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Abstract
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Doctor of Philosophy

by Claudia Hannelore. S. Alt

Little is known about the fauna that inhabits non-chemosynthetic environments associ-
ated with mid-ocean ridges. This thesis investigates a ridge and fracture zone system
to assess its influence as a barrier to faunal dispersal, and as a unique bathyal habitat.
It also describes the ecology of megabenthic communities inhabiting a ridge. Sites were
chosen on the Mid-Atlantic Ridge in the vicinity of the Charlie-Gibbs Fracture Zone, at a
target depth of 2,500 m. Four superstations were chosen north and south of the Fracture
Zone, on either side of the ridge. Different productivity levels and hydrographic features
were characteristic for the northern and southern sites. In order to characterise the
benthic megafauna 50 ha were trawled and 32,000 m? of seafloor were sampled with HD
video footage, targeting both flat and 10° sloped habitats. Holothurians were the most
abundant megafauna. In order to assess their evolutionary relationship 43 holothurian
specimens were genetically studied by modelling five of their genes (168, 18S, 28S, COI,
H3) in a phylogenetic analysis. All four sites exhibited noticeably different faunal char-
acteristics. The biomass was highest at the SE, and lowest at the NW site. Body sizes
differed between sites for most taxa, that were sufficient in numbers to be compared be-
tween sites, most likely as a result of different adaptations to food supply. Differences in
species richness were observed between the sampling methods, with the highest richness
at the SE site in trawl samples, and highest at the NW and SW sites in the video survey.
Species densities were highest at the northern sites with both methods. Differences in
diversity were also observed, with trawl samples providing a higher taxonomic resolution
than the video survey and showing highest diversity at the SE site and lowest at the
NE site. Community composition was significantly different between sites. Variations in
the composition of megabenthic assemblages were observed between flat and 10 ° sloped
habitats, although the effect of slope appears to be site dependent. The genetic analy-
ses revealed a close relationship between individuals from different families. The extent
to which the Ridge acts as a faunal barrier was unclear as the southern sites lacked
an obvious difference in community composition. Faunal differences to the north and
south of the Fracture Zone, however, suggest that this feature is a barrier to dispersal.
The contrasting megafaunal assemblages of the sites probably reflect a combination of
environmental drivers including sediment type, phytodetrital quality, hydrography, and
habitat complexity.
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Chapter 1

Introduction

1.1 A Selective Short History of Deep-Sea Research

Over the last century our understanding of the deep sea has improved greatly. Our cur-
rent picture of the deep-sea ecosystem is the sum of successful research cruises, bright
scientific minds and lots of luck. In 1818 Sir John Ross retrieved a large basket star
(Astrophyton) on a sounding line from a depth of about 800 fathoms (about 1,600 m)
(Menzies, 1965; Gage and Tyler, 1991). On voyages of the Erebus and Terror to the
Southern Ocean James Clark Ross and J. Hooker collected animals from a water depth
of 1,800 m, between 1839 and 1843 (Gage and Tyler, 1991). A series of expeditions
to investigate the deep sea followed these early voyages, that began in the 1860s and
1870s. These include the H.M.S. Lightning in 1868, the H.M.S. Porcupine in 1865, and
the H.M.S. Blake in 1870 (Menzies, 1965). The most important campaign, however,
was undoubtedly the H.M.S. Challenger expedition, which circumnavigated the globe
between 1872 and 1876. The Challenger expedition was the first of its kind, and set
out with the sole aim to investigate the deep sea on a global scale (Gage and Tyler,
1991; Rice, 2010). The initial aim of this expedition was simply to discover how much
life existed in the deep sea and how widely it was distributed. Apart from describing
and cataloguing many new species, an understanding of the nutrition of deep-sea ani-
mals and their dependence on debris from the euphotic zone was also developed during
this work (Anderson and Rice, 2006). In many respects, the Challenger expedition laid
the foundations for the field of oceanography we know today (Gage and Tyler, 1991).
Charles Wyville Thomson, the leading scientist on the H.M.S. Challenger, concluded
that all main animal groups have representatives in the deep sea and that animal abun-
dances decrease with increasing water depth (Tyler et al., 2001). He also suggested that

animals became smaller in size with increasing depth, while recognising exceptions to
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this rule (Tyler et al., 2001). In general, his assumptions have held true, although we
now know that these patterns are complex and can vary between different species and
regions (Tyler et al., 2001). The Challenger expedition was followed by a series of major
national campaigns, including the Danish round-the-world expedition Galathea (1950-
1952), which furthered our understanding of the deep sea with its detailed taxonomic
accounts. At a similar time, many Russian expeditions were commissioned (Sokolova,
2000); their work contributing greatly to our understanding of faunal distributions (Gage
and Tyler, 1991).

The 1960s and 1970s saw major advances in deep-sea research led by American pioneers,
focussing on deep-sea biodiversity (Hessler and Sanders, 1967; Sanders, 1968; Gage and
Tyler, 1991). The use of newly developed epibenthic sledges and quantitative sam-
pling gear, such as box corers, revealed, for the first time, the enormous diversity of
smaller-sized benthic animals, meiofauna and macrofauna (Hessler and Sanders, 1967).
Deep-sea research also benefitted from the development of submersibles and in situ dig-
ital photography (Tyler et al., 2001). Multidisciplinary approaches began in the 1970s
and 1980s (Gage and Tyler, 1991) and were promoted by European funding and national
programmes (Rice et al., 1994; Billett and Rice, 2001). These collaborations furthered
our understanding of ecosystem functionality through simultaneously monitoring phys-
ical oceanographic conditions, particle fluxes, topography and fauna. One such project,
ECOMAR (2006-2012), was a UK based multidisciplinary project with international
collaborators that investigated the ecosystem of the Mid-Atlantic Ridge (Boyle, 2009).
This thesis is based on research conducted within the ECOMAR framework.

1.2 Megafauna in the Deep Sea

Megafauna are loosely defined by size, either as large organisms that are easily visible
in video footage and photographs, or as organisms that are > 1 cm in size (Dundas
and Przeslawski, 2009; Wei et al., 2010). However, definition by size creates consider-
able ambiguity. Many juveniles are significantly smaller than their adult counterparts,
and belong to the macrofauna classification, while other organisms, traditionally con-
sidered to be meiofauna, can grow to up to 10 c¢m in diameter, e.g. foraminifera of
the class Xenophyophorea (Hughes and Gooday, 2004). Megafauna are divided further
into subgroups; the term “pelagic” describing those individuals inhabiting the water col-
umn, “epipelagic” organisms immediately above the sediment, “epibenthic” organisms
that reside at the sediment-water interface, and “infaunal” describes organisms within

marine sediments, (Gage and Tyler, 1991).
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1.2.1 Body Size

Body size is an important ecological parameter that is linked to faunal aspects such
as metabolic rate (Brown et al., 2004), density (Ruhl, 2007), diversity (Rex and Etter,
1998), and community composition (Billett et al., 2001). In principle, the marine en-
vironment can support large body sizes as water is around 800 times denser than air
(Humphries, 2007). However, there is a general trend of decreasing body size with in-
creasing water depth in invertebrates (Rex et al., 2006), with the exception of gigantism
in certain groups (Moran and Woods, 2012). There are several theories that explain
the observed size-decrease in deep-sea organisms, most notable are the ‘Size-Structure
Hypothesis’ by Thiel (1975) and the ‘Optimal Size Model’ by Sebens (1982). In the
‘Size-Structure Hypothesis’ it is recognised that larger body size has metabolic advan-
tages as energy is used more efficiently. Nevertheless, a larger body requires a greater
sustaining food resource. An energetic investment into larger sizes also has the likely
trade-off of later reproductive development. Such an adaptation in low standing stock
environments, can push the population below its effective population size (Thiel, 1975).
Therefore, according to the ‘Size-Structure Hypothesis’ the small body size found in
many deep-sea invertebrate species represents a balance between energy availability,
metabolic rate, and reproductive success that is linked to population density (Thiel,
1975). The ‘Optimal Size Model’ is similar to the ‘Size-Structure Hypothesis’ involving
a trade-off between energy cost in foraging, growth, reproduction, and the decrease in
energy availability with greater depth (Sebens, 1982). However, an equilibrium between
energy availability and usage is achieved by maximising the offset between energetic cost
and energetic intake, with regard to the mass of an individual specimen. It is, therefore,
predicted in the ‘Optimal Size Model’ that the optimum organism size will increase with
habitat suitability (Sebens, 1982).

Further published data support a link between body size and shape not only in relation
to food availability, and also water current regimes (Hildrew et al., 2007; Booth et al.,
2008), where the orientation of fauna give information regarding the strength and direc-
tion of the current flow (Koehl, 1984). Various studies highlight the taxa-specificness
of body size patterns, suggesting that a fit-all body size pattern in the deep sea may
not exist. For example, it is generally reported that pelagic megafauna possess a larger
size range than their benthic counterparts (MacPherson, 2003). Inflated body size has
been observed in gastropods (Rex and Etter, 1998) that suggests advantages in resource
competition and increased fecundity (Atkins and Hirst, 2007). However, a large body
presents problems where strong currents cause dislodgment (i.e. large suspension feed-

ers), in particular when current movements change unpredictably (Humphries, 2007).
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An increase in the density of small individuals as a response to increased organic mat-
ter flux has been observed in ophiuroids at the Pacific Station M (Booth et al., 2008).
Similar responses have also been reported for other benthic megafauna in the Pacific
(Ruhl, 2007) and the Atlantic Oceans (Billett et al., 2001). It has been suggested that a
smaller body size might reflect a limited supply of nutrients and the need to maintain a
level of population density for successful reproduction (Sebens, 1982; Wei et al., 2010).
However, a contradictory interpretation was made by Rex & Etter (1998) relating larger
body size to decreased density and diversity, suggesting that limited nutrient availability
supports fewer large animals rather than promoting numbers of smaller specimens (Rex
and Etter, 1998). Two hypotheses have been put forward for polychaetes: the ‘Juvenile
Recruitment Hypothesis’ and the ‘Allometric Plasticity Hypothesis’ (Paterson et al.,
2006). The ‘Juvenile Recruitment Hypothesis’ suggests that smaller organism sizes can
be observed in areas of seasonal or periodic phytodetrital flux, because new recruits are
being attracted. The ‘Allometric Plasticity Hypothesis’ meanwhile, explains larger sizes
in areas of little organic matter flux by delayed reproduction and an energy investment
into larger body sizes, associating larger organism size with starvation mode (Paterson
et al., 2006). This debate highlights our lack of understanding of the deep-sea environ-
ment and its driving forces. Body size can also be related to fecundity (White et al.,
2007) and it has been suggested that size-frequency distributions can yield information
about migration and recruitment of mobile fauna (Ruhl, 2007). While some species
show seasonal growth, others demonstrate great intra-specific variability in growth rate
between individuals measured over similar time periods, e.g. regular echinoids (Gage,
1992). Both of these cases, however, are considered an adaption to food availability in

the deep sea.

1.2.2 Biomass

It was assumed initially that the deep sea could not host large megafaunal biomass,
owing to their larger sizes and energy demands, particularly in comparison to meio-
and macrofaunal biomass (Haedrich and Rowe, 1977). However, one of the first studies
measuring and comparing the biomass of different size groups found this assumption to
be incorrect (Haedrich and Rowe, 1977). Understanding biomass patterns is essential
if we are to understand productivity-diversity relationships in the deep sea (Wei et al.,
2010). Most research suggests that faunal biomass is positively related to particulate
organic carbon flux and reflects the energy input into a system over time (Uiblein et al.,
1996; Rex et al., 2006; Rowe et al., 2008; Wei et al., 2010). Hence, biomass is thought
to decrease with depth and distance from land (Rex et al., 2006; Rowe et al., 2008; Wei

et al., 2010). Wet weight provides a measure of general biomass patterns among different
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size classes. However, when comparing the biomass of different taxa within a system, wet
weight is not appropriate (Lampitt et al., 1986). Ashfree dry weight or carbon weight
are far more informative because they account for differences in body composition and
water content (Lampitt et al., 1986). Biomass patterns in the deep sea vary between the
different size categories. As depth increases, there is a more rapid decline in mega- and
marcofaunal biomass, compared to that of bacteria and meiofauna (Rex et al., 2006; Wei
et al., 2010). Bacteria constitute the only size group that does not show any apparent
change in biomass with increasing depth (Wei et al., 2010). Currently, the effects of
variables such as sediment grain size, bioturbation, oxygen, and organic composition on
biomass remain poorly understood, although body size appears to govern the biomass
more than abundance (Wei et al., 2010). While there appears to be a general global
decrease in biomass with increasing depth, regional differences do occur, for example off
the coast of New England (USA), where the highest megafaunal biomass was reported
at depths of between 2,100 and 2,500 m (Haedrich et al., 1980).

1.2.3 Reproduction

In general, life-history patterns in the deep sea are similar to those found in shallow
water, although a shift in the distribution of different types is noted (Young, 2003).
For megafauna three main reproductive types have been identified: non-planktonic,
lecithotrophy, and planktotrophy (Rundle et al., 2007). Although originally assumed to
be common, seasonal reproduction is now thought to be the exception rather than the
rule (Baillon et al., 2011). It has instead been suggested that increased organic matter
flux and food-falls might be a controlling factor in activating the completion of game-
togenesis (Young, 2003; Baillon et al., 2011). Internal and external fertilisation both
occur in the deep sea, and their frequency varies between phyla. Internal fertilisation is
common, but not universal, in gastropods, while in echinoderms external fertilisation is
extremely common (Young, 2003). Brooding also occurs (e.g. in peracarids), although
it is less common than larval development in the deep sea. ‘Herding’, or aggregations
of individuals of the same species (Billett and Hansen, 1982), is reported more often in
the deep sea than it is in coastal waters (Young, 2003). The success of fertilisation is
increased when gametogenesis and spawning occur at the same time within an aggre-
gation (Baillon et al., 2011). Lecithotrophic species generally produce fewer eggs than
their planktotrophic counterparts (Ramirez Llodra, 2002) and the size of the eggs gen-
erally vary with depth (Young, 2003). Where larvae are produced, pelagic lecithotrophy
is most common. Asexual reproduction, although rare, has also been reported in some

megafauna (Bronsdon et al., 1997).
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A recent study investigated misinterpretations that occur as a result of undersampling
(i.e. the lack of continuous temporal sampling) (Baillon et al., 2011). Even when
comparing the same species, during the same months, over several years, in the same
location, discrepancies in gonadal development are reported (Baillon et al., 2011). Sites
only 200 m apart showed significant differences in the development of gonads, suggesting
that even at spatially small scales, there is large variation in reproductive stages. It is
crucial that we understand reproduction because it is inexorably linked to the dispersal
of species; those with shorter larval periods, such as ascidians, are assumed to have

shorter dispersal ranges (Young et al., 1997).

1.2.4 Megafauna and their Environment

The relative importance of physical factors such as pressure (Young and Tyler, 1993),
temperature (Childress et al., 1990), and substratum properties (Gray, 1974) for shaping
communities is debated. Other authors suggest that such physical factors play only a
minor role in the deep sea, in comparison to the influence of nutrient input (Soltwedel
et al., 2009). The spatial distribution of some megafaunal species has been linked to phy-
todetritus availability (Lauerman and Kaufmann, 1998; Soltwedel et al., 2009); examples
include the echinoid Echinus affinis in the northeast Atlantic (Campos-Creasey et al.,
1994) and the ophuroid Ophiura bathybia at Station M, in the Pacific (Booth et al., 2008).
Phytodetrital flux has been linked to the abundance, distribution, densities, biomass,
and community structure of megafauna (Billett et al., 2001, 2010), as well as rates of key
ecosystem processes, such as depths of bioturbation and respiration (Smith et al., 1997,
2008a). Based on the observations at the Pacific Station M, it has been inferred that a
seasonal increase in phytodetrital flux can trigger aggregations of some mobile fauna, as
well as an accelerated metabolic and biochemical response in benthic organisms (Lauer-
man and Kaufmann, 1998). These sudden structural community changes have been
reported in the Pacific (Ruhl and Smith Jr, 2004) and the Atlantic Ocean (Billett et al.,
2001), highlighting the rapid response of megafaunal assemblages to temporal changes.
Phytodetritus is also considered to be one of the main causes for patchiness (Gage, 1996;
Smith et al., 2008a). Generally, patchiness refers to the spatial distribution of specimens
and species, and is modulated by physical and/or biological forcings (Tyler, 1995). Bio-
genic structures such as echiuran mounds, worm tubes, and various tracks and traces
alter the seafloor micro-topography and modify sediment characteristics by increasing lo-
cal environmental heterogeneity and creating faunal patchiness (Tyler, 1995; Gage, 1996;
Roberts et al., 2000). Patchiness also influences the diversity of an area and can occur
at scales of 10s of metres to kilometres (Levin et al., 2001; Parry et al., 2003; Levin and

Dayton, 2009). Currents can influence directly faunal composition and benthic diversity
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on both regional and local scales (Levin et al., 2001). The flow regime of a habitat is sug-
gested as one of the primary driving forces maintaining epibenthic biodiversity (Palardy
and Witman, 2011). Moderate currents may enhance food supply by delivering organic
matter and stimulating bacterial production. Furthermore, currents can also enhance
the particulate flux for suspension feeders (Tyler, 1995). In regions affected by episodic
disturbances, erosive flows create repeated opportunities for recolonisation. Constant
reworking of the sediment in these environments ensure that the benthic fauna remain
in an early successional state, favouring opportunistic behaviour and suppressing diver-
sity (Levin et al., 2001). If currents are too strong, fauna can become detached and local
scale habitats can be destroyed (Tyler, 1995). Vigorous near-bottom flows, in excess of
20 to 25 cm s!, potentially lower diversity through erosion of epifaunal species (Levin
et al., 2001). Distinctive faunal assemblages are reported under high energy conditions
such as these (e.g. Western Boundary Currents, Tyler (1995)). Water flow may also
impact diversity indirectly by smoothing out the sediment habitat, hence reducing phys-
ical heterogeneity, and homogenising fauna by dispersing juveniles and subadults (Levin
et al., 2001). Megafauna also play an important role in affecting the energy flow on a
micro-scale (Roberts et al., 2000; Smith et al., 2008a), affecting current regimes in their
immediate habitat through the formation of tubes or mounds that can divert current

flow, influencing the local macro- and meiofauna.

The substratum type can determine the megafaunal taxa that dominate a habitat. Hard
rock substrata, for example, are overwhelmingly inhabited by sessile fauna that attach
to rock, while soft sediments are dominated by mobile deposit feeders (Ramirez Llodra
et al., 2010). However, both substratum types have representatives of either group. De-
posit feeders continually rework the sediment, which affects the sediment geochemistry
and increases the habitat heterogeneity; these effects often depend on the feeding be-
haviour and locomotion of mobile deposit feeders (Roberts et al., 2000). Megafauna can
change the substratum they inhabit at a localised scale through remineralisation, biotur-
bation, burial (Bett et al., 2001; Ruhl et al., 2008) and feeding methods (Roberts et al.,
2000). This applies particularly to the local effects that holothurians have on soft sedi-
ment habitats. The orders Aspidochirotida and Apodida (epibenthic representatives of
this group) decrease the stability of the sediment because they defecate on the sediment
surface. This faecal matter not only increases the heterogeneity of the benthic surface
layer, but also decreases the viscosity of the sub-layer (Roberts et al., 2000). Members of
the order Dendrochirotida, on the other hand, are generally suspension feeders and allow
for the accumulation of organic material, which increases the stability of the local sed-
iment (Roberts et al., 2000). Burrowing holothurians of the order Molpadiida increase
the vertical heterogeneity of the sediment, which in turn increases biodiversity (Roberts

et al., 2000). Other megafauna, such as gorgonians, increase habitat heterogeneity by
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creating complex structures along the seafloor, however, the importance of such species
increases as food supply and habitat heterogeneity decrease (Buhl-Mortensen et al.,
2010). A study of deep-sea glass sponges at Station M in the Pacific showed that
these animals provide an important habitat for specialised species, such as zoanthids,
forminiferans and polychetes (Beaulieu, 2001). Zonation along the sponge stalks indi-
cated a complex interaction amongst species occupying these micro-habitats (Beaulieu,
2001).

1.2.5 Organic Material Flux

Most benthic fauna in the deep sea are heterotrophic and depend upon delivery of
organic material; a food source that originates from surface primary production (Smith
et al., 2008a). With the exception of chemoautotrophic habitats, such as seeps and
hydrothermal vents, there is no primary production in the deep sea (Gage and Tyler,
1991; Smith et al., 2008a). The main food sources are infrequent large food falls (Turner,
1973; Kemp et al., 2006), Particulate Organic Carbon (POC) fluxes (Gage and Tyler,
1991; Gage, 2003) and Dissolved Organic Matter (DOM) (Kaiser et al., 2005).

Though small scale variations do occur, at a global scale, the amount of primary pro-
duction reaching the seafloor does not differ significantly with latitude, based on the
similarities observed in average primary production between the Pacific and Atlantic
Oceans (Jahnke, 1996). The export ratio into the deep sea increases linearly with in-
creased primary production in areas with production values of up to 200 g C m? yr!
(Lampitt and Antia, 1997). Modelling based on satellite and sediment trap data shows
that increased flux and export are characteristic of areas of high primary production
such as continental margins and upwelling regions (Lutz et al., 2007). However, excep-
tions are found in the central northern Atlantic, Pacific and the Southern Ocean where
the seafloor appears depleted of carbon (Lutz et al., 2007). It has been hypothesised
that in areas where resuspension events occur, suspended particles from more energetic
regions, such as nearby canyon systems (Baldwin et al., 1998), can be transported to less
energetic areas. This additional influx represents a secondary source of carbon adding
to that derived from the sea surface (Beaulieu and Baldwin, 1998). Movements of this
nature are reported from the Pacific Station M up to 50 m above bottom (Beaulieu and
Baldwin, 1998).

It was originally assumed that surface particles reach the deep sea at a near continuous
rate (Menzies, 1965), however, it is now clear that particle flux varies both geographi-
cally and temporally throughout a yearly cycle (Lampitt and Antia, 1997; Gooday, 2002;

Gage, 2003). Irrespective of an area’s oligotrophic or eutrophic nature, seasonal signals
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in phytodetrital deposition have been reported in both margin areas and in the open
ocean (Gooday, 2002). The lowest and highest fluxes have been recorded in polar regions
(Lampitt and Antia, 1997). Generally, a higher proportion of primary production is ex-
ported in temperate regions compared to the tropics, the latter having a more consistent
annual surface production (Gooday, 2002). The level of POC flux, its seasonal variabil-
ity, and the composition of the settling material, are all influenced by biogeochemical
processes in the water column (Beaulieu and Smith Jr, 1998; Lampitt et al., 2001). In
the Northeast Atlantic about 2.4 % of the spring bloom production is reported to reach
the seafloor (Gooday, 2002). Atlantic blooms have been recorded twice a year; a strong
increase in spring/early summer and a weaker bloom in late summer (Billett et al., 1983;
Levin and Gooday, 2003). Other interannual variations in POC flux are attributed to
phenomena such as the El Nino Southern Oscillation in the Pacific, where concentra-
tions of organic carbon and particulate nitrogen are diluted by siliceous plankton fluxes
(Baldwin et al., 1998).

Seasonal fluxes of POC are of great importance to the deep-sea fauna and contribute
to spatial heterogeneity in benthic assemblages (Gooday, 2002). Differences in bloom
composition are reflected in the composition and characteristics of the phytodetritus
reaching the seafloor (Billett et al., 1983; Beaulieu and Smith Jr, 1998; Gooday, 2002).
Blooms earlier in the year in the Atlantic Ocean are nutrient driven and dominated by
phytoplankton, in particular diatoms (Waniek et al., 2005a,b), whereas pulses later in
the year, and weaker in intensity, are attributed to faecal pellets from copepods and salp
swarms (Levin and Gooday, 2003). The phytodetrital composition on the seabed in the
Pacific is classified into two main types: loosely cohesive and strongly cohesive, which
derive from (old and new) diatom material and zooplankton mucous webs respectively
(Beaulieu and Smith Jr, 1998). Although phytodetritus is heterogeneous, it tends to be
dominated by either loosely or strongly cohesive phytodetritus (Beaulieu and Smith Jr,
1998).

The composition of POC affects the local fauna (Beaulieu and Smith Jr, 1998) and,
although not consistent across all taxa, data suggest that the spatial distribution of
megafauna correlates strongly with the distribution of detrital aggregates (Lauerman
and Kaufmann, 1998). Elevated POC flux can increase faunal density and biomass after
a four-week delay (Drazen et al., 1998). Furthermore, the sediment oxygen consumption
of deep-sea fauna is strongly correlated to the seasonality in phytoplankton and POC
flux (Drazen et al., 1998). At Station M a long-term shortage in food supply has been
attributed to a decrease in plankton biomass as a response to increasing sea surface
temperatures (Smith and Kaufmann, 1999). This decrease in plankton biomass, in
turn, affects the re-processing and redistribution of particulate benthic material on the

seafloor, particularly for mobile epibenthic megafauna (Kaufmann and Smith Jr, 1997).
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1.3 Broad-Scale Faunal Patterns in the Deep Sea

Throughout history scientists have sought to find patterns in the geographic distributions
for flora and fauna; a pursuit that has evolved into the scientific branch of biogeography.
One of the earliest descriptions of distribution patterns was made by Edward Forbes.
He hypothesised that continents and adjacent islands must have been connected in the
past, because of the observed similarities in flora and fauna between them (discussed
in Darwin (1859)). Forbes’ theory found strong support following the formulation of
continental drift theory several decades later (Wegener, 1929). This coming together of
ideas vindicated Darwins theory that the distribution of species was driven by species

dispersal that originated from a founder population (Darwin, 1859).

One of the first attempts to describe biogeographical patterns in marine environments
was carried out by Ekman (1953). While he considered dispersal to be an important
mechanism for increasing the distribution ranges of species, he also suggested that ge-
omorphological features, such as ridge systems, may act as physical barriers to disper-
sal (Ekman, 1953). In recent years, interest in species level biogeography has grown
following the ever increasing exploitation of the marine environment (McClain and
Mincks Hardy, 2010). Today, biogeographic studies have become vital, as without de-
tailed knowledge of the marine environment, effective conservation management is not
possible. However, ambiguity has arisen in the interpretation of biogeographic distribu-

tion patterns as a result of differing theoretical concepts.

1.3.1 Biogeography: General Concepts

Marine ecologists endeavour to find characteristics typical for a habitat or region that
can then be later applied, in a predictive manner, to similar study sites in the future.
There is a vast body of literature on biogeography, which can be divided into ecological
biogeography and historical biogeography (Crisci, 2001). While both areas of biogeogra-
phy analyse the distribution of species, they focus on different causal mechanisms for the
patterns observed. Historical biogeography assumes that original species distributions
were modified by historical events (i.e. closure of the Central American Seaway (Knowl-
ton and Weigt, 1998)), which result in the separation of populations that eventually lead
to contrasting biogeographic regions (Crisci et al., 2006). In contrast, ecological biogeog-
raphy, considers the importance of environmental conditions and ecological niches that
result in respectively environmental constrains and functional types, both of which create
different Ecoregions (Crisci et al., 2006). Historical biogeography can be further sub-
divided into dispersal and vicariance theories. Dispersal theories assume long distance

dispersal, which eventually leads to the formation of genetically different populations,
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while vicariant biogeography assumes an initial wide-range of distribution, followed by
the isolation of some populations through the formation of barriers (Sanmartin, 1997;
Bartish et al., 2011). Unfortunately, historical and ecological biogeographers rarely com-
bine their concepts to form an all encompassing, coherent picture of species dispersal
(Crisci, 2001). Examples from the marine environment are discussed in detail in the

following sections to highlight the contrasting biogeographical approaches.

1.3.2 Ecological Biogeography

The marine environment is complex as it is defined by both pelagic and benthic habitats
that vary with depth (Gage and Tyler, 1991). Therefore, a selection of key environmen-
tal parameters must be chosen if distribution patterns are to be generalised. However,
disagreement between authors regarding the importance of different environmental char-

acteristics, often results in classification systems that are uncomplimentary.

Longhurst developed a system of biogeochemical provinces for pelagic ecosystems, fol-
lowing the ecological biogeography school. In this theory oceanographic factors, such
as frontal zones and general circulation, are taken into account as well as chlorophyll
concentrations and solar radiation (Longhurst, 2007). Four Biomes are described by
Longhurst; the Westerly Winds, the Trade Winds, the Polar and the Ocean Coastal
Biomes (Longhurst, 2007). Four of these biomes are represented in the Atlantic and
Pacific oceans and three in the Indian Ocean and Southern Oceans (Longhurst, 2007).
Biomes are further subdivided into a total of 150 provinces. While the biogeochemical
province system is frequently used for pelagic studies, oceanographic characteristics of
the upper ocean layer are only taken into account, although it has been suggested that
the biomes also reflect underlying benthic communities through benthic-pelagic coupling
(Longhurst, 2007).

Zoogeographic regions were proposed by Russian scientists and regard benthic fauna in
the deep sea (Figure 1.1), whereby benthic species distributions were combined with
environmental factors such as water temperature (Zezina, 1997; Mironov and Gebruk,
2006). Bathyal and abyssal regions vary substantially in their species distribution and
therefore can be distinguished (Zezina, 1997). Particular species are considered rep-
resentative for different regions and the importance of species-level identification is a
prerequisite for this approach (Mironov and Gebruk, 2006). The bathyal zone extends
between 200 and 3,000 m, and is further subdivided into the upper and lower bathyal
regions, defined as between 200 to 700 m and 700 to 3,000 m respectively (Zezina,
1997). The abyssal zone is found below the bathyal zone, between 3,000 and 6,000 m

(Vinogradova, 1997). Fauna in the east and west Atlantic are shown to be increasingly
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FIGURE 1.1: This map shows the different Zoogeographic regions as described by
Vinogradova (1997) where; (I) defines different regions, (II) subregions, (III) abyssal
provinces, and (IV) hadal provinces. 1A defines the Pacific subregion, 1B Indian sub-
region, 2A Arctic subregion, 2B Atlantic subregion, and 3B the Indian Ocean abyssal
province. The subregions are further subdivided into provinces; 1A; North-Pacific
abyssal province, 1A; West-Pacific abyssal province, 1A3 East Pacific abyssal province,
2B; North Atlantic abyssal province, 2By West Atlantic abyssal province, 2B3 East-
Atlantic abyssal province, 3B; Indian Ocean abyssal province, and 3By Pacific abyssal
province. Hadal provinces are described separately. The following hadal provinces are
in proximity to the Pacific subregion: A/J Aleutian-Japan hadal provinces, PH Phillip-
pine, M Mariana, B/N Bougainville - New Hebrides, T/K Tonga-Kermadec, P/CH
Peru-Chile hadal provinces. In the Atlantic subregion the P/R Puerto-Rico hadal
province, and the R province of the Romanche Trench are distinguished. Figure from
Vinogradova (1997)

distinct with increasing depth Vinogradova (1997). While the two sides of the Atlantic
share about 49 % of their species at depths shallower than 2,000 m, Vinogradova (1997)
suggests that there is no similarity below 4,000 m, suggesting increasing geographic iso-
lation with increasing water depth. In the upper bathyal region ten general areas with
13 subareas, and nine provinces are identified, whereas at lower bathyal depths only five
areas with two subareas, and four provinces are recognised (Zezina, 1997). For the abyss
Vingrodova proposes three regions, six subregions, and eight provinces (Vinogradova,
1997). Since the Vingrodova study, the classifications of the deep sea into biogeographic
regions has progressed, with the inclusion of environmental data, such as salinity, oxy-
gen and particle flux, that are combined to determine different biogeographic regions
(Agostini et al., 2009). Thirty pelagic provinces and 38 benthic provinces were identified
that are further subdivided into four depth ranges (Agostini et al., 2009). In addition,
10 hydrothermal vent provinces were subsequently recognised (Desbruyeres et al., 2001;
Van Dover et al., 2001; Ramirez Llodra et al., 2010; Rogers et al., 2012).
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1.3.3 Historical Biogeography

In historical biogeography, molecular methods, such as phylogenetics, are often used to
establish historic relationships. There are multiple approaches within historical biogeog-
raphy; unfortunately these contrasting methods are often used in isolation, leading to a
non-coherent conceptual framework (Crisci, 2001). Different approaches commonly used
in historical biogeography include: phylogeography, phylogenetic biogeography, cladistic
biogeography, parsimony analysis, centres of origin and dispersal, panbiogeography, and

experimental biogeography (Crisci, 2001).

1.3.3.1 Dispersal Theory

An example of historical biogeography that focuses on dispersal theory is hydrothermal
vents. The distribution of hydrothermal vents is linked to plate tectonics, and they
are often found at spreading centres, such as the Mid-Atlantic Ridge (Tunnicliffe, 1991;
Rogers et al., 2012). Evidence of hydrothermal vent communities have been found from
as early as the Devonian, suggesting that the communities inhabiting them have evolved
since this time (Walter, 1996). Although precise ages for individual vent fields have
not been established, it is suggested that they are at least several decades old (Tun-
nicliffe, 1991). Often hydrothermal vent systems are several hundred kilometres apart
and a high level of endemism can be observed (Tunnicliffe, 1991). However, within
the recently established biogeographic regions, there are similarities in the dominant
fauna (Ramirez Llodra et al., 2010; Rogers et al., 2012). Natural events, such as spo-
radic volcanism, can destroy entire vent system (Vrijenhoek, 2010) and so the question
arises, how can species that thrive only in vent environments move between vent sys-
tems (Desbruyeres et al., 2001; Van Dover et al., 2001)? It had been suggested that
larval dispersal plays an important role and molecular data suggest a relatively linear

stepping-stone dispersal along vent systems along ridge axes (Vrijenhoek, 2010).

1.3.3.2 Vicariant Theory

The holothurian family Elasipodida is entirely restricted to the deep sea, where it is
widely distributed (Hansen, 1975). Within this family of holothurians, many species
of the genus elpidiid occur predominantly in tropical regions, indicating that this area
plays a key role in the distribution (Gebruk, 1994). Paleontological and morphological
evidence suggests that members of this genus originated at bathyal depths in the Late
Jurassic Tethys basin (Scotese et al., 1988; Gebruk, 1994), where it is thought that
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species of this genus were widely distributed. However, it is suggested that the Tethys-
basin-population was divided into at least two different populations occurring in the
Indo-Malayan and the tropical Caribbean seas as a result of the Tethys basin destruction
(Gebruk, 1994).

1.4 Biodiversity in the Deep Sea

Biodiversity refers to all forms of biological diversity ranging from genes and species to
higher taxa and communities (Magurran, 2004). Although the deep sea is considered
diverse (Hessler and Sanders, 1967; Grassle and Mackiolek, 1992), the degree of diversity,
as well as the abundance of organisms, can greatly vary in different parts of the ocean
(Stuart et al., 2003). This variation in diversity reflects different environmental factors,
including the organic matter flux, bottom-current velocity, and local topography (Stuart
et al., 2003). The difficulties in comparing diversity measures between marine and ter-
restrial environments have caused considerable debate, as well as between shallow-water
and deep-sea environments (Levin et al., 2001; Gray, 2001a). Most commonly, litera-
ture dealing with biodiversity distinguishes between three different scales of diversity;
a (alpha), 8 (beta) and v (gamma) diversity (Magurran, 2004; Rex and Etter, 2010).
In marine sciences « refers to the local, within patch, diversity (Snelgrove and Smith,
2002), B diversity to species turnover, e.g. how many new species are found along a
transect, and « diversity to regional scale, based on individual samples from different
patches within a region, for example within a basin (Snelgrove and Smith, 2002; Rex and
Etter, 2010). Gamma diversity relates to larger scales than « diversity and is effectively
made up by combining « and [ diversity (Whittaker, 1960), and can also be referred
to as landscape diversity (Levin et al., 2001) or geographic-scale diversity (Hunter and
Gibbs, 2007).

1.4.1 Diversity Patterns

There are a number of studies that investigate diversity patterns in the deep sea, both in
relation to latitude and bathymetry (Rex et al., 1993; Paterson and Lambshead, 1995;
Gray, 2001a; Gage, 2004; Maciolek and Smith, 2009; Stuart and Rex, 2009). Although
patterns have been found, they are not always consistent between different taxa. No
patterns that could be applied universally to all species have been found, potentially be-
cause 1) different studies investigate different species, 2) studies utilise different sampling

gears (Snelgrove and Smith, 2002), and 3) studies are carried out in different areas that
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are subject to contrasting environmental influences. It is clear that standardised sam-
pling methods and species diversity indices are needed to understand fully the diversity

patterns in the deep sea.

1.4.1.1 Bathymetric Diversity Patterns

Approximately 90 % of the known animal families occur in modern marine environments
(Snelgrove and Smith, 2002). While it is commonly accepted that the deep sea contains
a large number of species, it is strongly debated whether the deep sea is more diverse
than shallow-water habitats (Snelgrove and Smith, 2002). One of the first studies to
compare deep-sea to shallow water diversity was carried out by Sanders (1968). This
study shows a much higher diversity in the deep sea than had previously been expected.
Levin et al. (2001) also compared two study sites at the western North Atlantic that
were sampled with similar gear, one in a coastal area, and one on the continental margin
at the same locality. From this data it was found that the deep sea was more diverse
than coastal regions (Sanders, 1968; Levin et al., 2001), however, other studies have
concluded the contrary (Gray, 1997, 2001a). While the question of whether shallow
waters are more diverse than the deep sea is debated, trends in bathymetric diversity

have been identified.

A peak in biodiversity has been reported for the bathyal zone between 2,000 and 3,000 m,
however, a variety of bathymetric diversity patterns for different taxa have been shown.
In a study of the northeast Atlantic, polychaete biodiversity was shown to peak at ap-
proximately 1,800 m water depth (Paterson and Lambshead, 1995), while in the tropical
northern Atlantic peak diversity was reported at 2,000 m depth (Cosson-Sarradin et al.,
1998). In a study of fauna bigger than 3 um, collected with a box corer from 10 different
sites in the northeast and northwest Atlantic, diversity peaks were recorded between
1,220 and 1,350 m and between 2,065 and 2,180 m water depths (Maciolek and Smith,
2009). Gastropods investigated along the Atlantic margin (northeast and northwest)
with an epibenthic sledge peaked in diversity between 2,000 and 3,000 m (Stuart and
Rex, 2009). These studies serve to highlight our lack of understanding of diversity pat-
terns showing that bathymetric diversity patterns vary depending on study site (Stuart
and Rex, 2009).

Numerous factors have been proposed as drivers of bathymetric diversity patterns, in-
cluding oxygen (Rogers, 2000; Stuart and Rex, 2009) (diversity highly suppressed in
oxygen depleted zones (Levin et al., 2001)), food supply (Smith et al., 2008a), hydro-
graphic disturbance (Lambshead et al., 2001), geological- evolutionary processes (Brandt

and Ebbe, 2009; Stuart and Rex, 2009), and sediment grain sizes (Etter and Grassle,
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1992). However, the importance of the latter driver is debated (Maciolek and Smith,
2009). Conversely, it has been proposed that the reported peak in bathymetric species

richness is a statistical artefact rather than an ecological occurrence, also referred to as
‘mid-domain effect’ (Colwell and Lees, 2000; Colwell et al., 2004; Gotelli et al., 2009).

1.4.1.2 Latitudinal Diversity Patterns

Latitudinal diversity patterns are as complex as thier bathymetric counterparts. In
terrestrial ecology, a latitudinal biodiversity pattern has long been recognised, with
biodiversity decreasing from the equator to the poles (Turner, 2004). Similar trends
have also been recognised in shallow-water marine system (Gray, 1997). In the deep
sea, a general trend of decreasing diversity in megafauna (e.g. gastropods, bivalves) and
macrofauna (e.g. isopods) towards the poles has been suggested by numerous studies,
although the legitimacy of this pattern has been questioned (Rex et al., 1993; Gray,
2001a,b; Ramirez Llodra et al., 2010). These studies have noted that such a trend
is less pronounced in the Southern Ocean (Rex et al., 1993; Lambshead et al., 2000;
Gray, 2001a,b) where species diversity has been reported to be very high (Gray, 2001b;
Brandt and Ebbe, 2009). This increased diversity in the Southern Ocean has been
explained by higher structural heterogeneity, and the age of the region (Gray, 2001b;
Brandt and Ebbe, 2009). A poleward decrease in biodiversity has been observed in
some holothurian dendrochirotid species, while other suspension feeders tend to show a
decrease in diversity from the poles to the equator (Roberts et al., 2000). Molpadiida in
contrast peak between 30°C and 50 °C north and south, and are almost absent at the

poles and the equator (Roberts et al., 2000).

While trends have been reported for species and sometimes groups there are no studies
that suggest that there is a universal trend in either latitudinal or bathymetric diversity
pattern. As particulate organic matter changes spatially and temporarily, a trend may

become apparent across families if feeding guilds are considered.

1.4.2 Why is the deep sea so diverse?

Many hypotheses have been put forward to explain the diversity of the deep sea (Sanders,
1968; Gage, 1996; Cronin and Raymo, 1997). Theories dealing with this question can
be divided into two main groups - those involving equilibrium and those involving dise-

quilibrium processes (Gage and Tyler, 1991; Snelgrove and Smith, 2002).
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1.4.2.1 Equilibrium Theory

According to equilibrium theories, finely tuned species coexist close to the carrying
capacity of the system (Gage and Tyler, 1991). The environment that they inhabit
exists at an ordered and harmonious equilibrium, to which the system returns following
any perturbation (Wu and Loucks, 1995). An example of an equilibrium theory is the
stability-time hypothesis (Sanders, 1968). The deep sea was long considered a very stable
environment and, as such, it was reasoned that species had specialised to narrow niches
that allowed numerous species to co-exist despite only a limited flux of organic matter
(Sanders, 1968). However, it is now clear that many oceanographic variables in the deep
sea are not as stable as first thought (Menzies, 1965; Tyler, 1995). While the deep sea
exhibits a general stability in temperature and salinity (Snelgrove and Smith, 2002),
with notable exceptions such as the Faroe Shetland Channel upper slope (Bullough
et al., 1998), there can be large seasonal fluctuations in organic matter flux (Gooday,
2002; Smith et al., 2008b), and periods of intensive current activity (i.e. benthic storms)
(Woodgate and Fahrbach, 1999). Temporal changes in diversity since the Pleiocene have
been reported (ca. 2.5 million years ago), e.g. in benthic ostracods (Cronin and Raymo,
1997), suggesting that the deep sea is an environment that is climatically driven over
geological times scales, for example during glacial-interglacial cycles (Hoffman et al.,
1998; Broecker, 2002). Although there is clear evidence for temporal changes in the
deep-sea environment, it has been suggested that an ecosystem can reach an equilibrium
by stabilising density-dependent processes, such as recruitment and dispersal, at a more
localised scale (Murdoch, 1994).

1.4.2.2 Disequilibrium Theory

Disequilibrium theories assume that faunal assemblages exist at an early successional
stage through disturbance (e.g. predation), keeping them below the carrying capacity
of the habitat, hence, increasing local diversity (Gage and Tyler, 1991; Snelgrove and
Smith, 2002). This theory accounts for the influences of physical parameters on species
and their interaction with the small-scale heterogeneity, as well as patchiness of the envi-
ronment (Snelgrove and Smith, 2002). Benthic storms and small-scale disturbances (e.g.
by megafauna) will temporarily and spatially disrupt communities and leave habitats
at different successional stages (Snelgrove and Smith, 2002). Strong seasonal signals
in phytodetrital flux are also considered as a source of disequilibrium in the deep sea
(Snelgrove and Smith, 2002). Detrital deposition events are not, as previously thought,
a continuous rain of particulate organic matter to the deep sea (Menzies, 1965), but in-
stead occur in distinct events that deposit phytodetrital patches in clumped aggregates

(Lauerman and Kaufmann, 1998). Phytodetrital patches promote a local increase in
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protein, carbohydrates and chloroplasti pigments (Thiel et al., 1988/1989) and also host
a number of macrofaunal species (Vetter, 1998). Phytodetrital aggregates show consid-
erable inter-patch chemical variability and support a range of megafaunal taxa (Thiel
et al., 1988/1989). Patches range greatly in size (Teixido et al., 2002) and can reach
km scales (David et al., 1997). Characteristics and levels of diversity differ between
individual patches (Teixido et al., 2002) and their respective sizes have been linked to
density dependent species recruitment (David et al., 1997). In a changeable environ-
ment, high biodiversity has the potential to reduce temporal variance and to increase
the temporal mean, thus, high diversity could be a long-term insurance policy against

natural environmental fluctuations (Loreau, 2000).

Finally, it is suggested that equilibrium and disequilibrium principles may not be mu-
tually exclusive in deep sea environments (DeAngelis and Waterhouse, 1987; Wu and
Loucks, 1995). It has been proposed that ecosystems are made up of a mosaic of distinct
patches, that, on varying time scales, are influenced by both stabilising and destabilising
environmental driving forces (Wu and Loucks, 1995). In this novel theory, at sufficiently
large scales, systems approach an equilibrium state asymptotically (DeAngelis and Wa-
terhouse, 1987). It is unlikely that any single factor drives the high diversity observed in
the deep sea, as patterns are scale dependent (Snelgrove and Smith, 2002). Further data
are required, ocean-wide, to improve our understanding of deep-sea diversity drivers,
however, the greater the sample effort, the more complex the explanations are likely to
become (Snelgrove and Smith, 2002).

1.4.3 Measuring Biodiversity

Described simply, biodiversity is “the variety of plant and animal life in the world or
in a particular habitat, a high level of which is usually considered to be important and
desirable.” (British Library, 2010). In practice, however, measuring and monitoring
biodiversity is very complex and frequently results in debates and disagreements. In
essence, all measures aim to compare biological communities in different areas or over
time. All methods are based on three assumptions: 1) all species are equal, 2) all indi-
viduals are equal, and 3) abundance measures investigate the same units (e.g. species,

feeding guilds, biomass) between different sites (Magurran, 2004).

There are many ways to define and measure biodiversity, for example, « diversity mea-
sures focus on aspects such as abundance (e.g. Fisher’s ), rarity (e.g. Gaston’s quartile
criterion), and relationships between biomass and abundance (e.g. abc curves) (Clarke
and Warwick, 1994; Magurran, 2004). 8 diversity is measured by comparing the differ-

ences between «a diversities relative to ~ diversity, where the latter describes the total
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species richness (Magurran, 2004), or by investigating differences in species composition
between two or more « measures (Magurran, 2004). The particular biodiversity mea-
sure employed by a study depends on the type of samples available and the questions
to be addressed. In the following sections, the diversity measures used in this study are
further discussed. The term biodiversity is used as a combination of species richness and
species evenness, which can be calculated with indices. Throughout this study, indices
as well the species richness and species evenness are calculated separately to determine

the drivers for observed diversity patterns.

1.4.3.1 Species Richness

Methods commonly used to express species richness in marine environments are rarefac-
tion and species accumulation curves (Gage and Tyler, 1991; Gotelli and Colwell, 2001;
Gray and Elliott, 2009). Apart from serving as a diversity measures for calculating
the species richness of an area, these methods can also be used to estimate the similar-
ity between two communities (as § diversity measure) (Colwell and Coddington, 1994;
Chao et al., 2000; Gotelli and Colwell, 2001). Both rarefaction and species accumulation
curves can be calculated using either the number of samples or the collected number of
individuals. Sample based comparisons result in the aggregation of many individuals
and often show lower species richness estimates, while a comparison against number of

individuals tends to improve resolution (Gotelli and Colwell, 2001).

Rarefaction curves, developed by Sanders (1968), enable the comparison of species rich-
ness between different marine areas, independent of sample sizes. S is the expected
number of species for a sample size of n individuals, (E(Sy,)) (Sanders, 1968; Gage and
May, 1993). This method was later modified by Hulbert (1971), after it was noticed
that the Sanders’ rarefaction tended to overestimate species numbers (Gray and El-
liott, 2009). This modified technique aimed to show the expected number of species
for a collection of n individuals or samples (Gotelli and Colwell, 2001; Snelgrove and
Smith, 2002). Somewhat counterintuitively, rarefaction curves start at the right-hand
side of a graph, at the expected species number, and move to the left as the number
of individuals or samples decreases (Gotelli and Colwell, 2001). The rarefaction curve
is produced by repeatedly calculating for progressively smaller numbers of individuals
within a sample (Gray and Elliott, 2009). The steeper the curve produced, the greater
the species richness of a community (Gray and Elliott, 2009). It is particularly use-
ful in cases were only the number of individuals of each species is known without the
knowledge of an area (Gray and Elliott, 2009). Species richness can be considerably
overestimated when rarefaction curves are calculated for communities where individuals

are aggregated (Magurran, 2004).



Chapter 1. Introduction 20

Species accumulation curves, or collectors curves, display the cumulative number of
species in a successively pooled sample (Clarke and Warwick, 1994; Colwell and Cod-
dington, 1994; Gotelli and Colwell, 2001). To create a species accumulation curve,
different extrapolation methods are available, such as UGE, Chao 1 & 2, and Jacknife,
although species accumulation curves can be calculated simply by using the number of
species found (Colwell and Coddington, 1994). Most species accumulation curves are
calculated through permutations, resulting in a smoothed accumulation curve (Clarke
and Warwick, 1994; Gotelli and Colwell, 2001). These curves are read from the left-hand
side to the right-hand side of a graph, showing elevated species numbers with increased
sampling effort (Gotelli and Colwell, 2001). Furthermore, the asymptote of a species
accumulation curve shows whether more species are to be expected in the event of an

increase in sampling effort (Colwell and Coddington, 1994).

In this study, species richness was calculated using smoothed species accumulation
curves. To reduce the bias of an unbalanced sampling effort, species richness was calcu-
lated based on number of individuals rather than the number of samples. This exercise
had the added benefit of a greater resolution (Gotelli and Colwell, 2001). Species accu-
mulation curves were chosen over rarefaction curves because there was a strong indication
that individuals aggregated at one or more of the sample sites (Magurran, 2004). Fur-
thermore, through utilisation of species accumulation curves, the success of sampling

effort could be inferred.

1.4.3.2 Species Evenness

Species evenness describes the distribution of individual species within a community,
where a high evenness is achieved through an even distribution of species in approxi-
mately equal abundance across a habitat. High evenness means low dominance and vice
versa (Magurran, 2004). There are several models that calculate the evenness of samples
which are discussed in detail in Magurran (2004). In this study however, the preferred
evenness measure is the Whittaker Rank Abundance (Whittaker, 1972; Magurran, 2004),
where species rank order is calculated against relative abundance (Ulrich et al., 2010).
The Whittaker Rank Abundance Plot displays any of three possible curves: a) the geo-
metric series, indicating a strong dominance, b) broken stick (Magurran, 2004), pointing
towards random boundaries between niches, and c) log normal distribution, showing a
relatively high level of evenness (Whittaker, 1972). This method is preferred, because
the behaviour of the curves gives comprehensive information about a sample, making
a decision as to whether datasets require transformation for subsequent analyses easier

(the assumption is made that any sample that is not log normal needs transformation).
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Furthermore, through employment of this method, an indication of rare species within

a sample is also made (Magurran, 2004).

1.4.3.3 Diversity Indices

While there are many indices that can be used to calculate the diversity of a system, the
parametric Simpson’s diversity index and the non-parametric Shannon-Wiener diversity
index are commonly used within the marine sciences (Magurran, 2004). The Simp-
son’s diversity index is considered one of the most robust diversity indices, whereby
the probability of two individuals from the same sample pool belonging to the same
species is calculated (Rosenzweig, 1995; Magurran, 2004). One of the advantages of this
method is its sample size independence, however, a drawback is its lack of sensitivity
towards species richness and its strong weight towards dominant species (Rosenzweig,
1995; Magurran, 2004). In contrast, the Shannon-Wiener index is sensitive to changes
in dominance (in terms of abundance), and weighs towards rare species (Whittaker,
1972; Chiarucci et al., 2011). Rare species are of considerable importance, in particular
in deep-sea research where under-sampling often results in an incomplete snapshot of
an area. In fact, it has been argued that rare species are one of the most informative
measures as they can give an indication of the species that have not been sampled (Chao
et al., 2000). However, a considerable drawbacks of the Shannon-Wiener index is the
assumption that all species are represented within a sample (Magurran, 2004). This is of
particular significance in deep-sea research where under-sampling is a common problem
(Beck and Schwanghart, 2010). Other assumption for the Shannon-Wiener diversity in-
dex are that sampling is random and that communities are of unlimited size (Magurran,
2004). In general, this index increases either when the number of species becomes larger,
or as the proportion of individuals of each species becomes more even (Gray and Elliott,
2009). In this study, both indices were used to compare the diversity between sites, as

both indices complement each other in their focus (Gray, 2000).

The following work combines results from four years of field research at the Mid-Atlantic
Ridge, in the vicinity of the Charlie-Gibbs Fracture Zone. The over-arching aim of this
study was to explore a largely unknown area of the Mid-Atlantic Ridge and to compare
four contrasting sites in the context of ecological aspects that have been introduced
herein. This body of research focuses on invertebrate benthic megafauna that were sam-
pled and analysed using three contrasting methodologies: trawling, video survey, and
molecular analysis. I begin with an introduction to the study area, before guiding the

reader through broad ecological comparisons (from trawl sample data in Chapter 3),
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down to small-scale variations between sites (through video surveys in Chapter 4). Fol-
lowing these sections, Chapter 5 critiques trawl and video survey methods, highlighting
their pros and cons. After these ecological chapters, I present a detailed investigation
into the phylogeny of holothurians; the most abundant benthic megafauna found at the
Mid-Atlantic Ridge. The motivation behind this chapter is the unique molecular sam-
ples that were acquired through trawling and ROV sampling, which has led to a new
line of investigation into this important class. Finally, a short synthesis concludes this

thesis.



Chapter 2

The Mid-Atlantic Ridge around
the Charlie-Gibbs Fracture Zone

2.1 Research Interest

Census of Marine Life (ComL) was a unique international effort to investigate life
in the oceans. The main aims were to catalogue and count species in all oceans and
to increase our understanding of the biggest ecosystem on Earth (Snelgrove, 2010).
One of the work packages of ComL was MAR-ECO, a field project on “Patterns and
Processes of the Ecosystems of the northern Mid-Atlantic Ridge” (Bergstad et al., 2008).
The initial planning phase (2001-2003) was followed by the field phase (2003-2005) in
which 16 different countries participated (Boyle, 2009). The main aim of MAR-ECO
was to increase our understanding of the Mid-Atlantic Ridge (MAR) as an ecosystem,
focussing on non-chemosynthetic environments. MAR-ECO sampled the MAR between
the Azores and Iceland, with the aim to describe patterns of distribution, abundance

and trophic structures of the fauna (Boyle, 2009).

As a contribution to MAR-ECO the UK NERC funded a consortium project of UK and
international collaborators to investigate one area in greater detail (ECOMAR, 2012).
ECOMAR (Ecosystems of the Mid-Atlantic Ridge), a multidisciplinary project (2007-
2012) including seven UK institutions, focussed on the Sub-Polar Front and Charlie-
Gibbs Fracture Zone (CGFZ) 50 to 56 °N. The main aims of the ECOMAR project
were to determine the effect of the MAR on primary production, biomass and biodi-
versity of pelagic and benthic communities, and the coupling between them through
the downward flux of organic matter. It also aimed to determine general patterns that
might be applied to other mid-ocean ridge systems (ECOMAR, 2012). In order to ad-

dress those questions four superstations were chosen in the vicinity of the CGFZ that
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were sampled over a four year field phase, between 2007 and 2010 (Figure 2.1). The
two northern sites were situated about 137 km apart, while the southern sites were only
about 73 km apart. The northern and southern sites were about 706 km away from
each other to the east and about 777 km to the west. All stations targeted a depth
around 2,500 m, either side of the CGFZ and MAR. The following chapter introduces
our current knowledge of this area, ranging from its geology, to oceanography, and the
biology in this area. However, as there was relatively little knowledge prior to the ComL
research effort, some discussions are based on very recent findings, many of which have
not been published yet. A large part of this data will be published in 2013 in a special

volume by the Journal Deep-Sea Research II, which will be referenced accordingly.

40°0'0"W 30°0'0"W
z ' z
= =)
o o
) S
© (&)
Rockall/Plateati !
Charlie-Gibbs
Eracture Zone
S5 T
Z Z
= o
o o
S )
(Yo} v

40°0'0"W 30°0'0"W
e Kilometers
0 100200 400 600 800

FiGURE 2.1: Map of the Charlie-Gibbs Fracture Zone and the Mid-Atlantic Ridge,

indicating the four ECOMAR superstations at a target depth of around 2,500 m water

depth. The distance between the northern sites is 137 km, between the southern sites

72 km, between the north and south sites to the east 706 km, and between the north

and south sites to the West 777 km (& 100 m. 1,000 m contours are shown.). Map
courtesy of Grant Duffy.
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2.2 Geology

Mid-ocean ridges are ‘mountain ranges‘ that rise from the adjacent abyssal plains. The
spreading centres at MORs are where new oceanic crust is formed and are part of the
plate tectonic system (Gage and Tyler, 1991). These linear bathymetric highs make up
about one third of the ocean floor by area (Seibold and Berger, 1996). The ridge crests
may be elevated up to 2,500 m above the surrounding abyssal plains (Seibold and Berger,
1996). The crest is marked by a rough and rugged topography with shallow seamounts
and hills (Seibold and Berger, 1996; Bergstad et al., 2008). Moving perpendicularly
away from the crest, unevenness is gradually smoothed by sediment cover (Seibold and
Berger, 1996). The sedimentation rate is typically very low (about 0.1 and 0.2 cm kyr™!
Gage and Tyler (1991)) in comparison to continental margins (about 20 cm kyr' Gage
and Tyler (1991); Bergstad et al. (2008)); and the spreading rate varies from about 1 to
10 cm a year (Seibold and Berger, 1996).

The MAR divides the North Atlantic into two approximately equally sized basins (east-
ern and western basins) (Levin and Gooday, 2003; Tomczak and Godfrey, 2003). At
the MAR the central rift is about 30 to 50 km wide and about 1 km deep (Seibold and
Berger, 1996). The crest of the MAR is shallower than other ridges, such as those found
in the Pacific, and becomes increasingly so towards Iceland, where it eventually rises
above sea-level (Seibold and Berger, 1996; Tomczak and Godfrey, 2003). The height of
the MAR affects the deep-water circulation in the Atlantic (Tomczak and Godfrey, 2003)
and the pelagic fauna is assumed to differ significantly between the eastern and western
basins (Longhurst, 2007). The MAR is interrupted along its length by fracture zones,
such as the CGFZ, which can reach depths of 3,000 to 4,000 m below the ridge crest
(Bergstad et al., 2008). Fracture zones are characterised by highly irregular bathymetry
(Seibold and Berger, 1996). They are also seismically active as a result of the relative
motion of the rigid blocks of oceanic crust on either side (Brown et al., 1992). The most
northerly part of the MAR, which is situated north of the CGFZ is also referred to as
Reykjanes Ridge.

2.3 Oceanography

2.3.1 Surface Waters

Ocean water circulation causes surface waters to be transported from the west to the
east (Tomczak and Godfrey, 2003; Read et al., 2010). Though southward and north-

ward movements also occur, it is pronounced on the western side of the Atlantic, while
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the eastern side is charcterised by higher eddy activity and low motion (Tomczak and
Godfrey, 2003). As a result of freshwater supply from glaciers and icebergs, sea surface
salinity decreases at high latitudes in the northern North Atlantic, producing a sharp
gradient in salinity between the Labrador Current and the Gulf Stream, contributing to

the formation of the Sub-Polar Front (Tomczak and Godfrey, 2003).

The Sub-Polar Front, which forms over the CGFZ, is defined by strong currents to the
south and weaker currents to the north (Sgiland et al., 2008). The southern part of the
Sub-Polar Front is characterised by the North Atlantic Current, which emerges from
the Gulf Stream and carries water over the ridge that eventually splits into a southern
and a northern branch (Tomczak and Godfrey, 2003). The North Atlantic current,
over the CGFZ, is characterised by energetic, long-lasting, and slow-moving eddies of a
continuous succession (Miller, 2009). The northern branch of the North Atlantic Current
has the CGFZ as a natural barrier towards the north, while the southern branch has
meanders and eddies that pass close to the SE ECOMAR site and likely enhances spring
productivity (Miller et al., submitted).

Recent data indicate that the MAR is a more effective barrier to ocean currents north
of the CGFZ than the ridge to the south (Miller et al., submitted). It has also been
suggested that around the southern ECOMAR sites the MAR is delineated by less
variability in the small fronts (Miller et al., submitted). Over long periods, the mean

surface velocity is slow at about 5 cm s7!.

The salinity in the upper 1,000 m tends to
be higher south of the CGFZ compared to the north (Read et al., 2010). Furthermore,
a weak mean eastward flow of subtropical water has been described over the southern
sites, and a cooler subpolar mean westward flow over the northern sites (Read et al.,

2010).

2.3.2 Deeper Waters

Overall, the CGFZ affects the deep-water hydrography of the area as two-thirds of
the water mass transport occurs between 500 to 2,500 m (Read et al., 2010). Deeper
water masses flow from the northeast Atlantic along the Reykjanes Ridge (the most
northern part of the MAR) south-westward, until they reach the CGFZ through which
the western Atlantic is reached, where water masses continue north-westward (Saunders,
1994; Tomczak and Godfrey, 2003; Hunter et al., 2007; Bower and von Appen, 2008;
Sgiland et al., 2008). This water mass is characterised by cold, oxygenated Iceland-
Scotland-Overflow Water between 1,800 and 3,000 m water depth. Unexpectedly high
bottom-water salinity south of the CGFZ suggests that some of the Iceland-Scotland-

Overflow Water also mixes southwards (Read et al., 2010). Measurements of the deeper
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water along the CGFZ show a frequent directional change in water mass movement, with
only a small positive annual average movement westward through the CGFZ (Read et al.,
2010).

In 2007, CTD data were collected by Ms. Jane Read (OBE, National Oceanography
Centre) on JC011 (Gooday et al., in press). CTD measurements between 2,113 and
2,777 m water depth covered the benthic sampling range (Table 2.1). There was little
variation in temperature (2.93 to 3.20 °C), salinity (34.92 to 34.98 psu) or oxygen
(281.20 to 282.43 umol I't) (Table 2.3). Furthermore, data indicate that near-bottom
flows at those depths, when forced to cross topography, cause enhanced local small scale
turbulence (Dale and Inall unpublished).

TABLE 2.1: CTD data collected in 2007 at JCO11l. press = pressure, temp = tem-
perature, salin = salinity. Data courtesy of Ms. Jane Read (Gooday et al., in press).

Site station press temp salin oxygen Latitude Longitude
number (dbart) (°C) (psu) (pmol I't)
SE JC011/016 2777 3.15  34.92 282.43 49°04.83’'N  27°50.79'W
SE JC011/025 1717 3.65  34.91 282.97 49°02.20'N  27°55.62'W
SW  JC011/034 1579 3.69  34.90 280.88 49°53.26'N  28°20.21'W
SW  JC011/036 2575 3.15  34.92 281.28 48°45.80'N  28°38.41'W
NW  JC011/066 1695 3.30  34.95 281.14 53°48.15'N  35°50.42'W
NW  JC011/069 2113 3.20 3494 281.97 54°09.01'N  36°21.64'W
NW  JC011/070 2625 3.12  34.96 281.49 53°59.74'N  36°07.67'W
NE JC011/090 1497 3.41 34.94 280.50 54°00.00’'N  34°57.00'W
NE JC011/091 2429 3.01 34.98 282.02 54°00.00’'N  34°17.99'W
NE JC011/099 2479 2.93  34.98 281.20 54°00.00’'N  33°57.97'W

Apart from the Scotland-Iceland-Overflow Water, Arctic Bottom Water also charac-
terises the area around the CGFZ. Arctic Bottom Water, which is the densest water
in the world’s oceans, is formed in the North Atlantic. However, only 4 Sv are carried
outside of the Arctic and are referred to as Arctic Botton Water Overflow, which has
an eastern and a western branch (Tomczak and Godfrey, 2003). The eastern overflow
is mixed with surrounding water and carried southward into the eastern North Atlantic
until it reaches the western Atlantic through the CGFZ, where it eventually joins the
western overflow (Tomczak and Godfrey, 2003). The CGFZ is deep enough to allow this
water to pass through below 3,000 m water depths (Tomczak and Godfrey, 2003). The
bottom water that is found in the Atlantic basins is characterised by high salinity and

high dissolved oxygen content (Tomczak and Godfrey, 2003).
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2.4 Surface Water Primary Production

The Sub-Polar Front is characteristic for the ECOMAR study area and more nutri-
ent rich waters were assumed to the north than to the south of the CGFZ. Primary
production (PP) was compared between the northern and southern ECOMAR sites,
between 1998 and 2010. Based on particle advection trajectories over a 400 km radius,
the mean annual PP was confirmed to be higher over the northern sites (206 g C m2 y!)
compared to the southern ones (198 g C m™ y!) (Tilstone et al., in prep). While the PP
over the two northern sites showed no significant difference between the sites, a signifi-
cant difference was observed over the southern sites, with a general decrease in PP over
the SE site. This decrease in PP over the SE site has been associated with a decrease
in micro- and nano-phytoplankton abundances and an increase in pico-phytoplankton
abundance (Tilstone et al., in prep). The composition of pico- and nano phytoplankton
in the surface waters differed significantly between the northern and southern ECOMAR
sites. An enhanced biological activity was measured over the southern sites, which co-

incided with the Sub-Polar Front (Martinez-Vicente et al., 2011) (Table 2.3).

2.5 Information about the Pelagic Realm

Acoustic data were collected using a line-transect survey design by the St. Andrews
team, lead by Dr. Martin Cox. Data were obtained at five frequencies (18, 38, 70, 120 &
200 kHz; one per panel) on the 2007 and 2009 cruises, using a multifrequency acoustic
system. Following the cruise, an acoustic multi-frequency information algorithm was
used to identify the dominant acoustic scatter in each assigned grid cell. This was
achieved by using a combination of acoustic frequencies to maximise the depth to which
the scatter type could be determined. Using the SIMFAMI algorithm, biovolumes (mm?
m™3) were converted into mean zooplankton carbon concentrations (mg C m™) that were
estimated between depths of 20 to 700 m. There was a significant north/south difference
with noticeably higher carbon concentrations of zooplankton carbon standing stock in
the south (Table 2.3). The highest carbon concentrations were related to euphausiids
at all sites, followed by copepods, which showed a higher signal towards the south than
the north. Another zooplankton signal identified was as large as the copepod signal,
however, the identity of this zooplankton group has still to be determined (Dr. Martin
Cox, pers. comm.). The greatest zooplankton biomass collected with pelagic trawling
came from the NE site (Priede, 2009). In 2009, a large salp swarm also occurred at the

SE site, with very high densities and biomass.
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Zooplankton has been collected from different depths from the ECOMAR region and
has been divided into mesopelagic zooplankton and bathypelagic/benthopelagic con-
sumers (Letessier et al., 2012). The abundance of these groups differed between north
and south, with higher abundances to the north supporting a PP increase north of the
CGFZ (Letessier et al., 2012). However, species richness was greater at the southern
sites (Priede, 2009). Species characteristic for the northern sites were Sagitta sp., Eu-
chaetidae, Themisto compressa and Sergestes arcticus, while decapods Sergia japonica,
Parapasiphae sulcatifrons, Acanthephyra pelagica and Gennadas elegans were typical for
the southern sites (Letessier et al., 2012). The only species that was found in high abun-
dances at all sites was the benthopelagic Gnathophausia zoea. Higher euphausiid species
abundances were measured over the ridge compared to adjacent waters, and it has been
hypothesised that niche availability is related to surface water temperatures (Letessier
et al., 2009).

Data indicate that the energy transfer from the surface through the food web towards
benthic communities might be driven by different micronektic communities and tropho-
dynamics (Letessier et al., 2012). It has been suggested that differences in bloom sea-

sonality are less important than yearly production rates (Letessier et al., 2012).

2.6 Particle Transport at the MAR

In order to measure the material flux from the surface waters, moorings with sediment
traps were placed at the ECOMAR sites between 2007 and 2010. Unfortunately, some of
the sediment traps failed. The information that was acquired from the remaining traps
1,000 m above the seafloor (ats) suggest the greatest total material flux occurred over the
SW and NE sites, and the lowest material flux over the NW site (Table 2.2). Greater
material flux was recorded in the traps set at 100 m ats (Table 2.2). This increase
is considered a result of increased trap efficiency with increasing depth, rather than
resuspension (Abell et al., submitted). It has been suggested that this could be caused
by a greater clustering efficiency of particles with increasing depth. The traps 100 m ats
might also get the additional flux from the ridge topography. However, conventionally
it is believed that the traps 100 m ats are affected by resuspension from the benthic
boundary layer (Lampitt et al., 2001). Based on the assumption that greater sediment
flux is caused by resuspension, data on mean SFE (Table 2.2) show greater resuspension

at the eastern sites, in particular the NE site, compared to the western sites.

In sediment traps 1,000 m ats the highest Organic Carbon (OC) content was seen at the
NW site and the lowest at the SE site (Table 2.2) (Abell et al., submitted). However,
100 m ats the OC availability changed to the highest at the SW site and the lowest at
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TABLE 2.2: Sediment Trap Data; MS = Mean Sediment Trap sample weight (mg),

SFE = Mean Sediment Flux Estimate (mg m? day), OCF = Organic Carbon Flux

(mg m? day), OC % = % of Organic Carbon in Sediment Trap Sample. Data courtesy
of R. Abell (pers. comm.).

Site  Altitude MS MS SFE SFE OCF OCF OC% OC%
SD SD SD SD
SE 100 639.04 £ 564.35 62.43 =+ 57.89 519 +2.93 2.96 £ 2.58
1000 344.52 £ 424.25 30.98 £ 38.80 5.67 £ 2.29 1.91 £ 2.83
SW 100 558.75 =+ 698.85 46.05 £ 50.91 6.24 £6.43 2.75 £ 3.53
1000 403.53 £ 408.33 32.75 =+ 35.39 740 +£6.74 2.26 £ 2.69
NE 100 1086.54 £ 991.62 106.50 =+ 86.24 222 +216 2,72  £242
1000 440.62 £ 484.20 51.72 =+ 59.81 7.52  +9.01 1.89 £ 1.99
NW 100 404.76 £ 501.62 42.00 + 45.14 5.78 £ 12.15 1.57 £ 2.08
1000 101.71 £ 153.77 10.80 £ 17.45 13.40 £ 17.13 0.69 £0.85

the NE site. A north/south pattern in energy flux was not obvious in the sediment trap

data, despite the greater PP measured over the northern sites (Table 2.3).

Although no clear seasonal signal could be observed, patterns and peaks of export were
recorded in traps from both trap depths, at all four sites. The average organic carbon
flux during the ECOMAR field phase (summer 2007 to summer 2010) for the 100 m
traps (above the seafloor) was 2.9 mg m™2 day™!, and for the 1,000 m traps (above the

seafloor) was 1.8 mg m™ day™!.

Altimeter data collected on the moorings were used to investigate the source regions of
particles. These were modelled based on the assumption of a constant speed, with three
different sinking speeds being tested (10 m day™!, 50 m day™!, 100 m day™!). Particles
were tracked backwards in time from the time of sample collection to their presumed
source at the surface. The northern and southern moorings had source regions with
little, if any, overlap, even at the slowest sinking rate. This suggests a divide between
the northern and southern sites by the Sub-Polar Front. Between the southern sites
even the fastest sinking rate showed strongly overlapping regions, indicating that there
are no clear distinctions between the source regions (Table 2.3). In contrast, the source
regions for the NW and NE sites were more distinct, especially at the fastest sinking

rate (Dale and et al., submitted).

2.7 Benthic Food Webs

The main aim of ECOMAR was to investigate the non-hydrothermal vent environment at
the MAR, and although bathymetry data did not indicate any presence of hydrothermal

vents, bathymetry resolution was not very high and further confirmation was needed. A
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high dependence of benthic and benthopelagic fauna on photosynthetic primary produc-
tion, without any hydrothermal vent input, was confirmed by measuring 62 C and §3* S,
in a selection of common species at the ECOMAR sites (Reid et al., in press). A strong
trophic discrimination was found with a ¢'3 C analysis between consumers and poten-
tial food sources. It has been suggested that this strong discrimination indicates that
reworking of organic carbon occurs before assimilation by benthic fauna (Reid et al.,
in press). Tropic guilds could be differentiated with §'3C and 6'°N analyses, with a
particular strong signal between mobile predators/scavengers and deposit feeders (Reid

et al., in press).

2.8 Substrate

As a result of the Carbon Compensation Depth (CCD) the sediment types on mid-ocean
ridges vary with depth (Tomczak and Godfrey, 2003). The MAR has a shallow summit
and a deep CCD, causing a different sediment composition (foraminiferan and coccol-
ithophorid oozes) on higher parts of the ridge than the surrounding abyssal plains (Tyler,
1995; Thistle, 2003). Sediment is derived either from terrigenous or marine biogenic
sources, although some sediment particles originate from volcanoes (Brown et al., 1989;
Tyler, 1995; Seibold and Berger, 1996; Thistle, 2003). Biogenic sediment is predomi-
nantly made up of the shells of dead planktonic marine organisms (Brown et al., 1989;
Thistle, 2003). Marine organisms, notably planktonic foraminiferans, coccolithophores
and pteropods, produce calcium carbonate shells, while diatoms, radiolarians and sil-
icoflagellates produce silica (opal) shells (Brown et al., 1989; Thistle, 2003). In areas
under high biogenic surface production the sea bed consists of carbonate ooze above the
CCD, and siliceous ooze and red clays below the CCD (Tyler, 1995; Seibold and Berger,
1996). Sediments containing > 30 % biogenic components are referred to as biological
oozes (or calcerous/siliceous ooze), while red clay has < 30 % biogenic ooze, is devoid
of calcareous material, and forms below the CCD (Brown et al., 1989; Gage and Tyler,
1991). Large-scale processes control sediment composition and uniformity over hundreds
of square km (Thistle, 2003). At smaller spatial scales, organic material derived from
surface production (Tyler, 1995), together with faunal structures and traces (Seibold

and Berger, 1996) can cause patchiness.
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2.8.1 ECOMAR Sediment

At the ECOMAR sites megacore samples were collected on all cruises, with the exception
of the NW site in 2007. The sediments at the paired northern and southern sites showed

distinctive characteristics, but eastern and western sites were very similar.

The northern sites were characterised by very fine, soft mud (Table 2.3). They showed
a surficial light brown mud layer of about 18 c¢m, and 10 to 15 cm, at the NE and
NW sites, respectively (Priede, 2007, 2009). Below the upper layer a dark layer of
variable depth was reported, averaging 5 cm in thickness, which was followed by a
layer of grey mud (Figure 2.2). While both sites had extremely soft sediment, the
NW site was slightly more so. The extreme softness of the sediment at the NW site
is speculated to have caused a lower success rate in collecting megacore samples at
this site (Priede, 2009). Megacore samples from both the NE and NW sites lacked a
phytodetritus layer on the sediment surface in 2007 and 2009, while such a layer was
reported in 2010 (Priede, 2007, 2009; Priede and Bagley, 2010). The 2007 and 2009
cruises were carried out around late July/August, and the 2010 cruise around early
June, suggesting a spring bloom deposition event at the northern sites. Both sites
also showed evidence of burrowing megafauna in the sediment cores. It has also been
speculated that the surficial brown upper layer at the northern sites might have been
deposited during the Holocene, which would suggest a sediment accumulation rate of
about 2 cm ky™! (Priede, 2009). Furthermore, in cores from the NE site large numbers
of sponge spicules were reported in the upper 10 cm, while at the NW site the sediment

appeared to have high pore water content (Priede and Bagley, 2010).

Compared to the northern sites, sediments at the southern sites were slightly coarser
and of a silt/clay consistency, with increased sand fraction compared to the northern
sites (Priede, 2009; Priede and Bagley, 2010). Unlike cores collected from the northern
sites, the southern sites did not show any signs of sediment banding, but were instead
characterised by a light brown, grainy, homogenous sediment layer (Figure 2.2) (Priede,
2009). Both southern sites had large numbers of pteropod tests with a patchy distribu-
tion on the sediment surface that were absent from deeper layers (Priede, 2007, 2009).
On JC048 (2010) dark grey patches were observed several cm into the sediment which
were found to contain large numbers of pteropod tests (Priede and Bagley, 2010). Phy-
todetritus patches several mm thick were observed at both southern sites on all three
cruises (Priede, 2007, 2009; Priede and Bagley, 2010). Both southern sites showed ev-
idence of burrowing megafauna (Priede and Bagley, 2010). In 2009 the phytodetritus
layer and the pteropod test deposit at the SE site were reported as denser compared to
the SW site (Priede, 2009).
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seon |11

Southern Northwest Northeast

FIGURE 2.2: Sediment profiles for the southern sites, the northwest and northeast, on

the right hand side. On the left hand side, a layer of phytodetritus on the sediment

surface from the SE Site, which was absent from the northern sites during late summer
sampling. Photo courtesy of Dr. Alan Hughes.

2.9 Benthic Invertebrate Megafauna

2.9.1 Biology at the Northern MAR, in Non-Chemosynthetic Habitats

Prior to the MAR-ECO project only very little was known about the biology of mid-
ocean ridges (Tyler, 1995). A faunal transition between 800 and 1,000 m water depth
had been observed on the northern MAR (Copley et al., 1996). Most of our ecological
knowledge from the Mid-Atlantic Ridge results from the first MAR-ECO field phase.

Data show that benthic assemblages at the MAR are distinct between the Azores and
the CGFZ, with the CGFZ further divided into zones between 1,263 to 1,916 m, and
2,350 and 3,512 m depth (Gebruk et al., 2010). The distribution of some megafauna,
such as holothurians, appears to be random around the CGFZ (Felley et al., 2008). The
topography of the ridge is very heterogenous and fauna is dominated by invertebrates
such as echinoderms (49.5 %), sponges (18.2 %) and anthozoans (16.7 %) (Gebruk
et al., 2010). Many new species were discovered, including echinoids (Mironov, 2008),
ophiuroids (Martynov and Litvinova, 2008), asteroids (Dilman, 2008) and holothurians
(Gebruk, 2008). The hard substratum is dominated by sessile organisms (Felley et al.,
2008).

Fish abundance and biomass are highest in the benthic boundary layer, indicating a
bathypelagic fish assemblage (Sutton et al., 2008). Outside the benthic boundary layer,
abundance is lowest at 2,300 m. It is suggested that the increased biomass and abun-

dance in the benthic boundary layer is caused by increased bathypelagic food sources on
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the ridge, compared with the surrounding abyssal plains (Sutton et al., 2008). Scaveng-
ing fish were observed to form three depth related assemblages between 924 and 1,198 m,
1,569 and 2,355 m, and 2,869 and 3,420 m, and are all dominated by different individual
fish species (King et al., 2006).

2.9.2 Biogeography of the MAR, in the Vicinity of the CGFZ

According to the biogeochemical provinces by Longhurst, the area around the CGFZ
is in the Atlantic Westerly Winds Biome. South of the CGFZ is the North Atlantic
Subtropical (NAST) Gyral Province (Longhurst, 2007), which has typically weak win-
ter mixing and short winter phytoplankton blooms, dominated by coccolithophorids
(Longhurst, 2007). This province is further subdivided into NAST-E and NAST-W,
with the MAR as a natural barrier. Sargassum seaweed is very abundant in the sur-
face waters to the west of the MAR, while almost absent to the east (Longhurst, 2007).
Chlorophyll is generally low compared to other provinces, with the highest concentra-
tions in March to April; concentrations tend to be higher in the NAST-E than in the
NAST-W (Longhurst, 2007). North of the CGFZ is the North Atlantic Drift Province
(Longhurst, 2007), which is characterised by strong winter mixing and a strong spring

bloom that is followed by a smaller bloom in late summer (Longhurst, 2007).

The area of the MAR, around the CGFZ has been recognised as a boundary for species
confined to either the eastern or western basins of the North Atlantic (Vinogradova,
1997; Longhurst, 2007). Vinogradova (1997) classified the CGFZ as part of the North-
Atlantic Abyssal Province, which puts most cold water species at the limit of their
distribution around the CGFZ (Zezina, 1997). On its western slope a zone has been
identified at 2,000 m depth that contains a similar number of species as the western and
eastern Atlantic (Mironov and Gebruk, 2006). This area also corresponds to the western
boundary of the coral species Flabellum found in the eastern Atlantic, and the eastern

boundary for a barnacle Cirripedia species found in the western Atlantic (Mironov and
Gebruk, 2006).

The recent GOODS report splits the ocean into pelagic and benthic provinces (Agostini
et al., 2009). The pelagic zone to the north of the CGFZ falls within the Subarctic
Atlantic Province, which reaches from 200 to 4,500 m depth, and the area to the south
falls within the North Atlantic Current, which affects depths between 100 to 5,000 m
water depth. According to the GOODS report (Agostini et al., 2009) the entire benthic
North Atlantic, between 3,500 and 6,500 m, belongs to North Atlantic Deep Water
Province, which characteristically has temperatures of 2 to 3 °C, salinity of 34.5 to 35

psu, and dissolved oxygen of over > 5 ml 1. The lower bathyal province between 800
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and 3,000 m is classified as Northern North Atlantic Province, which typically has water
temperatures of 3 to 4°C, a salinity of 34.6 to 35 psu, and dissolved oxygen of over > 5
ml I'! (Agostini et al., 2009).

In all three biogeographical schemes, the CGFZ is a significant feature that divides
the MAR into different provinces (Agostini et al., 2009; Longhurst, 2007; Mironov and
Gebruk, 2006). However, in the GOODS report this is only true for the pelagic realm,
and no differences are identified in bathyal benthic provinces on the eastern and western
flanks of the MAR (Agostini et al., 2009). In contrast the biogeochemical provinces and
the zoogeographic regions both recognise the ridge as a barrier between the eastern and
western Atlantic Ocean. The GOODS classification, however, recognises the MAR as
distinct from other bathyal habitats in the Atlantic (Agostini et al., 2009).

2.10 Working Hypotheses

This thesis is part of the ECOMAR effort to increase our understanding of the ecosys-
tem around the Charlie-Gibbs Fracture Zone. Data collected within the ECOMAR
field phase, between 2007 and 2010, are analysed in detail and contribute further to
our understanding of this region. Data for this thesis were collected with three dis-
tinct methods (trawling, video survey, molecular analysis). One of the most striking
differences between these methods is the area they can sample. The following testable

hypotheses were addressed within this work :

e Biomass, as measure of energy input, does not differ between the southern and

northern sites in benthic megafauna.

e Biomass, as measure of energy input, does not differ between the eastern and

western site in benthic megafauna.
e Body sizes of benthic megafauna do not differ between the south and the north.
e Body sizes do not differ in benthic megafauna between east and west.

e No particular species is dominant at any site, suggesting an even species distribu-

tion.

e There is no difference in diversity in benthic megafauna between the southern and

northern sites.

e There is no difference in diversity in benthic megafauna between the western and

eastern sites.
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e There is no difference in the community composition of benthic megafaunal be-

tween the southern and northern sites.

e There is no difference in the community composition of benthic megafaunal be-

tween the eastern and western sites .

e Small-scale habitat variations do not affect benthic community composition of

megafauna assemblages at the MAR.
e The taxonomic relationship of benthic megafauna at the MAR are resolved.

e The new species Peniagone coccinea, Laetmogone billetti, Molpadia sp. nov. are

not genetically distinct from other holothurians found at the MAR.

o Gephyrothuria alcocki does not belong to the Order Molpadiida.






Chapter 3

Trawling Benthic Megafauna at
the Mid-Atlantic Ridge

3.1 Introduction

Variations in energy supply, such as those observed over the ECOMAR sites north and
south of the Charlie-Gibbs Fracture Zone (CGFZ), are considered potential drivers for
biodiversity changes in benthic invertebrate megafauna and are also thought to affect
body size, density, and biomass (Thurston et al., 1994; Billett et al., 2001; Wigham
et al., 2003a,b). These variations can occur spatially and temporarily and have been
associated with benthic community shifts at abyssal depths (Billett et al., 2001; Ruhl,
2008). The presence of geological features such as the CGFZ and the Mid-Atlantic
Ridge (MAR) can potentially act as dispersal barriers and therefore, may also result in

differing community composition.

Deep-sea benthic communities may experience major changes in biodiversity, body size,
density and biomass over time and space (Glover et al., 2010). There is evidence for such
changes at sites in the abyssal Atlantic (Billett et al., 2001) and Pacific (Ruhl, 2008),
where orders of magnitude shifts in the density of common megafaunal species between
sampling years are primarily associated with changes in the chemical composition of
settling particles (Kiriakoulakis et al., 2001). The increase in the density of some taxa,
and the decrease in others, led to the community shifts observed at the abyssal Porcupine
Abyssal Plain (PAP) (Billett et al., 2010) and the Pacific Station M (Ruhl, 2007, 2008).
Besides changes in biodiversity and community composition, median body sizes are
negatively correlated with higher density (Ruhl, 2008). Changes in the biology and
ecology of megafauna also occur spatially and are associated with changes in particle

flux quality. Decreases in biomass, abundance, and size with depth are believed to

39
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be a result of decreasing food availability rather than higher pressure (Sibuet et al.,
1989; Rex et al., 2006). Spatial and temporal variation in food availability to benthic
organisms reflects surface plankton dynamics and variable degrees of remineralisation
during sinking (Thurston et al., 1994). In general, food availability is considered to be
the most important ecological driver affecting the distribution of benthic fauna in the
deep sea (Lampitt et al., 1986; Galéron et al., 2000; Smith et al., 2008a; Billett et al.,
2010).

Benthic invertebrate megafauna are restricted in their mobility as adults. Some can
swim or float but this probably occurs only over very short distances and as a means
to locate food patches (Jones et al., submitted; Rogacheva et al., acceptedb). Instead,
invertebrate megafauna generally depend on larvae for their dispersal (Young et al.,
1997). Tt is likely that geological features such as ridges and fracture zones act as barriers
to larval dispersal. A genetic study of dispersal of the bivalve Deminucula atacellana
revealed that this species has the capacity to disperse over thousands of kilometres
within the same depth range, and that the effect of depth on dispersal range is stronger
than that of distance (Zardus et al., 2006). Although there is evidence that submarine
ridges are not effective barriers to mobile bathyal fish (White et al., 2010) and mobile
abyssal crustaceans (Menzel et al., 2010), the deep trough of the CGFZ does appear to
act as a barrier to fish dispersal (White et al., 2010). The barrier created by the CGFZ
might represent an oceanographic rather than a geological hurdle since water masses
cross the ridge through the CGFZ in fluctuating directions, although with an overall
westward tendency (Saunders, 1994). The current movement possibly could prevent
larvae from moving either north or south at some depths, although it might facilitate
east to west movement. Finally, the movement of the Scotland-Iceland overflow water
from the eastern Reykjanes Ridge to the western side (Saunders, 1994; Bower and von

Appen, 2008) provides a potential path for larval exchange from the NE to the NW site.

Trawl samples were collected at three (NW, NE, SE; all at about 2,500 m depth) of
the four ECOMAR sites. A semi-balloon otter trawl (OTSB) was used to obtain the
samples. This is smaller than commercial trawls and therefore ideal for trawling in
restricted areas, such as those found at the MAR (Priede et al., in prep). The OTSB
yields large qualitative samples, providing material for detailed taxonomic analyses as

well as size and weight data for individual specimens.
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3.2 Methods

3.2.1 Sampling

Trawl samples were collected during RRS James Cook cruises 11 (JCO011; 13 July to
18 August 2007) and 37 (JC037; 1 August to 9 September 2009) at three ECOMAR
sites (~ 2,500 m): southeast (48°58'N, 27°51'W), northeast (54°05'N, 33°58'W),
and northwest (54°19'N, 36°01’'W) (Figure 2.1, page 24). The samples were obtained
using a 13.7 m long semi-balloon otter trawl (OTSB) with a single warp (Thurston
et al., 1994; Priede et al., 2010). The effective opening width of the OTSB is about
8.6 m, and the net is composed of 43 mm and 37 mm stretch mesh netting, reducing
to 13 mm stretch mesh in the cod end (Thurston et al., 1994). The average trawling
speed was between 2 and 2.5 knots (Priede, 2007, 2009), which is the ideal speed for
collecting both mobile and non-mobile animals at the water sediment interface (Priede
et al., 2010). During JCO011 (2007), one successful trawl was collected at the southeast
(SE) and northwest (NW) sites and three trawls from the northeast (NE) site (Table
3.1). During JC037 (2009) a further three trawls were obtained from the SE and NW
sites (Table 3.1).

3.2.2 Processing

The invertebrates were separated from the fish and sorted into major taxonomic groups
onboard the RRS James Cook. The wet weight of the major taxa was measured with
a S182 Marine Scale (POLS hf, Iceland). Specimens were fixed in 4 % borax-buffered

formaldehyde solution, and preserved in 70 % ethanol.

Species were identified to the closest possible taxonomic unit (led by Antonina Ro-
gacheva). Unfortunately, small aggregating holothurians collected at the NE site were
damaged and it was not possible to identify them to species level. They are referred to
as Elpidiidae mix. This mix included Kolga nana, Peniagone azorica, Peniagone longi-
papillata, Ellipinion delagei and FEllipinion alani. In the laboratory, individuals were

measured to the closest mm using an electronic calliper.
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TABLE 3.1: Successful trawls from the Mid-Atlantic Ridge collected in 2007 from

JCO011, and in 2009 from JCO037, with detail on station numbers, collection dates,

trawling locations, trawling depths, total areas trawled, and the site in relation to

the Charlie-Gibbs Fracture Zone. Co-ordinates and depths are given for the start and
end position of each trawl.

Station No. Date Latitude Longitude Depth Area trawled Site
(m) (ha)

JC011/023 21.07.2007 48°54.59’'N  27°50.00'W 2718 3 SE
49°15.85’'N  27°50.00'W 2734

JC011/075 05.08.2007 53°51.10'N  36°11.36'W 2615 4 NW
54°06.02'N  36°07.20'W 2630

JC011/101 10.08.2007 54°06.33'N  33°58.27'W 2405 6 NE
53°47.47'N  34°02.89'W 2435

JC011/106 11.08.2007 54°05.68'N  33°58.54'W 2410 6 NE
54°46.94'N  34°03.02'W 2445

JCo011/111 12.08.2007 54°05.68'N  33°58.54'W 2404 6 NE
53°47.71'N  34°02.83'W 2430

JC037/015 10.08.2009 49°05.04'N  27°50.70'W 2750 2 SE
49°06.59'N  27°49.84'W 2750

JC037/019 11.08.2009 49°04.64'N  27°50.66'W 2754 4 SE
49°07.16’'N  27°50.30'W 2724

JC037/027 18.08.2009 49°04.79'N  27°50.29'W 2755 5 SE
49°07.86'N  27°50.51'W 2702

JC037/061 28.08.2009 54°13.04’'N  36°04.07'"W 2598 5 NW
54°09.83'N  36°05.58'W 2619

JC037/067 29.08.2009 54°13.07'N  36°04.03'W 2598 5 NW
54°09.96’'N  36°04.08'W 2625

JC037/070 30.08.2009 54°13.00’'N 33°58.54'W 2604 4 NW
54°10.53'N  36°05.24’'W 2615

3.2.3 Analyses

Analyses were carried out on the major taxa in the trawl samples. Species that were

not collected reliably by trawling were excluded. These included macrofaunal annelids,

echiurans and nemerteans, which are traditionally collected in cores owing to their small

size. Actinarians, gorgonians, crinoids and ascidians were also excluded because they

are associated with hard rock substratum and are by-catches of the sampling method.

The wet weight obtained on the ship was converted into ash-free dry weight and carbon

weight based on conversion factors published by Lampitt et al. (1986).

Conversion

factors were not available for all the taxonomic groups and so were estimated for some

taxa; the same conversion factors were used for cnidarians and asteroids, sipunculans
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and holothurians, and pycnogonids and ophiuroids. Molluscs were estimated to have
conversion factors halfway between crustaceans and asteroids (Table 3.2). Carbon weight
was used to compare the sites, as it best reflects the amount of energy used by major
taxonomic groups in a particular area. Ash-free dry weight was used to compare with

other studies.

TABLE 3.2: Conversion factors used to convert collected fresh wet weight (WW) to

ash free dry weight (AFDW) and organic carbon (OC) weight. Conversion factors

are based on Lampitt et al. (1986), and were estimated for cnidarians, sipunculans,
pycnogonids and molluscs.

Taxa Conversion factor from Conversion factor from
fresh WW to AFDW fresh WW to OC
Asteroids 27.11 9.05
Holothurians 3.64 2.78
Echinoids 19.94 6.20
Ophiuroids 43.23 8.67
Crustaceans 11.28 16.83
Pycnogonids 43.23 8.67
Molluscs 20.00 12.00
Cnidaians 27.11 9.05
Sipunculans 3.64 2.78

A few species were sufficiently abundant for their sizes to be compared between sites.
Species were grouped into different size classes: holothurians, the sipunculan Sipunculus
norvegicus, and the echinoid Urechinus naresianus were grouped into 10 mm size classes,
while asteroids were placed into 5 mm size classes. In the case of holothurians and
sipunculans, size refers to body length; in echinoids it refers to the length of the oral
side. For asteroids, both the arm length and the interradius were measured, but because
many arms were damaged, the size of the interradius (excluding arms) was used for size

comparison between sites.

Biomass, density and diversity were compared using the non-parametric Kruskal-Wallis
analysis, which was used because data were not normally distributed, and sample not
of equal size. Differences in size distributions were compared using the Kolmogorov
Smirnov test, which was used because it makes no prior assumption about the dis-
tribution of data. Both analyses were done in the R programming environment (R
Development Core Teams, 2009). In order to visualise the ranges of biomass, density
and diversity they were plotted with their standard deviation. However, when compared
to other studies, these measures were plotted with their standard error, to show the 95

% confidence interval, which made it easier to asses any differences to other studies.
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The evenness for different samples was determined using a Whittaker Rank Abundance
plot (Whittaker, 1972), calculated using the R programming environment (R Develop-
ment Core Teams, 2009) (Section 1.4.3.2). This method is preferred because the shape
of the curve makes it easier to decide whether data need to be transformed and how
many rare species are present (Magurran, 2004). Pielous evenness J’ was also calculated,
using Primer 6 (Clarke and Warwick, 1994), to enable comparison with other studies.
Species richness was taken as the number of species in a given area (Gray, 2000) and
was calculated with a species accumulation curve using the Sobs parameter in Primer
6 (Clarke and Warwick, 1994) (Section 1.4.3.1). Sobs was calculated using the number
of individuals. The Shannon-Wiener and the Simpson indices were also calculated in
Primer 6. The Simpson index emphasises rare species and the Shannon-Wiener index
places more weight on dominant species (Magurran, 2004) (Section 1.4.3.3). In order
to calculate these metrics, the numbers of elpidiids (i.e. the Elpidiidae mix) were split
equally between the five component species, yielding the highest possible evenness and

hence the highest possible diversity, making this approach conservative.

In order to investigate similarities between sites a one-way ANOSIM, a non-metric
multidimensional scaling analysis (MDS), and a hierarchical cluster analysis, were car-
ried out using Primer 6 (Clarke and Warwick, 1994). The cluster analysis was then
overlain onto the MDS plot. All data were square root transformed for multivariate
analyses. The ANOSIM was run with the maximum number of possible permutations
(5,775), using site as factor. Multivariate analyses were based on a Bray-Curtis simi-
larity matrix. A one-way SIMPER analysis was run in Primer 6, based on Bray-Curtis
similarity with a cut off for low contributions at 90 %. This analysis shows a) the %
similarity of the assemblages between individual hauls, factored by site; and b) the %

average dissimilarity between sites, in terms of species composition.

Species lists for each site (all trawl samples combined) were compared to identify the
species only found at one site (termed unique species). To avoid counting errors, this
was done automatically using a custom Matlab programme (Matlab version r2010b,
Mathworks). The numbers of species unique to each site were divided into the number
of unique species for particular taxa (asteroids, crustaceans, echinoids, holothurians and

ophiuroids).

3.3 Results

A total of 21,959 individuals represented 153 taxa. Of these individuals, 14,131 (64.4
%) were holothurians, 2,821 (12.8 %) asteroids, 2,587 (11.8 %) ophiuroids, 829 (3.8 %)
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crustaceans, 695 (3.2 %) echinoids, 437 (2 %) pycnogonids, 338 (1.5 %) sipunculans, and
121 (0.6 %) molluscs.

3.3.1 Biomass

The SE had the highest total wet weight (WW) and the NW the lowest (Table 3.4).
Although the differences in total WW between the sites were not significant (Kruskal-
Wallis: chi-squared = 0.85, df = 2, p = 0.66), individual taxa contributed in varying
degrees to this total (Table 3.4). Holothurians dominated WW at all three sites, con-
tributing in similar proportions to the total WW at the NE and SE sites (NE: 72 %,
SE: 73 %), with a lower proportion at the NW site (44 %). Each site also yielded a high
WW of asteroids (NE: 19 %, SE: 13 %, NW: 12 %), though this was less pronounced
than that of the holothurians. The WW of holothurians and asteroids differed between
sites, but this variation was not significant (Table 3.4). There was also a higher WW of
cnidarians at the SE site (6 %), echinoids at the NW site (23 %), and sipunculans at the
NE site (1 %) (Table 3.4). The WW of echinoids, ophiuroids, pycnogonids, cnidarians
and sipunculans differed significantly between sites (Table 3.3 & 3.4).

TABLE 3.3: Results from a Kruskal-Wallis analysis, testing for the biomass differences

of the individual taxonomic groups between sites, with their respective chi-squared

value, degrees of freedom (df), and the p value. Highlighted in bold are those groups
that differed significantly in biomass between sites.

Taxonomic Groups Kruskall-Wallis Results
Asteroids Chi-squared = 5.296, p = 0.07, df = 2
Holothurians Chi-squared = 5.212, p = 0.07, df = 2
Echinoids Chi-squared = 7.849, p < 0.05, df = 2
Ophiuroids Chi-squared = 8.909, p < 0.05, df = 2
Crustaceans Chi-squared = 1.296, p = 0.52, df = 2
Pycnogonids Chi-squared = 7.076, p < 0.05, df = 2
Molluscs Chi-squared = 0.212, p = 0.90, df = 2
Cnidaians Chi-squared = 7.681, p < 0.05, df = 2
Sipunculans Chi-squared = 7.076, p < 0.05, df = 2

As the composition of different taxa was very different and there were large differences
in the proportions of these taxa between stations, comparison of wet weight biomass
did not reflect the energy availability within the megabenthos at each site. In order
to overcome this problem, all WW biomass was converted to Organic Carbon Weight
(OCW) (Table 3.2 & 3.4). Although the difference between sites was less pronounced,
the same general trend was seen with the lowest total OCW at the NW site and the
highest at the SE site (Kruskal-Wallis: chi-squared = 1.18, df = 2, p = 0.55) (Table
3.4).
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Differences in biomass between samples were most pronounced in the case of the sipun-
culan Sipunculus norvegicus and the pycnogonid Colossendeis colossea. At the NW
site large variations in biomass were observed among molluscs (caused by the variable
presence of the large octopod Grimpoteuthis sp.), crustaceans (caused by variability in
Reptantia indet. and Munidopsis sp.), and echinoids (caused by Urechinus naresianus

and Tromikosoma koehleri).

The high standard deviations in biomass at the SE site was caused by the sipunculan
Sipunculus norvegicus and the pycnogonid Colossendeis colossea. At the NW site high
standard deviations were observed in molluscs (caused by the variable presence of Grim-
poteuthis sp.), crustaceans (caused by variability in Reptantia indet. and Munidopsis

sp.), and echinoids (caused by Urechinus naresianus and Tromikosoma koehleri).

TABLE 3.4: The Organic Carbon Weight (OCW) of the major taxonomic groups,
converted from Wet Weight (WW) based on conversion factors published in Lampitt
et al. (1986). Values are presented in g ha™!, with the respective Standard Deviation

(SD).

Weight Taxonomic SE SD NW SD NE SD

Unit Groups

Ww Asteroidea 695 + 335 392 + 205 952 + 171
Holothuroidea 3,976 + 2,151 1,419 + 476 3,564 £ 2,362
Echinoidea 27 + 26 764 + 1,181 67 + 22
Ophiuroidea 12 +7 92 + 33 3 +1
Crustacea 195 + 112 198 + 282 108 + 14
Pycnogonida 22 + 32 222 + 131 2 + 2
Mollusca 85 + 69 149 + 227 160 + 45
Cnidaria 349 + 244 <1 +1 6 +3
Sipuncula 101 + 125 27 + 18 225 + 77
Total 5,460 £ 3,101 3,263 £ 2,555 4,975 £ 2,697

OoCw Asteroidea 63 + 30 35 + 19 86 + 15
Holothuroidea 111 + 60 39 + 13 99 + 66
Echinoidea 2 + 2 47 + 73 4 +1
Ophiuroidea 1 +1 8 +3 0 +0
Crustacea 33 + 19 33 + 47 18 + 2
Pycnogonida 2 +3 19 + 11 0 +0
Mollusca 10 +8 18 + 27 6 +5
Cnidaria 32 + 22 0 +0 0 +0
Sipuncula 3 +3 1 +1 6 + 2

Total 255 + 42 201 + 32 221 + 42




Chapter 3. Trawling Benthic Megafauna at the Mid-Atlantic Ridge 47

3.3.2 Density

Total population density was greatest at the NE site (815.5 individuals ha™') and lowest
at the NW site (270.0 individuals ha'!) (Table 3.5). However, the difference in total
density observed between sites was not statistically significant (Kruskal-Wallis: density:
chi-squared = 3.45, df = 2, p = 0.18). Taxonomic groups that showed significant differ-
ences between sites included asteroids, holothurians, echinoids, ophiuroids, pycnogonids
and cnidarians (Table 3.5). The greatest densities of cnidarians and asteroids were ob-
served at the SE site. Echinoids, ophiuroids and pycnogonids dominated densities at
the NW site and holothurians were dominant at the NE site (Table 3.5). As in the case
of biomass, the high variation in sipunculan densities at the NE site was caused by vari-
able numbers of Sipunculus norvegicus. Variability in the mean densities of particular
taxa at the NW site was caused by Bathybiaster vezillifer and Porcellanaster ceruleus
among asteroids, Gephyrothuria alcocki and Benthodytes gosarsi among holothurians,
Sipuncula sp. B among sipunculans, Stereomastis nanus among crustaceans, and Bi-
valvia sp. A among molluscs. Variation in ophiuroid densities was principally caused by
Ophiacantha aculeata and Ophiura ljungmani, while Urechinus naresianus was mainly
responsible for variations in echinoid densities (Table A.1).
TABLE 3.5: Table representing the densities from the trawl data. The densities are

presented as number of individuals ha™!, with the Standard Deviation (SD). Highlighted
in bold are those groups that differed significantly between the sites.

Taxonomic Group SE SD NW SD NE SD
Asteroidea 102.9 4+ 32.7 48.3 + 193.3 264 + 2.1
Holothuroidea 153.9 +38.3 174 +69.5 753.3 + 175.6
Echinoidea 3.8 +09 229 +91.7 12.7 + 3.2
Ophiuroidea 16.8 4+ 12.3 132.5 =+ 529.8 3.4 + 0.8
Crustacea 21.8 +£134 18.5 + 74.1 9.9 + 1.0
Pycnogonida 2.6 + 3.5 23.4 £+ 93.5 0.3 + 0.3
Mollusca 4.6 + 4.1 2.6 + 10.5 1.0 + 0.7
Cnidaria 30.6 + 9.8 0.1 + 0.3 0.2 + 0.2
Sipuncula 6.3 + 1.5 7.5 + 6.8 8.3 + 174
Total 343.3 +12.9 273.3 + 1188 815.5 + 26.4

3.3.3 Body Size

A number of species occurred in sufficient densities at most sites for a detailed com-

parison to be made of body size distributions. Of all species that could be compared
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Gephyrothuria alcocki was the only one that exhibited no size differences between any
sites (Figure 3.1, Table 3.6). The size distribution between the other species varied
greatly. Freyella elegans was the only species that differed significantly in its size dis-
tribution between all sites, having the largest specimens at the NW and the smallest
at the NE site (Figure 3.2, Table 3.6). Sipunculus norvegicus was similar in size at the
two northern sites but significantly smaller at the SE site. Molpadia aff. blakei and Hy-
menaster cf. coccinatus were significantly larger at the NE site, compared to the other
sites, which showed no differences. Psychropotes depressa and Porcellanaster ceruleus,
on the other hand, were significantly larger at the NW site, compared to the NE and SE
sites (Figure 3.1 & 3.2, Table 3.6). Although only collected in sufficient numbers from
two sites, Benthodytes gosarsi, Bathybiaster vexillifer, Hyphalaster inermais, and Urechi-
nus naresianus all had significantly greater size distributions at the NW site (Figure 3.1
& 3.2, Table 3.6).

TABLE 3.6: Results for the Kolmogorov-Smirnov analysis, comparing the size distribu-
tions of individual species between sites. Highlighted in bold are species that differed
significantly in size between sites.

Species Sites Kolmogorov-Smirnov P
Compared D value
Molpadia aff. blakei SE < NE 0.87 < 0.01
SE < NW 0.22 0.69
NW < NE 0.92 < 0.01
Gephyrothuria alcocki SE < NE 0.21 0.74
SE < NW 0.24 0.10
NE < NW 0.38 0.15
Psychropotes depressa NE < SE 0.57 0.19
SE < NW 0.78 < 0.0001
NE < NW 0.92 < 0.01
Pseudostichopus peripatus SE < NE 0.19 0.72
SE < NW 0.37 < 0.05
NE < NW 0.42 0.08
Benthodytes gosarsi SE < NW 0.60 < 0.001
Sipunculus norvegicus SE < NE 0.49 < 0.001
SE < NW 0.38 < 0.05
NW < NE 0.28 0.158
Freyella elegans NE < SE 0.80 < 0.001
SE < NW 0.45 < 0.001
NE < NW 0.81 < 0.001
Bathybiaster vexillifer NW < NE 0.28 < 0.001
Hymenaster cf. coccinatus SE < NE 0.67 < 0.001
NW < SE 0.26 0.99
NW < NW 0.85 < 0.05
Porcellanaster ceruleus SE < NW 0.47 < 0.001
NE < SE 0.29 0.09
NE < NW 0.73 < 0.001
Hyphalaster inermis SE < NW 0.33 < 0.05

Urechinus naresianus NE < NW 0.82 < 0.001
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FIGURE 3.1: Size Frequencies of select holothurians (Molpadia aff. blakei, Gephy-
rothuria alcocki, Psychropotes depressa, Pseudostichopus peripatus, and Benthodytes
gosarsi) and the sipunculan Sipunculus norvegicus. Species are compared between all
three sites, apart from Benthodytes gosarsi where only NW and SE data were available.
Species are grouped in 10 mm size groups. Size refers to the length of the specimen.



Chapter 3. Trawling Benthic Megafauna at the Mid-Atlantic Ridge 50

500 140 - . i
A SE Freyella elegans — \W Bathybiaster vexillifer
. Nw
480 I NE 120
460 100
80
440 L
100
60
80
60 40
40
20
20
0 - T m ; 0
0-5 5-10 10-15 15-20 20-25 25-30 30-35 0-5 510 10-15 1520 20-25 25-30
70 ¢ 500 ¢
Hymenaster cf. coccinatus . SE Porcellanaster ceruleus
_— W
60 - I SE Bl NE
B ONW 400 |
(_‘g . NE
350 ¢
=
© F
S0t 300
o
g
30t
E 200 |
c
20t
100 F
10 F I
0-5 510  10-15 1520 20-25 0-5 510 10-15
100 i . 250 - . .
B SE Hyphalaster inermis I NE Urechinus naresianus
- W _— NW
801 200 -
60 r 150
40 - 100
20 50 A
. 0 - ; ; =
0-5 510  10-15 1520 20-25 0-10  10-20 20-30 30-40 40-50 50-60

FIGURE 3.2: Size Frequencies of selected asteroids (Freyella elegans, Bathybiaster vewil-
lifer, Hymenaster cf.coccinatus, Porcellanaster ceruleus, and Hyphalaster inermis) and
the echinoid Urechinus naresianus. Asteroids are grouped in 5 mm size groups, with
size referring to the radius. Urechinus naresianus is grouped in 10 mm size groups, here
size refers to the length of the oral side. Only undamaged body parts were measured.
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3.3.4 Diversity

3.3.4.1 Species Richness

The species accumulation rate differed between the sites, with the highest species rich-
ness observed at the SE site where 4,233 individuals were assigned to 96 different species
(Figure 3.3). At the NW site a similar number of individuals (4,313) represented only
69 species, and at the NE site, where the highest number of individuals (12,716 indi-
viduals) was recorded, only 60 species were recognized (Figure 3.3). An asymptote was
not reached at any site, suggesting that an increased sampling effort would yield more
species. The higher species richness at the SE site was driven by higher species numbers
among holothurians, asteroids, ophiuroids, cnidarians, and molluscs compared to the
northern sites. Echinoids and sipunculans showed greater species richness at the NW

site.
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FIGURE 3.3: Species accumulation curves for all sites, based on raw data with the
number of species plotted against the number of individuals collected at each site.

3.3.4.2 Species Rank Abundance

Samples from the NE site formed a geometric series in the Whittaker Rank Abundance
plot, which suggests a strong numerical dominance by either one or several species (Fig-

ure 3.4). The dominance observed at the NE site was related to the superabundance
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of elpidiid holothurians (the "Elpidiidae mix’) with densities of about 4,000 individuals
hal. The asteroid Bathybiaster vezillifer was also found in high densities at the NE
site. In contrast, samples from the NW and SE sites formed a log normal distribution,
indicating a relatively high evenness at both sites. The shape of the curves also indicated

that the SE site had the greatest number of rare species (Figure 3.4).
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F1cURrE 3.4: Whittaker Rank Abundance Plot. The most common species are on the

left hand side on the x-axis, and the rare species on the far right. Lines represent

individual trawls. Red lines are replicates from the SE site, blue lines from the NW
site, and green lines from the NE site.

3.3.4.3 Combined Diversity

Both Simpson’s Index and the Shannon-Wiener index revealed significantly different
diversities between sites (Kruskal-Wallis: chi-squared = 8.91, df = 2, p = < 0.05)
(Figure 3.5), with highest values at the SE site and lowest values at the NE site. The
difference in diversity between the northern sites is less pronounced with the Simpson

index, which is most likely because this index puts more weight on rare species.
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FIGURE 3.5: Shannon-Wiener and Simpson analyses, with standard deviations. SE
n=4, NW n=4, NE n=3

3.3.5 Community Composition

The community composition differed significantly between sites (ANOSIM p < 0.01,
Global R = 1), with each site being equally dissimilar (about 20 %) to all other sites.
On the other hand, each trawl grouped strongly with others from its respective site. The
within-site similarity of replicated trawl samples was over 60 % at the NE and NW sites
respectively, while replicates from the SE site formed two distinct clusters, each with 60

% similarity.
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FIGURE 3.6: Multidimensional Scaling Plot, based on Bray-Curtis Similarity test, after

standardisation by total. Circles represent the similarity of individual samples to all

other samples, based on the cluster overlay, where green shows a 60 % similarity and
blue a 80 % similarity.
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At the SE site the multivariate pattern was dominated by three holothurians (Staurocu-
cumis abyssorum, Benthodytes gosarsi, Gephyrothuria alcocki), three asteroids (Por-
cellanaster ceruleus, Hymenaster membranaceus, Hyphalaster inermis), one crustacean
(Munidopsis rostrata), and one cnidarian (Heteropolypus cf. insolitus) (Table 3.7). The
NW site was principally characterised by four ophiuroids (Ophiura ljungmani, Ophia-
cantha aculeata, Ophiura irrorata, Ophiocten hastatum), two asteroids (Porcellanaster
ceruleus, Freyella elegans), one holothurian (Benthodytes gosarsi) and one crustacean
(Stereomastis nanus). Multivariate patterns at the NE site were dominated by two
holothurians (Elpidiidae mix, Paelopatides grisea), three asteroids (Bathybiaster vex-
illifer, Hymenaster cf. coccinatus, Porcellanaster ceruleus), two echinoids (Urechinus
naresianus, Echinosigra phiale) and one crustacean (Stereomastis nanus) (Table 3.7).
The only species that occurred at all sites and was identified as an important compo-
nent of the community by the SIMPER test was the asteroid Porcellanaster ceruleus,
although it was ranked differently at different sites (Table 3.7).
TABLE 3.7: SIMPER results for each site showing the eight most important species

that cause the dissimilarities between sites, with the % contribution of each taxonomic
unit for the sites.

SE Site % NW Site % NE Site %
Porcellanaster ceruleus 10.78  Ophiura ljungmani 18.23  Elpidiidae mix 52.22
Hymenaster membranaceus 6.69  Porcellanaster ceruleus 10.94  Bathybiaster vexillifer 7.23
Staurocucumis abyssorum 6.16  Ophiacantha aculeata 791 Urechinus naresianus 5.14
Benthodytes gosarsi 5.24  Azygocypridina imperialis 6.42  Stereomastis nanus 5.07
Gephyrothuria alcocki 5.00  Ophiura irrorata 5.66  Hymenaster cf. coccinatus 3.92
Hyphalaster inermais 4.63  Benthodytes gosarsi 4.74  Echinosigra phiale 3.09
Munidopsis rostrata 4.61  Ophiocten hastatum 4.29  Paelopatides grisea 2.78
Benthothuria funebris 4.03  Stereomastis nanus 3.64  Porcellanaster ceruleus 2.04

3.3.6 Unique Species

A total of 25 species was unique to the SE site, while noticeably fewer species were only
found at the northern sites (3 and 4 unique species at the NE and NW sites, respectively).
At the SE site most of the unique species were asteroids, holothurians and ophiuroids
(Table 3.8). At the northern sites the unique species comprised a holothurian, two
echinoids and an ophiuroids (NW) and two echinoids and an asteroid (NE) (Table 3.8).
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TABLE 3.8: The number of unique species among different major taxa at each site.

Taxonomic Group SE Site NW Site NE Site

Asteroidea 8 0 2
Holothuroidea 10 1 1
Echinoidea 1 2 0
Ophiuroidea 5 1 0
Crustacea 1 0 0
Pycnogonida 0 0 0
Sipuncula 0 0 0
Total 25 4 3

3.4 Discussion

3.4.1 Environmental Controls on Assemblage Composition

Density, biomass and body size are linked to food availability (Thiel, 1975; Sibuet et al.,
1989; Thurston et al., 1994; Billett et al., 2001; Rex et al., 2006), which in turn is
related to surface primary productivity (Thurston et al., 1994; Wigham et al., 2003a,b;
Billett et al., 2010). Since surface productivity is higher at the northern than at the
southern sites (Letessier et al., 2012; Tilstone et al., in prep), it was hypothesised that
these faunal characteristics would exhibit a corresponding pattern. In fact, data show
that there were no differences in biomass (Table 3.4) and density (Table 3.5) between
sites. However, species had a tendency to be larger at one of the northern sites, with
a significant differentiation between the NE and NW sites for most species (Figure 3.1
& 3.2). The exception was Gephyrothuria alcocki, which showed no difference in size

distribution between any sites.

Despite the absence of a significant trend in total biomass and total density between
sites, some differences were observed, though they were not positively correlated with
organic carbon flux. The NW site yielded the lowest total biomass and total density
(Table 3.4 & 3.5) despite the fact that the organic carbon flux in sediment traps set
100 and 1,000 m above the seafloor was highest at this site (Abell et al., submitted).
A lack of correlation between organic carbon flux and biomass/density is reported also
for abyssal depths (Thurston et al., 1994) and suggests that factors other than organic
carbon input drive megafaunal community structures at the ECOMAR sites. Although
there were no differences in total biomass and total density, significant differences were

observed in individual taxonomic groups between sites.
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Although total values were lower, the NW site had a significantly greater biomass and
density of echinoids, ophiuroids and pycnogonids than the other sites (Table 3.4 & 3.5).
Here, the most common echinoid was the deposit-feeder Urechinus naresianus. Its great
densities and significantly larger body size at the NW site (Figure 3.2, Table 3.6) suggest
this species thrived as a result of the high organic matter flux (Abell et al., submitted).
Ophiuroids were characterised by high densities of Ophiura ljungmani, which is consid-
ered an omnivore although it feeds predominantly on material from surface waters such
as flocculent organic material, diatoms, coccolithophores and foraminifera (Pearson and
Gage, 1984). It is assumed that, like U. naresianus, the ophiuroid O. ljungmani ben-
efited from the increased organic matter availability at the NW site. The pycnogonid
Colossendeis colossea also dominated the NW site in density. This species is a carnivore
and so unlikely to have benefitted directly from the increased organic carbon flux (Rup-
pert et al., 2004). In the absence of more information about the ecology of C. colossea,

it is unclear why it was more common in the NW.

Holothurian biomass was fairly similar between sites (particularly the SE and NE), but
the NE site showed significantly greater densities, reflecting the abundance of small
deposit-feeding elphidiids (the Elpidiidae mix: Kolga nana, Peniagone azorica, Peni-
agone longipapillata, Ellipinion delagei and Ellipinion alani). Although individual el-
phidiid species have distributional ranges that extend beyond the ECOMAR sites (Ro-
gacheva et al., accepteda), with the exception of Ellipinion delagei, they were restricted
to the NE site in the present study. The organic carbon content of the sediment was
lowest at the NE site, which is surprising in view of the high densities of deposit-feeding
holothurians. However, the sediment flux in traps set at 100 m above the seafloor was
greater than at other sites (Abell et al., submitted), which might indicate the occur-
rence of re-suspension events caused by elevated current velocities. These conditions
could have been favourable or unfavourable to some species, Kolga hyaline, for example,
has been suggested to thrive in environments characterised by the periodic accumulation
of phytodetritus, irregular topography and strong bottom currents (Billett and Hansen,
1982). Rogacheva (2011) proposed recently that Kolga nana and K. hyalina are syn-
onyms, supporting the idea of an energetic environment at the NE site. Because the
Eplidiidae mix is restricted mostly to the NE site, no between-site size comparisons were
possible. However, other deposit-feeding holothurians, such as Psychropotes depressa,
Pseudostichopus peripatus and Benthodytes gosarsi, were significantly larger at the NW
site (Figure 3.1, Table 3.6), which is consistent with the elevated organic matter flux
observed in the sediment traps (Abell et al., submitted). Gephyrothuria alcocki was the
only holothurian that did not show size differences between any of the sites (Table 3.6);
why this should be is unclear. Molpadia aff. blakei was the only holothurian that was
largest at the NE site (Table 3.6). The infaunal habitat of this species provides potential
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shelter from any disturbances occurring on the sediment surface. It may have a sim-
ilar diet to M. musculus, a deposit feeder (McClintic et al., 2008) living on refractory
material (Reid et al., in press). We speculate that the infaunal mode of life of M. aff.
blakei allows this species to attain larger sizes. The infaunal deposit-feeding sipuncu-
lan Sipunculus norvegicus was also larger at the NE site (Figure 3.1, Table 3.6). This
species also feeds on refractory material (Reid et al., in press), suggesting that, while
they compete with each other for space and resources, M. aff. blakei and S. norvegicus
avoid competition with the superabundant surface deposit-feeding elpidiids. Although
sipunculan densities were similar between sites, the larger size of S. norvegicus led to
a significantly greater biomass at the NE site. It is generally assumed that megafauna
decreases in size with increasing depth, in the absence of gigantism (Rex et al., 2006).
As the NE site was the shallowest site (Table 3.1), it might explain the observed size
variation, although the sites sampled varied only slightly in depths (ranging about 350
m in depth).

At the SE site, cnidarians had a significantly higher biomass and density and were dom-
inated by the suspension feeder Heteropolyus cf. insolitus. This species was absent from
the northern sites. While the organic carbon availability was similar between the east-
ern sites, the sediment flux was noticeably lower at the SE (Abell et al., submitted).
Furthermore, the sediment at the SE site was coarser, possibly providing a better sub-
stratum for H. cf. insolitus (Priede, 2007). Asteroids were significantly denser at the SE
site, despite similar biomass between sites (Table 3.4). Hymenaster membranaceus dom-
inated in density at the SE site but was absent at the northern sites, which is puzzling
because it also occurs in the Rockall Trough (Pain et al., 1982) and therefore has a fairly
wide distribution. Although H. membranaceus is considered a predator/scavenger based
on stomach content analyses (Howell et al., 2003), a polyunsaturated-fatty-acid analysis
also revealed a dependence on fresh organic carbon (Reid et al., in press). As this species
lives partially buried in the sediment (Pain et al., 1982), it is not clear why it thrived at
the SE site, where a high abundance of pteropod shells might inhibit the burrowing abil-
ity and the organic carbon availability was reduced (Abell et al., submitted). The size
distribution of H. membranaceus could not be compared between sites, but other aster-
oid species were significantly smaller at the southern sites (Figure 3.2, Table 3.6). The
largest specimens of Freyella elegans, Porcellanaster ceruleus and Hyphalaster inermis
were found at the NW site, while Hymenaster cf. coccinatus and Bathybiaster vezillifer
were significantly larger at the NE site. Freyella elegans, a suspension feeder, would have
benefitted from the greater organic matter availability at the NW site. Porcellanaster
cereuleus and Hyphalaster inermis are both sub-surface mud (deposit) feeders (Howell
et al., 2002; Reid et al., in press), a feeding strategies that might avoid direct resource

competition with Ophiura ljungmani and Urechinus naresianus, which are abundant at
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the NW site. Similarly, it is possible that Bathybiaster vezillifer avoids competition
with the Elpidiidae mix at the NE site by feeding in sub-surface layers (Reid et al., in
press). It is not clear why Hymenaster cf. coccinatus, a surface deposit feeder, reaches

its largest size at the NE site.

3.4.2 Influences on Body Size

In general, no clear trend was observed between surface production, biomass, density
and body size. Individual species appear to benefit from different environmental con-
ditions. Observed taxon-specific size differences might be caused by a combination of
feeding mode, organic matter availability, and level of disturbance. Species feeding on
fresh detritus, including deposit feeders (Pseudostichopus peripatus, Psychropotes de-
pressa, Benthodytes gosarsi), mud eaters (Porcellanaster ceruleus, Hyphalaster inermis)
and filter feeders (Freyella elegans), tended to have their largest representatives at the
NW site. If larger body size bestows metabolic or competitive advantages (Rex and
Etter, 1998), then the larger size of species feeding on fresh detritus at the NW site
might be driven by energy availability. In contrast, burrowers (Molpadia aff. blakei,
Sipunculus norvegicus) and predators/scavengers (Hymenaster cf. coccinatus, Bathybi-
aster vezillifer) were largest at the NE site, where the sediment flux was greatest in
traps located at 100 and 1,000 m above the seafloor. As mentioned above, this might
reflect re-suspension events, possibly caused by occasional strong currents. A burrowing
life style would allow protection from such disturbances. It is unclear why benthic scav-
engers are larger at the NE site. A potential nursery ground for scavenging amphipods
has been identified at this site, possibly reflecting greater food availability for a scav-
enging diet (Horton et al., in press). Although more data are needed to support their
existence, putative disturbance events at the NE site might provide scavengers with such
food resources. It is unclear what drives the smaller body sizes at the SE site. Oxygen
and temperature do not differ noticeably between sites (Gooday et al., in press), and
size distributions do not appear to reflect any particular feeding strategy. The most
likely explanation is that small sizes are a result of lower organic carbon availability
compared to the other sites. Although megafaunal sizes decrease with increasing depths
on a global scale (Rex et al., 2006), it is unlikely that the 300 m difference between the

SE and NE sites was responsible for the smaller body sizes observed at the former.

3.4.3 Comparison with Other Studies

Biomass and density data from the MAR sites were compared to model predictions at

comparable depths (Wei et al., 2010) (Figure 3.7). Biomass at the MAR was greater
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than predicted for their respective depths at all ECOMAR sites (Figure 3.7). Fish are
included in the model predictions, but not in the present dataset. The inclusion of
ECOMAR fish data (Cousins et al., submitted) would increase the discrepancy between
biomass predictions and measurements. The megafaunal density at the NW and SE
ECOMAR sites was close to the predictions for their respective depths, but slightly
higher at the NE site (Figure 3.7). Compared to actual data from similar depths in the
Porcupine Seabight (PSB), the total wet weight and density were lower at the MAR
(Lampitt et al., 1986). Echinoderm data were available from the eastern and western
continental slopes (Haedrich et al., 1980; Billett, 1991; Howell et al., 2004). The ash
free dry weight (AFDW) of echinoderms was higher at the MAR compared to the PSB
(Figure 3.7). Similar to the PSB, the high biomass at the eastern ridge sites was driven
mainly by holothurians; echinoids also accounted for a substantial proportion of biomass
at the NW site (Table 3.4). MAR densities, however, were lower than those at the PSB
(Figure 3.7), consistent with the slightly lower mean vertical export fluxes at the MAR
(0.658 0.26 ¢ C m™2 y!) and those measured near the PSB on the Porcupine Abyssal
Plain (0.905 g C m™2 y!) (Priede and et. al., submitted).

It is unclear why echinoderm biomass is higher but density lower at the MAR compared
to the PSB. A possible contributing factor could be the sampling gear. Although both
areas were trawled, the PSB was also sampled using an epibenthic sledge (Lampitt
et al., 1986). Different gears can yield different catch rates (Gage and Bett, 2005).
Alternatively, echinoderm densities may have been higher at the PSB, but body sizes
smaller and therefore biomass lower. Echinoderm biomass at the New England slope was
similar to the NW and SE sites (Figure 3.7). The NE site showed a somewhat reduced
biomass compared to the New England continental slope. The New England biomass
data are based on preserved wet weight (Haedrich et al., 1980), while the present study
reports fresh wet weight. Biomass decreases after fixation (by about 40 to 70 %, Billett
pers. comm.) and hence values from the MAR would have been even lower than those
from the New England slope, given comparable methods. Echinoderm densities on the
New England slope (Haedrich et al., 1980) were similar to those reported in the present
study, rather than being lower as predicted by the lower energy availability at the MAR
(Figure 3.7). Although the New England slope was sampled with an OTSB trawl, data
were pooled with shrimp trawl data (Haedrich et al., 1980). The combination of two
different trawls might have reduced the total density counts. Furthermore, periodically
elevated bottom current velocities (benthic storms) at the nearby abyssal HEBBLE site

could possibly have influenced megafauna at shallower depths on the New England slope.
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FIGURE 3.7: Comparison of MAR data to other studies: I. Organic carbon weight (g
ha!) and density (ind. ha™') values for megafauna at ECOMAR sites compared with
model predictions for similar depths (Wei et al.; 2010). II. Comparison of biomass
and density data for echinoderms at ECOMAR sites and comparable depths at the
Porcupine Seabight (PSB) (Lampitt et al., 1986). III. Comparison of biomass and
density data for echinoderms at ECOMAR sites and comparable depths on the New
England continental slope (Haedrich et al., 1980). Error bars represent standard errors.
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In summary, the MAR yielded higher megafaunal biomass and density values than ex-
pected for depths around 2,500 m compared with the global estimated average (Wei
et al., 2010). The total, megafauna biomass and density measured at the MAR was
lower than reported from the PSB (Billett, 1991; Howell et al., 2002). This reduced
biomass at the MAR can be explained by the higher input of organic matter at the
continental slope sites compared to the ridge, which further lacks down-slope inputs
from shelf sea sediments. However, when comparing only MAR echinoderm data to the
New England slope (Haedrich et al., 1980) and the PSB (Billett, 1991; Howell et al.,
2002), the picture changes. Echinoderm biomass is greater at the MAR compared to
the PSB, while being very similar to the New England slope though noticeably lower at
the NE site at comparable depth. Density at the MAR is lower than the PSB, but very
similar to the New England slope values. It is not clear whether the density of the New
England slope is reduced by possible disturbances emanating from the HEBBLE site.
Given its distant location from continents and the resulting limited export flux, how-
ever, the MAR is characterised by benthic megafauna density and biomass that would

be expected for its setting.

3.4.4 Biodiversity and Species Composition

Overall, the SE site was significantly more diverse than the northern sites (Figure 3.5).
In order to understand this difference, the two components of diversity, species richness
and evenness, as well as the Shannon-Wiener diversity index, are compared with the
New England slope echinoderm data (Haedrich et al., 1980) (Figure 3.8). The species
richness at the northern sites was slightly lower than values from the New England slope,
while the SE site was similar to the New England slope. The higher species richness at
the SE, compared to the other MAR sites, was also reflected in the number of species
that were unique to this site, while the northern sites had many more species in common
(Table 3.8). Evenness, on the other hand, is very similar between the NW site and the
New England slope, while being slightly elevated at the SE, and depressed at the NE
site (Figure 3.8). The low evenness at the NE site reflected the numerical dominance
of the Elpidiidae mix. The elpidiids may have depressed species richness at this site by
outcompeting other species (Matabos et al., 2008; Yemane et al., 2010; Baccaro et al.,
2012). The diversity at the NE and SE sites appeared to reflect contrasting factors.
Low diversity at the NE site reflects low evenness, while high diversity at the SE site
reflects high species richness (Figure 3.8). If we are correct in inferring the existence
of occasional strong currents at the NE site, this provides one possible explanation for
depressed diversity. Low diversity has been associated with elevated current velocities

at the HEBBEL site (Rex and Etter, 2010). It is unlikely that temperature, oxygen,
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or salinity influenced the diversity patterns at the ECOMAR sites, as they vary little
between sites (Table 2.3, page 2.3). Species groups (Elpidiidae mix) and species (e.g.
Hymenaster membranaceus) that were particularly abundant at a specific site, tended
to be either absent or rare at other sites. Although it has been speculated that larvae
might migrate from the NE to the NW site via the Scotland-Iceland Overflow Water
(Saunders, 1994; Bower and von Appen, 2008), there is no conclusive evidence for a
strong exchange of benthic invertebrate species across the Ridge. Equally, dispersal
between the SE and the northern sites appears very limited. Apart from the possible
dispersal barrier created by the CGFZ, differences in environmental conditions between
the sites might also contribute to the differences in megafaunal community composition
and structure. Temperature and oxygen were similar, but sediment characteristics at the
southern and northern sites were noticeably different (Table 2.3, page 2.3). Although
depth varied by only 356 m between sites, some species have a reported depth range
of only 200 m (Howell et al., 2002) and so bathymetry (hydrostatic pressure) may have
limited the distribution for some species. Finally, the ridge creates a very heterogeneous
habitat, and although trawl samples were taken on soft sediment, surrounding rocky
outcrops can alter the hydrography on a microhabitat scale, which can also affect the

distribution of some species (Auster et al., 1991).
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divided equally between the five component species in order to calculate J* and H’.

3.4.5 Species Depth Ranges

Considering only species presence/absence data, the greatest faunal similarity is between
the MAR and PAP/PSB area, which have 26 species in common (Billett, 1991; Howell
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et al., 2002). Fewer species were shared with the Rockall Trough (10 species) (Gage,
1986), European Atlantic (9 species) (Sibuet, 1979), New England (8 species) (Haedrich
et al., 1980), Greenland Sea (5 species) and the Labrador Sea (2 species) (Sibuet, 1979).
Species belonging to some groups, e.g. scavenging fishes, may occur shallower on the
Mid-Atlantic Ridge than on the continental margins as a response to reduced food supply
(King et al., 2006). The benthic megafauna described in this study include 36 species
for which depth ranges are available from other areas (Figure 3.9 & 3.10). Of these,
14 occurred at different depths at ECOMAR sites compared with continental margin
settings in the NE and NW Atlantic. Four species occurred at shallower depths in the
PSB/PAP area than the MAR, namely the ophiuroid Ophiacantha aculeata (755 to 815
m), and the holothurians Bathyplotes natans (770 to 1,572 m), Mesothuria maroccana
(1,431 to 2,315 m) and Paelopatides grisea (1,484 to 2,315 m) (Figure 3.10). In con-
trast, the holothurian Staurocucumis abyssorum occurred at around 4,810 m on the
PAP, deeper than the individuals sampled at ECOMAR. Asteroids Styracaster armatus
(3,310 to 4,400 m), Freyella elegans (3,640 to 4,849 m), Hyphalaster inermis (3,749 to
4,849 m), and Dytaster grandis (3,749 to 4,880 m) all occurred deeper at PSB/PAP than
ECOMAR. Two of these species, Freyella elegans and Hyphalaster inermis, have been
reported on the European Atlantic margin spanning a wider depth range than observed
at the MAR and PSB/PAP sites (Figure 3.10). All species that were reported from the
PSB were also found in the Rockall Trough, apart from the echinoid Echinus alexandri
and Echinosigra phiale (Figure 3.9). The depth range of the holothurian Benthothuria
funebris was slightly deeper in the Rockall Trough than at the ECOMAR sites, but falls
within the range reported from the PAP/PSB. The echinoid Echinus alexandri occurred
at shallower depth in the Rockall Trough (1,300 to 2,300 m) and the New England slope
(1,270 to 1,947 m) than in our samples (Figure 3.9). The asteroid Porcellanaster ceruleus
was the only species found at all sites. Its range is slightly deeper in the Greenland Sea
(3,000 to 5,000 m) than on the MAR and shallower on the New England continental
slope (1,270 to 1,947 m) (Figure 3.10), but this probably represents sampling bias, es-
pecially since the global depth range for Porcellanaster ceruleus is very large. On the
New England slope the sea spider Colossendeis collossea is reported at shallower depths
(1,380 to 1,947 m), together with the ophiuroid Ophiomusium lymani (393 to 2,481 m).
The latter is found in the Rockall Trough across a depth range encompassing the MAR
and the New England slope sites. The echinoid Aeropsis rostrata occurs deeper on the
New England continental slope (3,244 to 3,740 m) than at the ECOMAR SE site. In
conclusion, there is no evidence that the MAR causes any bathymetric displacement of
species. Those species that appear to show displacement in other studies are most likely
absent from the MAR depths because of sampling bias (different sampling gear and

speed or mesh sizes) or because they are rare around the MAR area that was sampled.
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FIGURE 3.9: Discrete species absence/presence data for the ECOMAR sites are plot-
ted at their respective depth (red-SE, blue-NW, green-NE). The ECOMAR species plots
are the same for each graph. Overlain are the depth ranges of the species from other
areas in the North Atlantic. 1) European Atlantic (Sibuet, 1979); 2) Rockall Trough

(Gage, 1986); and 3) Labrador Sea (Sibuet, 1979); where the error bars represent the

reported depth range of each study. Ellipses indicate species that are displaced at the

ridge compared to other studies.
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FIGURE 3.10: Discrete species absence/presence data for the ECOMAR sites are plot-
ridge compared to other studies.

ted at their respective depth (red-SE, blue-NW, green-NE). The ECOMAR, species

plots are the same for each graph. Overlain are the depth ranges of the species from
other areas in the North Atlantic. 4) PAP and PSB Billett (1991) for holothurians,

and Howell et al. (2002) for asteroids; 5) Greenland Sea (Sibuet, 1979) 6) Continental

slope south of New England (Haedrich et al., 1980). where the error bars represent the
reported depth range of each study. Ellipses indicate species that are displaced at the
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3.5 Conclusions

Despite the relatively small distances between ECOMAR sites, in particular the north-
ern sites, the community composition and diversity of benthic megafauna differed sig-
nificantly. Substantial differences in community composition between the northern sites
suggest that the Scotland-Iceland Overflow Water does not act as a dispersal route across
the Ridge. Biomass and density were similar between the sites but size distributions dif-
fered significantly. The SE site has the greatest number of unique species, suggesting
that the CGFZ acts as more efficient barrier to dispersal than the Ridge. Environmen-
tal differences may contribute most to the observed differences in community structures
between sites. Compared to continental margins, the MAR shows no bathymetric dis-
placement of benthic invertebrate megafauna. The heterogeneity of benthic assemblages

over small spatial scales should be considered in the design of marine protected areas on
the MAR.



Chapter 4

ROV Video Survey on
Invertebrate Megafauna
Distribution at the MAR

4.1 Introduction

According to ‘the theory of spatial heterogeneity’ communities become more complex
and diverse the more heterogeneous and complex the physical environment is (Pianka,
1966). The level at which habitat complexity is investigated gives information on com-
munities at different scales. Habitat heterogeneity at a macro-scale, for example, refers
to features such as topographic relief and other geological features (Pianka, 1966). Such
features are often associated with speciation events, in which ridge structures create a
barrier to gene flow between two populations that can eventually lead to the evolution
of two separate species (Zardus et al., 2006). Habitat heterogeneity at a micro-scale,
on the other hand, refers to features of about the same size as the investigated organ-
isms (Pianka, 1966). Although faunal distributions can be assessed through trawling
at a broad scale, it does not give any information about variations at macro- or micro-
scale (Malatesta et al., 1992). The distribution of benthic megafauna are driven by
microhabitat features (Rex, 1981; Auster et al., 1991), such as sediment types (Grassle
et al., 1975), hydrodynamic features (Christiansen and Thiel, 1992), and fine-scale bio-
genic structures (Zajac, 2008). These microhabitats can affect the diversity, density, and

species composition of the entire area.

Several aspects are recognised today that influence microhabitats and create fine-scale
patches. As a result of the food limitations in the deep sea, microhabitats can be created

through phytodetritus patches (Lampitt, 1985), which in turn can increase local diversity
67
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(Snelgrove, 1999). Species distributions have also been correlated with sediment types
(Rex, 1981), which can be influenced and changed through bioturbating epifauna, which
in turn affect local infauna (McClain and Barry, 2010). Other factors affecting habitat
structures are hydrodynamic features which range in scale over several km (i.e. benthic
storms, Woodgate and Fahrbach (1999)) to a few cm. Small-scale hydrodynamic changes
can be caused by either rocky outcrops (Grassle et al., 1975) or non-motile structure-
forming fauna, such as corals (Buhl-Mortensen et al., 2010), sponges (Beaulieu, 2001)
and xenophyophores (Hughes and Gooday, 2004). These features affect the current flow
of their immediate surrounding, creating patches with different environmental charac-
teristics to the background habitat, i.e. creating strong currents, food patches, shelter,
and habitat (Buhl-Mortensen et al., 2010). Mounds and tubes that are created by mo-
bile fauna also affect the local hydrology, and can also provide surfaces ideal for the
aggregating phytodetritus (McClain and Barry, 2010). Biogenic structures are associ-
ated with increased diversity in soft sediment communities (Zajac, 2008), suggesting a

greater diversity with increasing habitat complexity.

The complexity of habitats cannot be sampled by conventional methods. It is, there-
fore, important to get visual information of an area (Grassle, 1991). New habitats have
frequently been discovered in the deep sea and their classification would have been dif-
ficult without the visualisation of characteristic features (Ramirez Llodra et al., 2010).
Images and videos have become very important in understanding deep-sea habitats as
“a picture is worth a thousand worms” (Solan et al., 2003). It is a non-destructive
sampling method that can give concurrent information on habitats, such as habitat het-
erogeneity, while also allowing quantification of faunal diversity, densities, distribution
and behaviour, i.e. predation, feeding (Bett et al., 1995), locomotion, burrowing, and

intra-specific interactions, e.g. pairing (Tyler et al., 1992).

Inter-specific species associations can also be observed, such as the holothurian Pseu-
dostichopus sp. and the foraminifera Discospirina tenuissima (Gooday et al., in press),
and the holothurian Deima validum and a polynoid polychaete Harmothoe bathydomus
(Shields et al., accepted). Video and photographic systems range greatly in size and
shape, depending on their target (Bett, 2003; Smith and Rumohr, 2005), and they cap-
ture observations that would otherwise be lost (Gage and Bett, 2005). In the Atlantic,
for example, aggregations of small holothurians could be observed, with some individ-
uals clustering around phytodetrital patches (Billett and Hansen, 1982). Long-term
monitoring studies have also greatly benefitted from camera systems and allowed for the
description of community changes (Glover et al., 2010) that were linked to the quality
of phytodetritus reaching the sea floor in the Atlantic (Bett et al., 2001) and the Pacific
(Ruhl, 2008). The effects of large scale disturbances can also be quantified through

visual tools (Glover et al., 2010), regardless of whether these disturbances are natural,
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such as benthic storms (Woodgate and Fahrbach, 1999), or man made, such as trawling
(Bett et al., 2001) or oil drilling (Jones et al., 2011).

The previous chapter highlights the absence of significant patterns in biomass and den-
sity in trawl samples. This observation, in combination with sediment trap data and
surface primary production (Table 2.2, page 30), indicate an absence of significantly
different productivity regimes on the benthos north and south of the Charlie-Gibbs
Fracture Zone (CGFZ). It is also apparent, from trawl data, that the ECOMAR sites
have very different community compositions. In this chapter a detailed survey of the
MAR, with state-of-the-art technology was combined with a sound sampling design.
Best quality imaging technology available (HD video cameras, digital recordings) was
combined with precise ROV navigation, in order to investigate the levels of habitat het-
erogeneity in soft sediment communities at the ECOMAR  sites NW, NE, SW and SE
of the Charlie-Gibbs Fracture Zone.

4.2 Methods

Samples were collected from the Mid-Atlantic Ridge (MAR) at bathyal depth as part
of the ECOMAR project. Four stations were targeted southeast (SE), southwest (SW),
northeast (NE), and northwest (NW) of the CGFZ (Figure 2.1, page 24).

Video transects were obtained in 2010 onboard the RRS James Cook (JC) with the Na-
tional Marine Facilities Remotely Operated Vehicle (ROV) Isis. The ROV was equipped
with two high-definition (HD) colour video cameras (Insite Mini Zeus), a 3-chip colour
standard-definition video (Insite Pegasus), digital still camera (Insite Scorpio) and Hy-
drargyrum medium-arc iodide (HMI) lighting. A set of two parallel lasers (100 mm
apart) was mounted on each HD camera for scaling. One HD camera was mounted
vertically on the tool tray with a HMI light mounted at an angle to illuminate the field
of view (1.5 m separation). The other HD camera was mounted on a pan-and-tilt unit
at the front of the ROV. This was used to take zoomed-in oblique video images to help
with species identifications. Only the vertical HD camera was used for analyses. The
ROV was equipped with both ultra-short baseline navigation (Sonardyne medium fre-
quency USBL) to provide absolute global position (accuracy approximately £+ 10 m) and
Doppler velocity log navigation (RDI DVL 1200 kHz) to provide very accurate relative

position (accuracy + 0.1 m).
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FIGURE 4.1: Image of the Isis ROV, with captions showing the positions of the equip-
ment used for the video transect survey. Picture by Marsh Youngbluth.

During every transect the ROV was run in a straight line, on a set bearing, at a constant
speed (0.13 ms™!) and at the same set altitude (2 m). The ROV was flown maintaining
Doppler lock on the seafloor, enabling very precise control. Transect width (2 m; max
variation + 0.1 m) was maintained over an uneven seafloor by adjusting ROV altitude
in 50 mm steps to ensure that parallel laser beams projected onto the seafloor (100 mm
apart on the seafloor) were constantly the same distance apart on the screen (5 % of
screen width). Over the 500 m long transect, this technique imaged 1,000 m? of seafloor
and 2,000 m? of overlying suprabenthic water. HD video was recorded (AJA KiPro) and

stored as full resolution digital files on a hard drive (DroboPro).

4.2.1 Survey Design

The survey was designed by Dr. Daniel O. B. Jones, from the National Oceanography
Centre, Southampton. The design was based on bathymetry data collected on RRS
JC011 ECOMAR cruise in 2007 with a Kongsberg EM120 swath bathymetry system.
Within each study site two habitats were identified: flat (0-2° slope) and 10° slope
(8-12° slope) (Figure 4.3). The area of each habitat was delineated by polygons using
ArcGIS (version 10, ESRI). For each habitat in turn, polygons were selected (largest
area first) until > 0.5 km? of seabed were covered, all remaining polygons were removed
automatically. Within the selected polygons 100 lines were generated starting at random
start points, lines were 500 m long and 15° heading, along the ridge axis. All lines that

intersected with polygon boundaries were removed. Four non-overlapping lines were
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picked at random from the remaining lines, for each habitat. These four lines became
the ROV sampling transects. The sampling unit for all analyses was a 500 m long ROV

transect, resulting in a total of 32 sampling units.
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FIGURE 4.2: Map showing the transect lines at all sites. Red areas indicate slopes

between 8 and 12 degrees. Yellow areas show flat terrain. The exact position for the

transects can be found in Table 4.1 (page 72). The different grey shades show different

depth ranges, with the lightest grey shade at 1,911 m depth and the darkest shade at

3,041 m depth. For the purpose of this study, the blue area should be ignored. Maps
courtesy of Dr. D.O.B. Jones.
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TABLE 4.1: ROV transects, with transect name, site, habitat type, starting and end

positions of each transect, and date the transects were recorded. The site refers to

the location relative to the Charlie-Gibbs Fracture Zone. As all transects are of equal
length and same altitude, they each cover 1,000 m? of benthos.

Transect Site Habitat Position Latitude Longitude  Date

A02.01 NW  10°slope start 53°59.00’'N  36°11.15'W  06.06.2010
end 53°59.26'N  36°11.05'W

A02.02 NW  10°slope start 53°58.97'N  36°10.82'W  06.06.2010
end 53°59.23'N  36°10.73'W

A02.03 NW 10°slope start 53°57.96'N  36°12.89'W  05.06.2010
end 53°58.22'N  36°12.79'W

A02.04 NW 10°slope start 53°58.56'N  36°10.91'W  06.06.2010
end 53°58.82'N  36°10.82'W

A02.09 NW  flat slope start 53°57.62'N  36°11.71'W  05.06.2010
end 53°57.88'N  36°11.61'W

A02_10 NW flat slope start 53°58.25'N  36°11.64'W  05.06.2010
end 53°58.52'N  36°11.54'W

A02_11 NW  flat slope start 53°58.56'N  36°10.91'W  05.06.2010
end 53°58.82'N  36°10.82'W

A02.12 NW flat slope start 53°58.77'N  36°11.50'W  01.06.2010
end 53°59.31'N  36°11.42'W

A05.01 NE 10 °slope  start 53°59.73'N  34°11.54'W 11.06.2010
end 53°59.99'N  34°11.44'W

A05.02 NE 10°slope start 54°00.86'N  34°11.33'W  11.06.2010
end 54°00.61'N 34°11.27'W

A05.03 NE 10 °slope  start 54°00.35'N  34°11.38'W 11.06.2010
end 54°00.23'N  34°11.27'W

A05.04 NE 10 °slope  start 53°59.98'N  34°11.57'W 11.06.2010
end 54°00.23'N  34°11.46'W

A05_09 NE flat slope start 53°59.86'N  34°10.72'W  11.06.2010
end 54°00.13'N  34°10.61'W

A05_10 NE  flat slope start 54°00.22'N  34°10.46'W  11.06.2010
end 54°00.70'N  34°10.10'W

A05_11 NE flat slope start 54°00.22'N  34°10.46'W 11.06.2010
end 54°00.47'N  34°10.37'W

A05.12 NE flat slope start 54°00.55'N  34°90.98'W 11.06.2010
end 54°00.80'N  34°90.86'W

Al11.01 SW  flat slope start 48°44.45'N  28°39.04’W  18.06.2010
end 48°44.71'N  28°38.91'W

A11.02 SW  flat slope start 48°43.91'N 28°39.20'W  16.06.2010
end 48°44.17'N  28°39.07'W

A11.03 SW  flat slope start 48°43.63'N  28°38.83'W  16.06.2010
end 48°43.89'N  28°38.71'W

Al11.04 SW  flat slope start 48°43.87'N  28°39.02'W  16.06.2010
end 48°44.12'N  28°38.90'W

table continues ...
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Transect Site Habitat Position Latitude Longitude Date

A11.05 SW  10°slope start 48°45.38'N  28°36.95'W  19.06.2010
end 48°45.64'N  28°36.83'W

A11.06 SW  10°slope start 48°45.30'N  28°36.55'W  19.06.2010
end 48°45.56'N  28°36.42'W

Al11.07 SW  10°slope start 48°44.69'N 28°38.28'W  18.06.2010
end 48°44.95'N  28°38.15'W

A11.08 SW  10°slope start 48°44.45'N  28°40.19'W  18.06.2010
end 48°44.71'N  28°40.06'W

A12.01 SE flat slope start 49°50.91'N 27°50.32'W  24.06.2010
end 49°60.17'N  27°50.19'W

A12.02 SE flat slope start 49°70.23'N  27°49.99'W  23.06.2010
end 49°70.48'N  27°49.86'W

A12.03 SE flat slope start 49°50.00’'N  27°50.62'W  24.06.2010
end 49°50.26'N  27°50.48'W

A12.04 SE flat slope  start 49°50.96’'N  27°50.62'W  23.06.2010
end 49°60.22'N  27°50.49'W

A13.05 SE 10 °slope  start 49°00.98'N 27°43.42'W  27.06.2010
end 49°10.24'N  27°43.29'W

A13.06 SE 10°slope  start 49°00.89'N 27°43.16'W  27.06.2010
end 49°10.15'N  27°43.03'W

A13.07 SE 10°slope  start 49°10.01'N 27°42.41'W  26.06.2010
end 49°10.27'N  27°42.28'W

A13.08 SE 10°slope  start 49°00.85'N  27°42.55'W  26.06.2010
end 49°10.11'N  27°42.41'W
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2

T
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FI1GURE 4.3: Image showing the terraced structure of the ridge. Red crosses indicate
the flat and 10 degree terrain sampled. Schematic courtesy of Dr. Andy Dale.
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4.2.2 Video Processing

Transect lengths were standardised to 500 m using smoothed Doppler velocity log data
and by applying a combined routine in Matlab (version 2009a MathWorks, Inc). A CTD
sensor was mounted on the ROV. Data on temperature, salinity and pressure from the
ROV mounted CTD sensor were extracted using REDAS (version Idronaut S.R.L. 5.43)
for each transect, and plotted using SigmaPlot 11.0 (Appendix D).

For analysis HD video was displayed on a 27 inch monitor using Quicktime Pro (version
7, Apple Inc.). Identifications and abundance counts were made to the closest possible
taxonomic unit, using the HD video footage. Identifications were based on a species
guide that had been created on the ship with the help of taxonomic experts (Appendix
E). One still frame was extracted every second, from each video transect, using Final
Cut Pro (X 10.0 Apple Inc.), and given a unique ID code. Data were quality controlled
based on abundance data collected from the HD videos. The frames containing each
occurrence of every species were automatically extracted using a programme written
in the R software environment (R Development Core Teams, 2009), the code for this
was written by the author and her supervisor Dr. D.O.B. Jones. These were manually
screened to check for consistency in identification and to validate counts. Once this was

completed, taxonomic experts checked and confirmed species identities where necessary.

4.2.3 Analyses

A number of taxa were excluded from statistical analyses. These included taxa that
were infaunal, too small (< 1 c¢m), or not benthic species, such as fish and jellyfish.
All observations that could not be identified to at least phylum level, and where it was
unclear whether they were organisms or traces, were also excluded. Notes on these obser-
vations were made and they comprised about 17 % of the total count. Small gastropods
and bivalves were excluded because they could not be distinguished with certainty from
pteropod shells. However, all species were included in the species catalogue (Appendix
E). Of the species included many could not be identified to species level. The level of
taxonomic identification that was possible was highlighted in the names of the indet.
taxa, which were differentiated in the analyses between different indet. spp. Two species,
belonging to two different orders, are too similar in shape to be distinguished in videos;
they are henceforth referred to as Urechinidae/Hemiasteridae complex. All taxonomic
units, regardless of their level of identification, were treated as species; i.e. counts of
Holothurian (Class) indet. were treated in the same way as Staurocucumis abyssorum.
This method has been successfully applied in other studies (Gutt and Piepenburg, 2003;

Jones et al., 2007; Soltwedel et al., 2009). The greatest possible taxonomic resolution is



Chapter 4. ROV Video Survey on Invertebrate Megafauna Distribution at the MAR 75

maintained by treating indet. spp. and individual species as undifferentiated, previous

results suggest that the analyses are not distorted by this method.

In order to check the evenness of the different transects, a Whittaker Rank Abundance
plot (Magurran, 2004) was calculated using the R programming environment (R Devel-
opment Core Teams, 2009) (Section 1.4.3.2). This method was preferred because the
shape of the curve made it easier to judge whether data needed to be transformed and to
determine where most rare species occurred (Magurran, 2004). The difference between
species richness and standing stock in this study are only subtly different, as the area
sampled between transects and sites were comparable. While species richness refers to
number of species for a given number of sampled individuals; standing stock refers to
the number of species in a given area (Gray, 2000). Species richness was calculated with
a species accumulation curve, using the S estimator in Primer 6 (Clarke and Warwick,
1994) (Section 1.4.3.1). Standing stock was compared using the non-parametric Kruskal-
Wallis analysis in the R programming environment, because data were not normally
distributed (R Development Core Teams, 2009). The Shannon-Wiener and the Simpson
indices were also calculated in Primer 6 (Section 1.4.3.3), and calculations are based on
the abundance data for taxa in each transect. Both indices were used to cover patterns
for rare and dominant species; Shannon-Wiener is weighted towards rare species, while
the Simpson Index concentrates on dominant species (Magurran, 2004). The diversity
measures of superstations and habitats were tested for normality with the Shapiro-Wilk
Normality Test, resulting in the Shannon-Wiener index tested for significance with the
parametric two-way ANOVA (factoring habitat and site), while the Simpson index was
compared with the non-parametric Kruskal-Wallis test. Both tests were carried out in

the R programming environment (R Development Core Teams, 2009).

Before multivariate analyses commenced the dataset was square-root transformed as
the majority of transects lacked a clear log normal distribution associated with an even
species distribution in the Whittaker Rank Abundance plot (Figure 4.5). In order to
investigate similarities between sites a one-way ANOSIM, a non-metric multidimensional
scaling analysis (MDS) and a hierarchical cluster analysis were carried out using Primer 6
(Clarke and Warwick, 1994), where the cluster results were overlain onto the MDS graph.
A one-way SIMPER analysis was run in Primer 6, based on Bray-Curtis similarity with
a cut off for low contributions at 90 %. This analysis shows a) the % similarity of the
assemblages between individual transects, factored by site and habitat respectively; and
b) the % average dissimilarity between sites, in terms of species composition. Species
densities were analysed with a non-nested PERMANOVA (Bray-Curtis similarity, 999
permutations) using the vegan library (Oksanen, 2011) in the R environment (Clarke

and Warwick, 1994), factoring site and habitat.
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4.3 Results

4.3.1 Environmental Observations

The density of pteropod shells was notably greater at the southern sites, while being
virtually absent in the north. At the SW site these pteropod shells were distributed
densely throughout most transects. At the SE site pteropod shells were more prominent
on flat habitats and only occurred in patches in transects taken on slope habitat. Fur-
thermore, benthic ripples were seen at the seafloor upon initial arrival at the SW site,
which appeared to be absent at the other sites. Several dead sponges were observed on
the seabed at the NE site, which, although seen at other sites, occurred more frequently
at the NE.

4.3.2 Species Richness

Similar species numbers were observed at the eastern and western sites of the ridge,
respectively. The species accumulation rate differed between the sites and was noticeably
greater at the southern sites (Table 4.2). The slowest rate in which new species were
collected was found at the NW site, while the fastest accumulation rate was observed
at the SW site. At the SW site less than half the individuals sampled represented the
same number of species observed at the NW site. A similar trend was observed between
the NE and SE sites.

TABLE 4.2: Species richness at all four sites.

Site No of Taxa No. of Individuals

NW 104 15,071
NE 73 12,078
SW 104 7,372
SE 73 7,688

Between habitats the species accumulation rates were similar at the northern sites, while
a faster accumulation rate was observed for sloped habitats at the southern sites (Figure
4.4). Although the least number of individuals were sampled at the SW site at sloped
habitat, they represented the highest number of species (Figure 4.4). In contrast, at
the SE site in flat habitat the least number of species were represented by the highest
numbers of individuals (with the exception of the NW sloped habitat) (Table 4.3).
Although all species accumulation curves level off, none reaches an asymptote, suggesting
that more sampling would be required in order to encounter all species from the different

sites (Figure 4.1).
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TABLE 4.3: Species richness in each habitat from each site.

Site Habitat No of Species No. of Individuals

NW  flat 69 3,274
10° 82 11,797
NE flat 66 6,287
10° 65 5,781
SW flat 70 5,942
10° 85 1,430
SE  flat 62 6,295
10° 52 1,393
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FIGURE 4.4: Species accumulation curve for each site, with every site being differen-

tiated between flat and 10 degree habitats. Data shown are based on raw data with

the number of species against the number of individuals collected at each site. Every
habitat was sampled with four transects, at each site.
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4.3.3 Standing Stock

A total of 32,000 m? of HD video footage were analysed, and 302,480 still frames were
produced for later reference. A total of 55,192 individual specimens were counted, repre-
senting nine phyla and 156 different taxonomic units (Table 4.4). Every transect covered
an area of 1,000 m?, and the same number of transects were taken at each habitat and
site. Hence, standing stock refers to the number of individuals in 8,000 m? area sampled

2

when comparing sites, while for habitats it is measured for 4,000 m®. The areas were

not standardised to 1,000 m? because the resolution would have been compromised.

Overall, echinoderms were the most abundant phylum at the ECOMAR study area
and dominated the standing stock of the eastern ridge sides (Table B.1). Also high in
abundance were sponges that were particularly dense at the NW site, and foraminifer-
ans, which dominated the standing stock at the SW site (Table 4.4). The relatively
low abundance for annelids reflected the fact that they are normally too small to be
counted in videos. Only those species large enough, e.g. Polynoidae (Family) indet.,
were included (Table B.1, page 147). Low standing stock in arthropods are assumed to

be caused by their ability to move out of the visual view.

High standing stock of sponges, echinoderms and foraminiferans characterised the NW
site. High numbers in porifera were caused by the Hexactinellida (Class) sp. BJ and Hex-
actinellida (Class) indet. in all transects. One transect at the NW site showed unusually
high abundances, which also included high numbers of Pheronema sp. A, Rossellidae
sp. I and Hexactinellida (Class) sp. AO (Table B.1, page 147). The dominance in
echinoderms at the NW site resulted from a large standing stock of regular echinoids
Urechinidae/Heminasteridae complex and Urechinus naresianus, and in ophiuroids from
Ophiuroidea (Class) indet., Ophiuroidea (Class) sp. E and Ophiuroidea (Class) sp. F.
High numbers in foraminiferans at the NW site were caused by the foraminiferans Sy-
ringammina fragillissima and Discospirina tenuissima at the NWO03 transect. The NE
site also had a high standing stock of echinoderms (Table 4.4); with high numbers of the
aggregating holothurian Kolga nana, and irregular echinoid Pourtalesia (Genus) indet.
A high standing stock in sponges were mainly observed for Hexactinellida (Class) sp. BJ
at the NE site. Sponges Porifera (Phylum) indet. and Rossellidae sp. I, and foraminifer-
ans Discospirina tenuissima occurred in high abundance at the SW site. Finally, the
SE site was characterised by the echinoid Pourtalesia (Genus) indet. and foraminifera

Discospirina tenuissima (Table B.1, page 147).

Although differences in standing stock were observed between sites, they did not differ
statistically (Kruskal-Wallis: chi-squared = 2.9 , df = 3, p = 0.41). At the southern

sites, transects from 10 ° slope terrain showed a noticeably lower standing stock than the
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flat terrain (Table 4.3). At the northern sites, on the other hand, the standing stock did
not differ much between the habitats at the NE site, while showing noticeably greater
standing stock at the 10 ° habitat. Between-site variations in standing stock were greater
in slope than flat habitats, although those differences were not statistically significant
(Kruskal-Wallis: chi-squared = 0.01 , df = 1, p = 0.92).

TABLE 4.4: The standing stock (individuals 8,000 m2) of different Phyla between sites,
including the total number of observations for each Phyla and from each site, at the
MAR, displayed from most common to least common Phylum.

Phylum NW Site NE Site SW Site SE Site | Total
Echinodermata 4,642 (30 %) 25,304 (93 %) 840 (12 %) 3,871 (50 %) || 34,747
Porifera 6,918 (45 %) 1,331 (5 %) 1480 (20 %) 814 (11 %) | 10,543
Foraminifera 2,925 (19 %) 126 (> 1 %) 3,759 (51 %) 2,143 (28 %) | 8,953
Cnidaria 500 (3 %) 153 (1%) 959 (13%) 533 (T %) || 2,145
Hemichordata 39 (>1%) 44 (> 1 %) 120 (2 %) 221 (3 %) 424
Nemertea 300 (> 1 %) 6 (>1%) 4(>1%) 6 (>1%) 316
Annelida 132 (1 %) 4(>1%) (> 1 %) (> 1%) || 226
Arthropoda 38(>1%) 7(>1%) 71 (1 %) 58 (1 %) 184
Mollusca 3(>1%) 5(>1%) 8 (1% 22(>1%) 113
Bryozoa 2 (>1%) 0(>1%) 3(>1%) 0(>1%) 5
Total 15,499 27,120 7,348 7,689 || 57,656

4.3.4 Species Rank Abundance

The highest level of evenness and the greatest number of rare species occurred at three
transects from the NW site (NW03, NW11, NW12) (Figure 4.5). One transect from
the SE site (SE02) and three from the NE site (NE10, NE11, NE12) showed high levels
of dominance compared to other transects. The echinoid Pourtalesia (Genus) indet.
dominated transect SE02 in numbers, and the transects NE10, NE11 and NE12 were
dominated by the holothurian Kolga nana. In general, there was no clear pattern for all
the transects, as they ranged in shape from log-normal curves (3 from NW site, 3 from
SW site, 2 from NE site) to geometric series (24 remaining transects) (Figure 4.5). A
geometric series is caused by the dominance of some species and low levels of evenness,
whereas log-normal curves suggest high evenness within the transect (Whittaker, 1972).
Based on a high number of transects forming a geometric series, it was decided to trans-
form the data (square root) for subsequent MDS, cluster, SIMPER and PERMANOVA

analyses.
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FIGURE 4.5: Whittaker Rank Abundance Plot: The most common species are found
on the left hand side on the x axis, and rare species on the far right. Lines represent
individual transects.

4.3.5 Diversity

Although small-scale differences could be observed, they were not significant between
either sites (Kruskall-Wallis: chi-squared = 3.43, df = 3, p = 0.33) or habitats (Kruskal-
Wallis: chi-squared = 2.9, df = 1, p = 0.09) with the Simpson index (Table 4.5). While
a significant difference in diversity between the sites (ANOVA: F-value = 1.91, df = 3, p
= 0.15) was also absent in the Shannon-Wiener analysis, a significant difference between
habitats was measured (ANOVA: F-value = 8.57, df = 1, p < 0.01). A two-way ANOVA
on the Shannon-Wiener results revealed a strong interaction between habitats and sites
(F-value = 6.99, df = 3, p < 0.01), suggesting that the variation observed in diversity

between habitats was site dependent.
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TABLE 4.5: Differences in diversity between habitats and sites with the respective
standard deviation; Simpson and Shannon-Wiener indices

Index Habitat NW Site NE Site SW Site SE Site

Simpson flat 0.85 £ 0.05 0.60 +£0.20 0.65 £ 0.13 0.39 £ 0.15
10° slope 0.74 £ 0.05 0.69 + 0.23 0.82 £ 0.09 0.83 + 0.08
Site 0.80 = 0.08 0.64 +£0.20 0.73 £0.14 0.61 £ 0.26

Shannon-Wiener flat 2454+ 028 169+ 055 1.79+0.37 1.12 +0.42
10° slope 1.91 + 0.10 1.96 + 0.63 2.46 + 0.33 2.44 4+ 0.40
Site 218 £0.35 183 £ 057 2.12+048 1.78 +0.80
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FIGURE 4.6: Diversity indices. Simpson and Shannon-Wiener analyses, with their
standard deviation based on four replicates for each habitat at every site.

4.3.6 Community Composition

Five distinct clusters were apparent in a MDS that compared the community composi-
tion between all transects. The northern transects clustered by site into NE and NW;
and the southern sites formed three further clusters (Figure 4.7). The majority (13
transects) of the southern transects grouped together in a main cluster, and two further
clusters were formed by two SE transects (SE02 & SE01) and one SW transect (SW06),
respectively (Figure 4.7). The community composition varied significantly between sites
(PERMANOVA: Pseudo-F = 15.91, df = 3, p = < 0.001), and between habitats (PER-
MANOVA: Pseudo-F = 5.70, df = 2, p = < 0.001). The interaction between sites and
habitats was also very significant (PERMANOVA: Pseudo-F = 3.91, df = 3, p = <
0.001), suggesting that the differences in community composition between habitats was

site dependent.
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Standardise Samples by Total
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FIGURE 4.7: Multidimensional Scaling Plot, based on Bray-Curtis Similarity, after
square root transformation. Circles represent the similarity of individual samples to all
other samples, based on a cluster overlay.

While there is a clear separation between the northern sites the southern sites lack such
a divide, though a west/east trend can be observed. The transects collected from the
northern sites showed the least within-site variation, with 60.1 % similarity between the
transects from the NE and NW sites, respectively (Table 4.6). At the southern sites, the
within-site similarity of transects was lower than those at the northern sites (Table 4.6).
With the exclusion of the three transects that form two distinct clusters at the southern
sites (Figure 4.7), the similarity in community composition between transects from the
SE and SW sites equals the within-site-similarity of the northern sites. The community
composition between habitats showed least variation at the NE site and greatest varia-
tion at the SE site (Table 4.6). Differences in community composition between habitats
were generally lower at the southern sites, and within-habitat similarities varied between
50.3 % and 76.7 % (Table 4.6).

At the NW site transect 03 stands out in the MDS plot, with only 40 % similarity to
other transects from this site. NW03 showed unusually high densities with over 11,000
individuals in 1,000 m?, while the other transects averaged about 700 individuals in each
transect (Figure 4.8). Although data were square root transformed, the effect of such
high abundances were not entirely removed. A further cause for the observed difference
could be the distant location of this transect, relative to the others (Figure 4.2). The NE
site had the clearest within-site habitat distinction. At the NE site the NEQ9 transect
appeared to be somewhat different in community composition, compared to the other
transects. It is not clear what distinguishes this transect from the others at the NE site.
The positioning of the NE transects to one another is not unlike the geographic position

they were collected from (Figure 4.2).
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TABLE 4.6: The similarity of the replicates within each site, and within each habi-
tat of every site, together with the overall similarity between habitats from each site.
Measures are based on the Bray-Curtis similarity.

Sites Within-Site Habitat Replicate Habitat

NW 60.1 % flat 68.1 % 58.2 %
10° 57.3 %

NE 60.1 % flat 65.2 % 72.0 %
10° 68.7 %

SW 53.7 % flat 76.7 % 46.4 %
10° 50.3 %

SE 48.8 % flat 65.2 % 40.1 %
10° 56.1 %

Both northern sites were more similar in community compositions between habitat types
than the southern sites (Figure 4.8). The southern sites showed a stronger separation
by habitat than site. Hence, community compositions appear more distinct based on
habitat type rather than site in the south. At the SW site, the SW06 transect was
distinct from the other transects at the site, which was mainly caused by an overall higher
abundance of sponges. This transect was characterised by some meters of hard rock
substratum, in the form of boulders and pebbles on the seabed. Although the transects
were run over flat habitats, it was impossible to predict such small scale variation based
on the available bathymetry data, prior to the survey design. Finally, at the SE site two
transects (SE01 & SE02) appeared to vary in their species composition to the extent that
they only shared about 20 % in species composition with the other transects from the
site (Figure 4.8). Differences in those transects (SE01 & SE02) were mainly caused by
a high abundance of Pourtalesia (Genus) indet. and fewer observations of Discospirina
tenuissima compared to the other flat transects at the SE site (SE03 & SE04). A clear
gradient can be observed at the southern sites that indicates species composition was

more habitat than site dependent (Figure 4.8).

Taxonomic units contributing to the dissimilarity in species composition between sites
show three taxa in common for all sites (Porifera (Phylum) indet., Hexactinellida (Class)
indet., Discospirina tenuissima). These taxa all contributed to the total average dissim-
ilarity between the four ECOMAR sites. The northern sites shared four important taxa
(Urechinus naresianus, Urechinidae/Hemimasteridae complex, Ophiuroidea (Class) in-
det., Hexactinellid sp. BJ), as did the southern sites (Flabellum angulare, Enterproneusta

sp. B, Peniagone (Genus) indet., Syringammina fragillissima).
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FIGURE 4.8: Multidimensional Scaling Plot, highlighting differences in community
composition between flat and 10 ° slope habitats, from each site.

The Hydroidolina (Subclass) indet. contributed to the dissimilarity in species composi-
tion at the NW, SW and SE sites, but not the NE site, while the Pourtalesia (Genus)
indet. was important at the two eastern sites, and the Holothurian (Class) indet. at the
NE and SW sites. All sites were characterised by two uniquely important taxa with the
exception of the NW site, where three taxa contributed to the average dissimilarity to

the other sites (Table 4.7).

Between habitats taxa contributing to differences were similar at the northern sites (Ta-
ble 4.8). At the NW site both habitats had the same taxa (Urechinidae/Hemimasteridae
complex, Urechinus naresianus, Porifera (Phylum) indet., Hexactinellida (Class) indet.,
Ophiuroidea sp.), but they differed in their rank of importance. A similar pattern was
observed at the NE site. The majority of important taxa were the same in the two habi-
tats (Kolga nana, Urechinidae/Hemimasteridae complex, Hexactinellida (Class) indet.,
Porifera (Phylum) indet.), apart from Ophiuroidea (Class) indet., which occurred only
at the NE flat site, and Hexactinellida (Class) indet. which occurred only at the NE
10° slope. At the southern sites the differences between habitats were more noticeable.
In both cases only two taxa were the same between habitats (SW: Hydroidolina (Sub-
class) indet., Porifera (Phylum) indet.; SE: Discospirina tenuissima, Porifera (Phylum)
indet.), while three taxa contributed uniquely to the different habitats at both sites
(Table 4.8). Overall, the species composition in flat habitats were more similar between
the sites (66.7 %) than the 10° slope habitats (59.3 %).
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4.4 Discussion

4.4.1 Standing Stock

The southern transects were characterised by pteropod shells covering the seafloor. This
sometimes made it difficult to distinguish species and it is very likely that some species
were overlooked. The pteropod shell cover was more dense at the SW site, and was
relatively sparse at the SE site on the 10° slopes. Comparing these two areas, there
was no indication that the specimen count increased noticeably in areas where these
shells were almost absent, suggesting that the numbers are a realistic representation.
Epibenthic megafauna occurred in greater abundance at the two stations north of the
CGFZ than the south (Table 4.4), though the difference between sites was not significant.
The absence of a significant trend in density between the sites is not surprising, as
temperature, salinity, and pressure did not show any noticeable variations in the ROV
CTD profiles (Appendix C). Neither were any significant differences in organic matter
flux measured between the sites from 2007 to 2010 (Table 2.2, page 30). The standing
stock of benthic megafauna generally decreases with depth on a large scale (Lampitt
et al., 1986; Rex et al., 2006; Wei et al., 2010), and although density decreased somewhat
with increasing depths in the present study, the 600 m variation in sampling depth are

too little to show such global trends.
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FIGURE 4.9: Mean density (individuals 1,000 m™2) of the ECOMAR sites with standard

error bars, compared to other study areas. ECOMAR sites are presented individually,

with colours consistent with previous figures (green - NE, blue - NW, pink - SW, red -
SE). References are named in the legend together with the study area.
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The standing stock from the MAR was compared to other studies that used imaging
technology to estimate the density of epibenthic fauna (Figure 4.9). The majority of
studies reported densities of less than 800 individuals 1,000 m™2 (Grassle et al., 1975; Rice
et al., 1979; Christiansen and Thiel, 1992; Jones et al., 2007; Soltwedel et al., 2009), while
all densities at the MAR were greater than 1,000 individuals 1,000 m™2. Two sites from
the Gay Head Bermuda transect showed comparable densities to the southern ECOMAR
sites, although these sites were over 1,000 m shallower (Grassle et al., 1975). The NW
site from the MAR compared in density to the Northwest African Slope (Rice et al.,
1979), while the NE site exceeded the densities of any other reported study area. The
high density observed at the NE site was characterised by aggregations of the deposit
feeding holothurian Kolga nana. Aggregations of Kolga hyalina have been reported from
the Porcupine Seabight (PSB). At the PSB Kolga hyalina showed signs of very early
gonadal development and similar size distributions, both useful reproductive adaptations
suitable for unstable environments, or r-selected life history (Billett and Hansen, 1982).
A revision of the genus Kolga shows that Kolga nana and Kolga hyalina are the same
species (Rogacheva, 2011). Although detailed analyses of Kolga nana are lacking from
the MAR, observations of similar size distributions imply a similar life-history at the
MAR. The presence of Kolga nana at the NE site might point towards disturbance

events at that site.

In general, the standing stock of the MAR was greater than expected for their respective
depths. It is believed that this, in part, is caused by improved imaging technology that
allows for better species counts, and also because the density measures presented for
the ECOMAR area are based on replicates and not only individual transects. Although
the density pattern at the MAR might be driven partially by depth, it is believed that
other factors also play a role. These factors cannot be identified within the scope of this
study, but it is speculated that they might be caused by differences in the quality of
organic matter input (Kiriakoulakis et al., 2001) or disturbance events that could effect

some sites.

4.4.2 Biodiversity

One of the greatest challenges in analysing video footage is the identification of spec-
imens down to species level. Despite the HD video quality used in this study, there
was a limit to the detail that could be seen in videos recorded at 2 m altitude. All
individuals in this study were identified to the lowest possible taxonomic unit. However,
the actual diversity in the ECOMAR area is almost certainly higher than reported here,
as organisms (morphotypes) could often only be identified confidently down to family

or genus level, and might encompass several species. The species accumulation curves
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also suggest that more sampling effort would increase the number of species at all sites
(Figure 4.4). The biodiversity at the MAR did not differ significantly between sites (Ta-
ble 4.5). The diversity at the western sites was marginally higher, with less variations
between transects, but no clear overall pattern could be observed. On a global scale
biodiversity has been reported to decrease from the equator to the Arctic (Rex et al.,
1993; Ramirez Llodra et al., 2010). However, no such northward decrease in biodiversity
could be observed in the present study, most likely because the scale in this study is too

small to see global trends.

The only diversity data available for comparison were from the Arctic and the Faroe-
Shetland Channel (FSC) (Jones et al., 2007; Soltwedel et al., 2009). The Arctic region
is considered to be low in species diversity, though it has been suggested that this gen-
eralisation has to be taken with caution (Piepenburg, 2005). However, the diversity at
the MAR is evidently higher than any of the transects in the FSC and at the Haus-
garten observatory (Figure 4.10). All of these areas were characterised by high levels of
habitat heterogeneity, similar to that at the MAR. However, the HAUSGARTEN site
and the FSC comprise passages for large water masses, creating highly dynamic local
hydrography that are believed to depress diversity (Jones et al., 2007; Soltwedel et al.,
2009). Hydrodynamic profiles taken at the ECOMAR sites suggest an absence of such
highly dynamic local hydrographic features (Dale and et al., submitted). Based on the
assumption that the Arctic is generally less diverse, the elevated diversity at the MAR
was expected and it is assumed that the biodiversity of the MAR is not unusual for its

depth.
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FIGURE 4.10: Shannon-Wiener diversity compared to other studies. Data from the
Faroe-Shetland Channel (FSC) (Jones et al., 2007) and HAUSGARTEN observatory
close to Svalbard (Soltwedel et al., 2009).



Chapter 4. ROV Video Survey on Invertebrate Megafauna Distribution at the MAR 89

4.4.3 Community Composition

All ECOMAR sites vary significantly in community compositions (Figure 4.7). The
most distinct differences in community composition were seen between the northern
and southern sites, followed by the division of the northern sites. The species distri-
bution ranges varied depending on species. The distribution of the holothurian Kolga
nana, for example, was entirely restricted to the NE site of this study. The echinoids
Urechinus naresianus and the Urechinidae/Hemimasteridae complex were found in great
abundances at the northern sites and virtually absent at the southern sites, while the
echinoid Pourtalesia (Genus) indet. was restricted to the eastern sites of the ridge and
completely absent from the western sites. The Hexactinellida sp. BJ was particularly
abundant in the northern sites and rare at the southern ones, and the Peniagone (Genus)
indet. occurred at all sites except the NW site, which was characterised by high abun-
dances of Ophiuroidea (Class) indet. and Nemertea (Phylum) indet., which were rare
at other sites. While virtually absent in the north Flabellum angulare, Enteropneusta
sp. B, and arthropods Munidopsis rostrata and Glyphocrangon sculpta were observed

in almost all transects to the south.

Differences in faunal composition reported between the Rockall Trough and the FSC,
which are separated by the Wyville-Thomson Ridge, were attributed to hydrographic
parameters such as water temperature (Bett et al., 2001). Although minor differences
in temperature and salinity were seen between the northern and southern ECOMAR
sites (temperatures to the south 0.2° C higher, salinity 0.1 lower [Table 2.1, page 27]),
it is very unlikely that these small variations affected the community composition at the
MAR.

In a study investigating two areas at similar depth, 100 km apart, with very similar
hydrographic characteristics, differences in community composition were attributed, in
part, to sediment characteristics (Rex, 1981). Differences in sediment were observed also
at the MAR (finer-grained muddy sediments to the north, coarser sediments to the south)
(Figure 2.2, page 34). At the southern sites the sediment could not be distinguished
further, whereas at the northern sites the sediment from the NW site was described as
slightly finer than that of the NE site (Priede, 2007). Although sediment characteristics
have only been considered secondary drivers for community changes in some areas (Jones
et al., 2007; Soltwedel et al., 2009), they might contribute to differences in communities
observed at the MAR.

Similar to this study, a north-south divide is also reported at the FSC and attributed
to a combination of physical factors, such as sediment type, habitat heterogeneity and

primary organic carbon availability (Jones et al., 2007). Habitat heterogeneity can be
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increased by geological and biogenous structures. As all transects were collected on soft
sediment, habitat heterogeneity caused by geological features is not a likely driver for
differences in species composition in this study. Biogenous structures can be further di-
vided into 1) living biogenic, non-motile fauna that increase local habitat heterogeneity
(Rex, 1981; Buhl-Mortensen et al., 2010), and 2) secondary structures that are caused
by the movement of mobile fauna (McClain and Barry, 2010). The presence of pteropod
shells at the southern sites, for example, increased the local biogenic habitat (Zajac,
2008). By increasing the habitat heterogeneity to the south these shells might have
contributed to the north-south divide observed at the MAR. Biogenic structures that
were created by bioturbation covered more % area at the SE and NW sites (Bell et al.,
in press), increasing habitat heterogeneity at those sites, which might have contributed
to the observed community compositions. Taxa that contributed to the differences in
community composition at each site included a number of biogenous structure-forming
taxa (Table 4.7), such as sponges (Beaulieu, 2001), sea pens, Alcyoniidae cnidarians
and xenophyophores (Buhl-Mortensen et al., 2010). In general, each site had structures
that increased habitat heterogeneity which in turn increase diversity (Zajac, 2008). In
the absence of any difference in diversity between sites, it is assumed that the habi-
tat heterogeneity between the sites was similar, although caused by different biogenic

structures.

Studies have shown that the quality of organic carbon play a role in structuring com-
munities (Kiriakoulakis et al., 2001; Wigham et al., 2003a). Although no data were
available on the chemical composition of the organic carbon, the source regions of parti-
cles collected by the sediment traps were modelled by Dr. Andy Dale (Section 2.6). The
pattern of the source region was very similar to those of the community compositions
reported here. The two northern sites had distinct source regions that were restricted
to the NE and NW respectively, while the southern sites showed overlapping source
regions. It is unclear what the implications are, but it is hypothesised that the source
regions reflect differences in the composition of material reaching the benthos, hence
affecting their species composition, but this remains speculation as no further data were

available.

Differences in community composition have been reported between the European Basin
and Icelandic Basin (Christiansen and Thiel, 1992). The stronger currents present in
the Icelandic basin were reflected by greater abundances of resuspension feeders that
were strongly anchored to the seafloor, such as pennatulids. In areas of weaker currents
resusupension feeders, such as sponges and crinoids, tended to be more fragile (Chris-
tiansen and Thiel, 1992). Both southern sites had five suspension feeders identified as

important to community composition, while at the NW site eight suspension feeders
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were identified (Table 4.7). In contrast, the NE site only had three suspension feed-
ers. Although some species could not be identified beyond phylum level the NW site
appeared to have the most fragile population of suspension feeders with three ophiuroid
species, followed by the SW site with Syringammina fragilissima. At the SE site there
is still a representation of fragile suspension feeder in form of Hydroidolina (subclass)
indet., while the NE site had arguably less fragile suspension feeders as Hexactinellida

sp. BJ was small with little surface area.

Finally, differences in community composition could be driven also by distance and
barriers to dispersal. The similarities in community composition reflect the distance
between sites, with the greatest similarity observed between the sites closest together
(the southern sites), and the greatest distinction between those with the greatest distance
to one another (northern and southern sites). The ridge between the southern sites does
not elevate as high into the water column as at the northern ridge and might, therefore,
be less of a dispersal barrier. Between the northern and southern sites, current flow

through the CGFZ could prevent dispersal.

4.4.4 Fine-Scale Habitat Variability

The species accumulation rate between habitats differed between the northern and south-
ern sites. While the northern sites showed very similar patterns between habitats, the
southern sites had a faster species accumulation rate in sloped areas (Figure 4.4). A
noticeable difference in diversity was observed between the habitats at the SE and NW
sites, which were not observed at the NE and SW sites. Diversity between habitats
differed significantly with the Shannon-Wiener diversity index, with a strong interac-
tion between sites and habitats pointing towards site dependent diversity differences.
The absence of a statistically significant difference with the Simpson index is likely an
artefact caused by the statistical approach, as both indices showed the same general pat-
tern (Figure 4.6). The community composition between flat and sloped terrain was also
significantly different and showed a strong interaction between sites and habitats, sug-
gesting that differences in community composition between habitats was site dependent
(Figure 4.8). The northern sites varied less in species composition between habitats,
compared to the southern sites. It is unclear why variations between habitats were more
prominent at some sites and absent from others. The MAR forms a complex habitat
with soft-sediment communities forming only part of the bigger structure (Priede et al.,
in prep), and fine-scale habitat heterogeneity likely drives spatial distributions of benthic

communities (Auster et al., 1991), leading to differences in community compositions.
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The within-site variability of the transects was greater at the southern sites, while tran-
sects from the northern sites were to over 60 % similar to those from their respective
sites (Table 4.7). At the southern sites there was no clear division between the east and
the west (Figure 4.7), and transects were more similar in community composition based
on habitat rather than site (Table 4.6). The within-site variability suggests that the
distribution of fauna might be more patchy at the southern sites. It has been suggested
that the more distant locations are from each other, the more distinct their community
is (McClain et al., 2011). In this study most transects were relatively evenly distributed
(Figure 4.4). Two transects that were located farther away (NE3 and SWO08), did not
show any particular difference in species composition compared to other transects from
their site (Figure 4.7). It is therefore not likely that the distance between the transects
plays an important role in the observed within-site variation in species composition.
Small-scale environmental features, such as temperature, salinity, and pressure can also
affect species distributions (Auster et al., 1991). The CTD profiles (Appendix C), how-
ever, did not pick up any trend that would suggest that environmental conditions varied
between habitats (three profiles that showed differences had not been calibrated appro-
priately).

Fauna forming biogenic structures that enhance habitat heterogeneity, such as xeno-
phyophores and sponges (Beaulieu, 2001; Buhl-Mortensen et al., 2010), were present at
all the sites and habitats (Table 4.8). However, there was no apparent trend suggesting
that there were more or less of these fauna in either habitat. Equally, there is no ap-
parent difference in the distribution of deposit and suspension feeders. Often high levels
of habitat heterogeneity are associated with increased diversity (Zajac, 2008). In this
study significant differences in diversity were seen between habitats, with the exception
of the NW site, diversity tended to be greater in sloped terrain (Table 4.5). Assuming
that greater habitat heterogeneity drives diversity one might speculate that the habi-
tat in sloped terrain is more complex, because diversity tended to be higher. However,
with videos only displaying the immediate soft sediment analysed and the resolution of
bathymetry data where one pixel reflects 9 m, this remains speculation as the habitat
structure outside the field of view could not be assessed. One factor that could not be
accounted for, for example, was the distance of individual transects to rocky outcrops.
Such obstacles can cause fine-scale turbulences, which may affect nearby fauna. For
example, Levin and Thomas (1988) found that xenophyophores were more abundant
immediately behind the rim of the caldera of a Pacific submarine volcano. These giant
protists also often occur in high densities on sloped terrain (Levin, 1994; Hughes and
Gooday, 2004). In this study xenophyophores were particularly abundant at the SW
site in flat habitat, which suggests that those transects might have been nearby rocky

structures.
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Variations in species distribution can also be caused by differences in sediment structure
(Rex, 1981; Auster et al., 1991). Spatial variations in sediment type have been shown
to control the local distribution in macrofauna at the Rockall Trough and the Faroe-
Shetland Channel (Bett et al., 2001). Potential fine-scale variations in sediment might
also cause a variation in megafaunal distributions. Although differences in sediment were
observed between sites, no variation was noticed at a scale that would distinguish the
two habitat types. At the SE site pteropod shell cover was a lot denser at the flat terrain
compared to the slope. However it is not clear whether that could have impacted the
community composition, as pteropods were abundant in both habitat types at the SW
site that also showed significant differences between habitats. The relative similarity in
community composition between habitats in the north suggest that drivers, other than
slope, might also cause observed fine-scale spatial variations. One possible factor could
be the patchy distribution of phytodetrital deposits, which were observed in mega core
samples (Figure 2.2). The spatial distribution of some species has been correlated to

such aggregates in the Pacific (Lauerman and Kaufmann, 1998).

4.5 Conclusion

Except for the southern sites, the community composition between the sites was signifi-
cantly different. The eastern sites of the ridge were dominated by echinoderms in density,
whereas the western sites were dominated by poriferans and foraminiferans. The ridge
might act as dispersal barrier to the northern sites, but there was no evidence for it to
affect the dispersal for species from the southern sites. The CGFZ, on the other hand is
more likely to act as effective dispersal barrier between the northern and southern sites
of the ECOMAR area. Between the sites there was no significant difference in diversity,
while between habitats a significant difference was picked up with the more sensitive
Shannon-Wiener index. No such significant difference in diversity between habitats was
picked up with the Simpson index and more investigation is needed to conclude whether
a slope of about 10° incline affects biodiversity. Although the diversity between habi-
tats remains speculation, the community composition between habitats was significantly
different at the southern sites, while not significantly different for the northern sites. It

remains unclear what causes this discrepancy between the northern and southern sites.






Chapter 5

Assessing Benthic Communities

Imaging vs. Trawling

Deep-sea research is heavily dependent on trawling and video surveys to investigate
the benthic and benthopelagic environment, as highlighted by their frequent use over
the past four decades (Rice et al., 1979; Billett and Hansen, 1982; Rice et al., 1986,
1994; Billett et al., 2001; Smith et al., 2008a; Priede et al., 2010). The following chapter
compares trawl and video data collected at the MAR. The advantages and disadvantages
of trawling and video survey will be discussed, in addition to a synthesis demonstrating

the potential information gained by combining these methods.

5.1 The Efficiency of Collecting Ecological Information:
Trawling vs Video

5.1.1 Species Richness

Within the ECOMAR framework a unique dataset of video and trawl data makes it
possible to compare the fidelity of both sampling methodologies in their estimation of
species richness. The most striking difference between these methods is their spatial
extent. Trawl samples tend to cover areas in the region of hectares, while video sur-
veys sample areas on the metre ? scale. The quality of trawl and video data analyses,
presented in this thesis, was greatly improved by analysis of samples collected by both
methods, being carried out by the same ecologist (C. H. S. Alt) and the same taxonomist
(A. Rogacheva). Such a personnel-limited approach reduced the inherent inconsistencies
of subjective species identification. The wider sampling area obtained by trawling led to

an expectation that greater species richness would be found with this method. However,
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an inspection of the species numbers between methods shows a surprisingly high species
number from the video survey in comparison to trawling (Table 5.1). Furthermore, when
standardised to the same area the video survey appears much more efficient in deter-
mining species richness. It is speculated here that two main considerations explain the
high species richness in video samples: 1) differences in target size, and 2) differences in
the type of fauna targeted.

TABLE 5.1: Table representing the number of species and number of megafaunal indi-

viduals collected by trawls (2007 & 2009) and by the video survey (2010). On the right
side is the theoretical species accumulation rate, had both surveys sampled 1 ha area.

Gear Site Area Number of Number of Number of Number of
Sampled Species Individuals || Species ha! Individual ha!

Trawl NW 4 ha 69 4,312 17 1,078
NE 3 ha 55 12,716 18 4,239

SE 3 ha 96 4,233 24 1,058

Video NW 8,000 m? 104 15,071 130 18,839
NE 8,000 m? 73 12,078 91 15,098

SE 8,000 m? 73 7,688 91 9,610

SW 8,000 m? 104 7,372 130 9,215

5.1.1.1 Target Fauna

Trawls can only be used in areas of flat sedimentary plains, absent of any obstruc-
tions such as rocky outcrops. This greatly restricts potential sampling areas of complex
geomorphological structures such as the MAR. Furthermore, the damage to fragile spec-
imens through this sampling method is substantial. An example of the damage caused
was observed in trawl samples from the NE site, where large numbers of small gelatinous
holothurians were entangled in the trawl mesh. Most specimens from this haul were too
damaged to be identified to species level, forcing a grouping of these individuals to be
simply grouped into an Elpidiidae mix, which could only be refined to a mixture of
five different species, thanks to the limited number of less damaged specimens (Section
3.2.2.). The sampling of highly fragile fauna is not possible by trawling, as the destruc-
tive nature of this technique leaves little identifiable remains of delicate body structures
such as that of xenophyophores (Hughes and Gooday, 2004) or enteropneusts (Jones
et al., submitted); thus, trawling often gives an incomplete account of species within an
area. However, when trawls are flown too close to the sediment surface, sometimes small
amounts of sediments are entrained. Within the sediments some larger infauna speci-
mens are captured, which can give a unique insight into the infaunal species composition

of an area that would otherwise not be accessible.
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In contrast to the shortcomings of trawling, a great benefit of video surveys is their ability
to assess rough terrain. Even when sampling soft sedimentary plains, video surveys can
target specimens that would otherwise be missed by trawls, as fragile specimens are
not damaged by this sampling method (i.e. the aforementioned xenophyophres and
enteropneusts). Other species that are more readily sampled with this method include
sponges and other sessile fauna that are anchored to the seabed. Infaunal traces can
be observed with video or imaging techniques, but classification of such species remains
elusive. A significant restriction associated with this technique, however, is the inability
to identify specimens down to species level (often it is difficult even to estimate the
family level). Although, with an ROV survey, it is possible to collect specific individuals
for identification, this time-intensive procedure allows only a small selection of samples
to be justifiably collected. High quality video material is, therefore, critical to the
identification of different morpho-types. However, it is not currently possible, through
video surveying alone, to distinguish morpho-types that represent different species from
those that merely present the morphological plasticity of one species, often leading to

the overestimation of species richness within an area.

5.1.1.2 Target Size

The size of net mesh restricts the target size of trawl samples. The trawl opening has a
net mesh wider than the cod end (Section 3.2.1.). It is difficult to target species smaller
than the net mesh near the trawl opening, as they often become lost in transit to the
cod end. This also makes it difficult to quantify the catch success rate of species with
smaller body size. Video surveys do not suffer from such restrictions of specimen target
sizes, in particular when high definition camera equipment is available, as was the case
in this study (Section 4.2.). However, problems arise when video quality becomes of such
high fidelity that species not belonging to the targeted megafauna can be visualised. In

such cases it is crucial to define the lower target size prior to analysis.

In conclusion, one of the greatest advantages of trawl samples is the ability to identify
specimens down to species level, while video surveys can overestimate species richness,
as morphological plasticity cannot be accounted for. The variation observed in species
richness estimates presented here (Table 5.1) shows a higher species richness from videos.
The identification bias in this study is greatly reduced, owing to specimen identification
being carried out by the same persons that worked up the trawl and video samples.
It is thought that the difference in species richness between methods is too high to
be accounted for entirely by morphological plasticity (Table 5.1). Data presented here
indicate that advantages in being able to identify specimens down to species level, do

not outweigh the inclusion of fragile specimens and species that are anchored to the
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sediment.

Data suggest that a survey with high quality video footage gives a more

reliable account of epibenthic species richness when compared to a trawl survey of the

salme area.

5.1.2

Density

The distance a trawl covers over the seabed during a single pass can be estimated thanks

to advanced sensors. This information, combined with details of the effective net opening

gives an estimate of the area being trawled. However, the inability to reliably collect

smaller specimens and the occasional collection of infaunal specimens (also reducing

the area of the benthopelagic realm sampled) makes trawling only semi-quantitative

(Gage and Bett, 2005). It is further recognised that trawling tends to underestimate

densities (Bett et al., 2001). Here, trawl and video density data are compared to highlight

the extent to which these two methods differ in estimating density. Density that was

standardised to the number of individuals per hectare has been compared for major

taxonomic groups, to highlight differences in the sampling success rate for these two

methods (Table 5.2).

TABLE 5.2: Densities of major megafaunal taxa calculated from video and trawl data
(individuals ha™!). The proportion of each taxon within a site is expressed in % of the
total count, the most noticeable discrepancies between methods are highlighted in bold.

Gear Taxa NwW SD % NE SD % SE SD %

Trawl  Asteroidea 48.3 1+ 193.3 18.2 26.4 + 2.1 3.3 102.9 +32.7 305
Holothuroidea 17.4 + 69.5 6.6 753.3 + 175.6  93.9 153.9 + 38.3  45.7
Echinoidea 22.9 + 91.7 8.6 12.7 + 3.2 1.6 3.8 + 0.9 1.1
Ophiuroidea 132.5 4+ 529.8 50.0 3.4 + 0.8 0.4 16.8 + 12.3 5.5
Crustacea 18.5 + 74.1 7.0 9.9 + 1.0 1.2 21.8 + 134 6.5
Pycnogonida 23.4 + 935 8.8 0.3 + 0.3 0.0 2.6 + 3.5 0.8
Mollusca 2.7 + 10.5 1.0 1.0 + 0.7 0.1 4.6 + 4.1 1.4
Cnidaria 0.1 + 0.3 0.0 0.2 + 0.2 0.0 30.6 + 9.8 2.9

Total 265.8 + 70.6 807.2 + 638.5 337 + 37.7

ROV Asteroidea 120.0 + 13.6 1.9 230.0 + 28.5 0.7 187.5 + 23.6 3.3
Holothuroidea  1,306.3 4+ 173.1 20.3 28,998.8 +5120.5 90.7 396.3 + 275 7.0
Echinoidea 2,543.8 +519.5 39.5 1,795.0 + 374.1 5.6 4,208.8 4+ 1484.5 74.6
Ophiuroidea 1,832.5 £+ 373.5 284 716.3 + 275.7 2.2 43.8 + 18.2 0.8
Crustacea 30.0 + 5.2 0.5 21.3 + 2.8 0.1 68.8 + 11.9 1.2
Pycnogonida 17.5 + 7.1 0.3 0.0 + 0.0 0.0 3.8 + 2.7 0.1
Mollusca 3.8 + 2.2 0.1 6.3 + 14 0.0 27.5 + 15.9 0.5
Cnidaria 588.8 + 64.5 9.1 215.0 + 14.3 0.7 705.8 + 52.5 12.5

Total 6,442.7 + 585.0 31,982.7 + 937.6 5,642.3 + 243.7
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Total density estimates differed significantly (Kruskal-Wallis: chi-squared = 11.86, df
=1, p < 0.0001) between the two sampling methods (Table 5.2). The most noticeable
differences were observed for echinoids, which were ranked the most abundant species
within the video survey at the NW and SE sites, while only ranking respectively as 4th
and 7th most abundant taxa within trawl samples. Most echinoids from the ECOMAR
area were hard-shelled and very fragile (Appendix E), the majority of specimens were
damaged through trawling and could not be quantified. Density estimates based on
video data are considered more reliable for this class. Similar disparity between sampling
results was also observed in cnidarians, though not as pronounced as in echinoids (Table
5.2). However, this variation in density found between methods is to be expected,
as sessile cnidarians cannot be targeted effectively through trawling. Pycgnogonids
were the only taxa ranked at greater abundance in the trawl samples, in comparison
to video surveying; their slender body types often being unintentionally overlooked in
video footage (Table 5.2).

Overall, the high numerical dominance of holothurians at the NE site was confirmed with
both sampling methods. However, the ranks in density between the NW and SE sites
differed between trawling and video survey. This result shows that data collected from
a previously unknown area can be greatly biased by the survey instrumentation used.
The greater numbers in the video survey confirm that trawls underestimate densities
(Bett et al., 2001) and suggest that a video survey capture the density of species more
reliably.

5.1.3 Diversity

The diversity values derived from the video surveys and trawl samples did not signif-
icantly differ between sites (Kruskall-Wallis: chi-squared = 1.7, df = 1, p = 0.1907).
The diversity in the trawl hauls was driven by high species richness at the NW and SE
sites and low levels of evenness at the NE site. In contrast, the diversity in the video
survey is thought to be a result of the level of species richness at all sites. A significant
difference in diversity between sites was observed in the trawl samples, but not in the
video survey. However, when both diversity datasets were combined, there was no sig-
nificant difference in diversity between sites (Kruskall-Wallis: chi-squared = 6.81, df =

3, p-value = 0.08).

The two sampling techniques differ in their reliability for estimating diversity. Although
trawling is biased towards larger specimens, diversity measures derived from trawl sam-

ples are more accurate than those derived from video surveys, at least in part because it



Chapter 5. Assessing Benthic Communities Imaging vs. Trawling 100

is easier to discriminate between species in trawled material than in video images. Vari-
ations in diversity between samples from the same sites were smaller in trawl samples
(Figure 5.1). One of the main difficulties regarding imaging techniques is the low level
of identification that can be achieved. While critical features such as spicules can be
investigated under a microscope in trawl samples (e.g. in sponges, Janussen et al. (2004)
and holothurians, Rogacheva et al. (accepteda)), only relatively large external morpho-
logical features can be observed in video transects. Morphological ‘type-specimens’ that
are differentiated in videos may actually encompass several species, while specimens

collected with trawls can often still be identified even when damaged.

As discussed above, video and trawling techniques target different species, and neither
can sample all megafauna. Some species can only be ‘sampled’ in video surveys: those
too fragile to be collected (e.g. xenophyophores, Levin (1994) or enteropneusts, Osborn
et al. (2011)), those anchored in the sediment (e.g. sponges, Beaulieu (2001)), or too
small to be targeted with trawls (e.g Discospirina spp., Gooday et al. (in press)). Other
species collected with trawls that are either underrepresented (e.g. Hymenaster spp.)
or absent (e.g. Molpadia spp., Amaro et al. (2010)) in video surveys are either covered
by sediment or have burrowed into it. Ideally, a video survey along a transect should
be followed by a trawl; a combination method that has been applied with epibenthic
sledges (Rice et al., 1979), so that species can be identified with both molecular and
morphological taxonomy. Unfortunately, time and resource constraints often make such

a thorough approach unfeasible.
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F1GURE 5.1: The Diversity from the trawl and video survey, compared between the
different ECOMAR sites, with their respective standard deviation.
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5.2 Variability in Benthic Megafauna Communities

5.2.1 Variability in Time

The higher estimates of density obtained via the video surveying method when compared
to trawling employed (Section 5.1.2.) was expected as trawls are restricted by their mesh
size and previous studies have been shown to underestimate densities (Bett et al., 2001;
Gage and Bett, 2005). However, many patterns are observed in the data presented in

Table 5.2 and not all can be attributed to sampling biases mentioned above.

At the NW site the densities of pycnogonids were lower in the video survey (2010) than in
the trawl samples (2007 & 2009), numbers ranged between 32 (in 2007) and 142 (in 2009)
specimens ha™ in trawl samples, while their density in the video transects was between 1
and 9 individuals ha! (2010). It is considered unlikely that these differences were caused
by faunal patchiness of pycnogonids, as it is assumed that the randomised design of the
video survey (in 2010) would have identified such patches, especially with such high
densities in the previous year. These data, therefore, suggest that the population size
itself fluctuated within the 4-year period. However, as a caveat, counts of pycnogonids
were disproportionately low in the video survey; therefore this lower density may be,
at least in part, a result of their slight body type making their visualisation in video
footage difficult. This drawback of video analyses likely explains the scarcity of this
taxon at the NE and SE sites, where densities were so low that this class could have

been overlooked in the video records.

In addition to the pycnogonids, other taxa suggested shifts in density at the NW site
over time (Figure 5.2). With regard to taxa from the trawls, asteroid densities decreased
from 292 individual ha™' in 2007 to an average of 181 individuals ha™! in 2009, molluscs
decreased from 25 individuals ha! in 2007 to an average of 6 individuals ha™! in 2009,
while arthropods, holothurians and ophiuroids showed little apparent variation in den-
sity between 2007 and 2009. Changes in community structure over time have also been
reported in abyssal environments, at the Porcupine Abyssal Plain (PAP) site in the
Atlantic (Billett et al., 2010) and at the Pacific station M (Ruhl, 2008). Megafaunal
species, that were previously considered rare, became very abundant and vice versa.
Other species changed less dramatically in their density, while some did not appear to
change at all (Ruhl, 2008; Billett et al., 2010). Two species that were associated with the
‘Amperima event’ at the PAP (Bett et al., 2001), were also abundant at the NW site:
Ophiocten hastatum, and Colossendeis colossea, support the possibility of a community
shift.
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FIGURE 5.2: Densities (individuals ha') from trawl and video survey from every site.
Results are plotted on a logarithmic y-axis, with their standard deviation.

At the PAP and station M shifts were associated with changes in phytodetrital quality,
information which is not available for the current study. At the PAP pycnogonids were
strongly affected by this parameter, as were ophiuroids, holothurians, and asteroids
(Billett et al., 2001). Although changes in density have been seen for most megafaunal
species at the PAP (Billett et al., 2010), some species clearly have a greater ability to
respond to changes in quantity and quality of the nutrition than others (Ruhl, 2008). At
the PAP changes in megafaunal density were observed between 1994 and 1996 (Billett
et al., 2001). No sampling was carried out in 1995 therefore a change in density occurring
over just one year cannot be discounted. Although a community shift at the NW site is
considered the most likely explanation for the results presented here, this interpretation
must be treated with caution as other factors may also explain the discrepancies in
density for some taxa. The low densities in crustaceans at the NW site in 2010 may also

be a result of their mobility, with disturbance caused by ROV movement likely invoking
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a flight response. The visual field of the cameras was only 2 m wide, while the trawl
net opening was over 8 m wide, making it more likely that escaping animals would be
captured in the trawl than observed in the video survey. Furthermore, discrepancies in
asteroid numbers were potentially caused by specimens obscured by sediment. Finally,
some molluscs (i.e. cephalopods) are mobile enough to flee the visual field. A more
important consideration is that the smallest molluscs were excluded from the analysis
of ROV records, as they could not be distinguished reliably from the very abundant

pteropod shells at the southern sites.

5.2.2 Variability in Space

All ECOMAR sites were significantly different from each other in community compo-
sition in both trawl and video survey, though the SW site was only sampled in 2010
(ROV survey) and showed no significant difference from the SE site (Section 4.3.6). The
greater similarity between transects of different sites in the video survey, is likely a result

of a more balanced sampling design in the 2010 survey (Table 5.3).

TABLE 5.3: The similarity of the sites to one another based on benthic megafauna com-
munity composition, calculated with a Bray-Curtis analysis, and highlighting distances
between sites.

Sites Distance Trawl ROV ANOSIM

SE & SW 72 km 47.9 %
NW & NE  137km  229% 37.0%

NE & SE 706km 11.3% 284% ROV:p < 0.05, Global R = 0.79
NW & SE 706 km 200 % 31.0% Trawl: p < 0.05, Global R = 1

It is clear from this study that a multitude of processes govern variations in community
composition, although the dominant driving factor remains unclear. Differences in sed-
iment characteristics, surface primary production and hydrography between sites were
observed, however, no definite environmental drive could be discerned. Despite exten-
sive research into deep-sea communities over the last few decades, it remains undecided
within what geographical range similar species assemblages are expected to occur. Sev-
eral studies have highlighted the patchiness of megafaunal species distributions through
their observed random distribution along transect lines (Lauerman et al., 1996). Fur-
thermore, it is shown that even within the same area, communities change significantly
over time (Ruhl, 2008; Billett et al., 2010). While data presented here suggest that it
is likely that these spatial and temporal changes also apply to the MAR no previous
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study has been carried out that investigates community change over distance, as a result
of limitations to dispersal. Within ECOMAR, some predominantly benthic megafauna
were shown to 'drift” with the currents between feeding grounds (Jones et al., submitted),
or to actively ‘swim’ (Rogacheva et al., acceptedb). These pelagic excursions, however,
appear to only be effective over short distances. Larval dispersal is difficult to monitor in
the open ocean and can often only be inferred through faunal distributions (Howell et al.,
2002). Yet many species considered ‘cosmopolitan’ are often found to comprise several
genetically different cryptic species (O’Loughlin et al., 2011). While some megafaunal
species have evolved the ability to disperse over very large distances, such cases remain
rare. The differences in community composition between the ECOMAR sites, reflect
the distances between them (Table 5.3). It is therefore suggested that the differences
observed in ECOMAR are at least in part a function of site proximity (Figure 2.1, page
24). Other factors that likely played a role in shaping the community composition be-
tween the southern and northern sites include productivity regimes, sediment types, and

possible disturbance events.

Evidence for past disturbance events was found at the northern sites, in particular the NE
site. Megacore samples from 2010 were characterised by sponge spicules in the sediment
surface layer. It is speculated that these spicules were spread along the seabed by strong
currents (Priede and Bagley, 2010). This interpretation was further supported by the
presence of the holothurian Kolga nana at the NE site. Kolga spp. are also reported
at the HAUSGARTEN observatory (Soltwedel et al., 2009) and Porcupine Seabight
(PSB) (Billett and Hansen, 1982), and in both cases their occurrence is associated with
high energy environments. Aggregations of Kolga nana occur at both the NE site, and
between 2,755 and 4,080 m in the PSB. These aggregations have clear reproductive
advantages, particularly because this species shows early gonadal development, ideal
for opportunistic species that exploit disturbance events (Billett and Hansen, 1982).
The presence of Kolga nana, Ophiocten hastatum and Ophiura ljungmani highlight the
likelihood of occasional disturbance events at both northern sites. While the NW site
may be affected by community changes similar to the ‘Amperima’ event at the PAP,
the NE site may be subject to benthic storms. The southern sites, in contrast, were
characterised by a thin phytodetritus layer and high numbers of pteropod shells, both
observed throughout the study interval (Section 2.8, page 31). The phytodetritus layer
was observed in August (Priede, 2007, 2009) and in June (Priede and Bagley, 2010) at
the southern sites indicating two possible organic carbon pulses, while at the NE site a

small phytodetritus layer was only reported in June 2010 (Priede and Bagley, 2010).

The greater variation in density observed between trawl samples has several potential
causes, most notably is the lack of replicate trawls at the NW site in 2007. A number of

inherent factors within the trawling process affect the size and composition of the catch,
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in particular the trawling speed and its interaction with the seafloor. Minor changes in
either of these aspects can affect the catch-rate (Gage and Bett, 2005). Furthermore,
when a trawl touches the seabed it accumulates sediment, which can block the mesh,
resulting in the retention of organisms normally not targeted by this method. Therefore,
consistency between trawl replicates is poorer than repeat video transects, as technology
for video surveying allows for a precise regulation of altitude and speed. In this study the
replication between the video surveys was significantly more balanced with eight tran-
sects at each site, while trawl replicates were carried out up to two years apart, adding
a temporal influence. Video surveys reveal the fine-scale distribution of animals on the
seafloor whereas trawls integrate their catch over the entire sampling area. As a result of
the inconsistencies described for trawls they are not considered truly quantitative (Gage
and Bett, 2005).






Chapter 6

Systematic Clarification of
Holothurians from the MAR

6.1 Introduction

Holothurians are a very diverse and abundant group of megafauna in the deep sea (Bil-
lett, 1991; Gebruk, 1994; Pawson, 2007; Gebruk et al., 2010) that are considered very
important in horizontal transport and vertical mixing of sediments (Billett, 1991; Ginger
et al., 2001), and therefore, play a vital role in carbon burial. Based on ossicle fossil
evidence it has been suggested that holothurians have been around since the Silurian
(Gilliland, 1993). One of the best-preserved whole specimens found is placed in the Devo-
nian (Lehman, 1958). As a result of this Class having been around for such a long time
they show great morphological diversity. This morphological variability causes much
debate when considering their taxonomic classification system (Billett, 1991). Today,
there are an estimated 1,400 known holothurian species belonging to six orders: Aspi-
dochirotida Grube (1840); Elasipodida Théel (1882), 1882; Molpadiida Haeckel (1896);
Dendrochirotida Grube (1840); Apodida Brandt (1835); and Dactylochirotida Pawson
and Fell (1965) (Pawson, 2007). Of those, only the Elasipodida is restricted entirely
to the deep sea (Hansen, 1975), while the Aspidochirotida has a strong representa-
tion there (Solis-Marin, 2003). Some of the families and genera have frequently been
revisited morphologically, in the attempt to clarify their taxonomic positioning in re-
lation to other holothurians (Kerr, 2001; Kerr and Kim, 2001). Kerr and Kim (2001)
assessed the relationship of holothurian families by analysing recognised morphological
features and by creating a phylogeny based on those morphological characteristics. They
excluded some families such as the Gephyrothuriidae, owing to their taxonomic uncer-

tainty. Such exclusions and reclassifications of genera or even entire families (Heding,
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1935) are a continuous problem in holothurian taxonomy. Most studies of holothurian
phylogeny concentrate on coastal species and genera (Uthicke and Benzie, 2001; Hoareau
and Boissin, 2010). This is a problem for research into deep-sea holothurians as new
species are frequently being discovered (Gage, 1985; Gage and Billett, 1986; Gebruk
et al., 2003; Gebruk, 2008; O’Loughlin et al., 2011). Solis Marin revised the systematics
of the Synallactidae family, clarifying the position of species with morphological data
and the 16S mitochondrial gene (Solis-Marin, 2003). Another recent study looked into
holothurian species from the Antarctic, analysing the relationship of individual species

within different genera (O’Loughlin et al., 2011).

All attempts to understand holothurian systematics with molecular methods have been
primarily based on single mitochondrial genes combined with morphological character-
istics (O’Loughlin et al., 2011; Solis-Marin, 2003). While this has increased our under-
standing to some extent, there is still a lot of uncertainty. Mitochondrial DNA alone is
not ideal for phylogenetic purposes, and conclusions drawn can be misleading, especially
without any prior knowledge of the history of that particular gene in a particular group
of animals (Rubinoff and Holland, 2005). Each gene codes for hundreds and thousands
of characters, which determine its position in relation to other species. Mitochondrial
genes only carry information about the maternal line and are highly variable within
species, while nuclear genes diverge much slower, but might not give an ideal resolution
down to species level (Rubinoff and Holland, 2005). Therefore, a combination of differ-
ent genes should be used to determine the relationship of species. In the present study
the systematics of holothurians is approached by looking at the molecular information in
more detail and by combining nuclear and mitochondrial DNA fragments. I successfully
amplified the histone 3 gene (H3) for the first time in holothurians and propose this gene
as a valuable additional tool in understanding holothurian taxonomy. I concentrate on
deep-sea species in this study, as there has not been much research into understanding

their relationships on a molecular level, despite there being a great need for it.

6.2 Methods

6.2.1 Taxa

Samples of holothurians were collected from the Mid-Atlantic Ridge as part of the ECO-
MAR project between 2007 and 2010 (Table D.1, page 164) (ECOMAR, 2012). The
specimens were collected from four sites at the Mid-Atlantic Ridge, to the southeast
(48°58’'N, 27°51'W), southwest (48 ° 48'N, 28° 38"W), northeast (54 ° 05’N, 33° 58 'W),
and northwest (54°19'N, 36 ° 01'W) of the Charlie-Gibbs Fracture Zone (see Figure 2.1,
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page 24). Additional sequences were obtained from the National Centre for Biotechnol-
ogy Information (NCBI). Genetic sequences were obtained from the NCBI genbank
for five species, which had 2 or more genes sequenced: Pseudostichopus villosus (163
DQT777098, COI AF486436, 18S DQT777086, 285 DQ777088), Bohadschia vitiensis (16S
FJ223868, COI EU848267, 18S AY133477), Holothuria edulis (16S EU220806, COI
EU220830, 18S AY133471), Holothuria forskali (16S GQ214740, COI GQ214762, 18S
AY133470), Psychropotes longicauda (16S DQ777099, 18S Z80956). In order to have
representatives of all orders, some material was also obtained from the PP. Shirshov
Institute of Oceanography, Moscow; Molpadia borealis, Molpadia blakei, Acanthotrochus
mirabilis, and a species of Ypsilothuria. In total, 47 specimens from 13 families, repre-

senting all six orders of holothurians were analysed in this phylogenetic study.

6.2.2 DNA Extraction, Amplification and Sequencing

A phenol-chloroform protocol (as described by Hoelzel (1998)) was used for DNA ex-
traction. Where this did not yield enough DNA, a QIAGEN DNeasy extraction kit
was used, following the manufacturers protocol. For the genes 18S, 28S, 16S and H3,
primers were designed using Oligo v2.0 (see Table 6.1). All H3 sequences in this study
are new to science. No previous study has analysed the histone gene for holothurians.
It was included in this study because it is highly conserved and therefore, complements
the other genes used in this study. For COI a hybrid primer was used as described by
Hoareau and Boissin (2010).

TABLE 6.1: Primers used in this study are listed, indicating the size of the target DNA
strand, and the origin of the primers

Gene Primers Fragment Size Primer Origin

16Sf TGACCGTGCAAAGGTAGC 406bp this study

16Sr GAGGTCGCAAACCCTTCT 406bp this study

185f TCTGGAGGGCAAGTCTGG 546bp this study

185r  ATCCTGGTGGTGCCCTTC 546bp this study

285f  CGCAGAATAAGTGGGAGG 436bp this study

28Sr  TTTTTGACACCCCTTGCG 436bp this study

COIf ACTGCCCACGCCCTAGCAATGA 656bp (Hoareau and Boissin, 2010)
TATTTTTTATGGTNATGC

COIr TCGTGTGTCTACGTCCATTCCT 656bp (Hoareau and Boissin, 2010)
ACTCTRAACATRTG

H3f AAATAGCYCGTACYAAGCAGAC 338bp this study

H3r ATTGAATRTCYTTGGGCATGAT 338bp this study
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Amplification was achieved with the QTAGEN Multiplex PCR Master Mix. The PCR
mix for the genes 285, 18S, 16S and COI contained 0.2 uM of each forward and reverse
primer, 1x QIAGEN Multiplex PCR Master Mix and 1 pug template DNA in a final 20 pl
reaction volume. For H3, 0.5x QIAGEN Q-Solution was included also in the final 20 ul
reaction volume. The PCR amplification conditions were as follows: 94 °C for 15:00 min,
followed by 35 cycles at 94°C for 00:30 min, 50°C (for 16S, 18S and 28S) and 48°C
(for COI and H3) for 01:30 min, 72°C for 01:00 min, and a final extension at 60 °C for
10:00 min. In total, 39 different species were successfully sequenced (Table D.1, page
164). PCR products were purified using QIAGEN QIAquick Purification Kit®as per

manufacturers protocol and sequenced.

6.2.3 Species and Outgroup Selection

The selection of outgroups in a phylogenetic study is crucial and will affect the final
result (Milinkovitch and Lyons-Weiler, 1998). In the present study the aim was to
resolve relationships at order and family level while maintaining sufficient resolution at
species level. Hence, it was important to find an outgroup related closely enough to the
investigated species to show relationships at species level, while being distant enough to

resolve relationships at higher taxonomic levels.

Initially, Staurocucumis abyssorum was used as outgroup because of its resemblance
to the oldest whole fossil specimen yet described (Lehman, 1958). The fossil species
Palaeocucumaria hunsrickiana was given its name because of its morphological sim-
ilarities to the modern Cucumariidae family. In an extensive study that investigates
holothurian deposits, fossil evidence is compared with modern specimens. The order
Dendrochirotida is considered to be the oldest living order today (Gilliland, 1993).
However, after analyses were run, it was apparent that this outgroup did not give the
desired resolution at higher taxonomic levels. Hence, the analyses were re-run with
non-holothurian echinoderms from the NCBI genbank: the echinoid Strongylocentro-
tus purpuratus (16S X12631.1, 18S L28056.1, 28S AF212171.1, COI HM542410.1, H3
NWO001293040.1), the Evasterias troscheli asteroid (16S DQ297090.1, 185 DQO060788.1,
28S DQ273706.1, COI GQ902422.1, H3 DQ676909.1), and the Pisaster ochraceus as-
teroid (16S DQ297110.1, 18S DQO060813.1, 28S DQ273718.1, COI HM542339.1, H3
X07503.1). At species level most groupings remained very similar regardless of the
outgroup. However, where appropriate dissimilarities/similarities are discussed for the

different outgroups, in later sections.
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6.2.4 Alignment and Analysis

Sequences were mounted and aligned with GENEIOUS (Drummond et al., 2010) and
ClustalW (Larkin et al., 2007). The evolutionary models used for the molecular data in
the Bayesian analyses were obtained from MrModelTest 2.2 (Nylander, 2004), choosing
the AIC criterion (see Table 6.2). A bayesian analysis was carried out using MrBayes
3.1.2. (Ronquist and Huelsenbeck, 2004). Individual genes were run for 400,000 gener-
ations each, and 1,000 generations were discarded as burn-in. The datasets were then
combined, using their respective evolutionary model and unlinking the genes. The com-
bined analysis was run for 2 million generations with 5,000 generations discarded as
burn-in.

TABLE 6.2: Models are listed as chosen by MrModel. Protein coding genes COI and
H3 are split into their codon position for maximum accuracy.

Gene Evolutionary Model
16S GTR+I+G

18S GTR+G

28S GTR+G

COI pos 1 GTRA+I+G
COI pos 2 GTRA+I
COI pos 3 GTR+I+G
H3 pos 1 GTR+I
H3 pos2 JC

H3 pos 3 GTR+G

6.3 Results

6.3.1 Combined Analyses

In total 2,248 base pairs were analysed, consisting of 338bp from 16S, 575bp from 18S,
359bp from 28S, 653bp from COI, and 323bp from H3. The values on the nodes indicate

the support value based on 2,000,000 generations run in MrBayes.

In total, 37 nodes have support values with 31 showing > 95 % support (Figure 6.1).
Two distinct clades are formed: the Elasipodida clade, excluding Deima validum, and
a non-Elasipodida clade that has representatives of all other orders, including Deima
validum. The orders Dendrochirotida and Dactylochirotida are strongly grouped to-

gether, forming a minor clade together with the Apodida representative Acanthotrochus
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mirabilis. This group forms a cluster with Gephyrothuria alcocki (low support 0.85).
Gephyrothuria alcocki did not form this cluster when Staurocucumis abyssorum was
used as outgroup; it fell basal to all other holothurians, except the Apodida, Dendrochi-
rotida and Dactylochirotida representatives. The relationships within the Aspidochi-
rotida order are unresolved; the family Holothuriidae forms a separate group to the
Pseudostichopus species from this study, while the position of Pseudostichopus wvillo-
sus is unclear. Deima validum and Benthothuria funebris are grouped together with
good support, even though, at present, those two species belong to the orders Elasipo-
dida and Aspidochirotida, respectively. Within the major Elasipodida clade there is a
subdivide between the family Elpidiidae, and the families Psychropotiidae and Laet-
mogonidae. The family Elpidiidae is further distinguished between Peniagone spp. and
other Elpidiidae members of this study. Within the minor Peniagone clade, the species
Peniagone azorica and Peniagone islandica do not appear as clearly distinct species
(low support 0.94). This low support for Peniagone azorica and Peniagone islandica is

also seen when using Staurocucumis abyssorum as outgroup.

6.3.2 Individual Gene Analysis

The most successful amplification rate was achieved in the 16S gene with 39 successful
amplifications. This was followed by 28S with 38 sequences, COI with 35 sequences, H3
with 33 sequences, and 18S with 32 sequences (Table D.1, page 164).

6.3.2.1 16S Gene

Similar to the consensus tree, a strongly supported non-Elasipodida clade is formed,
including D. validum. The low support (0.82) in which D. wvalidum is grouped together
with B. funebris (Figure 6.2), is not seen in the analysis using S. abyssorum as outgroup
(0.99). Molpadia spp. form a low supported clade (0.63), which did not change with a
different outgroup (0.73). The order Aspidochirotida forms distinct groups within this
major clade, grouping members from the family Holothuriidae together, and the Pseu-
dostichopus species of this study. Pseudostichopus spp. form a sister clade to all other
non-Elasipodida members. P. villosus forms a minor clade with G. alcocki, S. abyssorum,
and A. mirabilis. The relationship between the orders Dendrochirotida and Dactylochi-
rotida remains unresolved for this gene because amplification of the Ypsilothuria sp. was
not achieved. Unlike the consensus tree, Elasipodida (except D. wvalidum) representa-
tives do not form a distinct clade in this gene. Peniagone spp., members of the families
Psychropotiidae and Laetmogoniidae, and non-Peniagone Elpidiidae species form their

respective, distinct sister clades. These clades form sister clades to one-another and to
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FIGURE 6.1: Consensus Tree. Numbers after each species name refer to their individual
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the non-Elasipodida clade (Figure 6.2). Peniagone species form one clade that distin-
guishes P. coccinea as different species, but fails to do so for P. islandica and P. azorica.

The same grouping for this genus was formed, regardless of the outgroup.

6.3.2.2 28S Gene

The 28S tree, similar to the 16S and consensus trees, forms a major non-Elasipodida
clade that includes Deima validum (Figure 6.3), though with low support (0.72). D.
validum forms a minor clade with Benthothuria funebris and Acanthotrochus mirabilis,
latter being grouped directly with D. validum. This minor clade forms with low support
with both outgroup variations (0.77/0.73). Molpadia spp. are grouped together in a mi-
nor clade with strong support. Within the major clade, the Pseudostichopus species of
this study form a low supported (0.72), minor sister clade to all other non-Elasipodida
species (Figure 6.3). When using Staurocucumis abyssorum as outgroup, this minor
clade of Pseudostichopus forms a strongly supported sister clade to Elasipodida species.
Similar to the 16S tree, Elasipodida representatives form three distinct sister clades to
the major non-Elasipodida clade. The best supported clade is formed by Elpidiidaes
that exclude Peniagone species. Peniagone species form a weakly supported clade with
the echinoid Strongylocentrotus purupatus. The Peniagone branch does not distinguish
between individual species in the 28S gene and is only weakly supported (0.84) with as-
teroids and an echinoid as outgroup. In contrast, this Peniagone branch is well supported
with S. abyssorum as outgroup. The representatives of the families Psychopodiidae and
Laetmogoniidae form a weakly supported (0.56) minor clade, in which the positioning
of Benthodytes lingua and B. gosarsi EQ9 appear unresolved. With S. abyssorum as
outgroup, this clade is absent and Laetmogone billetti is positioned basally to all other
Elasipodida species, leaving the position of Benthotyes spp. and Psychropotes depressa

unresolved.

6.3.2.3 COI Gene

In the COI gene shallow-water representatives of the order Aspidochirotida fall basal to
all deep-sea representatives of this study (Figure 6.4). The deep-sea representatives form
one major clade that is not very well supported (0.81). Within this clade the positions
of Ekkentropelma sp. and Ypsilothuria sp. are unresolved. The COI gene is the only
gene in which a big clade is formed that includes all Elasipodida (0.74). Deima validum
still forms a minor clade with Benthothuria funebris, latter being directly grouped with
Pseudostichopus sp. A (0.92). This minor clade has little support (0.67) with the

presented outgroups (Figure 6.4). With Staurocucumis abyssorum as outgroup this
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minor clade is absent, and although B. funebris and Pseudostichopus sp. A are still
grouped together, they have even less support (0.6). The position of Deima validum
remains unresolved with S. abyssorum as outgroup. The division between the families
Elpidiidae, and Psychropotiidae and Laetmogoniidae is strong (Figure 6.4). The family
Laetmogoniidae forms a weak cluster (0.93) with the family Psychropotiidae. There is
a strong separation of Peniagone spp. from other Elpidiidae members. Though the
separation of Ellipinion delagei from Kolga nana and Amperima furcata is weak (0.93),
there is good support for this division with S. abyssorum as outgroup. The grouping
of K. nana with E. delagei only finds low support, regardless of outgroup (0.65/0.94).
Sister to the Elasipodida clade are the weakly supported grouping of Gephyrothuria
alcocki and Staurocucumis abyssorum (0.57), and a clade that includes all Molpadia

Spp., together with Pseudostichopus sp. B (0.62).

6.3.2.4 H3 Gene

The H3 tree is least similar to the consensus tree. Three major sister clades are formed,
non of which is well supported (Figure 6.5). One of these clades groups Peniagone
islandica and Peniagone azorica together with the families Laetmogoniidae and Psy-
chropotiidae. This grouping was also found when Staurocucumis abyssorum was used
as outgroup, and finds low support regardless of the outgroup (0.54/0.81). Another
clade groups all non-Peniagone Elpidiidae together (0.89). Within this smaller clade,
Amperima furcata and Ellipinion delagei are paired together (0.8). These two sister
clades form one larger clade when S. abyssorum was used as outgroup (0.99). Finally,
the largest clade is formed by all remaining species (Figure 6.5). Within this clade the
positions of Pseudostichopus sp. A, Pseudostichopus sp. B, Acanthotrochus mirabilis,
and Peniagone coccinea D42 are unresolved. The position of these species were also
unresolved with S. abyssorum as outgroup. Within this major clade a well supported
Molpadia clade is formed, as well as one including the representatives of the orders Den-
drochirotida and Dactylochirotida. H3 is the only gene in which Deima validum and
Benthothuria funebris do not form a minor clade. Benthothuria funebris is paired up
with Gephyrothuria alcocki, leaving Deima validum in an unresolved position. With
S. abyssorum as outgroup, these three species form one, low supported (0.63) clade,

although B. funebris and G. alcocki are paired up regardless of the outgroup.
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6.3.2.5 18S Gene

The 18S tree is most similar to the consensus tree (Figure 6.6). Two major clades
are formed in the 18S tree, dividing the Elasipodida from the non-Elasipodida (ex-
cept Deima validum). Within the Elasipodida clade Laetmogone billetti falls basally
to all other Elasipodida, which are further divided between the families Elpidiidae and
Psychropotiidae. The division between these two families is only weakly supported,
regardless of outgroup (0.63/0.57). Within the Elpidiidae clade Peniagone spp. fall
into a sister clade to the other Elpidiidae species. No differentiation between Peniagone
islandica and Peniagone azorica is apparent, though the support for this Peniagone
branch is low with both outgroups (0.89/0.83). Amperima furcata falls basally to Kolga
nana and Ellipinion delagei, latter pairing being weakly supported (0.92/0.91). Within
the major non-Elasipodida clade, a Dendrochirotida/Dactylochirotida clade is formed
basally to the other non-Elasipodida species (low support 0.63). Within this clade the
coastal family Holothuriidae, and the deep-sea Pseudostichopus sp. A and B, fall basal
to the remainder of the species (Figure 6.6). Minor, low supported clades are formed
by Molpadia spp. (support 0.83), Benthothuria funebris and Deima validum (support
0.81), and Gephyrothuria alcocki and Pseudostichopus villosus (support 0.55). Very sim-
ilar groupings occurred with S. abyssorum as outgroup, with the only exception, that
Pseudostichopus villosus did not group together with Gephyrothuria alcocki, though still

placed in the clade with the three sister clades.

6.4 Discussion

Species from the orders Dendrochirotida and Dactylochirotida were grouped strongly
together. This grouping is interesting because both orders were considered Dendrochi-
rotida until 1965, when Pawson & Fell split the order into the currently recognised orders
Dendrochirotida and Dactylochirotida. Ossicle fossil evidence suggests a divergence of
these two orders around the Carboniferous period (ca. 340 Ma). The taxonomic sep-
aration was carried out because the number of tentacles was not considered important
enough in reflecting an evolutionary relationship. Instead, it was focussed on the dif-
ference in the calcareous ring, the shape of the tentacles and the differences in ossicle
numbers and shapes in the body wall (Pawson and Fell, 1965). In this study no fur-
ther conclusions can be drawn about this grouping, as there are too few representatives.

However, further investigation into these orders and their relationships is encouraged.

The order Apodida is morphologically unique and some of its species are the largest

echinoderms with up to 3 m body length (Kerr, 2001). Compared to other holothurians
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they lack tubefeet, papillae and a radial water canal (Kerr, 2001). Yet, a clear separation
of the order Apodida from other holothurian orders is not supported in the consensus
tree (Figure 6.1), although more information and more species are needed for a detailed
analysis into the relationship of its genera. The strong grouping of the Apodida rep-
resentative with the Dendrochirotida/Dactylochirotida, suggest a historic relationship.
However, as there are only very few representative species from these three orders, this

remains speculative.

The deep-sea order Elasipodida groups strongly together, with the exception of Deima
validum. Taxonomically, the Elasipodida has been very carefully studied and it is the
only order that is ecologically restricted to the deep sea. Morphologically one of its
main distinguishing features is the absence of a respiratory tree (Hansen, 1975). The
FElasipodida order shows a strong molecular support in the grouping of its Elpidiidae
family members, which are further subdivided into Peniagone spp. and the other El-
pidiidae family members, Amperima sp. and Ellipinion sp. Taxonomically, one of the
main features that distinguishes the Elpidiidae family from other Elasipodida families
is its unique shape of the calcareous ring (Hansen, 1975). Within the Peniagone clade
there is good support across all genes studied (apart for COI where amplification was
not possible) for the erection of the new species Peniagone coccinea (Rogacheva & Ge-
bruk (2012) in Rogacheva et al. (accepteda)). The other two Peniagone species analysed
from the MAR, while appearing to be distinct morphologically, appear to be the same
species. Peniagone azorica was originally described by Marenzeller (1893), and Peni-
agone islandica by Deichmann, 1930 (Hansen, 1975). Molecular data presented here,
suggest that P. azorica and P. islandica are the same species. Specimens of P. islandica
were collected south of the Charlie-Gibbs Fracture Zone (CGFZ), while specimens of
Peniagone azorica were collected from the north. This indicates that these two species
are most likely two morpho-types of the same species. However, the genes used in this
study are not the most suitable for picking up fine scale changes, especially as the COI
gene of Peniagone azorica could not be amplified. While there is a strong case that
this is one species, a recent divergence is possible and needs further investigation at
population genetics level. Taxonomically, these species are distinguished by their ossi-
cle characteristics. Otherwise they are very similar morphologically (Rogacheva et al.,
accepteda). Traditionally, the Elasipodida is divided into the suborders, Deimatina and
Psychropotina (Hansen, 1975). The non-Elpidiidae clade of the order Elasipodida do not
conform to this division in the consensus tree (Figure 6.1). This clade, including Ben-
thodytes spp., Psychropotes spp., and Laetmogone billetti Rogacheva & Gebruk (2012),
has a strong molecular support. However, while Benthodytes spp. and Psychopotes spp.
are considered, together with the family Elpidiidae, members of the Psychropotina sub-

order, the Laetmogone genus is considered part of the Deimatina suborder, jointly with
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the genus Deima. Deima validum is consistently placed outside the order Elasipodida
and grouped together with Benthothuria funebris, a species of the order Aspidochirotida.
This grouping is remarkable, not only because they are members of different orders, they
are also distinctly different from each other morphologically. This clade is supported
by an independent study, conducted by Solis-Marin in 2003, where the same grouping
occurred (Solis-Marin, 2003). Although they only studied one mitochondrial gene (16S),
the grouping of Deima validum and Benthothuria funebris is consistent with the consen-
sus tree presented here (Figure 6.1). This is an indication of convergent morphological
evolution, where both species resemble morphological characteristics of different orders,
despite being most closely related to one another at molecular level. Why these two
species should cluster together is very difficult to determine morphologically, suggest-
ing that characteristics other than the presence/absence of respiratory trees and spicules
might play a significant role in distinguishing deep-sea holothurians. The data presented
here strongly suggest Deima validum does not belong to the order Elasipodida. The re-
lationship of other members of the order Aspidochirotida is mainly unresolved, although
shallow water representatives of Holothuriidae family are grouped together, as are the
deep-sea Pseudostichopus sp. from the Synallactidae family. The species that is used in
this study called Pseudostichopus villosus has, since its publication in gen bank, been
reclassified as Molpadiodemas villosus. Looking at the molecular data presented here,
its position is unresolved. This indicates that more research is needed in resolving the

relationships of the Synallactidae species.

Finally, one of the striking characteristics in the order Molpadiida, are the ossicles,
which change with age (Billett, 1991). Their morphology appears very basic. They
lack tube feet, have basic tentacles and a general ovoid body shape, which makes it
difficult to distinguish the species (O’Loughlin et al., 2011). In the present study, this
order has two represented genera, Gephyrothuria and Molpadia. Gephyrothuria has a
long history of taxonomic uncertainty. It does not appear to have any clear taxonomic
characteristics. This genus was grouped together with the Pseudostichopus genera into
the family Gephyrothurriidae by Svend Heding (Heding, 1935), while Deichmann placed
this genus into the family Molpadiidae (Deichmann, 1930). Currently, this genus is ac-
cepted as part of the order Molpadiida, within its own family. Owing to Gephyrothuria
being a very obscure genus it is often excluded from analyses (Kerr and Kim, 2001)
and only one species is currently accepted for this genus (O’Loughlin, 1998). Similar to
its morphological taxonomy, the genetic relationship of Gephyrothuria appears unclear,
based on presented data. However, it appears that its inclusion into the order Molpadi-
ida, is not supported genetically. With FEwvasterias troscheli, Pisaster ochracheus, and

Strongylocentrotus purupatus as outgroup Gephyrothuria alcocki was grouped together,
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though with low support, with the orders Dendrochirotida/Dactylochirotida and Apo-
dida. When Staurocucumis abyssorum was used as outgroup this species formed its own
small branch that was positioned basal to all species representing the order Molpadiida,

Aspidochirotida, and Elasipodida.

Species of the genus Molpadia are strongly grouped together. Most noticeable in the
Molpadia clade is the grouping of Molpadia blakei and Molpadia musculus in one,
strongly supported clade. This is particularly interesting in light of the recent study
by O’Loughlin et al. that found a number of species complexes, one of which included
Molpadia musculus (O’Loughlin et al., 2011). In their study only Molpadia musculus was
investigated from the genus Molpadia. It was suggested that this cosmopolitan species
is a species complex of cryptic species. We suggest the possibility that the species com-
plexes described by O’Loughlin et al. might also include other morphologically distinct
species that have been, taxonomically, recognised as separate species e.g. Molpadia
blakei, but which are genetically not distinct. This implies that the entire genus Mol-
padia needs considerable reworking. As ossicles change with age in Molpadia musculus

might not be a suitable indicator for taxonomic species in the Molpadiida.

6.4.1 Implications for Holothurian Systematics

In the past, studies on holothurian systematics have either only concentrated on discrete
morphological characteristics (Kerr and Kim, 2001), mitochondrial DNA(Arndt et al.,
1996), or on a combination of individual mitochondrial genes and discrete morphological
characters (Arndt et al., 1996; Solis-Marin, 2003). Owing to the long geological history
of the class Holothuroidea is morphologically very complex. Character states that have
been assigned are not always reliable, e.g. Molpadia musculus/Molpadia blakei. Consid-
eration of mitochondrial DNA alone to clarify the relationship of this group can result
in unreliable outcomes, because mitochondrial DNA has a much smaller effective pop-
ulation size than nuclear genes (Zhan et al., 2007), and is only pased on through the
maternal line. Additionally, holothurian DNA is notoriously difficult to amplify and it
is rare that more than a DNA fragment is successfully amplified. Hence, the use of
several genes, which evolve at different rates is very beneficial, in order to understand
the overarching relationships within this class. It shows that there is a varying selective
pressure on individual genes, emphasising the need for a balanced selection of nuclear
and mitochondrial; protein and non-protein coding genes. The combined information
of different genes give a much stronger overall relationship. There is good support that

Molpadia aff. blakei is a separate species, at least to those investigated in this study.
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Taxonomically, it should be possible to select current taxonomic character states that are
most suitable in reflecting molecular information, while identifying those that might be
redundant. With such an approach it could be possible to reduce the number of current
morphological characteristics that need to be investigated to distinguish between species

to fewer, more meaningful, characteristics.

6.5 Conclusion

Based on the data presented here Deima validum and Bentothuria funebris do not belong
to the respective orders Elasipodida and Aspidochirotida. They form their own group,
although it is unclear at what level. The Elasipodida suborders need reworking. Two
morphological species of Peniagone azorica and Peniagone islandica are not distinct
genetically. The order Aspidochirotodita is unresolved and more samples are needed to
decide on its higher taxonomic structure. The same is true for the orders Dendrochirotida
and Dactylochirotida. The genus Gephyrothuria is distinct genetically from species in
the order Molpadiida. Molpadia musculus and Molpadia blakei are genetically similar,
suggesting that they might be one species. The H3 gene was amplified for holothurians
the first time.






Chapter 7

Synthesis

In this study aspects of the MAR were investigated using three different methodolo-
gies. In total, over 300 molecular samples were taken between 2009 and 2010, which
resulted in the successful amplification of 2,248 base pairs belonging to five genes, from
47 holothurian specimens (Chapter 6). To clarify the faunal distribution and local habi-
tat complexity, 32,000 m? of HD quality footage were analysed, resulting in 55,192
specimen counts (Chapter 4). Finally, an area of 50 ha was trawled, resulting in 21,974
identified specimens that were measured and weighed (Chapter 3). Molecular science
can only point-sample a habitat, while imaging and trawling gear can sample areas

2 in images to ha in trawls. Collectively these techniques provide

that range from m
ecologically-relevant information on species richness, diversity, density, and community

composition.

While the geomorpholgy of the Mid-Atlantic Ridge (MAR) is well documented, and
chemosynthetic systems have been studied extensively, relatively little was known about
its non-chemosynthetic environment prior to the MAR-ECO and ECOMAR, projects
(Bergstad et al., 2008). The numerous benthic invertebrate megafauna discovered dur-
ing these projects highlight the importance of species identification for ecological under-
standing (Gebruk et al., 2008; Martynov and Litvinova, 2008; Mironov, 2008; Mortensen
et al., 2008; Tabachnick and Collins, 2008; Rogacheva et al., accepteda). Even in major
deep-sea megafauna groups, such as holothurians (Billett, 1991), there remain many un-
resolved relationships. Each new species description must take into account previously
established characteristics that define different orders and families. Therefore, choosing
suitable morphological traits becomes critical. While research into species and genera
relationships is ongoing, families and orders are rarely revised (Pawson and Fell, 1965;

O’Loughlin, 1998; Solis-Marin, 2003). The phylogenetic approach adopted by this study
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highlighted the need for further investigation into relationships at higher taxonomic lev-
els. Two species, Deima validum and Benthothuria funebris, that are morphologically
very distinct and belong to different families proved to be genetically closely related.
This implies that morphological characteristics that are used by taxonomists to group
species into their specific orders and families might not reflect their evolutionary rela-
tionship. This is also highlighted by genera Molpadia and Peniagone, which include
species that are currently separate but appear to be conspecific morphotypes (Figure
6.1, page 113). As species form the basis for ecological studies, it is important to resolve
these taxonomic problems. It is clear from the present study that many relationships
between holothurian families are still poorly understood (Figure 6.1, page 113), and it

is assumed that this issue applies to many deep-sea taxa.

Through their physical structures, or by creating structures such as mounds and tubes,
some species can enhance local habitat heterogeneity (Buhl-Mortensen et al., 2010).
The MAR is a very complex deep-sea region (Priede et al., in prep) that incorporates
a range of biologically-generated microhabitats, as well as geological structures, such as
boulders. These microhabitats can influence the distribution of epibenthic fauna (Auster
et al., 1991). A strong effect of slope as habitat characteristic was observed in diversity
and community composition, although its effect differed between sites. At the southern
sites the community composition between flat and sloped terrain was noticeably more
pronounced (Figure 4.8, page 84), while diversity differences between slope habitats were
much stronger at the SE and NW sites, compared to the SW and NE sites (Figure 4.6,
page 81). More investigations are needed to understand this contrast. It might be caused
by a combination of factors, yet to be identified and quantified, such as the distance to
geological structures affecting the local hydrology. Observations of biogenic structures
on soft sediment were made at all MAR sites and within both habitats. Although species
forming these structures differed between sites, overall only slightly fewer were present
at the NE site, while there were no apparent differences between the SE, SW and NW
sites (Table 4.7, page 85).

In contrast to biogenic structures, the overall composition (Figure 3.6, page 53; Figure
4.7, page 82), density, size and biomass of megafaunal communities differed between
the sites. These variations were likely driven by a combination of environmental forces,
such as food availability and quality (Gage, 2003), sediment type (Bett et al., 2001;
Ramirez Llodra et al., 2010), habitat heterogeneity (Buhl-Mortensen et al., 2010) and
possibly by levels of disturbance (Glover et al., 2010). The differences in species com-
position between the two northern sites indicate that the Scotland-Iceland Overflow
Water does not act as a dispersal route for fauna. Instead, the southern sites share more

species, though the exchange mechanism remains unclear.



Chapter 7. Synthesis 129

7.1 Are the MAR and Charlie-Gibbs Fracture Zone Bar-

riers?

This study suggests that the Mid-Atlantic Ridge may only act as barrier to megafaunal
dispersal between the northern sites, where it is higher. If the ridge forms a consistent
barrier, significant differences between the southern sites would have been observed,
similar to those observed at the northern sites (Section 4.3.6, page 81). Although unlikely
to have influenced the final results, consideration must be given to the low sampling effort
at the SW site, which was only sampled in 2010. As already discussed, in video surveys it
can be difficult to distinguish different species and morpho-types that are counted as one
species might encompass several. As no trawling was achieved at the SW site, species
could not be examined in detail and identifications are solely based on the expertise of

taxonomists who viewed video recordings.

It is more likely that the Charlie-Gibbs Fracture Zone is a barrier to dispersal, although
other factors may also drive differences between north and south. Firstly, the current
system through the Fracture Zone may create an obstacle to the exchange of megafauna
between the northern and southern sites. Secondly, differences between the northern and
southern communities suggest that the northern sites were more dynamic and, therefore,
unsuitable for species that occurred at the southern sites. A further factor in support of
the idea of the Fracture Zone as barrier, are the molecular result for Peniagone azorica
and Peniagone islandica (Figure 6.1, page 113). Peniagone azorica was restricted to
the northern sites, while Peniagone islandica was only observed at the southern sites.
Despite very similar external morphologies, their morphology of calcareous ossicles is
distinctly different. However, their genetic similarity suggests that these two species
are currently undergoing divergence (Rogacheva et al., accepteda), possibly driven by a
lack of substantial gene flow across the CGFZ. In a study investigating two study sites
separated by the Wyville-Thomson Ridge significant differences in species composition
could be observed also (Bett et al., 2001). However, in this case, differences to the north
and south of the ridge were explained by different hydrographic regimes (Bett et al.,
2001).

7.2 The ECOMAR Study Area in Context

The diversity from the video survey was consistently higher than reported from the
Faroe-Shetland channel (Jones et al., 2007) and the HAUSGARTEN observatory (Soltwedel
et al., 2009). However, this may be a product of the higher quality video footage. Di-

versity values based on trawl catches were fairly similar to those reported from the New
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England slope (Haedrich et al., 1980) (Figure 3.8, page 62). Densities were also similar
to those expected for benthic megafauna (Figure 3.7, page 60). Species that occurred
at both, the MAR and on continental margins, do not appear to show any bathymetric
displacement at the ridge, a theory that had been proposed for scavenging fish (King
et al., 2006). The initial hypothesis that the ridge supports a pool of species from the
continental margins is neither supported nor rejected, as data are limited. The fact that
fauna from the ridge are rather more similar to that on the eastern, than western con-
tinental slope is likely a result of greater sampling effort devoted to benthic megafauna
on the European margins. Similarly, it is unlikely that the ridge hosts many endemic
species. Although many new species have been found throughout the ECOMAR study
(see forthcoming special issue of Marine Biology Research issue edited by A. Gebruk),
this likely reflects the limited sampling prior to MAR-ECO and ECOMAR.

The MAR in the ECOMAR region has been previously recognised as an important
barrier in the northern Atlantic, dividing the pelagic realm into east and west Atlantic
biomes (Longhurst, 2007). While a similar division could also be observed for the benthos
at the northern sites, the view that the ridge divides the Atlantic into an eastern and
western sector cannot fully be supported through the present study while the hypothesis
that the Charlie-Gibbs Fracture Zone divides benthic fauna into southern and northern
communities (Vinogradova, 1997) finds support in the results of this study. The recent
GOODS report, which considers all benthic bathyal fauna between 800 and 3,000 m
part of the northern North Atlantic Province (Agostini et al., 2009) does not recognise
any faunal boundaries along the Ridge or the Fracture Zone, the present study reveals

considerable species-level differences between the sites.

Finally, the present study highlights the complexity of the MAR, which represents one
of the most extensive bathyal environments on Earth. It has been suggested that the
pelagic biomass that is displaced by the presence of this bathymetric feature is replaced
by benthic biomass (Priede et al., in prep). While most research on bathyal environments
have been carried out on continental slopes, differences in environmental setting at mid-
ocean ridges has to be remembered, such as different hydrographic regimes, increased
anthropogenic pressures at the continental margins, and different inputs of organic mat-
ter. As human impacts on continental margins increase, the biological diversity of the
margins is likely to suffer, leaving mid-ocean ridges and seamounts some of the few
bathyal biodiversity oases. Non-chemosynthetic habitats dominate mid-ocean ridges in

terms of spatial coverage and it is crucial to understand their ecology.
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7.3 Working Hypotheses Revisited

e Biomass, as measure of energy input, does not differ between the south and north
sites in benthic megafauna. Hypothesis is supported. Data did not show any
significant difference in biomass between the southern and northern sites, indicat-
ing that the energy availability is not significantly different on the benthos south
and north of the Charlie-Gibbs Fractures Zone.

e Biomass, as measure of energy input, does not differ between the east and west
site in benthic megafauna. Hypothesis is supported. Data did not show any
significant difference in biomass between the eastern and western sites, indicating
that the energy availability is not significantly different east and west of the Mid-
Atlantic Ridge.

e Body sizes of benthic megafauna do not differ between the south and the north.
Hypothesis rejected. Data show significant size differences between sites, with

generally larger sizes observed at the northern sites.

e Body sizes do not differ in benthic megafauna between east and west. Hypothesis
is supported. Although data showed significant differences in body size between
sites, there was no clear pattern indicating that either the western or eastern sites of
the ridge had larger specimens. Size differences are likely a result of environmental

forcing and inter-specific resource competition.

e No particular species dominate at any site, suggesting an even species distribution.
Hypothesis rejected. Although trawl samples showed a dominance at the NE
site (by the holothurian Kolga nana), and an even distribution at the NW and SE
site, all sites were dominated by few fauna that differed between sites in the video

survey.

e There is no difference in diversity in benthic megafauna between the southern and
northern sites. Hypothesis is supported. A significant difference in diversity
was observed between sites in the trawl data, with the highest diversity observed
at the SE site. However, the video survey did not show any significant difference
in diversity and it is assumed that the more balanced sampling design in the ROV

study reflects the differences in diversity more realistically.

e There is no difference in diversity in benthic megafauna between the western and
eastern sites. Hypothesis is supported. A significant difference in diversity
was observed between sites in the trawl data, with the highest diversity observed at

the SE site, followed by the NW site. However, the video survey did not show any
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significant difference in diversity and it is assumed that the more balanced sampling

design in the ROV study reflects the differences in diversity more realistically.

e There is no difference in benthic megafauna community composition between the
southern and northern sites. Hypothesis rejected. There was a significant
difference in the composition of benthic megafauna north and south of the Charlie-

Gibbs Fracture Zone in datasets from both the trawl and video survey.

e There is no difference in benthic megafauna community composition between the
eastern and western sites. Hypothesis rejected. There was a significant differ-
ence in the composition of benthic megafauna east and west of the Mid-Atlantic

Ridge in datasets from both the trawl and video survey.

e Small-scale habitat variations do not affect benthic megafauna assemblage struc-
tures at the MAR. Hypothesis rejected. There was a significant difference in
the community composition between flat and 10° slope habitats, suggesting that

small-scale variations do affect the community composition in benthic megafauna.

e Taxonomic relationships of benthic megafauna at the MAR are resolved. Hy-
pothesis rejected. Molecular analyses of holothurians showed that relationships
between species, even as common as holothurians, are still unresolved for some

species.

e The new species Peniagone coccinea, Laetmogone billetti, Molpadia sp. nov. are
not genetically distinct from close holothurian relatives found at the MAR. Hy-
pothesis rejected. While both morphological and molecular data on Peniagone
coccinea and Laetmogone billetti clearly support their status as new species, Mol-
padia sp. nov. has morphologically not been accepted as new species and has been
described as Molpadia aff. blakei. While molecular data supports the status of
Molpadia sp. nov. as new species, this species does not appear to have enough dis-
tinguishable morphological characteristics to officially classify it as new. (Chapter
6 & Rogacheva et al. (accepteda))

o Gephyrothuria alcocki does not belong to the order Molpadiida. Hypothesis is
supported. Although the position of Gephyrothuria alcocki has not been resolved
within the order Holothuroidea, there is strong support that this species does not

belong to the order Molpadiida.
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7.4 Future Perspectives

There remains a wealth of information to be acquired in addition to the interpreta-
tions presented in this study. The specimens from the trawl catches still hold much
information regarding reproduction. Some species recorded from the MAR could be
used for comparison between the sites and to similar species found at the continental
margins. Individuals collected from the genus Molpadia could not only be compared re-
productively, but also contribute to an overarching investigation that would clarify the
systematics of this group through molecular and taxonomic studies. Molecular samples
that were collected could be used to investigate the gene flow between the ECOMAR
sites, while the phylogenetic data presented here could be further analysed to clarify
possible divergence times of holothurian species. The ROV data collected represents the
main opportunity for further study. Species and habitat patchiness may further be anal-
ysed, and visualised through habitat mapping. The sizes of the individual specimens
counted in the videos could be obtained and compared between the sites. Based on
information collected from trawl data, sizes from video footage could also be translated
into biomass. These biomass and size measures would allow for a more comprehensive
result, as problems associated with damage to individual specimens would no longer
apply, and size would be unchanged through the fixation of specimens. The ROV and
trawl data could also be further analysed by considering feeding guilds. Unfortunately,
as a result of time constraint, none of these analyses were pursued, but it is hoped that

in future time and money will be invested to carry on this study.
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Appendix B

Species List - Video analysis

TABLE B.1: Total Density (number of individuals 8,000 m?) of distinguished taxonomic
units from the MAR.

Taxonomic Group Taxonomic Unit NwW NE SW SE
Asteroidea Asteroidea (Class) indet. 3 4 40 24
Asteroidea Asteroidea sp. 1 2 1 3 0
Asteroidea Asteroidea sp. 7 6 0 3 1
Asteroidea Asteroidea sp. 8 0 0 1 0
Asteroidea Brisingida (Family) indet. 4 10 0 2
Asteroidea Freyella elegans 50 86 2 0
Asteroidea Freyella sp. 2 8 3 2
Asteroidea Pterasteridae (Family) indet. 0 0 2
Asteroidea Hymenaster sp. A 1 49 2 5
Asteroidea Hymenaster sp. C 2 16 3 45
Asteroidea Hymenaster sp. E 0 4 0 0
Asteroidea Bathybiaster vexillifer 2 0 0

Asteroidea Plutonaster bifrons 0 1 0

Asteroidea Porcellanaster ceruleus 0 1 0

Asteroidea Hydraasterias sexradiata 28 ) 53 66
Asteroidea Benthopectinidae sp. A 0 0 1 0
Holothuroidea Holothurian (Class) indet. 23 48 59 21
Holothuroidea Elasipodida (Order) indet. 1 58 66 20
Holothuroidea Elpidiidae (Family) indet. 34 28 162 33
Holothuroidea Paelopatides grisea 10 0 0 0
Holothuroidea Benthodytes gosarsi 13 10 16 19

table continues ...
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Taxonomic Group Taxonomic Unit NwW NE SW SE
Holothuroidea Amperima furcata 2 0 118 14
Holothuroidea Benthodytes lingua 0 1 1
Holothuroidea Psychropotes sp. nov. 0 0 0 1
Holothuroidea Psychropotes depressa 2 8 1
Holothuroidea Ellipinion (Genus) indet. 1 0 23 0
Holothuroidea Ellipinion alani 0 0 26 0
Holothuroidea Peniagone (Genus) indet. 0 120 163 117
Holothuroidea Peniagone azorica/islandica 1 36 15 11
Holothuroidea Peniagone coccinea 0 18 33 13
Holothuroidea Kolga nana 1 22,046 0 0
Holothuroidea Deimatidae (Family) indet. 0 0 1 0
Holothuroidea Laetmogone billetts 0 2 0 0
Holothuroidea Deima validum 0 0 1 0
Holothuroidea Aspidochirotida (Order) indet. 0 1 0 0
Holothuroidea Synallactidae (Family) indet. 1 1 1 0
Holothuroidea Synallactes sp. A 0 1 4 0
Holothuroidea Synallactes sp. B 2 0 0 0
Holothuroidea Pseudostichopus sp. A 65 3 ) 1
Holothuroidea Pseudostichopus sp. B 54 5 6 22
Holothuroidea Pseudostichopus sp. C 14 9 1 3
Holothuroidea Mesothuria (Genus) indet. 48 39 1 6
Holothuroidea Benthothuria funebris 1 1 0 5
Holothuroidea Gephyrothuria sp. 1 0 0 0
Holothuroidea Synallactes crucifera 0 0 3 1
Holothuroidea Staurocucumis abyssorum 1 4 4 28
Holothuroidea Myriotrochus (Genus) sp. 1 0 0 0
Echinoidea Echinoid (Class) indet. 0 1 0 0
Echinoidea Echinothuriidae (Family) indet. 17 1 0 0
Echinoidea Tromokosoma (Genus) indet. 0 0 1 3
Echinoidea Tromikosoma koehler: 7 2 1 4
Echinoidea Urechinidae/Hemiasteridae complex 996 689 2 0
Echinoidea Echinus (Genus) indet. A 35 1 0 0
Echinoidea Pourtalesia (Genus) indet. 0 476 0 3,360
Echinoidea Urechinus naresianus 1,199 114 0 0
Ophiuroidea Ophiuroidea (Class) indet. 708 451 19 33
Ophiuroidea Asteroniz (Genus) indet. 0 1 0
Ophiuroidea Ophiuroid sp. C 22 0 0 0

table continues ...
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Taxonomic Group Taxonomic Unit NW NE SW SE
Ophiuroidea Ophiuroid sp. E 387 3 0 0
Ophiuroidea Ophiuroid sp. F 299 1 6 2
Crinoidea Anachalypsicrinus nefertini 0 0 5 1
Crinoidea Bourgueticrinida sp. A 0 1 1 0
Arthropoda Arthropod (Phylum) indet. 0 1 2 0
Arthropoda Amphipoda (Order) indet. 5 0 5 0
Arthropoda Brachyura (Infraorder) indet. 0 0 7 0
Arthropoda Lithodidae (Family) indet. 2 1 0 0
Arthropoda Munidopsis rostrata 0 8 22 11
Arthropoda Munidopsis crassa 3 b} 1 2
Arthropoda Parapagurus pilosimanus 0 0 2 0
Arthropoda Glyphocrangon sculpta 1 6 12 31
Arthropoda Polycheles nanus 0 0 1 1
Arthropoda Plesiopenaeus sp. 20 3 16 10
Arthropoda Neoscalpellum debile 1 3 3 0
Pycnogonida Pycnogonida (Class) indet. 9 2 0 3
Pycnogonida Colossendeis colossea 16 0 0 0
Mollusca Octopoda (Order) indet. 0 1 0 0
Mollusca Grimpoteuthis discoveryi 1 0 0
Mollusca Scaphopod (Class) indet. 7 3 83 22
Annelida Amphinomida (Order) indet. 0 3 6
Annelida Maldanidae (Family) indet. 132 45 24 15
Annelida Polynoidae (Family) indet. B 1 0 1
Annelida Polynoidae (Family) indet. C 0
Nemertea Nemertea (Phylum) indet. 352 4
Enteropneusta Enteropneusta sp. A 32 48 16
Enteropneusta Enteropneusta sp. B 1 12 105 195
Enteropneusta Enteropneusta sp. C 0 9 10
Foraminifera Xenophyophore (Class) indet. 8 0 0
Foraminifera Syringammina corbicuna 0 24
Foraminifera Syringammina fragillissima 586 7 170 62
Foraminifera Discospirina tenuissima 2,353 1,055 3,565 2,081
Bryozoa Bryozoa (Phylum) indet. 2 0 3 0
Cnidaria Cnidaria (Phylum) indet. 7 31 25 46
Cnidaria Hydroidolina (Subclass) indet. 302 64 258 175
Cnidaria Hydroidolina sp. A 74 1 0 1
Cnidaria Hydroidolina sp. B 7 0 0 1

table continues ...
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Taxonomic Group Taxonomic Unit NW NE SW SE
Cnidaria Hydroidolina sp. C 15 2 26 15
Cnidaria Anthozoa (Class) indet. 3 1 29 0
Cnidaria Hexacorallia (Subclass) indet. 1 0 0 1
Cnidaria Cerianthida (Family) indet. 2 1 1 2
Cnidaria Ceriantharia sp. A 0 34 0 0
Cnidaria Ceriantharia sp. B 6 1 0 0
Cnidaria Ceriantharia sp. E 0 4 3 2
Cnidaria Ceriantharia sp. F 3 0 0 0
Cnidaria Ceriantharia sp. G 1 0 0 0
Cnidaria Actiniaria (Order) indet. 1 4 6 0
Cnidaria Actiniaria sp. C 1 0 4 2
Cnidaria Actiniaria sp. E 0 1 1 0
Cnidaria Actiniaria sp. H 3 0 1 0
Cnidaria Actiniaria sp. I 1 0 0 0
Cnidaria Actiniaria sp. J 0 14 11 5
Cnidaria Actiniaria sp. K 1 0 0
Cnidaria Actiniaria sp. L 1 0
Cnidaria Actinernus michaelsarsi 1 2 0
Cnidaria Scleractinia (Order) indet. 0 21 0
Cnidaria Flabellum angulare 0 26 531 176
Cnidaria Fungiacyathus fragilis 5 17 30
Cnidaria Pennatulacea (Order) indet. 2 9
Cnidaria Pennatulacea sp. A 1 0
Cnidaria Alcyonacea (Order) indet. 5 11 10 11
Cnidaria Alcyonacea sp. C 1 0 0
Cnidaria Alcyonacea sp. I 0 1
Cnidaria Anthomastus (Genus) indet. 1 0
Cnidaria Anthomastus agaricus 0 52 4 55
Cnidaria Antipatharia (Order) indet. 2 0 1 1
Porifera Porifera (Phylum) indet. 6,015 695 1,210 634
Porifera Demospongiae (Class) indet. 2 0 1 0
Porifera Demospongiae sp. E 4 0 0 0
Porifera Demospongiae sp. G 1 0 0 0
Porifera Demospongiae sp. L 0 0 1 0
Porifera Demospongiae sp. M 1 0 3 0
Porifera Demospongiae sp. P 0 0 12 0

table continues ...
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Taxonomic Group Taxonomic Unit NW NE SW SE
Porifera Hexactinellida (Class) indet. 562 468 165 122
Porifera Hexactinellida sp. C 160 0 0 0
Porifera Hexactinellida sp. D 2 0 3 0
Porifera Hexactinellida sp. 1T 0 0 1 0
Porifera Hexactinellida sp. M 1 0 0 0
Porifera Hexactinellida sp. S 1 0 1 0
Porifera Hexactinellida sp. T 1 0 0 0
Porifera Hexactinellida sp. Z 1 0 0 0
Porifera Hexactinellida sp. AB 0 0 4 0
Porifera Hexactinellida sp. AH 0 0 5 0
Porifera Hexactinellida sp. Al 8 1 0 1
Porifera Hexactinellida sp. AM 3 0 1 0
Porifera Hexactinellida sp. AO 120 5 0 0
Porifera Hexactinellida sp. AT 0 0 4 6
Porifera Hexactinellida sp. AV 0 0 3 0
Porifera Hexactinellida sp. AX 1 0 1 0
Porifera Hexactinellida sp. BE 1 0 1 0
Porifera Hexactinellida sp. BF 0 0 1 0
Porifera Hexactinellida sp. BJ 144 188 13 35
Porifera Hexactinellida sp. BK 14 27 48 15
Porifera Hexactinellida sp. BL 2 0 0
Porifera Regadrella phoenix 0 0
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Ficure C.1: CTD Profiles for individual transects run at the NW site in 10 degree

slope habitats. Each transect represents 500 m along the x axis. Red lines show

temperature profiles and are read off the left y axis. Blue lines show the salinity profile

that can be read off the inner right y axis. Green show the pressure profile that can be
read off the outer, right y axis.
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Ficure C.2: CTD Profiles for individual transects run at the NW site in flat habitats.

Each transect represents 500 m along the x axis. Red lines show temperature profiles

and are read off the left y axis. Blue lines show the salinity profile that can be read off

the inner right y axis. Green show the pressure profile that can be read off the outer,
right y axis.
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Fi1cUre C.3: CTD Profiles for individual transects run at the NE site in 10 degree slope

habitats. Each transect represents 500 m along the x axis. Red lines show temperature

profiles and are read off the left y axis. Blue lines show the salinity profile that can be

read off the inner right y axis. Green show the pressure profile that can be read off the
outer, right y axis.
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FicUure C.4: CTD Profiles for individual transects run at the NE site in flat habitats.

Each transect represents 500 m along the x axis. Red lines show temperature profiles

and are read off the left y axis. Blue lines show the salinity profile that can be read off

the inner right y axis. Green show the pressure profile that can be read off the outer,
right y axis.
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Ficure C.5: CTD Profiles for individual transects run at the SW site in 10 degree slope

habitats. Each transect represents 500 m along the x axis. Red lines show temperature

profiles and are read off the left y axis. Blue lines show the salinity profile that can be

read off the inner right y axis. Green show the pressure profile that can be read off the
outer, right y axis.
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Ficure C.6: CTD Profiles for individual transects run at the SW site in flat habitats.

Each transect represents 500 m along the x axis. Red lines show temperature profiles

and are read off the left y axis. Blue lines show the salinity profile that can be read off

the inner right y axis. Green show the pressure profile that can be read off the outer,
right y axis.
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Ficure C.7: CTD Profiles for individual transects run at the SE site in 10 degree slope

habitats. Each transect represents 500 m along the x axis. Red lines show temperature

profiles and are read off the left y axis. Blue lines show the salinity profile that can be

read off the inner right y axis. Green show the pressure profile that can be read off the
outer, right y axis.



Appendix C. ROV CTD Profiles 161
1 — 3510 1000
SEO1 flat SE02 flat L
| L I 1200
~ 35.05
45 o L I 1400
© L
E 1 = 1600
g L
o |
Q. ~ 35.00
€
s | L
= 1800
|- 4? e
i £ S
4.0 L 5 3
n o)
] [ - 2000 &
[~ 34.95
A~ A — —_—— T AT
] [ = 2200
35 4
3490 | 2400
r [~ 2600
i [~ 34.85
d T 1T T T = 2800
r 35.10 ~ 1000
SEO03 flat SEO04 flat L
4 L = 1200
[~ 35.056
45 L F 1400
° L
e |
= I 1600
2 L
21 t 35.00
S
5 | L
= > [ 1800
L2 ©
40 o = =)
L [V} 8
4 L @ (B
= 2000 o
AA [~ 34.95
[ = 2200
35 —
- 3490 | 2400
N [~ 2600
| - 34.85
T T T T 1T T T T T = 2800
0 100 200 300 400 50@ 100 200 300 400 500
Distance (m) Distance (m)

Ficure C.8: CTD Profiles for individual transects run at the SE site in flat habitats.

Each transect represents 500 m along the x axis. Red lines show temperature profiles

and are read off the left y axis. Blue lines show the salinity profile that can be read off

the inner right y axis. Green show the pressure profile that can be read off the outer,
right y axis.
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Appendix E

Species Catalogue

In this section all species from the trawl and video survey are compiled as a reference
guide. Images were included where available, and their origin has been referenced.
Information on the taxonomic status are given as well as the species names. Preliminary
species names changed in some cases, after taxonomic experts were consulted. Because
the species lists for the individual chapters refer to preliminary names, those are also
given in the species catalog, below the verified species name. Names of the taxonomic
experts identifying the species are given for each species. The method by which species
were sampled is given in the gear section, together with the ECOMAR site, species were
sampled from. These sites only refer to trawl samples and video transects described
in this study. In cases were no further specification is given, general observations were
made, outside the sampling designs (in ROV collection dives rather than observations

from within transects).

It is intended to give as comprehensive a species list as possible. Therefore, species are
included that are considered by-catches from trawl and video surveys, which are not

considered megafauna i.e. polychaetes caught at trawl by-catches.

169



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Rov, Trawl
Class: Photo by:
Holothuroidea Paelopatid . Isis 2010
Order: aelopatides grisea Identified by:
Aspidochirotida A. Rogacheva
Family: Site:
Synallactidae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Rov

Class: Hansenothuria sp. A Photo by:
Holothuroidea Isis 2010
Ordgr: o (Synnallactidae A & B) Identified by:
Aspidochirotida A. Rogacheva
Family: Site:
Synallactidae NE, SW
Phylum: Gear:
Echinodermata Rov

Class: Synallactidae Photo by:
Holothuroidea . Isis 2010
Order: (Family) sp. D Identified by:
Aspidochirotida . A. Rogacheva
Family: (Synallactidae gen. sp.)  gjte.
Synallactidae observation
Phylum: Gear:
Echinodermata Rov

Class: Synallactidae Photo by:
Holothuroidea . Isis 2010
Order: (Family) sp. B Identified by:
Aspidochirotida (Synallactidae sp. B) A. Rogacheva
Family: Site:
Synallactidae NW

Phylum: Gear:
Echinodermata Rov, Trawl
Class: Pseudostichopus Photo by:
Holothuroidea . Isis 2010
Order: peripatus Identified by:
Aspidochirotida . A. Rogacheva
Family: (Pseudostichopus sp. A)  gj¢e-
Synallactidae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Holothuroidea Pseudostichopus ~ 15is 2010
Order: sp. B Identified by:
Aspidochirotida ' A. Rogacheva
Family: Site:

Synallactidae

NW, NE, SW, SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Holothuroidea Pseudostichopus 1552010
Order: sp. C Identified by:
Aspidochirotida ' A. Rogacheva
Family: Site:
Synallactidae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Holothuroidea Pseudostichopus )

Order: sp. D Identified by:
Aspidochirotida (Pseudostichopus sp. 2) A,' Rogacheva
Family: Site:
Synallactidae NW

Phylum: Gear:
Echinodermata Rov, Trawl

Class: Photo by:
Holothuroidea Mesothuria Isis 2010

Order: (Genus) sp. A Identified by:
Aspidochirotida (Mesothuria spp.) A.. Rogacheva
Family: Site:

Synallactidae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Trawl, Rov

Class: Photo by:
Holothuroidea  Mesothuria marrocana s 2019

Order: Identified by:
Aspidochirotida A. Rogacheva
Family: Site:

Synallactidae NW, SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Holothuroidea  Mesothuria cathedralis !5 2010, David Shale
Order: Identified by:
Aspidochirotida A. Rogacheva
Family: Site:

Synallactidae NW, NE, SE
Phylum: Gear:
Echinodermata Trawl, Rov

Class: Photo by:
Holothuroidea  Benthothuria funebris ~ 1ss 2010

Order: Identified by: lower image
Aspidochirotida A. Rogacheva shows ventral
Family: Site: side

Synallactidae

NW, NE, SE




TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:

Echinodermata Trawl

Class: Photo by:

Holothuroidea  Gephyrothuria alcocki P2vid Shale

Order: Identified by:

Aspidochirotida A. Rogacheva

Family: Site:

Synallactidae NW, NE, SE

Phylum: Gear:

Echinodermata Trawl

Class: Photo by:

Holothuroidea Molpadiodemas

Order: violaceus Identified by:

Aspidochirotida A. Rogacheva

Family: Site:

Synallactidae NW

Phylum: Gear:

Echinodermata Trawl

Class: Photo by:

Holothuroidea Bathyplotes natans

Order: Identified by:

Aspidochirotida A. Rogacheva

Family: Site:

Synallactidae NW, SE

Phylum: Gear:

Echinodermata Trawl

Class: Photo by:

Holothuroidea Molpadia musculus ~ Pavid Shale

Order: Identified by:

Molpadiida A. Rogacheva

Family: Site:

Molpadiidae NW, NE, SE

Phylum: Gear: This species has been clas-
Echinodermata Trawl sified as Molpadia blakei by
Class: Photo by: A. Rogacheva (Rogacheva
Holothuroidea Molpadia sp. A et al, submitted), but appears
Order: Identified by:  to be genetically distinct.
Molpadiida A. Rogacheva Because of it genetic distinc-
Family: Site: tion, it remains separated in
Molpadiidae NW, NE, SE this study

Phylum: Gear:

Echinodermata Trawl, Rov

Class: Photo by:

Holothuroidea Staurocucumis David Shale, Isis 2010

Order: abyssorum Identified by:

Dendrochirotida (Abycucumis abyssorum) A,' Rogacheva

Family: Site:

Cucumariidae NW, NE, SW, SE




TAXONOMY NAME HABITAT IMAGE
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Holothuroidea Benthodytes go sarsi  1sis 2010, David Shale
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Psychropotidae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Holothuroidea Benthodytes lingua 155 2010
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Psychropotidae NE, SW, SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Holothuroidea Benthodytes .

Order: sanguinolenta Identified by:
Elasipodida A. Rogacheva
Family: Site:
Psychropotidae SE

Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Holothuroidea  Psychropotes depressa 1515 2010
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Psychropotidae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Holothuroidea  Pgsychropotes sp. nov. sis 2010
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Psychropotidae SE

Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Holothuroidea A mperima furcata Isis 2010, David Shale
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Elpidiidae NW, SW, SE




TAXONOMY NAME HABITAT NOTES

Phylum: Gear:

Echinodermata Rov

Class: Photo by:

Holothuroidea Ellipinion sp. A Isis 2010

Order: Identified by:

Elasipodida A. Rogacheva

Family: Site:

Elpidiidae SE

Phylum: Gear:

Echinodermata Trawl, Rov

Class: Photo by:

Holothuroidea Ellipinion delagei David Shale, Isis 2010

Order: Identified by:

Elasipodida A. Rogacheva

Family: Site:

Elpidiidae SE

Phylum: Gear:

Echinodermata Rov

Class: Photo by:

Holothuroidea Ellipinion alani [sis 2010

Order: Identified by:

Elasipodida A. Rogacheva

Family: Site:

Elpidiidae SE

Phylum: Gear:

Echinodermata Trawl, Rov

Class: Photo by:

Holothuroidea Peniagone Isis 201 i(;

Order: . . Identified by:

Elasipodida longipapillata A. Rogacheva

Family: Site:

Elpidiidae NE

Phylum: Gear:

Echinodermata Trawl, Rov Peniagone islandica and Peniagone azori-
Class: Photo by: ca have such similar morpho-types that it is
Holothuroidea Peniagone azorica not possible to distinguish them. P. azorica
Order: Identified by:  occurrs at the northern sites, and P, island-
Elasipodida A. Rogacheva ica at the southern one. These two species
Family: Site: are not clearly distinguished in the molecu-
Elpidiidae NW, NE lar study and might be the same species.
Phylum: Gear:

Echinodermata Trawl, Rov

Class: Photo by:

Holothuroidea  Peniagone islandica 15 2010

Order: Identified by:

Elasipodida A. Rogacheva

Family: Site:

Elpidiidae

SW, SE




TAXONOMY NAME HABITAT
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Peniagone sp. nov. Photo by:
Holothuroidea « o an” Isis 2010

1m
Order: coceinea Identified by:
ipodi A. Rogach

lli:lasqioShda Rogacheva & Gebruk 2012 Si te.ogac eva

amily: in Rogacheva et al (submitted) |
Elpidiidae NE, SW, SE
Phylum: Gear:
Echinodermata Laetmogone sp. nov. ~ Rov
Class: “bﬂletti” Photo by:
Holothuroidea David Shale, sis 2010
Order: Identified by:
Elasipodida Rogacheva & Gebruk 2012 A Rogacheva
Family: in Rogacheva et al (submitted) Sjte:
Elpidiidae NE
Phylum: Gear: species found
Echinodermata Trawl, Rov aggregating
Class: Photo by:
Holothuroidea Ko lga nana Isis 2010, David Shale
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Elpidiidae NE
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Holothuroidea  Synallactes crucifera 1512010
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Deimatidae SE, SW
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Holothuroidea Deima validum Isis 2010
Order: Identified by:
Elasipodida A. Rogacheva
Family: Site:
Deimatidae SE, SW
Phylum: Gear:
Echinodermata Trawl, ROV
Class: Photo by:
Holothuroidea Mpyriotrichus clarki 5% 2010
Order: Identified by:
Apodida A. Rogacheva
Family: Site:

Myriotrochidae

NW, NE, SE, SW



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Holothuroidea
Order: Labidoplax sp. Identified by:
Apodida A. Rogacheva
Family: Site:
Synaptidae NW
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Asteroidea (Class) Isis 2010
Order: sp. A Identified by:
(Asteroidea sp. 1) C,' Alt
Family: Site:
NW, NE, SW
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Asteroidea (Class) ~ fsis2010
Order: sp. C Identified by:
(Asteroidea sp. 3) C,' Alt
Family: Site:
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Asteroidea (Class) ~ /sis 2010
Order: sp. D Identified by:
(Asteroidea sp. 4) C,' Alt
Family: Site:
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Asteroidea (Class) #2010
Order: sp. G Identified by:
(Asteroidea sp. 7) C,' Alt
Family: Site:
NW, SE, SW
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Asteroidea (Class) #2010
Order: sp. H Identified by:
(Asteroidea sp. 8) C,' Alt
Family: Site:

SW




TAXONOMY NAME HABITAT NOTES
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Paxillosida (Class) ~ fsis2010
Order: sp. A Identified by:
Paxillosida (Asteroidea sp. 5) A,' Rogacheva
Family: Site:
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Plinthaster sp. A .
Order: (Plinthaster) Identified by:
Valvatida A. Dilman
Family: Site:
Gioniasteridae NW, NE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Hymenaster David Shale
Order: membranaceus Identified by:
Valvatida A. Dilman
Family: Site:
Pterasteridae NE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Hymenaster reticulatus
Order: Identified by:
Valvatida A. Dilman
Family: Site:
Pterasteridae SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Hymenaster cf. C. Alt
Order: coccinatus Identified by:
Valvatida A. Dilman
Family: Site:
Pterasteridae NW, NE, SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Hymenaster cf. f&Alt ced b
Order: . entified by:
Valvatida regalis A. Dilman
Family: Site:
Pterasteridae SE, NE




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:

Echinodermata Trawl

Class: Photo by:

Asteroidea Hymenaster cf. .

Order: rex Identified by:

Valvatida A. Dilman

Family: Site:

Pterasteridae SE

Phylum: Gear:

Echinodermata Trawl

Class: Photo by:

Asteroidea Hymenaster pellucidus At

Order: Identified by:

Valvatida A. Dilman

Family: Site:

Pterasteridae NE

Phylum: Gear:

Echinodermata Trawl

Class: Photo by:

Asteroidea Hymenaster cf. f&A“ cedb

Order: entified by:

Valvatida gennaeus A. Dilman

Family: Site:

Pterasteridae NE

Phylum: Gear:

Echinodermata Rov

Class: Photo by:

Asteroidea Hymenaster sp. A 15is 2010

Order: Identified by:

Valvatida C. Alt

Family: Site:

Pterasteridae NW, NE, SW, SE

Phylum: Gear:

Echinodermata Rov

Class: Photo by:

Asteroidea Hymenaster sp. B Isis 2010

Order: Identified by:

Valvatida C. Alt

Family: Site:

Pterasteridae

Phylum: Gear:

Echinodermata Rov

Class: Photo by:

Asteroidea Hymenaster sp. C ~ 1sis 2010 TR
Order: Identified by: )T
Valvatida C. Alt ; ‘* 1
Family: Site: :
Pterasteridae NW, NE, SW, SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Isis 2010
Order: Hymenaster sp. E Identified by:
Valvatida C. Alt
Family: Site:
Pterasteridae NE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Hymenaster sp. F Isis 2010
Order: Identified by:
Valvatida C. Alt
Family: Site:
Pterasteridae
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Hymenaster sp. G~ 552010
Order: Identified by:
Valvatida C. Alt
Family: Site:
Pterasteridae
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Hymenaster sp. H ~ 1sis 2010
Order: Identified by:
Valvatida C. Alt
Family: Site:
Pterasteridae
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Hymenaster sp. 1 Isis 2010
Order: Identified by:
Valvatida C. Alt
Family: Site:
Pterasteridae
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Hymenaster C.Alt .

Order: ?latebrosus ?gennaeus Identified by:
Valvatida A. Dilman
Family: Site:
Pterasteridae NE




TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Asteroidea Isis 2010
Order: Porania pulvillus ~ 1dentified by:
Valvatida A. Dilman
Family: Site:
Poraniidae

Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Asteroidea Porania sp. A Isis 2010
Order: Identified by:
Valvatida A. Dilman
Family: Site:
Poraniida

Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Asteroidea Bathybiaster vexillifer Al

Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Astropectinidae NW, NE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Plutonaster bifrons ~ David Shale
Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Astropectinidae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Dytaster grandis

Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Astropectinidae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Dytaster sp. A

Order: Identified by:
Paxillosida A. Dilman
Family: Site:

Astropectinidae SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea ?Astropectinidae .
Order: (Astripectinidae Identified by:
Paxillosida 9Goniasteridae) A. Dilman
Family: Site:
Astropectinidae SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Astropectinidae Identified b
Order: : entified by:
Paxillosida (Family) sp-A =) Dilman
Family: Site:
Astropectinidae SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Hyphalaster inermis ~ David Shale
Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Porcellanasteridae NW, SE
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Asteroidea Porcellanaster ceruleus D2vid Shale
Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Porcellanasteridae NW, NE, SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Caulaster pedunculatus ©-Alt
Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Porcellanasteridae NW, NE, SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Porcellanaster sp. A Identified b
Order: entified by:
Paxillosida (Porcellanaster sp.) A Dilman
Family: Site:
Porcellanasteridae NW, SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Styracaster sp. A _
Order: (Styracaster sp.) Identified by:
Paxillosida A. Dilman
Family: Site:
Porcellanasteridae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Styracaster aramatus

Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Porcellanasteridae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Styracaster .
Order: Paramatus ?chuni  9entified by:
Paxillosida . A. Dilman
Family: Site:
Porcellanasteridae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Eremicaster sp. A .
Order: (Eremicaster sp.) Identified by:
Paxillosida A. Dilman
Family: Site:
Porcellanasteridae Nw

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea Petinaster filholi

Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Benthopectinidae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Asteroidea ?Pectinaster

Order: 2cheiraster Identified by:
Paxillosida A. Dilman
Family: Site:
Benthopectinidae SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Isis 2010
Order: Benthopectinidae sp. A Identified by:
Paxillosida A. Dilman
Family: Site:
Benthopectinidae SW
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Cheiraster ?planus
Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Benthopectinidae NE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea ?Gaussaster
Order: antarcticus Identified by:
Paxillosida A. Dilman
Family: Site:
Benthopectinidae NE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Asteroidea Pseudarchaster gracilis
Order: Identified by:
Paxillosida A. Dilman
Family: Site:
Pseudarchasteridae SE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Brisingidae sp. A fsis 2010
Order: (Brisingidae sp. 1) Identified by:
Brisingida C. Alt
Family: Site:
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Asteroidea Brisingidae sp. B fsis2010
Order: (Brisingidae sp. 2) Identified by:
Brisingida C. Alt
Family: Site:




TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Asteroidea Brisingidae sp. C ~ /sis 2010
Order: (Brisingidac sp. 3) ~ Identified by:
Brisingida C. Alt
Family: Site:
Phylum: Gear:
Echinodermata Rov, Trawl
Class: Photo by:
Asteroidea Freyalla elegans Isis 2010
Order: Identified by:
Brisingida A. Dilman
Family: Site:
Freyellidae NW, NE, SE
Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Asteroidea Freyalla sp. A Isis 2010
Order: Identified by:
Brisingida A. Dilman
Family: Site:
Freyellidae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Rov, Trawl
Class: Photo by:
Asteroidea Hydrasteria sexradiata s 2010
Order: Identified by:
Forcipulatida A. Dilman
Family: Site:
Pedicellasteridae NW, NE, SW, SE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea Ophiocamax patersoni  C- Al

Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiacanthidae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea Ophiacantha aculeata ¢ Alt

Order: Identified by:
Ophiurida A. Martynov
Family: Site:

Ophiacanthidae NW, NE, SE




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Ophiuroidea C. Alt
Order: Ophiacantha fraterna 1dentified by:
Ophiurida A. Martynov
Family: Site:
Ophiacanthidae NW, NE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Ophiuroidea Ophiolimna bairdi
Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiacanthidae NwW
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Ophiuroidea Ophiomusium lymani
Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiolepididae SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Ophiuroidea Ophioactis sp. A
Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiactidae NW, NE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Ophiuroidea Ophiura ljungmani C. Alt
Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiuridae NW, NE, SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Ophiuroidea Ophiura irrorata C.Alt
Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiuridae NW, NE, SE




TAXONOMY NAME HABITAT IMAGE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea Ophiura saurura & Al

Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiuridae NW, SE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea Ophiocten hastatum — C Alt

Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiuridae NW, NE, SE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea Ophiura nitida

Order: Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiuridae NW, NE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea Ophioplinthus .
Order: tessellata Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiuridae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea ilepis i C.Alt

Or;der: Amphilepis ingolfiana Tdontified by:
Ophiurida A. Martynov
Family: Site:
Amphilepididae SE

Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Ophiuroidea Ophiomyxidae

Order: (Family) sp. A Identified by:
Ophiurida A. Martynov
Family: Site:
Ophiomyxidae NW, SE




TAXONOMY NAME HABITAT
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Ophiuroidea Astrodia tenuispina ¢ Alt
Order: Identified by:
Euryalida A. Martynov
Family: Site:
Asteronychidae SE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Asteronyx sp. A David Shale
Order: Identified by:
Euryalida C. Alt
Family: Site:
Asteronychidae NE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Gorgonacephalus sp.  1sis 2010
Order: Identified by:
Euryalida A. Rogacheva
Family: Site:
Gorgonocephalidae
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Ophiuroidea is(zis 2012 .
Order: entified by:

(Class) sp. A C Alt
Family: Site:
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Ophiuroidea ﬁl; 2(11 ;)i .
Order: entified by:

(Class) sp. C C Alt
Family: Site:

NW

Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Ophiuroidea is(lls 2011(; .
Order: entified by:

(Class) sp. D C. Alt
Family: Site:




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Ophiuroidea Isis 2010
Order: Identified by:

(Class) sp. E . Alt
Family: Site:

NW, NE

Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Order: Identified by:

(Class) sp. F C Al
Family: Site:

NW, NE, SW, SE

Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Ophiuroidea [sis 2010
Order: Identified by:

(Class) sp. G . Al
Family: Site:
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Ophiuroidea Isis 2010
Order: Identified by:

(Class) sp. H C AlL
Family: Site:
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Ophiuroidea Ophiuroidea Isis 2010
Order: Identified by:

(Class) sp. I . Alt
Family: Site:
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Echinoidea Tromikosoma koehleri 15 2010
Order: Identified by:
Echinothurioida K. Minin
Family: Site:
Echinothuriidae NW, NE, SW, SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Echinoidea . C. Alt
Order: Tromikosoma Identified by:
Echinothurioida of. uranus K. Minin
Family: Site:
Echinothuriidae NE, SE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Echinoidea Pourtalesiidae C. Alt
Order: (Family) sp. B Identified by:
Holasteroida (Pourtalesidae sp. 2) X Minin
Family: : Site:
Pourtalesiidae NW
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Echinoidea Echinosigra phiale ~ ©-Alt
Order: Identified by:
Holasteroida K. Minin
Family: Site:
Pourtalesiidae NW, NE
Phylum: Gear:
Echinodermata Trawl, Rov
Class: Photo by:
Echinoidea Urechinus narensianus 152010
Order: Identified by:
Holasteroida K. Minin
Family: Site:
Urechinidae NW, NE
Phylum: Gear:
Echinodermata Trawl
Class: Photo by:
Echinoidea Echinus alexandri ~ CAlt
Order: Identified by:
Camarodonta K. Minin
Family: Site:
Echinidae NwW
Phylum: Gear:
Echinodermata Rov
Class: Photo by:
Echinoidea Echinus sp. A Isis 2010
Order: Identified by:
Camarodonta C. Alt
Family: Site:
Echinidae NW, NE



TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Echinoidea Echinus sp. B Isis 2010
Order: Identified by:
Camarodonta C. Alt
Family: Site:
Echinidae

Phylum: Gear: A SR
Echinodermata Trawl

Class: Photo by:
Echinoidea Hemiaster expergitus ~ C-Alt

Order: Identified by:
Spatangoida K. Minin
Family: Site:
Hemiasteridae NW, NE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Echinoidea Aeropsis rostrata~ C-Alt

Order: Identified by:
Spatangoida K. Minin
Family: Site:
Aeropsidae NW, NE, SE
Phylum: Gear:
Echinodermata Trawl

Class: Photo by:
Echinoidea Salenocidaris profundi

Order: Identified by:
Salenioida K. Minin
Family: Site:
Saleniidae SE

Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Crinoidea S Isis 2010
Order: Anachalyps'zc.rmus Identified by:
Millericrinida nefertini A. Gebruk/A. Rogacheva
Family: Site:
Hyocrinidae SW, SE
Phylum: Gear:
Echinodermata Rov

Class: Photo by:
Crinoidea Roucicrinus vestitus % 2019
Order: oo (Bourgueticrina sp.) Identified by:
Bourgueticrinida A. Gebruk
Family: Site:

Septocrinidae NE, SW




NW, SE

TAXONOMY NAME HABITAT NOTES
Phylum: Gear:
Echinodermata Rov This is a white/
Class: Bathycrinidae Photo by: translucent
Crinoidea . Isis 2010 5-arm crinoid
Order: (l(glcjzlr;lcl}l};)l;jl SI; ) Identified by:  and might be a
Comatulida A. Gebruk new species.
Family: Site:
Bathycrinidae
Phylum: Gear:
Echinodermata Rov
Class: Comatulida Photo by:
Crinoidea Isis 2010
Order: é:(gfftﬂiif ‘Sﬁ) Identified by:
Comatulida A. Gebruk
Family: Site:
Phylum: Gear:
Echinodermata Rov
Class: Comatulida Photo by: These were
Crinoidea Isis 2010 only seen in the
Order: ((Coofr(liaetaicslg 'sﬁ) Identified by:  Charlie-Gibbs
Comatulida A. Gebruk Fracture Zone
Family: Site:
Phylum: Gear:
Arthropoda Trawl, Rov
Class: Brachypoda Photo by: 1
Cephalocarida Isis 2010, C. Alt
Order: (giigi3pi%a¢ Identified by:
Brachypoda A. Rogacheva
Family: Site:
NW, SW, SE
Phylum: Gear:
Arthropoda Rov
Class: Photo by:
Malacostraca Eurythenes gryllus ~ David Shale
Order: (Eurythenes obesus) Identified by:
Amphipoda T. Horton
Family: Site:
Eurytheneidae
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Reptantia C.Alt .
Order: (Suborder) sp. A Identified by:
Polystilifera A. Rogacheva
Family: Site:




TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Reptantia .
Order.:. (Suborder) sp. B Identified by:
Polystilifera (Reptantia sp.2) C: Alt
Family: : Site:

SE, NW
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Anomura
Order: (Infraorder) sp. A~ Identified by:
Decapoda C. Alt
Family: Site:

SE
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Galatheidae C.Alt
Order: . Identified by:
Decapoda (Family) sp. A C. Alt
Family: Site:
Galatheidae NE, SE
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Munidopsis sp. A
Order: Identified by:
Decapoda C. Alt
Family: Site:
Galatheidae NW, SE
Phylum: Gear:
Arthropoda Trawl, Rov
Class: Photo by:
Malacostraca . . Isis 2010
Order: Munidopsis rostrata Identified by:
Decapoda W. Reid/B. Wigham
Family: Site:
Galatheidae NE, SW, SE
Phylum: Gear:
Arthropoda Rov
Class: Photo by:
Malacostraca . . Isis 2010
Order: Munidopsis crassa Identified by:
Decapoda W. Reid/B. Wigham
Family: Site:

Galatheidae NW, NE, SW, SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca David Shale
Order: Stereomastis nanus ~ 1dentified by:
Decapoda W. Reid/B. Wigham
Family: Site:
Ploychelidae NW, NE, SE
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Pentacheles validus
Order: Identified by:
Decapoda W. Reid/B. Wigham
Family: Site:
Ploychelidae SE
Phylum: Gear:
Arthropoda Rov
Class: Photo by:
Malacostraca Parapagurus Isis 2010
Order: pilosimanus Identified by:
Decapoda D. Jones
Family: Site:
Paguridae Sw
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Paguridae Identified b
Order: : entified by:
Decapoda (Family) sp. A A. Rogacheva
Family: Site:
Paguridae SE
Phylum: Gear:
Arthropoda Rov
Class: Photo by:
Malacostraca Lithodidae Isis 2010
Order: : Identified by:
Decapoda (Family) sp. A A. Rogacheva
Family: Site:
Lithodidae NW, NE
Phylum: Gear:
Arthropoda Rov
Class: Photo by:
Malacostraca Aristeidae Isis 2010
Order: . Identified by:
Decapoda (Family) sp. A T. Letessier
Family: Site:

Aristeidae




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Arthropoda Trawl, Rov
Class: Photo by:
Malacostraca Glyphocmngon Sculpta Isis 2010, David Shale
Order: Identified by:
Decapoda W. Reid/B. Wigham
Family: Site:
Glyphocrangonidae NW, NE, SW, SE
Phylum: Gear: ;
Arthropoda Trawl
Class: Photo by:
Malacostraca Tanaidacea C. Alt
Order: Identified by:
Tanaidacea (Order) sp. A A. Rogacheva
Family: Site:

NW, NE
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Isopoda (Order) C. Alt .
Order: sp. A Identified by:
Isopoda ' A. Rogacheva
Family: Site:

SE
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Malacostraca Valvifera
Order: Identified by:
Isopoda (Suborder) sp. A A. Rogacheva
Family: Site:

NW
Phylum: Gear:
Arthropoda Rov
Class: Photo by:
Maxillopoda David Shale
Order: ( Su(ljo(():{)aeszg)cslg A Identified by:

: C. Alt

Family: Site:
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Maxillopoda ) David Shale
Order: ’ Lepadiformes Identified by:
Lepadiformes (Order) sp. A A. Rogacheva
Family: Site:

NW




TAXONOMY NAME HABITAT IMAGE
Phylum: Gear:
Arthropoda Rov
Class: Photo by:
Maxillopoda Neoscalpellum debile ¢ Al | NE =
Order: Identified by: = B
Scalpelliformes C. Alt =3 /}‘ '
Family: Site: ‘ = £
Scalpellidae NW, NE, SW oy, e
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Ostracoda Azvoocvpridi David Shale
Order: );i pe);];;”;ima Identified by:
Myodocopida M. Angel
Family: Site:
Cypridinidae NW, NE, SE
Phylum: Gear:
Arthropoda Trawl
Class: Photo by:
Ostracoda Gigantocypris
Order: >muelleri Identified by:
Myodocopida M. Angel
Family: Site:
Cypridinidae NW, NE
Phylum: Gear:
Arthropoda Trawl, Rov
Class: Photo by:
Pycnogonida Colossendeis colossea s 2010
Order: Identified by:
Pantopoda A. Raiskyi
Family: Site:
Colosseneidae NW, NE, SE
Phylum: Gear:
Mollusca Trawl, Rov
Class: Photo by:
S)e%halop()da Grimpoteuthis Ldentified b
rder: . . entified by:
Octopoda discoveryi M. Vecchione
Family: Site:
Grimpoteuthidae NW, NE, SE
Phylum: Gear:
Mollusca Trawl
Class: Photo by:
Cephalopoda oy : y
Order: Histioteuthis bonnellii Identified by:
Oegopsida M. Vecchione
Family: Site:
Histioteuthidae NW, NE, SE




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Mollusca Trawl
Class: Photo by:
Cephalopoda Gonatus steenstrupi
Order: Identified by:
Oegopsida M. Vecchione
Family: Site:
Gonatidae NW, SE
Phylum: Gear:
Mollusca Trawl
Class: Photo by:
Cephalopoda Teuthida C. Alt
Order: Identified by:
Teuthida (Order) sp. A M. Vecchione
Family: Site:
NE
Phylum: Gear:
Mollusca Trawl, Rov
Class: Photo by:
Scaphopoda Scaphopoda f&Altt'ﬁ .
Order: entified by:
(Class) sp.A A. Rogacheva
Family: Site:
NW, NE, SW, SE
Phylum: Gear:
Mollusca Trawl
Class: Mollusca (Class)  Photo by:
Mollusca sp. A C. Alt
Order: ) Identified by:
(Mollusca A) A. Rogacheva
Family: Site:
SE, NW
Phylum: Gear:
Mollusca Trawl
Class: Photo by:
Mollusca C. Alt
Order- Mollusca éClass) Identified by:
M SIII) B A. Rogacheva
Family: (Mollusca B) Site:
NE
Phylum: Gear:
Mollusca Trawl
Class: Photo by:
Bivalvia Bivalvi 1 C.Alt
Order: vaivia (AC ass) Identified by:
Sp- A. Rogacheva
Family: Site:

NW




TAXONOMY NAME HABITAT NOTES IMAGE
Mollusca Gear: — _
Class: Trawl
Gastropoda Gastropoda Photo by:
Order: (Class) sp. B C. Alt .

(Gastropoda 2) Identified by:
Family: C. Alt
Site:
NW, SE
Phylum: Gear:
Mollusca Trawl
Class: Gastropoda Photo by:
Gastropoda (Class) sp. A C. Alt
p- .
Order: Identified by:
(Gastropoda 1) C. Alt
Family: Site:
NE, SE
Phylum: Gear:
Mollusca Trawl
Class: Gastropoda Photo by:
Gastropoda (Class) s Isis 2010
p. D :
Order: Identified by:
(Gastropoda sp.) C. Alt
Family: Site:
SE
Phylum: Gear:
Mollusca Trawl
glais: . Vestigastropoda lgh:lto by:
astropoda . :
Order: (Superfamlly) sp- A Identified by:
(Vestigastropoda) A. Rogacheva
Family: Site:
SE
Phylum: Gear:
Sipuncula Trawl
Class: Photo by:
Sipunculidea Sipunculus norvegicus David Shale
Order: Identified by:
Golfingiida A. Rogacheva
Family: Site:
Sipunculidae NW, NE, SE
Phylum: Trawl
Sipuncula Photo by:
Class: David Shale, C. Alt
Sipuncula Identified by:
Order: C. Alt
(Phylum) sp. A Site:
NW, NE, SE

Family:




TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear: & M 2
Sipuncula Trawl 3.% i
Class: Photo by: o ]
Sipuncula ﬁlls 2‘1{2 . 2 gt
Order: entified by: .
(Phylum) sp. A C Alt | ; {
Family: Site: ' !.' '
NW, NE, SE - e
Phylum: Gear:
Echiura Trawl
Class: Photo by:
Echiura Identified b
Order: entified by:
(Phylum) sp. A A. Rogacheva
Family: Site:
SE
Phylum: Gear:
Echiura Trawl
Class: Photo by:
Order: Identified by:
(Phylum) sp. B A. Rogacheva
Family: Site:
SE
Phylum: Gear:
Echiura Trawl
Class: Photo by:
Echiura S&Altt'ﬁ .
Order: entified by:
(Phylum) sp. € A. Rogacheva
Family: Site:
SE, NW
Phylum: Gear:
Echiura Rov
Class: Photo by:
. Isis 2010
Order: Ph Elchlura D Identified by:
(Phylum) sp. A. Rogacheva
Family: Site:
NW, NE, SW, SE
Phylum: Gear:
Nemertea Trawl
Class: Photo by:
C. Alt
Nemertea .
Order: (Phylum) sp. A Identified by:

A. Rogacheva
Family: Site:
SE




Discospirinidae

NW, NE, SW, NE

TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Nemertea Trawl
Class: Photo by:

Nemertea f&Altt‘ﬁ .
Order: entified by:
(Phylum) sp. B A. Rogacheva
Family: Site:
NW
Phylum: Gear:
Nemertea Rov
Class: Photo by:
Nemertea %lAltt’ﬁ .
Order: entified by:
(Phylum) sp. € A. Rogacheva
Family: Site:
NE
Phylum: Gear:
Foraminifera Rov
Class: Photo by:
Xenophyophorea  Xenophyophorea (Class)  sis 2010
Order: sp. A Identified by:
Psamminida A. Gooday
Family: Site:
Syringamminidae NE
Phylum: Gear:
Foraminifera Rov
Class: Photo by:
Xenophyophorea Syringammina [sis 2010
Order: corbicula Identified by:
Psamminida A. Gooday
Family: Site:
Syringamminidae NW, SW
Phylum: Gear:
Foraminifera Rov
Class: Photo by:
Xenophyophorea Syringammina is(’ls 2‘?2 .
Order: e entified by:
Psamminida Jragillissima A. Gooday
Family: Site:
Syringamminidae NW, NE, SW, NE
Phylum: Gear:
Foraminifera Rov
Class: Photo by:
Polythalamea Discospirina Isis 2010
Order: tenuissima Identified by:
Miliolida A. Gooday
Family: Site:




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Cercozoa Rov
Class: Photo by:
Gromiidea Gromia sphaerica 5152010
Order: Identified by:
Gromiida C. Alt
Family: Site:
Gromiidae
Phylum: Gear:
Hemichordata Tergivelum sp. nov.  Rov
Class: ‘cinnabarinus’ Photo by: white spots
Enteropneusta (Enterpneusta A) Isis 2010 inside specimen
Order: Identified by: are aggs
Enteropneusta Holland 2012 in C. Alt
Family: Priede et al (in prep) Site:

NW, NE, SW, SE
Phylum: Gear:
Hemichordata ‘Yoda purpurata’ Rov
](Ejlass: n. gen, n. sp. Photo by:

nteropneusta Isis 2010

Order: (Enterpneusta ) Identified by:
Enteropneusta Holland 2012 in C. Alt
Family: Priede et al (in prep) Site:

SW, SE
Phylum: Gear:
Hemichordata Allapasus sp. nov.  Rov
Class: “sidis’ Photo by:
Enteropneusta Isis 2010
Order: (Enterpneusta C) Identified by:
Enteropneusta Holland 2012 in C. Alt
Family: Priede et al (in prep) Site:

SW
Phylum: Gear:
Chordata Rov
Class: Photo by:
Actinopterygii . Isis 2010
Order- Halosauropszs Identified by:
Notacanthiformes macrochir T. Linley
Family: Site:
Halosauridae NW, NE, SW, SE
Phylum: Gear:
Chordata Rov
Class: Photo by:
Actinopterygii Isis 2010
Order: Polyacanthonc?tus Identified by:
Notacanthiformes challengeri T. Linley
Family: Site:
Notacanthidae NE, SW



TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Chordata Rov
Class: Photo by:
Actinopterygii Isis 2010
Order: Bathysaurus ferox ~ ldentified by:
Aulopiformes T. Linley
Family: Site:
Synadontidae NW, NE, SE
Phylum: Gear:
Chordata Rov
Class: Photo by:
Actinopterygii Antimora rostrata 5152010
Order: Identified by:
Gadiformes T. Linley
Family: Site:
Moridae NW, NE, SW, SE
Phylum: Gear:
Chordata Rov
Class: Photo by:
Actinopterygii Coryphaenoides Isis 2010
Order: armatus Identified by:
Gadiformes T. Linley
Family: Site:
Macrouridae NW, NE, SW, SE
Phylum: Gear:
Chordata Rov
Class: Photo by:
Actinopterygii Coryphaenoides 152010
Order: brevibarbis Identified by:
Gadiformes T. Linley
Family: Site:
Macrouridae NW, NE, SW, SE
Phylum: Gear:
Chordata Rov
Class: Photo by:
Actinopterygii Histiobranchus [sis 2010
Order: bathybius Identified by:
Gadiformes T. Linley
Family: Site:
Synaphobranchidae
Phylum: Gear:
Chordata Rov
Class: Photo by:
Tunicata Isis 2010
Order: Identified by:
(Subphylum) sp. A C ALt

Family: Site:



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Order: Identified by:
(Phylum) sp. A C Alt
Family: Site:
Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Order: Identified by:
(Phylum) sp. B C Alt
Family: Site:
Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Order: Identified by:
(Phylum) sp. C C Al
Family: Site:
Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Order: Identified by:
(Phylum) sp. D C. Alt
Family: Site:
Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Order: Identified by:
(Phylum) sp. H C. Alt
Family: Site:
Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Order: Identified by:
(Phylum) sp. I C. Alt
Family: Site:



TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Bryozoa Isis 2010
Order: Identified by:
(Phylum) sp. J C Al
Family: Site:
Phylum: Gear:
Bryozoa Rov
Class: Photo by:
Broea
Order: entified by:
(Phylum) sp. E C. Alt
Family: Site:
Phylum: Gear:
Ctenophore Rov
Class: Photo by:
Ctenophora Ctenophora ﬁ;s 20121 .
Order: entified by:
(Class) sp. A M. Youngbluth
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Hydrozoa Benthocodon sp. A 1sis 2010
Order: Identified by:
Trachymedusae M. Youngbluth
Family: Site:
Rhopalonematidae NW, NE, SW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Hydrozoa Crossota sp. A Isis 2010
Order: Identified by:
Trachymedusae M. Youngbluth
Family: Site:
Rhopalonematidae NW, NE, SW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Hydrozoa Hydroidolina isclls 2011(; .
Order: entified by:
(Subclass) sp. A C ALt
Family: Site:

NW, NE, SE



TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Cnidaria Rov
Class: Hydroidolina Photo by:
Hydrozoa Isis 2010
Order: (Subclass) sp. B Identified by:
C. Alt
Family: Site:
NW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Hydrozoa Hydroidolina Isis 2010
Order: Identified by:
(Subclass) sp. C C Al
Family: Site:
NW, NE, SW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Hydrozoa Hydroidolina Isis 2010
Order: Identified by:
(Subclass) sp. D . Al
Family: Site:
NW, SW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa S .- Isis 2010
cleractinia .
Order: (Order) sp. A Identified by:
Scleractinia p- T. Molodtsova
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa . Isis 2010
Order- Lophelia pertusa Identified by:
Scleractinia T. Molodtsova
Family: Site:
Caryophylliidae
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa 2 7. A Isis 2010
Order: ?Solenosmilia sp. Identified by:
Scleractinia T. Molodtsova
Family: Site:

Caryophylliidae




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Cnidaria Rov
Class: ?Solenosmilia sp. A Photo by:
Anthozoa (or Acanthogorgia sp.)  Isis 2010
Order: Identified by:
Scleractinia T. Molodtsova
Family: Site:
Caryophylliidae
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa . Isis 2010
Order: Scleroptilum Identified by:
Pennatulacea grandiflorum T. Molodtsova
Family: Site:
Pennatulidae SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Pennatuacea Isis 2010
Order: (Order) sp. A Identified by:
Pennatulacea T. Molodtsova
Family: Site:
Pennatulidae
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Umbellula sp. A Isis 2010
Order: Identified by:
Pennatulacea T. Molodtsova
Family: Site:
Umbellulidae
Phylum: Gear:
Cnidaria Trawl
Class: Photo by:
Anthozoa Kophobelemnon .
Order: macrospinosum Identified by:
Pennatulacea T. Molodtsova
Family: Site:
Kophobelemnidae SE
Phylum: Gear:
Cnidaria Trawl, Rov
Class: Photo by:
Anthozoa . Isis 2010
Order: Fungiacy atthS Identified by:
Scleractinia marenzelleri T. Molodtsova
Family: Site:

Fungiacyathidae

NW, NE, SW, SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Cnidaria Trawl, Rov
Class: Photo by:
Anthozoa Flabellum angulare ~ 15is 2010, David2010
Order: Identified by:
Scleractinia T. Molodtsova
Family: Site:
Flabellidae NW, NE, SW, SE
Phylum: Gear:
Cnidaria Trawl

Class: Photo by:
Anthozoa Heteropolypus cf. ¢ Al

Order: insolitus Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Alcyoniidae SE

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Anthomastus [sis 2010
Order: sp. A Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Alcyoniidae

Phylum: Gear:
Cnidaria Trawl

Class: Photo by:
Anthozoa ; David Shale
Order: Chrysogorgia sp. Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Chrysogorgiidae SE

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa . Isis 2010
Order: Chry.slogorgla Identified by:
Alcyonacea (((}Foilml y) sp- 1133 T. Molodtsova
Family: gonacea sp. B) Site:
Chrysogorgiidae

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa . Isis 2010
Order: Chryt?ogorgla Identified by:
Alcyonacea (ngrlmﬂy) Sp- C} T. Molodtsova
Family: gonacea sp. J) Site:

Chrysogorgiidae




TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Metallogorgia Isis 20%0
Order: (Family) sp. A Identified by:
Aleyonacea (Metallogorgia sp.) T‘, L
Family: Site:
Chrysogorgiidae

Phylum: Gear:
Cnidaria Rov

Class: Metallogorgia Photo by:
Anthozoa Isis 2010

(Family) sp. B

Order: Identified by:
Alcyonacea (Gorgonacea sp. H) T. Molodtsova
Family: Site:
Chrysogorgiidae
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Isididae ﬁ;s 2(11;)i .

: . entifie :
21“1“- (Family) sp. A T Molodtsox)rla

cy?nacea (Gorgonacea sp. A) i
Family: Site:
Isididae
Phylum: Gear:
Cnidaria Rov
Class: Isididae Photo by:
Anthozoa (Famil Isis 2010
y) sp. B : ,

Order: (Gorgonacea sp. C) Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Isididae
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Isididae is(zls 2(112 .

: . entifie :
glrder (Family) sp. C T. Molodtsox)z’a

cyonacea (Gorgonacea sp. D) i

Family: Site:
Isididae
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Isididae is(zls 2(111(.)1 .
Order: Famil D entified by:
Alcyonacea (Family) sp. T. Molodtsova

Gorgonacea sp. E i
Family: (Gorg p-E) Site:

Isididae




TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Alcyonacea ﬁllS 2(1 ! 1(; i
: entifie :
glrderna a (Order) sp. F T Molodtsoza
cyonace (Gorgonacea sp. F) X
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Alcyonacea is‘zis 2(11;)i .
der: entifie :
glr o (Order) sp. G T. Molodtsox)f,a
cyonacea (Gorgonacea sp. G) X
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Alcyonacea ﬁ’; 2(1{2 .
: entifie :
glrdel;; (Order) sp. K T Molodtsox}rla
cyonacea (Gorgonacea sp. K) i
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Alcyonacea ﬁlls 22{; .
: entifie :
g{cdzlllacea (Order) sp. 1 T Molodtsoga
Y (Gorgonacea sp. I) X
Family: Site:
Phylum: Gear:
Cnidaria Trawl
ilat;s: Alcyonacea Photo by:
Order: (Order) sp. L Identified by:
Alcyonacea (Gorgonacea sp.) T. Molodtsova
Family: Site:
SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
gnglozoa PLeiopathes sp. A | o by:
rder: :
Antipatharia T. Molodtsova
Family: Site:

Leiopathidae NwW



TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Stauropathes ?punctata 155 2010
Order: Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Schizopathidae

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Stauropathes sp. A~ 15is 2010
Order: Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Schizopathidae

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Bathypathes ?sp. nov. 1sis 2010
Order: Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Schizopathidae

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Bathypathes sp. A Isis 2010
Order: Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Schizopathidae

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Parantipathes sp. [sis 2010
Order: Identified by:
Alcyonacea T. Molodtsova
Family: Site:
Schizopathidae

Phylum: Gear:
Cnidaria Rov

Class: Photo by:
Anthozoa Paraphelliactis C. Al
Order: michaelsarsi Identified by:
Alcyonacea T. Molodtsova
Family: Site:

Hormathiidae




TAXONOMY NAME HABITAT IMAGE
Phylum: Gear:
Cnidaria Trawl
Class: Photo by:
Anthozoa Stephanactis inornata 15 2010
Order: (?Amphianthus inornata) Identified by:
Actinaria C. Alt
Family: Site:
Hormathiidae SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Actinernus Isis 2010
Order: michaelsarsi Identified by:
Actinaria T. Molodtsova
Family: Site:
Actinernidae
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Actiniaria [sis 2010
Order: (Order) sp. C Identified by:
Actinaria (Anemone3) T. Molodtsova
Family: Site:

NW, SW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Actiniaria Isis 2010
Order: (Order) sp. E Identified by:
Actinaria (Anemone5) T. Molodtsova
Family: Site:

NE, SW
Phylum: Gear:
Cnidaria Rov
Class: Actiniaria Photo by:
Anthozoa Isis 2010
Order: (&Eiilsfé)ls Identified by:
Actinaria T. Molodtsova
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Actiniaria Photo by:
Anthozoa Isis 2010
Order: (gr?een?origé)H Identified by:
Actinaria T. Molodtsova
Family: Site:

NW, SW




TAXONOMY NAME HABITAT NOTES
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Actiniaria Isis 2010
Order: (Order) sp. 1 Identified by:
Actinaria (Anemonc9) T.. Molodtsova
Family: Site:

NW
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Actiniaria Isis 2010
Order: (Order) sp. J Identified by:
Actinaria (Anemonel1) T.. Molodtsova
Family: Site:

NE, SW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Actiniaria [sis 2010
Order: (Order) sp. L Identified by:
Actinaria (Anemone13) T.. Molodtsova
Family: Site:

NW, SW
Phylum: Gear:
Cnidaria Rov
Class: Actiniaria Photo by:
Anthozoa Isis 2010
Order: (&iizgsg 41)\/1 Identified by:
Actinaria C. Alt
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Zoanthidae Isis 2010
Order: (Family) sp. A Identified by:
Actinaria (Anemone12) T.. Molodtsova
Family: Site:
Zoanthidae NW
Phylum: Gear:
Cnidaria Rov
Class: Ceriantharia }’hgtool (l)oy :
Anthozoa sis
Order: (Order) sp. A Identified by:
Ceriantharia T. Molodtsova
Family: Site:

NE




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Ceriantharia Isis 2010
Order: Order) sp. B Identified by:
Ceriantharia ( ) sp- T. Molodtsova
Family: Site:

NW, NE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Ceriantharia Isis 2010
Order: Order) sp. C Identified by:
Ceriantharia ( ) sp T. Molodtsova
Family: Site:
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Ceriantharia Isis 2010
Order: Order) sp. E Identified by:
Ceriantharia ( ) SP- T. Molodtsova
Family: Site:

NE, SW, SE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Ceriantharia sis 2010
Order: o) Identified by:

rder) sp. F

Ceriantharia ( ) sp T. Molodtsova
Family: Site:

NW
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa : . Isis 2010
Order: Coeréantharlzé} Identified by:
Ceriantharia (Order) sp. T. Molodtsova
Family: Site:

NW
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa . . Isis 2010

rianthari

Order: Coe da tha 211-1 Identified by:
Ceriantharia (Order) sp. T. Molodtsova

Family:

Site:




Family:

Site:

TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Cnidaria Rov
Class: Photo by:
Anthozoa Ceriantharia Isis 2010
Order: Order) sp. I Identified by:
Ceriantharia ( ) sp T. Molodtsova
Family: Site:

Phylum: Gear:

Porifera ROV

Class: Photo by:
Porifera (Phylum)  fsis 2010 -

Order: sp. A Identified by:
(Hexacteinellid AD) K,' Tabachnick,

Family: Site:

Phylum: Gear:

Porifera ROV

Class: Photo by:
Porifera (Phylum) #2010

Order: sp. B Identified by:
(Hexacteinellid AM) K,' Tabachnick,

Family: Site:

Phylum: Gear:

Porifera ROV

Class: Photo by:
Porifera (Phylum)  fsis 2010

Order: sp. C Identified by:

(Hexacteinellid K) L Lapachnick

Family: Site:

Phylum: Gear:

Porifera ROV

Class: Photo by:
Porifera (Phylum)  fsis 2010

Order: sp. D Identified by:
(Hexacteinellid AC) K,' Tabachnick,

Family: Site:

Phylum: Gear:

Porifera ROV

Class: Photo by:
Porifera (Phylum)  fsis 2010

Order: sp. E Identified by:
(Hexacteinellid AE) L Tabachnick,




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Porifera (Phylum)  #sis 2010
Order: sp. F Identified by:
(Hexacteinellid Z) K,' Tabachnick,
Family: Site:
NW
Phylum: Gear:
Porifera Trawl
Class: Photo by:
Demospongiae  Demospongiae (Class) © Al
: Identified by:
Order: sp. A y
(Demospongia A) K.. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae  Demospongiae (Class) /5is 2010
: Identified by:
Order: sp. E y
(Demospongia E) K.. Tabachnick,
Family: Site:
NW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae  Demospongiae (Class) 752010
Order: sp. F Identified by:
(Demospongia F) K.. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae . Isis 2010
Order- Demosponglée (Class) Identified by:
D Sp- 2 G K. Tabachnick,
Family: (Demospongia G) Site:
NW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae . 1 Isis 2010
Order: Demospongl?e (Class) Identified by:
b Sp- ] K. Tabachnick,
Family: (Demospongia J) Site:




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae  Demospongiae (Class) #5is 2010
Order: sp. L Identified by:

(Demospongia L) K.. Tabachnick,
Family: Site:
SW
Phylum: Gear:
Porifera ROV
Class: Demospongiae (Class) Photo by:
Demospongiae sp. N Isis 2010
Order: L Identified by:
(Demospongia N) K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae  Demospongiae (Class) #sis 2010
Order: sp. P Identified by:
(Demosl,; ongia P) K. Tabachnick,
Family: Site:
SwW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae  Demospongiae (Class) 752010
Order: sp. Q Identified by:
(Hexacteinellid AL) L 1abachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae  Demospongiae (Class) #5is 2010
Order: sp. R Identified by:
(Hexacteinellid T) K,' Tabachnick,
Family: Site:
NW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Demospongiae  Polymastiidae (Family) 52010
Order: sp. A Identified by:
Hadromerida (Demo spl ongia C) K. Tabachnick,
Family: Site:

Polymastiidae




TAXONOMY NAME HABITAT IMAGE
Phylum: Gear:
Porifera ROV

Class: Photo by:
Demospongiae  Polymastiidae (Family) £ 2010
Order: sp. B Identified py:
Hadromerida (Demospongia M) K.. Tabachnick,
Family: Site:
Polymastiidae NW, SW
Phylum: Gear:
Porifera ROV

Class: Photo by:
Demospongiae  Polymastiidae (Family) s 2010
Order: sp. C Identified l?y:
Hadromerida (Demospongia O) K.. Tabachnick,
Family: Site:
Polymastiidae

Phylum: Gear:
Porifera ROV

Class: Photo by:
Demospongiae ?Tethya sp. Isis 20{0
Order: (Hexacteinellid AF) Identified by:
Hadromerida K. Tabachnick,
Family: Site:
Tethyidae

Phylum: Gear:
Porifera ROV

Class: Photo by:
Demospongiae Geodiidae (Family) s 20{0
Order: sp. A Identified l?y:
Astrophorida (Demospongac G) K.- Tabachnick,
Family: Site:
Geodiidae

Phylum: Gear:
Porifera ROV

Class: Photo by:
Demospongiae ‘- . Isis 2010
Order: GeOd“iae famﬂ” Identified by:
Astrophorida (Demo sp : T K. Tabachnick,
Family: pongae H) Site:
Geodiidae

Phylum: Gear:
Porifera ROV

Class: Photo by:
Demospongiae ‘- . Isis 2010
Order:p ¢ Geodiidae (AFamlly) Identified by:
Astrophorida (Demzf‘ | K. Tabachnick,
Family: pongac I) Site:

Geodiidae




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Geodiidae (Family)  Photo by:
Demospongiae sp. A ﬁl; 2(111(-)1 .
Order: entified by:
Astrophorida (Demospongac K) K. Tabachnick,
Family: Site:
Geodiidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #sis 2010
Order: sp. A Identified by:

K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera Trawl
Class: Photo by:
Hexactinellida  Hexactinellida (Class) David Shale
Order: sp. G Identified by:
' K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera Trawl
Class: Photo by:
Hexactinellida  Hexactinellida (Class) David Shale
Order: sp. H Identified by:
K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #sis 2010
Order: sp. J Identified by:
K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) /sis 2010
Order: sp. M Identified by:
K. Tabachnick,
Family: Site:

NW




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Photo by: :
Hexactinellida ~ Hexactinellida (Class) s 2010
Order: sp. N Identified by:
' K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #is 2010
Order: sp. O Identified by:
) K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) /sis 2010
Order: sp. P Identified by:
' K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida . : Isis 2010
Order: Hexactlnelhga (Class) Identified by:
Sp- K. Tabachnick,
Family: Site:
NW, SW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida . : Isis 2010
Order: Hexactmelh\c;/a (Class) Identified by:
Sp- K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #sis 2010
Order: sp. AB Identified by:
' K. Tabachnick,
Family: Site:

SW




Family:

sp. AX

K. Tabachnick,
Site:

TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #sis 2010
Order: sp. AK Identified by:

K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #2010
Order: sp. AN Identified by:
K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida ~ Hexactinellida (Class) i 2010
Order: sp. AO Identified by:
K. Tabachnick,
Family: Site:
NW, NE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida ~ Hexactinellida (Class) /s 2010
Order: sp. AP Identified by:
K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #sis 2010
Order: sp. AU Identified by:
K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) #is 2010
Order: Identified by:




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) /sis 2010
Order: sp. AY Identified by:
K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida  Hexactinellida (Class) /sis 2010
Order: sp. BH Identified by:
K. Tabachnick,
Family: Site:
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida . . Isis 2010
Order: Hexactinellida (Class) Identified by:
sp. BJ K. Tabachnick,
Family: Site:
NW, NE, SW, SE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida . : Isis 2010
Order: Hexactinellida (Class) Identified by:
sp. BL K. Tabachnick,
Family: Site:
NW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Pheronema sp. A Isis 2010
Order: (Hexacteinellid C) Identified by:
Amphidiscosida K. Tabachnick,
Family: Site:
Pheronematidae NW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. A~ /sis 2010
Order: (Hexacteinellid D)~ 1dentified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae NW, SW




Rossellidae

TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. B fsis2010
Order: (Hexacteinellid BE) Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. C ~ fsis2010
Order: (Hexacteinellid AQ) Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. D fsi52010
Order: (Hexacteinellid E) Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. E =~ #is 2010
Order: (Hexacteinellid AR) Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. F~ f5is 2010
Order: (Hexacteinellid AS) ~ Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. G Isis 2010
Order: (Hexacteinellid AT) ~ 1dentified by:
Lyssacinosida K. Tabachnick,
Family: Site:




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV ;
Class: Photo by: Tavds ) e
Hexactinellida Rossellidae sp. H 515 2010 /’( o
Order: (Hexacteinellid Q) Identified by: A 9 =
Lyssacinosida K. Tabachnick, G e
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. I~ fsis 2010
Order: (Hexacteinellid BK) ~ Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae NW, NE, SW, SE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. J iS(llS 2(11;)1 .
Order: o entified by:
Lyssacinosida (Hexacteinellid R) K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. M iS(liS 2(11;)1 .
Order: o entified by:
Lyssacinosida (Hexacteinellid AV) K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Rossellidae sp. O fsis2010
Order: (Hexacteinellid BC) Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Rossellidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Regadrella phoenix ~ 15is 2010
Order: Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
SW, SE

Euplectellidae




Farreidae

TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Farreidae (Famlly) Isis 20%0
Order: sp. A Identified by:
Hexactinosida (Hexacteinellid ) < Tabachnick,
Family: Site:
Farreidae SW
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Farreidae (Family) %2010
Order: sp. B Identified by:
Hexactinosida (Hexacteinellid BD) L Fabachnick,
Family: Site:
Farreidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Farreidae (Family) %2010
Order: sp. C Identified by:
Hexactinosida (Hexacteinellid BF) K,' Tabachnick,
Family: Site:
Farreidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Farreidae (Family) % 20%0
Order: sp. D Identified by:
Hexactinosida (Hexacteinellid B) L 1abachnick
Family: Site:
Farreidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Farreidae (Family) ~ fsis 2010
Order: sp. E Identified by:
Hexactinosida (Hexacteinellid AA) L Tabachnick,
Family: Site:
Farreidae
Phylum: Gear:
Porifera ROV
Class: Photo by:
Hexactinellida Farreidae (Family) Isis 2010
Order: Identified by:

inosi sp- £ K. Tabachnick
Hexactinosida (Hexacteinellid BG) - 1abachnIc,
Family: Site:




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Porifera ROV

Class: Photo by:
Hexactinellida Saccocalyx sp. A Isis 20%0
Order: (Hexacteinellid AH) Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Euplectellidae SW

Phylum: Gear:
Porifera ROV

Class: Photo by:
Hexactinellida Saccocalyx sp. B Isis 20{0
Order: (Hexacteinellid AW) Identified by:
Lyssacinosida K. Tabachnick,
Family: Site:
Euplectellidae

Phylum: Gear:
Porifera ROV

Class: Photo by:
Hexactinellida Hyalonema sp. A Isis 20{0
Orderﬁ: . . (Hexacteinellid AI) Identified l?y:
Amphidiscosida K. Tabachnick,
Family: Site:
Hyalonematidae NW, NE, SE
Phylum: Gear:
Porifera ROV

Class: Photo by:
Hexactinellida Hyalonema sp. B Isis 20%0
Order: (Hexacteinellid Ay~ Ldentified by
Amphidiscosida K. Tabachnick,
Family: Site:
Hyalonematidae

Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Eunice cf. pennata

Order: Identified by:
Eunicida N. Budaeva
Family: Site:
Eunicidae NE, SE
Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Lumbrineris (Genus) )

Order: sp. A Identified by:
Eunicida ' N. Budaeva
Family: Site:
Lumbrineridae NE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychacta Leptoecia (Genus) .
Order: sp. A Identified by:
Eunicida N. Budaeva
Family: Site:
Lumbrineridae NW, NE, SE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta Lumbrietymene Identified b
Order: entified by:
Eunicida (Genus) sp. A N. Budaeva
Family: Site:
Onuphidae NW, NE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychacta Paradiopatra ehlersi
Order: Identified by:
Eunicida N. Budaeva
Family: Site:
Onuphidae SE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta Abyssoclymene Ldentified b
Order: entified by:
Solecida (Genus) sp. A N. Budaeva
Family: Site:
Maldanidae NE
Phylum: Gear: -
Annelida Trawl, ROV 13
Class: Photo by: it
Polychacta Maldanidae (Family) s 2010 e
Order: indet. Identified by: v
Solecida N. Budaeva, M. Shields Il e
Family: Site: C v "
Maldanidae NW, NE, SW, SE v Mﬂ
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta Terebellidae (Family) .
Order: sp. A Identified by:
Terebellida N. Budaeva
Family: Site:
Terebellidae NE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Terebellidae (Family) .
Order: sp. B Identified by:
Terebellida N. Budaeva
Family: Site:
Terebellidae NW, NE
Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Ampharetidae (Family) .
Order: sp. A Identified by:
Terebellida N. Budaeva
Family: Site:
Ampbharetidae NE

Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Ampharetidae (Family) .
Order: sp. B Identified by:
Terebellida N. Budaeva
Family: Site:
Ampharetidae SE

Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Leanira hystricis

Order: Identified by:
Phyllodocida N. Budaeva
Family: Site:
Sigalionidae NW, NE, SE
Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Laetmonice (Genus) .
Order: sp. A Identified by:
Phyllodocida N. Budaeva
Family: Site:
Asphroditidae NE, SE
Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta ;

Or(}ller: Aphrodita éGenus) Identified by:
Phyllodocida Sp- N. Budaeva
Family: Site:
Asphroditidae SE



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta Aphrodita cf. aculeata
Order: Identified by:
Phyllodocida N. Budaeva
Family: Site:
Asphroditidae NE, SE
Phylum: Gear:
Annelida ROV s o g
Class: Photo by: :\._ . T
Polychaeta Polynoidae (Family)  Zsis 2010 i %‘Iji\*hﬁhm% "
Order: indet. A Identified by: ?.E'?: i h‘}.h:,, g
Phyllodocida M. Shields KA s
Family; Site: mﬁb‘_ﬁ’!ﬂw‘ i :..!'.1_;';:1' ;-?‘ ;
Polynoidae
Phylum: Gear:
Annelida ROV
Class: Photo by:
Polychaeta Polynoidae (Family)  /sis 2010
Order: indet. B Identified by:
Phyllodocida M. Shields
Family: Site:
Polynoidae NW, SW
Phylum: Gear:
Annelida ROV
Class: Photo by:
Polychaeta Polynoidae (Family)  Zsis 2010
Order: indet. C Identified by:
Phyllodocida M. Shields
Family: Site:
Polynoidae SW, SE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta Polynoidae (Family) .
Order: indet. D Identified by:
Phyllodocida N. Budaeva
Family: Site:
Polynoidae NW, NE, SE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta Polynoidae (Family) .
Order: indet. E Identified by:
Phyllodocida N. Budaeva
Family: Site:
Polynoidae NW, SE



TAXONOMY NAME HABITAT NOTES IMAGE

Phylum: Gear:

Annelida Trawl

Class: Photo by:

Polychaeta Polynoidae (Family)

Order: . Identified by:
, indet. F

Phyllodocida N. Budaeva

Family: Site:

Polynoidae NE

Phylum: Gear:

Annelida Trawl

Class: Photo by:

Polychaeta Polynoidae (Family)

Order: . Identified by:
. indet. G

Phyllodocida N. Budaeva

Family: Site:

Polynoidae NE

Phylum: Gear:

Annelida Trawl

Class: Photo by:

Polychaeta Glyceridae (Family) .

Order: sp. A Identified by:

Phyllodocida N. Budaeva

Family: Site:

Glyceridae SE

Phylum: Gear:

Annelida Trawl

Class: Photo by:

Polychaeta Phyllodocidae (Family) .

Order: sp. A Identified by:

Phyllodocida N. Budaeva

Family: Site:

Phyllodocidea NE

Phylum: Gear:

Annelida Trawl

Class: Photo by:

Polychaeta - 1 :

Or(}l/er: Nereldlcslae IiFamlly) Identified by:

Phyllodocida p- N. Budaeva

Family: Site:

Nereididae NE

Phylum: Gear:

Annelida Trawl

Class: Photo by:

Polychaeta ¥ .

Or(}ller: OwenndaeéFamlly) Identified by:

Phyllodocida Sp- N. Budaeva

Family: Site:

Oweniidae NW, NE



TAXONOMY NAME HABITAT NOTES
Phylum: Gear:
Annelida ROV
Class: Oweniid (Genus) ~ Photo by:
Polychaeta sp. A Isis 2010
Order: Identified by:
Canalipalpata M. Shields
Family: Site:
Oweniidae NW, NE, SW, SE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta Sabellidae (Family)

Order: sp. A Identified by:
Canalipalpata N. Budaeva
Family: Site:
Sabellidae NE

Phylum: Gear:
Annelida ROV

Class: Photo by:
Polychaeta Sabellida (Genus) Isis 2010
Order: sp. A Identified by:
Sabellida M. Shields
Family: Site:
Sabellidae NW, NE, SW, SE
Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychacta Opbhelliidae (Family)

Order: sp. A Identified by:
Sabellida N. Budaeva
Family: Site:
Opheliidae NW, NE
Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta ?Decamastus (Genus)

Order: sp. A Identified by:
Scolecida N. Budaeva
Family: Site:
Capitellidae SE

Phylum: Gear:
Annelida Trawl

Class: Photo by:
Polychaeta Chaetoderma (Genus)

Order: sp. A Identified by:
Tetraodontiformes N. Budaeva
Family: Site:
Monacanthidae NW, SE




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
Annelida Trawl
Class: Photo by:
Polychaeta
Or(}ller: Nephtys (Genus) sp. A Identified by:
Phyllodocida N. Budaeva
Family: Site:
Nephtyidae NW
Phylum: Gear:
Annelida ROV
Class: Photo by:
Polychaeta Amphinomida (Order) /sis 2010
Order: sp. A Identified by:
Amphinomida M. Shields
Family: Site:
NW, SW, SE
Phylum: Gear:
ROV this might be a
Class: Photo by: brachipod, but
Bra Isis 2010 the resolution is _
Order: Identified by: not good enough W
C. Alt to be sure
Family: Site:
Phylum: Gear: a green thing, which
ROV is only visible in
Class: Photo by: video. It might not be
GT Isis 2010 biological. The distri-
Order: Identified by: bution is very sparse
C. Alt and it is therefore not
Family: Site: likely to be phytode-
tritus.
Phylum: Gear:
ROV this a a faint red
Class: Photo by: shape that ap-
Od Isis 2010 peared often to
Order: Identified by: have a centre
C. Alt with, maybe ten-
Family: Site: tacles moving out
Phylum: Gear: dark red, irregular
ROV .o
shape. This might
Class: Photo by:
Isis 2010 be a small pebble,
Drt
Order: Identified by: although t'he red
C. Alt colour ration suggest
Family: Site: the possibility that it

might be biologycal




TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
ROV small brown dot,
Class: Photo by: which could be a
BrD Isis 2010 structure formed
Order: Identified by: by mega- or mac-
C. Alt rofauna
Family: Site: .
k
Phylum: Gear:
ROV small spike-like
Class: Photo by: structure coming
SPp Isis 2010 off the sediment.
Order: Identified by:  This could be either
C. Alt infaunal, or a Sabel-
Family: Site: lid tube.
Phylum: Gear:
ROV green, irregular F ,.ﬂ
Class: Photo by: shape that appears .y
Sth Isis 2010 to come out of ' " h,
Order: 8 Identified by:  the sediment, and *ﬁ
C. Alt moves in a wave- 8
Family: Site: like manner on the
video
Phylum: Gear:
ROV Difficult to see _
Class: Photo by: on the image, el IT’_ 5 \
Ten Isis 2010 but tentacles I\', ]
Order: Identified by:  coming out of i ‘Rf’!'
C. Alt the sediment. I }';.:‘_-*.r *
Family: Site: [ T
Phylum: Gear:
ROV white/grey
Class: Photo by: shaded elon-
Pt Isis 2010 gated structure,
Order: Identified by:  without the
C. Alt conical shape
Family: Site: associated with
scaphopods
Phylum: Gear:
ROV structure with
Class: Photo by: small black cen-
Bspider Isis 2010 tre and tentacle/
Order: Identified by:  Jeg- like struc-
C. Alt tures surround-
Family: Site: ing it.



TAXONOMY NAME HABITAT NOTES IMAGE
Phylum: Gear:
ROV
Class: Photo by: small disc-like
Disc Isis 2010 structure
Order: Identified by:
C. Alt
Family: Site:
Phylum: Gear:
ROV very small half-
Class: Photo by: moon shaped
Sta Isis 2010 structure, which
Order: Identified by:  might be a very
C. Alt small
Family: Site: Staurocucumis
abyssorum
Phylum: Gear:
ROV This is either an
Class: Photo by: old holothurian
HoA Isis 2010 cast, or a holo-
Order: Identified by:  thurian from the
C. Alt Family Synal-
Family: Site: lactidae, or Ge-
phyrothuriidae
Phylum: Gear:
Mollusca ROV
Class: Photo by: these shells T
Gastropoda Diacria trispinosa 151 2010 were very Wy
Order: Identified by:  abundant at the ' A
Thecosomata M. Youngbluth  southern sites ™
Family: Site:
Cavoliniidae SW, SE
Phylum: Gear:
Mollusca ROV
Class: Photo by: these shells u 3 . .
Gastropoda Clio pyromidata Isis 2010 were very /
Order: Identified by:  abundant at the ey d
Thecosomata M. Youngbluth  southern sites - ﬂ
Family: Site: B
Cavoliniidae SW, SE
Phylum: Gear:
Class: Photo by:
Order: Identified by:
Family: Site:
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Publication List

F.1 Publications

C. H. S. Alt, D. O. B. Jones. 2012. Litter Distribution identified along various ROV
dive-transects at the Mid-Atlantic Ridge during the James Cook expedition JC048.
National Oceanography Centre, Southampton,
http://doi.pangaea.de/10.1594/PANGAEA.T18187

Note: Data submitted to this database were collected during ROV video analysis, but

are not included in this thesis.

A. J. Gooday, C. H. S. Alt, D. O. B. Jones, D. Shale, K. Marsden, M. D. Brasier. in
press. The Ecology and Biogeography of Discospirina tenuissima (Foraminifera) in the
Atlantic and Indian Ocean, Deep-Sea Research II (special issue).
http://dx.doi.org/10.1016/5.dsr2.2012.05.001

Note: I provided data on Discospirina density and distribution, and still frames of each

observation for reference; this data is included in Chapter 4 as part of the video survey.

J. B. Bell, D. O. B. Jones, C. H. S. Alt. in press. Lebensspuren of the Bathyal
Mid-Atlantic Ridge. Deep-Sea Research II (special issue).
http://dx.doi.org/10.1016/5.dsr2.2012.09.004

Note: Data on Lebensspuren were quantified by James Bell, during his Master Project.
I provided the still frames of the flat transects, which had been extracted as reference for

the ROV video survey presented in this thesis, and assisted in the analyses and write-up.

A. Rogacheva, A. Gebruk, C. H. S. Alt. accepted. Holothuroidea of the Charlie-
Gibbs Fracture Zone area, northern Mid-Atlantic Ridge. Marine Biology Research.
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Note: Data provided by me were collected during the trawl survey and included in-
formation on species distribution, abundance and size ranges, all of which have been

discussed.

A. Rogacheva, A. Gebruk, C. H. S. Alt. accepted. Swimming deep-sea holothurians
on the northern Mid-Atlantic Ridge. Proceedings of the 7th European Conference on
Echinoderms/ Lecture Notes Proceedings.

Note: Data provided by me were collected during the ROV video survey and included

details on observations of swimming holothurians during video analysis.

F.2 Manuscripts Submitted for Peer-Review

C. H. S. Alt, A. Rogacheva, B. Boorman, J. A. Hughes, D. S.M. Billett, D. O. B.
Jones. Trawled megafaunal invertebrate assemblages of the Mid-Atlantic Ridge (48° -
54° N). submitted to Deep-Sea Research II (special issue).

Note: This publication is in largly based on Chapter 3 of this thesis.

D. O.B. Jones, C. H. S. Alt, I. G. Priede, W. D. K. Reid, D. S. M. Billett, A. V. Gebruk,
A. Rogacheva, A. J. Gooday. The ecology of deep-sea surface-dwelling enteropneusts
from the Mid-Atlantic Ridge. submitted to Deep-Sea Research II (special issue).

Note: I provided data on enteropneust density and distribution, and still frames of each
observation for subsequent analyses; this data is included in Chapter 4 as part of the

video survey.

F.3 Manuscripts in Preparation to be Submitted for Peer-

Review

T. D. Linley, C. H. S. Alt, D. O. B. Jones, I. G. Priede. Bathyal Demersal Fishes of
Charlie Gibbs Fracture Zone region of the Mid-Atlantic Ridge: III. Reasults from re-
motely operated vehicle (ROV) video transects. will be submitted to Deep-Sea Research
IT (special issue).

Note: I provided data on fish density and distribution, and still frames of each obser-

vation for subsequent analysis; this data is not included in this thesis.

I. G. Priede, O. A. Bergstad, P. I. Miller, M. Veccione, A. Gebruk, T. Falkenhaug, D. S.
M. Billett, J. Graig, A. C. Dale, M. A. Shields, T. T. Sutton, A. J. Gooday, M. E. Innal,
D. O. B. Jones, V. Martinez-Vicente, G. M. Menezes, T. Niedzielski, G. H. Tilstone, N.
Rothe, A. Rogacheva, C. H. S. Alt, T. Brand, R. Abell, A. S. Brierley, N. J. Cousins,
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D. Crockard, A. R. Hoelzel, . Hines, T. B. Letessier, J. F. Read, T. Shimmield, M. J.
Cox, J. K. Galbraith, J. D. M. Gordon, T. Horton, F. Neat, P. Lorance. The significance
of the northern Mid Atlantic Ridge in basin-scale oceanic ecology. will be submitted to
PLoS ONE

Note: I provided biomass and abundance data for benthic megafauna, which were
combined with fish data from the same region. I further provided data to determine
the unique benthic megafauna at the MAR. All data provided for this paper have been
included in this thesis, Chapter 3.

C. H. S. Alt, A. Rogacheva, H. Fortherby, L. Corrigan, H. Wiklund, C. Gubili, T.White,
D. S. M. Billett, A. Gebruk, R. Hoelzel. Adaptive radiation of holothurians and clarifi-
cation on their systematic relationships. to be submitted to Ecology.

Note: This paper is based on Chapter 6 of this thesis, but will contain additional
information on morphological traits. Such traits are compared and analysed with the
molecular data to identify morphological traits that reflect the evolutionary relationships

of holothurians to one another most effectively.

C. H. S. Alt, A. Rogacheva, A. Gooday, D. O. B. Jones. Effects of habitat variability
and patch dynamics on community composition in the deep sea. to be submitted to
PNAS

Note: This paper will be based largely on Chapter 4, but substantially more analyses

will be carried out before this paper is ready.

Finally, Chapter 5 is also intended for publication, highlighting the pros and cons of
trawling and video analyses, but this will only be pursued after the other publications

have been submitted.
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