** Some experiments comprising the HumanID gait challenge problem

t4.2	Experiment	Probe	# of subjects	Difference
t4.3	A	Different camera view than gallery	122	View
t4.4	B	Subjects wore different shoes	54	Shoe
t4.5	C	Different camera view and different shoes	54	Shoe, view
t4.6	D	Subjects walked on a different surface	121	Surface
t4.7	E	Different shoes and different walking surface	60	Surface, shoes
t4.8	F	Different walking surface and different camera view	121	Surface, view
t4.9	G	Different walking surface, different shoes, and different camera view	60	Surface, shoe, view