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Abstract
We study a recently developed centrality metric
to identify key players in terrorist organisations
due to Lindelauf et al. [2013]. This metric, which
involves computation of the Shapley value for
connectivity games on graphs proposed by Amer
and Gimenez [2004], was shown to produce sub-
stantially better results than previously used stan-
dard centralities. In this paper, we present the first
computational analysis of this class of coalitional
games, and propose two algorithms for computing
Lindelauf et al.’s centrality metric. Our first algo-
rithm is exact, and runs in time linear by number of
connected subgraphs in the network. As shown in
the numerical simulations, our algorithm identifies
key players in the WTC 9/11 terrorist network, con-
structed of 36 members and 125 links, in less than
40 minutes. In contrast, a general-purpose Shapley
value algorithm would require weeks to solve this
problem. Our second algorithm is approximate and
can be used to study much larger networks.

1 Introduction
Facing, on the one hand, the increased size of terrorist groups
and, on the other hand, inevitable budget cuts, security agen-
cies urgently require efficient techniques to identify who
plays the most important role within a terrorist network and,
therefore, where scarce resources should predominantly be
focused. In this context, a number of authors have proposed
using social network analysis to investigate terrorist organi-
sations (e.g., [Carley et al., 2003; Krebs, 2002; Farley, 2003;
Lindelauf et al., 2013; Ressler, 2006]). Analyst’s Notebook 8
[I2, 2010]—a software package used worldwide by law en-
forcement and intelligence agencies—has recently included
standard centrality metrics for networks (graphs), such as
degree, closeness and betweenness centralities [Brandes and
Thomas, 2005; Friedkin, 1991]. But the usefulness of these
metrics for terrorist networks is limited as they are often
unable to capture the complex nature of these organisations
[Lindelauf et al., 2013].

Recently, in an attempt to address these shortcomings,
Lindelauf et al. [2013] developed a more advanced method
specifically designed to measure centrality in terrorist net-
works. The new method belongs to a class of so-called Shap-
ley value-based centrality metrics1 and builds upon the no-
tion of coalitional connectivity games proposed by Amer and
Gimenez [2004].

Unfortunately, the computational aspects of connectivity
games by Amer and Gimenez have not been studied to date.
This means that the current use of Lindelauf et al.’s method
is limited only to small terrorist networks (of 25 members or
so) because general-purpose algorithms for coalitional games
have to be applied, which exhaustively search the space of all
possible coalitions. Thus, they are inapplicable to many real-
world applications such as the terrorist networks responsible
for the WTC 9/11 attack (of 35, 63 or more nodes depending
on the considered type of links between terrorist).

Against this background, we provide in this paper the first
computational analysis of connectivity games proposed by
Amer and Gimenez:

• We prove that computing the Shapley value in connec-
tivity games—including the centrality metrics of Linde-
lauf et al.—is #P-Hard.

• We propose a dedicated exact algorithm for comput-
ing these centrality metrics. While the general-purpose
Shapley value algorithm requires checking all subsets of
vertices in the graph, our algorithm traverses through
(most often) much smaller number of connected sub-
graphs. It also has minimal memory requirements.

• We test our algorithm by analysing the aforementioned
WTC 9/11 terrorist network with 36 members and 125
identified connections. In this setting, our algorithm re-
turns the solution within 38 minutes, compared to weeks
if a general-purpose approach was applied.

• In order to study even bigger networks, we propose a
dedicated approximate algorithm based on Monte Carlo
sampling.

1See the next section for more details.



2 Connectivity Games for Terrorist Networks
Terrorist networks have been recently modelled using a
weighted graph, G, composed of vertices (or nodes, i.e., in-
dividual terrorists) and labelled edges [Carley et al., 2003;
Krebs, 2002; Farley, 2003; Lindelauf et al., 2013; Ressler,
2006]. Based on available intelligence, an edge represents, for
instance, a communication link between two terrorists, and
the weight of the edge represents the frequency with which
that link is used. Weights can be associated not only with
edges but also with vertices. This, as argued by Lindelauf et
al., allows for modelling additional information that intelli-
gence agencies gather on individuals within the network.

We will denote the set of all vertices in the graph by V (G)
and the set of all edges by E(G), respectively, where every
edge in E(G) connects two vertices in V (G). An edge con-
necting vertices vi, vj ∈ V (G) will be denoted (vi, vj), and
its label (or weight) will be denoted ω(i, j) ∈ Ω(G). The
weight of vertex vi ∈ V (G) will be denoted γ(i) ∈ Γ(G).

To address the limitations of standard centrality metrics,
Lindelauf et al. proposed a new metric that builds upon con-
nectivity games by Amer and Gimenez [2004]. In these coali-
tional games on graphs, all subsets of set V (G) are consid-
ered to be possible coalitions of terrorists. Apart from the
empty set, every single coalition is classified as belonging to
either the set of connected coalitions (denoted C(G)) or dis-
connected coalitions (denoted C̃(G)). We say that C is con-
nected if between any two nodes in C there exists at least one
path of which all nodes belong to C. Otherwise C is discon-
nected. Importantly, any two terrorists in a connected coali-
tion are able to communicate with each other (via a path),
whereas in a disconnected coalition this is not the case. In
many connected coalitions, from this point of view, some
nodes play more important role than others, as their removal
makes a coalition disconnected. We will call them pivotal.

Definition 1 Given connected coalition C ∈ C(G), a node
vi ∈ C is pivotal to C iff C \ {vi} 6∈ C(G).

To complete the definition of the connectivity game, we
need to specify a so-called characteristic function—in coali-
tional games this function, ν : 2V → R, assigns to every
coalition C ⊆ V a numerical value representing its perfor-
mance (by convention, it is assumed that ν(∅) = 0). In their
games, Amer and Gimenez assign to every connected coali-
tion a value of 1, and to disconnected coalitions a value of 0.
Lindelauf et al. extend this definition by assuming that values
of connected coalitions may depend on the network in a vari-
ety of ways, i.e., they can be a function of adjacent edges or
nodes, their weights, etc. More formally:

νf (C) =

{
f(C,G) if C ∈ C(G)

0 otherwise.
(1)

The exact definition of f depends on the availability of in-
formation and analytical needs.2 For instance, to analyse the
Jemaah Islamiyah network responsible for the 2002 Bali at-

2We will write V , E, C, f(C) instead of V (G), E(G), C(G),
f(C,G), etc., wherever G is clear from the context.

tack in Indonesia, Lindelauf et al. assume:

f(C) = |E(C)|/
∑

(vi,vj)∈E(C)

ωij , (2)

where E(C)={(vi, vj)∈E | vi, vj ∈C} denotes the set of
edges between players in C; that is f equals the number of
edges in the connected coalition divided by their weight).

Since the goal of a centrality metric is to create a rank-
ing of nodes, the question now is how to evaluate the im-
portance of an individual node given all the roles that such a
node plays in the entire connectivity game. To this end, Lin-
delauf et al. proposed to apply the Shapley value—one of the
fundamental concepts in cooperative game theory. Specifi-
cally, Shapley [1953] proposed to evaluate the role played by
individual players in a coalitional game by comparing their
marginal contributions to every possible coalition. In order
to formalize this concept in the terrorist network context, let
π ∈ Π(V ) denote a permutation of nodes in V , and let Cπi
denote the coalition made of all predecessors of node vi in π.
More formally, if we denote by π(j) the location of vj in π,
then: Cπi = {vj ∈ π : π(j) < π(i)}. The Shapley value of
vi, denoted SVi(νf ), is then defined as the average marginal
contribution of vi to coalition Cπi over all π ∈ Π:

SVi(νf ) =
1

|V |!
∑
π∈Π

mci(C
π
i ), (3)

where mci(C) = νf (C ∪{vi})− νf (C) is the marginal con-
tribution of vi to C ⊆ V . The higher an average contribution
of a player to the game is, the higher the Shapley value be-
comes. This means that, if the coalitional game defined over
a network meets certain desired properties, the Shapley value
of this game can be used as a centrality metric that rates indi-
vidual nodes with respect to these properties. In our context
of the connectivity game, individual terrorists are rated with
respect to the role they play in connecting various, possibly
multiple, parts of the network.

Lindelauf et al. argue that the centrality ranking based on
the Shapley value of the connectivity game is more effective
than degree, closeness and betweenness centralities in expos-
ing the key players in the Bali attack. For example, Azahari
bin Husin—the network bomb expert who was considered the
“brain” behind the entire operation—is ranked rather low by
standard centralities but according to Lindelauf et al. metric
is among top five Bali terrorists. Similarly, Feri (Isa)—again
ranked low by standard centralities—was, in fact, the suicide
bomber. Lindelauf et al. ranked him third.

The formula in (3) can also be stated in the equivalent form:

SVi(νf ) =
∑

C∈2V \{vi}

ξCmci(C), (4)

where ξC = |C|!(|V |−|C|−1)!
|V |! . Although it is clearly not pos-

sible to escape O(2|V |) complexity for a general case of a
coalitional game, i.e., 2V → R, a number of authors showed
that for some games defined on networks, it is possible to take
advantage of the network structure and compute. the Shap-
ley value in polynomial time [Deng and Papadimitriou, 1994;
Aadithya et al., 2010; Szczepański et al., 2012]. In the next
section we will show that this is not the case for connectivity
games defined by Amer and Gimenez.



3 Computational Analysis & Algorithms
In this section, we first discuss the complexity of computing
the centrality metrics of Lindelauf et al.. We then present our
exact and approximate algorithms.

Complexity
First we show that, even for the simplest definition of the con-
nectivity game, where ∀C∈C(G)f(C,G) = 1, computing the
Shapley value in an efficient way is impossible. The main
problem of interest is as follows:

Definition 2 #CG-SHAPLEY: Given a connectivity game on
graph G, where ∀C∈C(G)f(C,G) = 1, we are asked to com-
pute the Shapley value for each node in this graph.

In the first step, let us introduce the following problem:

Definition 3 #CONNECTED-SPANNING-SUB (#CSS):
Given a graph G, we are asked to compute the number of
connected spanning subgraphs in G.

This problem is #P-Complete even for bipartite and planar
graphs [Welsh, 1997]. We will use this hardness result to
prove #P-Completeness of the following problem:

Definition 4 #CONNECTED-INDUCED-SUB (#CIS):
Given a graph G, we are asked to compute the number of
connected induced subgraphs in G.

Theorem 1 #CONNECTED-INDUCED-SUB is #P-Complete.

Proof of Theorem 13 We note first that it is possible to check
in polynomial time if a given subgraph is induced and con-
nected. Thus, since a witness can be verified in polynomial
time, this problem is in #P. Now, we will reduce a #CSS in-
stance to #CIS. To this end, given a graph G = (V,E), we
will construct a transformed graph G′ and show that deter-
mining the number of connected induced subgraphs in G′ al-
lows us to easily compute the number of connected spanning
subgraphs in G.

Our transformed graph G’ is constructed by adding to each
edge in G an extra node. Then, to each node from original
graph G we attach a clique KA with A nodes. This reduction
is shown in Figure 1. More formally we define the following
graph G′:

V (G′) =V (G) ∪ {vi : v ∈ V (G) ∧ i ∈ {1, . . . , A}} ∪
{vu : (v, u) ∈ E(G)}

E(G′) ={(v, uv) : (u, v) ∈ E(G)} ∪
{(v, vi) : v ∈ V (G) ∧ i ∈ {1, . . . , A}} ∪
{(vi, vj) : v ∈ v(G) ∧ i, j ∈ {1, . . . , A}} ∧ i < j}

Now, we arbitrarily choose some connected induced sub-
graph F of G′. Either this subgraph intersects with the origi-
nal set of vertices V (G), or it does not. In the latter case, sub-
graph F is contained within the single copy of KA and there
are exactly |V (G)|(2A − 1) such subgraphs. In the former
case, we can define some pseudograph F ′, which consists of

3We would like to thank Colin McQuillan from The University
of Liverpool who develop the sketch of this proof.

Figure 1: The reduction in the proof of Theorem 1.

the following sets of vertices and edges:4 V (F ′) = V (F ) ∩
V (G) and E(F ′) = {(u, v) : uv ∈ V (F ) ∧ (u, v) ∈ E(G)}.
Note that since F is connected, F ′ also has to be connected.
There are exactly 2|V (F ′)|A choices of F that can give us a
particular pseudograph F ′. Now, we can compute:

M = |V (G)|(2A − 1) +
∑
F ′

2|V (F ′)|A (5)

which denotes the number of induced connected subgraphs
in G′. The crucial observation here is that, if V (F ′) = V (G),
then F ′ is a connected spanning subgraph of G. This holds
because F is an induced connected subgraph. Now, let N de-
note the number of spanning connected subgraphs inG. Then,
we can rewrite (5) as:

M = |V (G)|(2A−1)+N(2|V (G)|A)+
∑

F ′:V (F ′)6=V (G)

2|V (F ′)|A (6)

In order to computeN we would like to bound the expression
X = M − N(2|V (G)|A). This expression is the number of
induced connected subgraphs in G′ that do not correspond to
any connected spanning subgraph in G. We have:

0 ≤ X ≤ |V (G)|(2A − 1) + 2|V (G)|+|E(G)|2(|V (G)|−1)A

where the number 2|V (G)|+|E(G)| is an upper bound on the
number of all subgraphs in G. Now, we can use these bounds
to transform equation (6) and to get the approximation of N :

N =
M

2|V (G)|A −
X

2|V (G)|A

' M

2|V (G)|A −
|V (G)|+ 2|V (G)|+|E(G)|

2A

In order to deal with the expression |V (G)|+2|V (G)|+|E(G)|

2A

we take A > log(|V (G)| + 2|V (G)|+|E(G)|) so that this frac-
tion becomes smaller than 1. We note that A is bounded by
a polynomial in the order of the input G. Then, the number
of spanning connected subgraphs of G is the least integer N
such that N ≥ M

2A|V (G)| . This is easy to compute given the
number of connected induced subgraphs F of G′. �

From Theorem 1, it trivially follows that the next problem
is also #P-Complete:
Definition 5 #CONNECTED-INDUCED-SUB-k (#CIS-k):
Given a graph G, we are asked to compute the number of
connected induced subgraphs of size k in G.

4We note that this tuple is not necessarily a properly defined
graph, since it can contain some edge (u, v) and does not contain
node v.



Clearly, if we can find in polynomial time an answer for the
#CIS-k problem, we could efficiently compute #CIS. Now,
the #P-Hardness of #CG-SHAPLEY will be shown by the re-
duction from #CIS-k:
Theorem 2 #CG-SHAPLEY is #P-Hard.
Proof of Theorem 2: We construct a proof by reduction. In
particular, we demonstrate that if there exists an algorithm for
solving #CG-SHAPLEY in polynomial time, then it is possi-
ble to solve #CIS-k in polynomial time. This contradicts the
fact that #CIS-k is #P-complete. Now, we will reduce #CIS-k
to #CG-SHAPLEY.

Let G = (V,E) be an arbitrary graph, where |V | = n and
|E| = m. We extend the set of nodes of G by a single node v,
while the set of edges remains unchanged. In other words, we
obtain a new graphG0 by adding a single node not connected
to any node from G. Now, from the definition of connectivity
games, we note that the marginal contribution of the new node
v to any coalition C ⊆ G is either 0 or−1. More specifically,
it is −1 if C is connected, and 0 otherwise. Based on this, the
Shapley value of node v can be computed as follows, where
cGs is the number of connected induced subgraphs in G that
contain exactly s nodes:

SVv,G0
= −

n∑
s=0

(s)!(n− s)!
(n+ 1)!

cGs

Now, let us consider a new graphGi constructed by adding to
G the set of i nodes in addition to the node v, while keeping
the set of edges just as in G. Analogously to G0, the Shapley
value of v in Gi is:

SVv,Gi = −
n∑
s=0

(s)!(n+ i− s)!
(n+ 1 + i)!

cGs (7)

This equation holds because each coalition containing more
than n nodes is disconnected, and so the contribution of v to
every such coalition is 0. Now, we can build a system of linear
equations using each equation (7) from graph Gi, where i ∈
{0, . . . , n}. More precisely, we need to solve the following
equation:

0!n! 1!(n−1)! · · · n!0!
0!(n+1)! 1!n! · · · n!1!

...
...

. . .
...

0!(2n)! 1!(2n−1)! · · · n!n!



cG0
cG1
...
cGn

=


(n+1)!SVv,G0

(n+2)!SVv,G1

...
(2n+1)!SVv,Gn


that can also be written as Ax = b.

This equation has a unique solution if and only if the deter-
minant of the matrix A is non-zero. We can use Theorem 1.1
from [Bacher, 2002] to prove that it is non-zero. Thus, if we
can compute in polynomial time the Shapley value for con-
nectivity games, we would be able to solve this equation and
determine all cGi values. Specifically, we can use Gaussian
elimination, which works in O(n3) time complexity.

We note that the largest possible number in our matrices is
n!n!. According to the analysis in (Proposition 2)[Aziz et al.,
2009] it is possible to store such a number in km2(logm)2

bits. It is shown in (Theorem 4.10) [Korte and Vygen, 2005]
that in Gaussian elimination each number occurring during
the algorithm process can be stored in the number of bits
quadric of the input size. �

Figure 2: Four ways in which v5 can contribute to a coalition.

Analysis of Marginal Contribitions
In this section, we analyse how node vi ∈ V can marginally
contribute to coalition C ⊆ V \ {vi}. Four general cases,
depicted in Figure 2, can be distinguished:
(a) Node vi can join a connected coalition C ∈ C and the

resulting coalition is also connected, i.e., C ∪ {vi} ∈ C.
Here, the marginal contribution is equal to the difference
in the value of C ∈ C caused by the addition of vi:
mci(C)=νf (C ∪ {vi})− νf (C)=f(C ∪ {vi})−f(C)

(b) Node vi can join a disconnected coalition C ∈ C̃ and the
resulting coalition becomes connected, i.e., C ∪ {vi} ∈
C. Here, vi’s contribution is the whole value of C∪{vi}:
mci(C) = νf (C ∪ {vi})− νf (C) = f(C ∪ {vi})

(c) Node vi can join a connected coalitionC ∈ C̃ and the re-
sulting coalition becomes disconnected, i.e., C ∪{vi} ∈
C̃. This means that vi brings down the value of C to 0:
mci(C) = νf (C ∪ {vi})− νf (C) = −f(C)

(d) Node vi can join a disconnected coalition C ∈ C̃ and the
resulting coalition remains disconnected, i.e.,C∪{vi}∈C̃:
mci(C) = νf (C ∪ {vi})− νf (Cı)) = 0

The key conclusion to be drawn from the above analysis is
that both connected and disconnected coalitions play a role
when computing the Shapley value. This is because a node
can contribute not only to a connected coalition, but also to a
disconnected one (by making it connected). However, in the
further sections, we will show that it is possible to develop an
exact algorithm that only cycles through connected coalitions.

GeneralSV Algorithm
Based on the observation that both connected and dis-
connected coalitions play a role when computing the SV,
we construct the general-purpose Shapley value algorithm
(GeneralSV) for computing the SV in connectivity games de-
fined by Amer and Gimenez. It is presented in Algorithm 1,
where for each C ∈ 2V , we denote by N (C) the set of
all neighbours of C. Essentially, for each coalition C ∈ 2V

this algorithm considers cases (a), (b) and (c) as outlined in
Figure 2 in our paper.5 In all of these three cases, a node

5As for (d), it can be disregarded since the marginal contribution
in this case equals 0.



Algorithm 1: GeneralSV Algorithm for the SV
Input: Graph G = (V,E) and characteristic function νf
Output: Shapley Value, SVi(νf ), for each node vi ∈ V

1 foreach vi ∈ V do
2 SVi(νf )← 0;

3 foreach C ∈ 2V do
4 CheckConnectedness(C);
5 if C ∈ C then
6 foreach vi ∈ N (C) do
7 SVi(νf )←

SVi(νf ) + ξC(νf (C ∪ {vi})− νf (C))

8 foreach vi 6∈ N (C) do
9 SVi(νf )← SVi(νf )− ξCνf (C)

10 else
11 foreach vi ∈ N (C) do
12 CheckConnectedness(C ∪ {vi})
13 if C ∪ {vi} ∈ C then
14 SVi(νf )← SVi(νf ) + ξCνf (C ∪ {vi})

vi can make a non-zero contribution by joining a coalition.
We note that function CheckConnectedness(C) runs in
O(|C|+ |E(C)|).

Unfortunately, the use of this algorithm in practice is lim-
ited by the number of nodes in the network. It runs in
O((|V | + |E|)2|V |) and already for |V | = 50, the Algo-
rithm 1A has to cycle through more than 1015 coalitions. In
our paper, we developed an algorithm that for many networks
is able to compute the SV substantially faster.

FasterSVCG Algorithm
Many real-world terrorist networks are sparse, i.e., |C| � |C̃|
[Krebs, 2002]; thus, if the Shapley value could be computed
only by considering coalitions in C, it would be possible to
analyse much larger terrorist networks. To this end, for each
vi ∈ V , let us define the following disjoint sets of coalitions:
C#
i = {C ⊆ V \ {vi} : C ∈ C ∧ C ∪ {vi} ∈ C}
C+
i = {C ⊆ V \ {vi} : C ∈ C̃ ∧ C ∪ {vi} ∈ C}
C−i = {C ⊆ V \ {vi} : C ∈ C ∧ C ∪ {vi} ∈ C̃}

which correspond to cases (a), (b) and (c) from the previous
section. Based on this, the Shapley value can be computed as:

SVi(νf ) =
∑

C∈2V \{vi}

ξCmci(C) =
∑

C∈{C+i ∪C
#
i ∪C

−
i }

ξCmci(C) (8)

where case (d), when mci(C) = 0, is simply omitted. The
key idea behind our exact algorithm to compute the Shapley
value in connectivity game (abbreviated FasterSVCG) is to
represent the sets C+

i and C−i differently, such that C̃ does not
appear in the new representation.6 In particular, we represent
C+
i and C−i as follows, where P(C) is the set of agents that

6As for C#i , it does not depend on C̃, and so there is no need to
represent it differently.

are pivotal to C, and N (C) is the set of neighbours of C:
C+
i = {C ⊆ V \{vi} : C∪{vi} ∈ C ∧ vi ∈ P(C∪{vi})}
C−i = {C ⊆ V \ {vi} : C ∈ C ∧ vi /∈ N (C)}

Now since C̃ no longer appears in the definitions of C#
i , C+

i

and C−i , it is possible to compute the Shapley value as in equa-
tion (8) without enumerating any of the coalitions in C̃. Based
on this, our algorithm enumerates every connected coalition,
C ∈ C, and determines for each agent vi ∈ C whether
C \ {vi} ∈ C#

i or C \ {vi} ∈ C+
i and for vi 6∈ C if

C ∈ C−i .7 The enumeration is carried out using Moerkotte
and Neumann [2006]’s method—the fastest such enumera-
tion method in the literature. Its basic idea is that, for each
connected coalition C ∈ C, it expands C by adding to it cer-
tain subsets of its neighbours. These subsets are chosen so as
to ensure that no connected coalition is enumerated more than
once (see Moerkotte an Neumann [2006] for more details).

Next, we explain our algorithm. To enhance clarity, for ev-
ery connected coalition C ∈ C, we will define three disjoint
sets of agents: V #

C = {vi ∈ C : C\{vi} ∈ C#
i }, V

+
C = {vi ∈

C : C \ {vi} ∈ C+
i }, and V −C = {vi ∈ V \ C : C ∈ C−i }.

If we compute the above sets for every C ∈ C, then we can
compute the Shapley value. Let us take a closer look at the
difficulty of computing those sets for a given C.

• Computing V −C can be done in O(|V |) time. This is be-
cause the agents in V −C are basically all those that are
not members, nor neighbours, of C.

• Now, to compute V +
C , we need to find the pivotal agents

in C. This can be computed using a method “findPiv-
otals” that runs in O(|V |+ |E|) [Alsuwaiyel, 1999].

• Having computed V +
C , it becomes easy to compute V #

C .
This is because V #

C = C \ V +
C .

From the above analysis, it is clear that the main difficulty
lies in findPivotals. Therefore, whenever possible, we would
like to compute V +

C using some other, easier, technique. In
particular, when we expand a connected coalition, C, into an-
other connected coalition C ′ = C ∪ S, we try to update the
set of pivotal agents, rather than compute it from scratch with
findPivotals. Here, we distinguish between three conditions:

• Condition 1: The cycles in C ′ are exactly like those in
C. In this case, the set V +

C′ consists of elements of V +
C ,

expanded by the nodes in C that are connected to S.

• Condition 2: C ′ contains a cycle that is not in C. Here,
we need to call findPivotals.

• Condition 3: |C| = 2. In this case, since we assumed
that a singleton is a connected coalition, none of the two
agents in C is pivotal.

The pseudocode of FasterSVCG is presented in Algorithm 1.
It is easy to see that it runs in O((|V |+ |E|)|C|).

In the next section we propose an approximation algorithm
that is able to provide a ranking for larger networks.

7Note, that we do not consider the impact of agent vi 6∈ C that
do not disconnect C because the contribution of this agent will be
calculated for connected coalition C ∪ {vi} as C ∈ C#i .



Algorithm 2: FasterSVCG for SVi(νf ), vi∈V
Input: Graph G=(V,E) and characteristic function νf
Output: Shapley value SVi(νf ) of each node vi∈V

1 X ← V ;// initialize X, which is only used

for Moerkotte & Neumann’s enumeration

2 foreach vi ∈ V do SVi(νf )← 0;
3 for i← |V | to 1 do
4 computeSV ({vi},N (vi), X,X \(N (vi)∪{vi}), ∅);

X ← X \ {vi}
// ----------- Next, we define computeSV -----------

5 computeSV (C,NC,X, V −C , V
+
C ) begin

6 X ′ ← X ∪NC; // where NC consists of the

neighbours of C

7 foreach S ⊆ (NC \X) ∧ S 6= ∅ do
8 C ′ ← C; // a new coalition that will be

constructed from the old coalition C

NC ′ ← NC \ S; // the neighbours of C′

9 isCycle← false;// to indicate whether a new

cycle has appeared while constructing C′

10 foreach v ∈ S do
11 TEMP ← ∅; // a temporary set used to

compute neighbours of: C′ ∪ {v}
TEMP2 ← ∅; // a temporary set used to

compute the pivotal agents in: C′ ∪ {v}
foreach u ∈ N (S) do

12 if u /∈ (C ∪NC) then
13 TEMP ← TEMP ∪ {u};
14 else if (isCycle = false) ∧ (u ∈ C ′)

then // condition 1

15 TEMP2 ← TEMP2 ∪ {u};

16 if |TEMP2 | > 1 then // condition 2

17 isCycle← true;
18 C ′ ← C ′ ∪ {v}; NC ′ ← NC ′ ∪ TEMP ;
19 V −C′ ← V −C′\{v} \ TEMP ;

20 if isCycle = false then // condition 1

21 V +
C′ ← V +

C′\{v} ∪ TEMP2 ;

22 if |C ′| = 2 then // condition 3

23 V +
C′ ← ∅;

24 else if isCycle = true then // condition 2

25 V +
C′ ← FindPivotals(C ′);

26 foreach vi ∈ C ′ do // update Shapley value

27 if vi ∈ V +
C′ then

28 SVi(νf )← SVi(νf ) + ξC′\{vi}f(C ′)

29 else // deal with the set V #

C′

30 SVi(νf )←
SVi(νf )+ξC′\{vi}(f(C ′)−f(C ′\{vi}))

31 foreach vi ∈ V −C′ do // update Shapley value

32 SVi(νf )← SVi(νf )− ξC′f(C ′)

33 computeSV (C ′, NC ′, X ′, V −C′ , V
+
C′);

Algorithm 3: ApproximateSVCG for SVi(νf ), vi∈V
Input: Graph G=(V,E) and characteristic function νf
Output: Shapley value SVi(νf ) of each node vi ∈ V

1 foreach vi ∈ V do SVi(νf )← 0;
2 for it = 1 to maxIter do
3 k ← random number from {0, . . . , |V |};
4 C ← random coalition of size k;
5 if !CheckConnectedness(C) then continue;
6 P ← FindPivotals(C);
7 foreach vi ∈ C \ P do // case (a)

8 SVi(νf )←SVi(νf )+ |V |+1
|C| ·(f(C)−f(C\{vi}))

9 foreach vi ∈ P do // case (b)

10 SVi(νf )←SVi(νf ) + |V |+1
|C| · f(C)

11 foreach vi ∈ (V \ C) \ N (C) do // case (c)

12 SVi(νf )←SVi(νf )− |V |+1
|V |−|C| · f(C)

13 foreach vi ∈ V do SVi(νf )← SVi(νf )/maxIter;

ApproximateSVCG Algorithm
ApproximateSVCG is our dedicated application of Monte
Carlo sampling to connectivity games. Unlike the existing al-
gorithm to approximate the Shapley value for characteristic
function games [Castro et al., 2009], in our algorithm we do
not sample permutations, but coalitions. Since any marginal
contribution of an agent, vi, links two coalitions—one with
this agent, i.e., C ∪ {vi}, and one without him, i.e., C—
sampling of coalition C can be viewed as sampling of vi’s
marginal contribution. Generally speaking, in our algorithm,
we will randomly select a number of marginal contributions
of vi and approximate the SVi using the resulting average.
Due to the fact that, in formula (4) for the Shapley value,
marginal contributions are calculated with different weights,
to obtain an unbiased estimator we have to sample marginal
contributions with appropriate probabilities. To this end, we
propose the following general process. In Step 1, we uni-
formly select k ∈ {0, . . . , |V |}. In Step 2, we choose a ran-
dom coalition C of size k,8 and in Step 3, for every agent,
compute the marginal contribution of this agent obtained by
leaving/entering C. To better understand our motivation, let
us transform the formula for the Shapley value as follows:

SVi(νf ) =
1

|V |
∑

0≤k<|V |

· 1(|V |−1
k

) ∑
C⊆V \{i},|C|=k

mci(C)

From this formula it is clear that, to obtain an unbiased es-
timator, the sampling method should satisfy two conditions:

(i) the probability that a randomly chosen marginal contri-
bution is obtained from entering a coalition of size k is
equal for every k: 1

n+1 ·
n−k
n + 1

n+1 ·
k+1
n = 1

n (n = |V |);9

8To this end, we take the first k elements of a random permuta-
tion (generated uniformly with Knuth shuffle). This method is unbi-
ased, as every coalition appears in the same k!(n − k)! number of
permutations.

9Note that a given marginal contribution appears twice in our



Figure 3: Time performance of both algorithms.

(ii) marginal contributions to all coalitions of size k are cho-
sen with the same probability.

This technique allows us to compute the marginal contribu-
tions of all agents for a randomly selected coalition, which
in the connectivity games (and, potentially, in many more
classes of games) can be performed much faster than esti-
mating the Shapley value for each player separately [Mann
and Shapley, 1962] or by sampling of a random permutation
[Castro et al., 2009], where we have to calculate the marginal
contributions for a sequence of coalitions growing in size.

To this end, in the ApproximateSVCG algorithm we merge
our Monte Carlo technique with the analysis of marginal
contribution presented before and used in FasterSVCG. The
pseudo code is presented in Algorithm 2. Line 3 corresponds
to Step 1, where we sample the size of a coalition. Now, we
modify Step 2 in order to select only connected coalitions
(lines 4 and 5).10 We also modify Step 3, when we consider
cases (a), (b), and (c) from Figure 2 (lines 7-12). The modifi-
cation of Step 3 has to be done due to the following reason:
since we no longer consider disconnected coalitions, any non-
zero marginal contribution made to a disconnected coalition
have to be transferred to a corresponding connected coalition
(lines 8, 10, and 12). Furthermore, this should be done in a
way that preserves appropriate probabilities (thus, in lines 8,
10, and 12 we multiply marginal contributions by adequate
weights). Finally, we divide the sum of the contributions by
the number of iterations (lines 13). For every sample, algo-
rithm runs in time O(|V |+ |E|).

4 Performance Evaluation
We generate random graphs focusing on two topologies com-
monly found in social networks, and in terrorist organisations
in particular [Krebs, 2002; Sageman, 2004]: (i) scale-free
graphs (SFGs), where the network is generated according to
a power law; and (ii) random trees (TG), which model hierar-
chical organisations. To construct SFGs, we use the preferen-
tial attachment generation model [Albert and Barabási, 2002],

process—the first term represents the probability that we select a
coalition of size k without player vi, while the second one—that we
select the corresponding coalition of size k + 1, with player vi.

10It should be noted, that generating a random connected coalition
uniformly will create a biased algorithm.

Figure 4: Error performance of ApproximateSVCG.

with parameters k = 1, 2, 3 (cfr. [Voice et al., 2012]).11 To
construct TGs, every new node is attached to a randomly
picked incumbent. Finally, we include in our analysis (iii)
complete graphs, where all coalitions are connected. Al-
though complete graphs are unlikely to arise in a terrorist
network context, they constitute a suitable benchmark for our
simulations. For all the games on random graphs we assume
that f is defined as in (2).

FasterSVCG: In Figure 3(a), we compare the performance of
FasterSVCG to the general-purpose Shapley value algorithm
(abbreviated GeneralSV).12 Clearly, this latter algorithm run-
time is the same for any type of graph. Unlike GeneralSV,
FasterSVCG takes advantage of the sparsity of the network
and, consequently, significantly outperforms the benchmark.
For instance, for SFG(k = 2) and |V | = 30, FasterSVCG
needs only 0.39% of GeneralSV runtime! Naturally, the best
performance is obtained for TGs, where the game over a net-
work of 30 nodes can be computed in about 3 seconds.

ApproximateSVCG: In Figure 3(b), we evaluate the time
performance of ApproximateSVCG. Importantly, for our pur-
pose of identifying key terrorists, we are mostly interested in
the approximation of the correct (Shapley value) ranking of
top nodes, and less in the approximation of their actual Shap-
ley values. To this end, we evaluate the time required by Ap-
proximateSVCG to obtain the ranking of the top d

√
ne nodes,

with at most one error (i.e., one inversion compared to the ex-
act ranking). We present an average time calculated over 500
iterations, each for a randomly selected SFG(k = 4), with
75% confidence level. ApproximateSVCG returns top nodes
much faster than FasterSVCG—for the graph of 24 nodes the
former algorithm runs in 0.25 sec. and the exact one in 72 sec.

As far as other than d
√
ne thresholds are concerned, the

lower the threshold, the faster our Monte Carlo method be-
comes (and vice versa). Also ApproximateSVCG becomes
faster, the higher the allowable error is (measured with the

11In this model, while gradually constructing a graph, every new
node vi is linked to k incumbents such that the probability that vi is
linked to incumbent vj is degree(vi)∑

j degree(vj)
.

12All experiments are carried out on a 64 bit, Intell Zeon E5-2643
with 2 CPU (8 cores each) 3.3 Ghz, 128GB RAM. For |V | ≤ 25,
we repeated each experimental run 50, for 26 ≤ |V | ≤ 30—30
times. In the experiments involving random graphs no parallel com-
putations were performed. Krebs’ 9/11 network was analyzed with
a parallelised code on 16 cores (each individual core was assigned
with computing a tree for one node).



Rank Lindelauf et al. Our analysis
|V | = 19, |E| = 32 |V | = 36, |E| = 125

1. A. Aziz Al-Omari Z. Moussaoui
2. H. Alghamdi A. Aziz Al-Omari
3. W. Alsheri M. Atta
4. H. Hanjour W. Alshehri
5. M. Al-Shehhi N. Alhazmi

Table 1: FasterSVCG allows us to consider the bigger net-
work of WTC 9/11 attack than Lindelauf et al. which may
deliver new insights into the leadership structure of this net-
work

number of allowable inversions). Finally, we note that Ap-
proximateSVCG is faster than our exact algorithm in gener-
ating an error-free rankings (on average, approximately 6, 26,
and 174 times faster for 15, 20, and 25 agents, respectively).

Figure 4 presents the error convergence of the Approxi-
mateSVCG and compares the results to the random permuta-
tion sampling studied by Castro et al. [2009]. Here, we focus
on the maximum absolute error of the Shapley value, com-
puted as a percentage of the value of the grand coalition. The
results are calculated for Krebs’ 9/11 WTC terrorist network
with 36 nodes (as an average from over 30 iterations). Ap-
proximateSVCG outperforms Castro’s method—after 4 sec-
ond, the error of ApproximateSVCG equals 0.029%, while
for Castro et al. exceeds 0.2%. The fact that the absolute er-
ror ultimately converges to zero indicated that our sampling
method is not biased.

New insight on Krebs’ 9/11 WTC network: In the already
classic work, Krebs [2002] constructed the 9/11 network from
publicly available sources and computed standard centrality
metrics to determine the key players in this network. Linde-
lauf et al. instead used their new centrality metric and, sim-
ilarly to the case of the Jemaah Islamiyah’s network, argued
that the Shapley value-based approach delivers qualitatively
better insights (as it captures the network structure in a more
sophisticated manner). However, Lindelauf et al.’s analysis
focuses only on the network of 19 hijackers with 32 rela-
tionships, whereas Krebs reported also a bigger network of
36 nodes and 125 edges (mentioned above) that included ac-
complices. With FasterSVCG, we were able to analyse this
bigger network as well. The computations took 38 minutes
during which FasterSVCG traversed 401.963.129 connected
coalitions (0.59% of all).

Interestingly, the five top terrorists (out of 36) identified
by FasterSVCG differ from the top five terrorists reported by
Lindelauf et al. when only the network of 19 terrorist was
taken into account—see Table 1. One of the differences is
with respect to M. Atta, who was widely believed to be one
of the ring-leaders of the conspiracy [Krebs, 2002] and was
positioned the third place in our computations, but was clas-
sified in Lindelauf et al.’s work on the 6th place.

5 Related Work
A rapidly growing body of work is directed to the analysis
of terrorist organisations using the methods of social network
analysis. A very good introduction to this line of research can

be found in Ressler [2006]. Also worthy of note is the work
of Farley [2003], Carley [2003], and Husslage et al. [2012],
who conduct quantitative analysis of the terrorist networks.

Since the work of Grofman and Owen [1982], a num-
ber of game-theoretic centrality measures have been devel-
oped either to enrich the existing well-known centralities or
as completely new ones (e.g., [Van den Brink et al., 2007;
Gómez et al., 2003; Szczepański et al., 2012]). In the terror-
ist network context, Lindelauf et al. [2009a; 2009b] employed
the game-theoretic approach to analyze covert networks.

In the first computational analysis of game-theoretic cen-
trality, Aadithya et al. [2010] present polynomial time al-
gorithms for computing Shapley value-based centrality mea-
sures built upon four coalitional games that modelled possi-
ble influence of coalitions on their neighbours. In subsequent
work, Szczepanski et al. [2012] presented an algorithm for
the Shapley value-based betweenness centrality.

We also mention works on the Shaple value approximation
algorithms ([Fatima et al., 2007; Bachrach et al., 2008a]).

The hardness result presented in this paper is consistent
with other studies of the complexity of the Shapley value in
various settings. For instance, computing the Shapley value
was shown to be #P-Complete for weighted majority games
[Deng and Papadimitriou, 1994] and in minimum spanning
tree games [Nagamochi et al., 1997]. Aziz et al. 2009 ob-
tained negative results for a related problem of computing the
Shapley-Shubik power index for the spanning connectivity
games that are based on undirected, unweighted multigraphs.
Also, Bachrach et al. [Bachrach et al., 2008b] showed that
the computation of the Banzhaf index for connectivity games,
in which agents own vertices and control adjacent edges and
aim to become connected to the certain set of primary edges,
is #P-Complete. A comprehensive review of these issues,
including some positive results for certain settings, can be
found in [Chalkiadakis et al., 2011].

6 Conclusions
In this paper, we proposed an algorithm to compute the Shap-
ley value for the connectivity games of Amer and Gimenez
defined over arbitrary graphs. Although our method is gen-
eral, it has been created with an aim to study centrality metrics
proposed by Lindelauf et al. to identify key individuals in ter-
rorist networks. We proved that the problem is #P-Hard. Nev-
ertheless, using our exact algorithm we were able to analyse
in moderate time the 36 node version of the network respon-
sible for the 9/11 WTC terrorist attacks. We also presented
the approximate algorithm that allows for an efficient study
of bigger networks and for further validation of the Lindelauf
et al’s metrics.
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