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ABSTRACT
In this paper, we address the problem of predicting the us-
age of home appliances where a key challenge is to model the
everyday routine of homeowners and the inter–dependency
between the use of different appliances. To this end, we pro-
pose an agent based prediction algorithm that captures the
everyday habits by exploiting their periodic features. We
demonstrate that our approach outperforms existing meth-
ods by up to 40% in experiments based on real–world data
from a prominent database of home energy usage.
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1. INTRODUCTION
In the face of dwindling fossil fuels, an ageing electricity
distribution infrastructure, and the adverse effects of high
levels of green house gasses on climate change, the problem
of generating affordable and clean electricity reliability is
one of the greatest challenges of this century [1]. Now, to
make the use of the electrical devices in the home more ef-
ficient, and thus, to reduce both carbon emissions and cost,
a set of agent based demand side management techniques
have recently been introduced to optimise the schedule of
loads [4]. However, these techniques typically do not take
into account the homeowner’s preferences in their optimi-
sation, and ignore inter-dependencies between the usage of
different appliances.. Thus, the main challenge is to predict
the energy consumption activities of homeowners, so that
the agent can design optimal schedules by planning ahead
the electricity usage that meets the human’s preferences.

Against this background, we propose a novel approach
to predicting the energy consumption of different home ap-
pliances, that takes into account both the human routine
activities and the inter–dependency between appliances. To
do so, we rely on the common assumption that human be-
haviour follows a certain cyclic pattern [2]. Based on this, we
build a model that exploits this cyclic behaviour. To handle
the inter–dependency between the appliances, we use the
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episode generation Hidden Markov model (EGH) [5] to effi-
ciently identify the patterns that form the inter–dependency
between the usage of the appliances. By putting the two
models together, we demonstrate that our approach outper-
forms the state–of–the–art, that only focus on either human
behaviour detection on inter–dependency pattern identifi-
cation. We formalise our problem scenario in Section 2.
Section 3 evaluates the algorithm and analyses the results.

2. PREDICTING THE USAGE ACTIVITIES
OF APPLIANCES

We first describe the formalisation of our problem in Sec-
tion 2.1, then introduce our algorithm in Section 2.2.

2.1 Model Description
We assume that we have a finite set of consumer activities,
where different types of activities are distinguished by labels
l ∈ L. An activity profile of label l al,t is a tuple 〈t, l, n〉,
composed of a time step t (measured in days), a label l and
number of usage n, that denotes the number of occurrences
of label l on day t. Let xt = 〈a1,t, a2,t, . . . , aL,t〉 denote the
usage profile of day t that contains the information about
the usage of each label l ∈ L on day t. The appliance usage
history ht of time slot t is the sequence ht = {x1, x2, . . . , xt}.
Our goal is to estimate xt+1 for any t > 0, given ht.

2.2 The Prediction Algorithm
As mentioned earlier, the foundations of our prediction al-
gorithm rely on the EGH method. However, as EGH is not
designed for detecting human activities, we tailor the model
to fit our settings by exploiting the periodic features of the
human everyday routine. We build the inter–dependency
model by relying on the EGH approach described by Sri-
vatsa et al. [5]. Based on these models, we then construct a
mixture model of the significant episodes (i.e. sets of possi-
ble inter–dependency rules) in order to calculate the proba-
bility of activities’ occurrence in Section 2.2.2. Finally, Sec-
tion 2.2.3 focuses on the prediction model in detail.

2.2.1 The Human Routine Model
We assume that human behaviour in home energy usage
follows a weekly cycle. More formally, let K denote the
number of occurrences of the target activity type l on the
specific day d of the week in the activity usage history ht−1.
Thus, for each label l and the prediction day of the week d,
from the original training dataset D, we extract a training
set Dl,d = {Xi}Ki=1, where Xi = < xti−7, . . . , xti−1 > is the
weekly preceding window of activities from x that imme-
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Figure 1: ROC curve of the algorithms run on three homes from REDD.

diately preceded the ith occurrence of l in x, and ti is the
time that the target activity type l occurred at the ith in
the activity sequence. By doing so, we can reduce the com-
putational costs and also improve the quality of prediction
(as we will demonstrate later in Section 3).

2.2.2 The Mixture Model
Supppose that for a given training data set Dl,d = {Xi}Ki=1,
we have calculated a set of significant episodes, denoted as
F s = {α1, . . . , αJ}, and each HMM Hαj of episode αj . To
model the effect of this joint influence, we compute a mix-
ture model Λl (i.e. a combination of probabilistic processes)
of the significant episodes’ HMMs. The likelihood func-
tion of the training dataset D under a mixture model Λl

is: P [D|Λl] =
∏K
i=1 P [Xi|Λl] =

∏K
i=1

(∑J
j=1 θjP [Xi|Hαj ]

)
,

where θj , j = 1..J are the mixture coefficients of Λl (with

θj ∈ [0, 1] for all j, and
∑J
j=1 θj = 1). We use the Expec-

tation Maximisation (EM) algorithm to estimate the set of
mixture coefficients of the mixture model Λl.

2.2.3 The Prediction Model
Let t denote the current time. For the set of target activity
labels l ∈ , we want to predict their occurrences in the next
day, t+ 1. As we are mainly interested in occurrences of
recent activities of the users, therefore, we construct a 7—
length window of activities from the weekly period [t− 7, t].
We then estimate the likelihood of this recent activity se-
quence, given the mixture model, Λl = {(αj , θj)}j=1,...,J ,
that is obtained from the training phase.

3. EMPIRICAL EVALUATION
Given the prediction model, we now demonstrate how our
algorithm outperforms a set of benchmark algorithms, in-
cluding Pitman–Yor Process (PYP), the piece–wise constant
conditional intensity model (PCIM) [3]), and the original
EGH method. Here, we perform the algorithms on the real–
world REDD dataset 1 (see Section 3.1). We also compare
the average running time of the algorithms in Section 3.2.

3.1 Performance on REDD Data
In overall, our method outperforms other state–of–the-art
by up to 40%, based on the F–score measurement. In par-
ticular, it is better than PYP, EGH, and PCIM by approx-
imately 73%, 40%, and 75% on average, respectively. From
the figure of the receiver operating characteristic (ROC)
curve (Figure 1), we can see that our algorithm dominates

1http://redd.csail.mit.edu/

all the others. In particular, the area under the curve (AUC)
of EGH–H in home 1 is 0.84, while the AUC value for PYP,
EGH, and PCIM is 0.68, 0.56, and 0.53, respectively. We can
also observe that since data from homes 3 and 4 is less de-
tailed, all the algorithms provides worse performance, com-
pared to themselves in home 1. However, our algorithm still
dominates the benchmark approaches.

3.2 Average Running Time of the Algorithms
We run the algorithms on an Intel(R) Xeon(R) computer
(64–bit operating system) with 2.67 GHz and 12GB. We can
observe that on average, our algorithm is 1504.78, 119.3, and
151.19 times faster than PYP, PCIM, and EGH on average.

4. CONCLUSIONS
We proposed EGH–H, the algorithm that addresses human
behaviour prediction within the energy management domain.
We also demonstrated through extensive evaluations, using
real–world data taken from the REDD, that our algorithm
outperforms state–of–the–art methods by up to 40% in pre-
diction accuracy. As a result, our work could potentially
form an efficient solution to real–world home energy man-
agement systems, where usage predictions are needed to op-
timally schedule the electrical consumption of the home. In
addition, an improved version is described in [6].
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