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MACHINE LEARNING APPROACHES TO MODELLING BICOID MORPHOGEN

IN DROSOPHILA MELANOGASTER

by Wei Liu

Bicoid morphogen is among the earliest triggers of differential spatial pattern of gene

expression and subsequent cell fate determination in the embryonic development of

Drosophila melanogaster. This maternally deposited morphogen, diffusing along the

anterior-posterior axis of the embryo, establishes a concentration gradient which is sensed

by target genes. In most computational model based analyses of this process, the trans-

lation of the bicoid mRNA is thought to take place at a fixed rate in the anterior pole

of the embryo. Is this process of morphogen generation a passive one as assumed in the

modelling literature so far, or would available data support an alternate hypothesis that

the stability of the mRNA is regulated by active processes?

This thesis demonstrates a Bicoid spatio-temporal model in which the stability of the

maternal mRNA is regulated by being held constant for a length of time, followed

by rapid exponential degradation. With the mRNA regulation, three computational

models of spatial morphogen propagation along the anterior-posterior axis are analysed:

(a) passive diffusion with a deterministic differential equation, (b) diffusion enhanced by

a cytoplasmic flow term and (c) stochastic diffusion modelled by Gillespie simulation.

Comparison of the parameter estimation in these models by matching to the publicly

available data, FlyEx, suggests strong support for mRNA regulated stability.

With a non-parametric Bayesian setting, we have applied Gaussian process regression to

infer the mRNA regulation function as a posterior density. With synthetic data obtained

from a linear spatio-temporal dynamical system and the experimental measurements

(FlyEx), this approach is capable of inferring the driving input. Apart from confirming

the validity of a regulated mRNA source, this work also demonstrates the applicability

of a powerful non-parametric model of Gaussian processes in a spatio-temporal inference

problem. In line with recent experimental works, we have also analysed this model with

a spatial gradient of maternal mRNA, rather than being fixed at the anterior pole.

Our final work is to analyse the dynamical topology of the gap gene network, which is the

major developmental activity, taking place after the establishment and interpretation
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of maternal morphogen Bicoid. This network consists of six transcription factors cross-

regulating each other. The main focus in this work is the external input – Bicoid, as

a trigger to initialise all these gap genes. The establishment of the gap gene network

happens about two hours following fertilisation, precisely the time duration in which

translation of the bicoid maternal mRNA is switched off. Hence, we are interested in

asking what effect the rapidly decaying Bicoid concentration might have on the behaviour

of the gap gene network. On addressing this concern, we have refined the existing

framework with time-varying Bicoid input from FlyEx. For this, our results suggest

potential changes within the network structure.
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Chapter 1
Introduction

1.1 Background

Life is as beautiful as an electrifying concert. From a few notes on the piano to a

wonderful musical composition, what we can hear from a single cell to a complicated

multicellular organism is the music of life. Differing from the non-living instruments,

this special concern is composited with the uncountable biochemical interactions based

on genetic keys. One can imagine how enormous the biological data are produced from

these ongoing interactions in our bodies. In spite of the complexity, scientists are still

searching for the generalised laws of the biological systems. However, the traditional

experimental technologies are no longer appropriate to help us understand the principles

of development. A more powerful approach needs to be considered, such as systems

biology, which demonstrates biology at the system level and integrates the dispersive

elements as an ensemble. By studying the biological principles based on mathematical

frameworks, systems biology provides a system-level understanding of the connections,

the dynamics and the structures between the elements. It is notable that the basic

mathematical equations could reveal some biological principles, such as transcription

networks, robustness of the protein circuits which are detailed by Alon (2006).

The particular interest in this thesis is bringing machine learning approaches to model

morphogen propagation in the Drosophila embryo. In biological development, the most

interesting and challenging problem is pattern formation, in which the differential cell

fate determination is mainly thought to be caused by spatial concentration gradients

of morphogens. This view, put forward by Turing (1952) over six decades ago, is a

computational model which predicted the mechanism long before an example of it was

discovered in the real world.

The idea that morphogens diffuse from a localised source and provide positional in-

formation by different concentration thresholds is formalised by Wolpert (1969) with a

1
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French flag model. The most definitive example, bicoid1, maternally deposited as mRNA

at the anterior pole of Drosophila melanogaster embryos, is translated into protein and

propagates along the anterior-posterior (A-P) axis, setting up a concentration gradient

(Driever and Nüsslein-Volhard, 1988a,b; St Johnston et al., 1989). This, in conjunction

with other similar transcription factors, regulates the establishment of the segmental

structure by precise activation of gap genes (Driever and Nüsslein-Volhard, 1989; Struhl

et al., 1989; Ephrussi and Johnston, 2004). Several computational models of Bicoid

gradient formation have been published over the last three decades (reviewed by Grimm

et al. (2010)). The most widely used model is the formulation of Wolpert (1969) and

Crick (1970) published before the discovery of the role of Bicoid, in which a combina-

tion of protein synthesis, diffusion and degradation (SDD) is the underlying mechanism

that derives a steady state concentration gradient. Decoding differential concentrations

from such a gradient, which is spatially exponential in the steady state, and its robust-

ness properties are discussed in (Driever and Nüsslein-Volhard, 1988b; Houchmandzadeh

et al., 2002). The topic of the Bicoid gradient formation has become increasingly popu-

lar in recent years because the traditional steady state decoding is hard to explain some

experimental findings (Gregor et al., 2007b,a). Therefore, the question of how Bicoid

gradient forms still remains open.

1.2 Motivation

To the best of our knowledge, all the computational models in the literature assume that

the translation of bicoid maternal mRNA takes place at a constant rate at the anterior

end, resulting in a constant supply of morphogen to diffuse in the system. Although

mathematically convenient, in that it leads to easy closed-form solutions, this is an

unrealistic assumption, for there is no need for the embryo to continue to maintain a

constant supply of morphogen beyond what is needed for genetic decoding.

A particular view on this subject, supported by experimental findings, is advanced by

Surdej and Jacobs-Lorena (1998) who argued that the stability of the bicoid mRNA is

regulated during development; the mRNA being held stable during the first two hours

of development and rapidly killed off thereafter. Spirov et al. (2009)’s work, proposing

an mRNA spatial distribution for bicoid, also contains further experimental evidence

pointing in this direction. By the fluorescence in situ hybridization (FISH) method

and confocal microscopy, these authors confirm that bicoid mRNA disappears below

detectable levels around 16min after the onset of nuclear cycle 14 with complete mRNA

degradation taking place over a time interval of 15 to 20min.

Following these two experiments, we have established the bicoidmRNA regulation model

with the degradation in the later developmental stage. Such a regulation framework

1The italic lower-case bicoid represents the gene and Bicoid refers to protein. It is similar for the
other genes.
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can provide a better fitting between protein formation and real measurements. More

importantly, the establishment of zygotic gene network occurs in the same time duration

that mRNA degrades. It is interesting to ask how regulated Bicoid affects the gap gene

expressions during cleavage cycle 14.

1.3 Contribution

1.3.1 bicoid mRNA stability regulation – in-silico analysis

In the first part of this thesis, we have pursued these observations of the regulation of

stability, leading to a model of morphogen propagation in which the source supply is

assumed to consist of a constant part during early development, followed by an expo-

nential decay. In Chapter 3, we integrate such a source model into two different models

of morphogen propagation and match the resulting spatio-temporal profiles to measure-

ments published by FlyEx database (Myasnikova et al., 2001; Poustelnikova et al., 2004;

Pisarev et al., 2009). By matching the model output to FlyEx measurements, using a

least squares fitting method, we infer optimal parameters of each of the models, includ-

ing the time at which mRNA stability is destroyed. We also quantify the uncertainties in

these estimates by constructing bootstrapped sample paths through different individual

fly measurements, taken at different developmental stages. Our results show that the

estimated parameters all lie within sensible ranges of values, and the decay onset time

inferred from the data coincides well with the experimental observations in (Surdej and

Jacobs-Lorena, 1998; Spirov et al., 2009).

As such, ours is the first in-silico study that incorporates a novel mechanism of devel-

opmental regulation by which a morphogen gradient is established when needed, and

killed off by some active processes once its task is accomplished. This is something one

would naturally expect, but which has been ignored in three decades of modelling work

on the subject.

1.3.2 Inference of bicoid mRNA – Gaussian process approach

Secondly, we build on the algorithmic foundations and apply the non-parametric proba-

bilistic approach of Gaussian process (GP) regression (Rasmussen and Williams, 2006)

to address the problem of modelling Bicoid morphogen propagation. The GP model is

the tool of choice for regression problems characterised by the need to model uncertain-

ties and deal with unobserved data in a systematic way, both of which are aspects of

our problem. The approach has been demonstrated in a wide range of applications in

the machine learning literature. Specifically, Lawrence et al. (2007); Gao et al. (2008)
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Table 1.1: Maternal and gap genes in the early embryonic development.

Gene Name Maternal/Zygotic Protein Distribution

Maternal genes bicoid M Anterior
hunchback (hb) M/Z Anterior & Posterior
nanos (nos) M Posterior
caudal (cad) M/Z Posterior

Gap genes hunchback (hb) M/Z Anterior & Posterior
Krüppel (Kr)2 Z Middle

giant (gt) Z Anterior & Posterior
knirps (kni) Z middle
tailless (tll) Z Anterior &Posterior

huckebein (hkb) Z Anterior & Posterior

2 The initial letter of Krüppel (Kr) is capital since the mutation of this gene is dominant.

demonstrate pioneering work in this area, in which GPs are shown to be very effective

in inferring target genes regulated by the tumour suppression transcription factor p53.

In Chapter 4, we derive the computational strategy needed to extend Lawrence et al.

(2007)’s work to deal with spatio-temporal problems, and demonstrate its application

to Bicoid regulation modelling using both synthetic data and real data from FlyEx

database (Pisarev et al., 2009). The results demonstrate the power of the method on

synthetic data and its limitations on real data. As such, this work is the first contribution

that adapts the powerful algorithmic setting of non-parametric regression to tackle an

important spatio-temporal inference problem in developmental biology.

1.3.3 bicoid mRNA regulation in segmentation – gap gene network

The complex expression of gap genes that drive segmentation along the A-P axis is

studied in a number of works (Reinitz and Sharp, 1995; Jaeger et al., 2004b,a; Manu.

et al., 2009a,b; Ashyraliyev et al., 2009) by the construction of a gap gene regulatory

model. This body of work shows how dynamical properties of a non-linear network of

interacting transcription factors achieves segmentation along the A-P axis by differential

expressions. Remarkably, the models are able to exhibit dynamical shifts of gap gene

expression peaks from posterior towards anterior. These authors mostly assume Bicoid

to have a sustained exponential steady state profile throughout the analysis intervals they

consider, a questionable assumption since it is precisely during this time interval that

the morphogen degrades rapidly. In Chapter 5, we refine the gap gene model proposed

by Jaeger et al. (2004b,a) with the time-varying external input – Bicoid concentration

gradient from FlyEx. This work suggests that the genetic topology is potentially effected.
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Figure 1.1: Thesis structure

1.4 Thesis organisation

This thesis is organised as in Figure 1.1. After this introductory chapter, Chapter 2

reviews models of Bicoid protein concentration gradient establishment in Drosophila

early embryonic development, cooperating with constant Bicoid translation rate, which

has been a general assumption over the decades. Further, the more complicated devel-

opment, segment determination involving gap gene connections, described by the gap

gene network has been reviewed. At the end, the review turns to a powerful Bayesian

inference framework, GPs, of which the particular interest is to infer posterior function

of the latent chemical species in biological system. Chapters 3, 4 and 5 comprise the

main works of the thesis. In Chapter 3, we introduce two mathematical Bicoid reaction-

diffusion systems – deterministic and stochastic models – in which the stability of bicoid

mRNA has been regulated. In Chapter 4, by GP modelling, we infer such source reg-

ulation as a driving function from noisy observations of Bicoid spatio-temporal protein

profile. In Chapter 5, we discuss the potential change in gap gene regulatory network

when the constant Bicoid intensity input is replaced with the regulated intensity from

FlyEx database. Finally, the conclusions of this research and future works will be de-

scribed in Chapter 6. Appendix A (A.1-A.6) includes several derivation details and is

attached after Chapter 6.
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Chapter 2
Literature review

This chapter provides a review of the literature on Drosophila melanogaster early em-

bryonic development during the first three hours after fertilisation. We start from the

positional information in Section 2.1 which explains how gene expresses on the proper

location. This information is provided by a class of signalling molecules known as mor-

phogens. The first experimentally discovered maternal provided morphogen Bicoid is

introduced and computational models of Bicoid propagation are reviewed in Section 2.2.

The quantitative experimental database FlyEx is introduced in Section 2.3. In Section

2.4, we review the gap gene regulatory network which is initialised by Bicoid. As the

Bayesian approach to study the biological system, Gaussian process (GP) modelling is

reviewed in Section 2.5.

2.1 Positional information and morphogen

How does a simple embryo develop as a well organised body with head, eyes and other

organs? How can we determine the fate of millions or billions of cells in an organism? The

answers to these questions remained elusive concerning the development of complicated

organisms, until the end of the nineteenth century. By separating the cells of the sea

urchin embryo after the first cell division, in 1891, Driesch discovered that each of the

cells developed into a small larva instead of the corresponding half of the sea urchin

(Driesch, 1908). This experiment implies that there is a coordinate system that can

specify the cells’ position information. Based on these findings, Morgan (1901) later

suggested that this regeneration is controlled by some substances which can determine

the pattern formation by gradients (Wolpert, 1996; Wartlick et al., 2009). The gradients

became a popular topic of study in the 1930s (Wolpert, 1996). Spemann and Mangold

(1924) suggested that such a gradient is released from a group of localised cells and

a particular gradient had been found in metabolism by Child (1941). Although these

7
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Figure 2.1: French flag model. Morphogen concentration is shown with flag and
the corresponding cells are shown with spheres.

works could explain Driesch’s discovery to a certain extent, the generation of the discrete

regions of the pattern from a continuous gradient still remained a question. Dalcq (1938)

proposed the idea of thresholds of the morphogenesis and Sander in 1960 proved the

possibility that the determination of the patterns can be controlled by the gradients

within the particular boundaries (Sander, 1971; Rogers and Schier, 2011).

Morphogen, which represents the chemical substance above, was first named by Turing

(1952). He introduced a possible mechanism of the progress in self-organised patterns,

the morphogen reaction-diffusion system, which establishes the concentrations through

tissues by the interactions between the diffusing molecules and generates the resulting

organism. With Turing’s reaction-diffusion model, as shown below, the two dimensional

spatial patterns are formed by considering the chemical reactions of two or more mor-

phogens in a field of cells. Morphogens x and y reaction-diffusion system in the cell r is

given by:

dxr
dt

= µ(xr+1 − 2xr + xr−1) + f(xr, yr), r = 1, ..., N

dyr
dt

= ν(yr+1 − 2yr + yr−1) + g(xr, yr), r = 1, ..., N (2.1)

where µ and ν are diffusion constant and f(·) and g(·) are morphogen reaction functions.

This is the first theoretical model formalising the idea of a concentration-dependent

manner in biological pattern formation.
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In the biological field, on the studies of Galleria mellonella pupa, Stumpf (1966) showed

that the concentration gradient of inductive molecules have contributes to developmental

patterning. Later, the positional information mechanism that explains how the genetic

information can be translated into the spatial patterns was formalised byWolpert (1969).

The basic idea of the position information, specifying and interpreting of the cells’

positional values, is illustrated by a classic model, the French flag, as shown in Figure

2.1. Two key factors that establish positional information are boundary and scalar which

define the specified position and the distance from the boundary, respectively (Wolpert,

1989). Before the genetic programme starts, the cells have the potentials to develop as

one of three colours of the French flag. After the morphogen concentration gradient is

established, these cells are given the positional values specified by the concentration at

each point and the flag pattern, shown in Figure 2.1, will be generated after the positional

values are interpreted by cells. The three colours are differentiated according to different

pre-determined genetic information in cells (Wolpert, 1996, 2007). Importantly, the

position information only controls the decisions of relating to the fate of the cells instead

of specifying the genetic instructions. Therefore, the same morphogen could generate

different tissues by providing position information only (Wolpert, 1969).

An early simple morphogen diffusible model (Source-Sink model) in embryogenesis is

proposed by Crick (1970). In this model, morphogen molecules are produced from the

localised source cells and destroyed in the other end by sink cells to form morphogen

distribution by the property of diffusion over a field of cells (Figure 2.2). This linear

gradient can induce different gene expressions in the concentration-dependent manner,

which can be explained well by Wolpert’s French flag model above. This simple Source-

Sink model had a significant influence on the later morphogen works although we know

the sink component is not necessary nowadays because the morphogen concentration

can be formed even without degradation. At the same time, other morphogen studies

were continued. For example, the digits development of the chick limb bud, explained

by morphogen gradient diffusion, evidences that the pattern formation can be formed

by interpretation of position information (Summerbell et al., 1973; Tickle et al., 1975).

2.2 Bicoid morphogen in Drosophila early embryonic de-

velopment

Morphogen, as a popular genetic control topic, continues to appeal to scientists because

it offers an easy way to learn the positional information and pattern formation by mea-

suring the physical parameters, such as diffusion constant or degradation time (Grimm

et al., 2010). In this thesis, we focus on Bicoid morphogen, which is among the ear-

liest triggers of differential spatial pattern of gene expression and subsequent cell fate

determination in the embryonic development of Drosophila melanogaster.
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Figure 2.2: Source-Sink model proposed by Crick (1970). It is assuming that a
linear morphogen gradient is formed by source and sink at the opposite ends.

Drosophila is a two-winged insect which is about 3mm long as an adult and 0.5mm long

as an embryo. Embryonic development takes place in an egg follow by the larva hatch-

ing from the egg and going through various stages as it grows larger. The Drosophila

was first introduced to genetic experiments by Morgan in 1909 and a Nobel Prize was

given to C. Nüsslein-Volhard, E. B. Lewis and E. Wieschaus almost a century later for

their contribution to the field of genetic control of early embryonic development. In

order to understand the role of morphogen in developmental biology, we study the early

development in Drosophila in this thesis because the genetic basis of Drosophila is well

understood and similar to that of many animals.

In the Drosophila embryo, the most important process after fertilisation is cleavage.

There are 14 cleavage cycles that occur during the first three hours in early development.

The first ten cycles take place within almost 80min after fertilisation lasting 8min each.

Being different from other animal embryos, there is no cytoplasm cleavage in this early

stage of Drosophila and the mitotic divisions take place in the zygote nucleus without cell

walls forming. The proteins diffusion becomes much easier in this shared cytoplasm due

to the lack of cell membranes. After 10 nuclear divisions, the embryo develops as a multi-

nuclear syncytium which has 5000 nuclei surrounded by the common cytoplasm. The

duration for each cycle from 10 to 13 is around 10min and Cycle 14A lasts 50min (Foe

et al., 1993; Poustelnikova et al., 2004). After 3 hours, the cellular blastoderm develops.

Although several genes are involved in Drosophila early embryonic development, we

only focus on a few genes which have significant effects such as bicoid. Bicoid protein,

as the first morphogen known molecularly, is a maternally supplied transcription factor

which plays an important role in establishing the embryonic anterior-posterior (A-P)
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axis during early development of the Drosophila embryo (Driever and Nüsslein-Volhard,

1988a,b; Ephrussi and Johnston, 2004). Bicoid gradient is required for both head and

thorax development of the embryo, which will develop as duplicated tail structures if the

gradient is lacking (Frohnhöfer and Nüsslein-Volhard, 1986). The anterior structures of

the embryos, whose mothers lack the bicoid gene, can not be determined; however, with

the injection of bicoid mRNA, some anterior regions of these embryos are developed at

the site of injection (Driever et al., 1990).

bicoid maternally provided mRNA, is synthesised in the nurse cells and transported to

the oocyte. It is strictly localised at the anterior pole of oocytes (Berleth et al., 1988; St

Johnston et al., 1989). After fertilisation, bicoid mRNA is translated to Bicoid proteins

which will diffuse from the localised source and form a concentration gradient along

the A-P axis (Driever and Nüsslein-Volhard, 1988a). After establishing such a gradient,

Bicoid, as a transcription factor, binds to the enhancers of target genes and induces

following gene expression.

2.2.1 Deterministic Bicoid reaction-diffusion computational model

Driever and Nüsslein-Volhard (1988a) showed that Bicoid proteins set up an exponential

decay concentration gradient with maximum in the anterior part which spans the anterior

two-thirds of the egg’s length. This distribution model involves three parts: synthesis,

diffusion and degradation.

As previously stated, the Bicoid gradient is established during the syncytium stage

where the nuclei replicate in a common cytoplasm without cell division. Therefore, the

morphogen gradient establishment becomes much easier. This diffusive concentration

has the property that it can determine cell fate along the A-P axis in the concentration-

dependent manner (Driever and Nüsslein-Volhard, 1988b). Many computational and

experimental works have been published towards an understanding of the precision with

which spatial boundaries are established and the scaling behaviour of the concentration

gradients have been analysed (Houchmandzadeh et al., 2002; Gregor et al., 2005, 2007a,b;

Holloway et al., 2006; Bergmann et al., 2007; Porcher and Dostatni, 2010; Löhr et al.,

2010; Okabe-Oho et al., 2009; He et al., 2010).

To a first approximation, a one-dimensional model is regarded as adequate, as several

authors have considered. The Bicoid spatio-temporal reaction-diffusion system is given

by:

∂m(x, t)

∂t
= D

∂2

∂x2
m(x, t)− τ−1p m(x, t) + S(x, t) (2.2)

Unlike Crick (1970)’s Source-Sink model, in which the ‘sink’ is at the other end of the

embryo and destroys molecules, Equation 2.2 shows the Bicoid reaction-diffusion model

with proteins diffusing along the A-P axis with diffusion coefficient D and decaying
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everywhere with degradation time τp. S(x, t) is a source function which describes the

production of morphogen molecules. There is an implicit assumption of a one to one

mapping between mRNA regulation and the corresponding protein production, which

we believe is justified as there is no evidence available of non-linear feedback in this

developmental system (Gregor et al., 2007a). m(x, t), with an exponential decaying

profile, is formed by localised synthesis, diffusion and spatially uniform degradation

and refereed to as the widely used SDD model (Driever and Nüsslein-Volhard, 1988a;

Houchmandzadeh et al., 2002; Gregor et al., 2005, 2007b; Bergmann et al., 2007).

When the protein degradation time is short, there is a possibility that the protein syn-

thesis rate is balanced by degradation and the reaction-diffusion system reaches steady

state. In this stage, the Bicoid concentration profile remains stable and the rate of pro-

tein changing over time becomes zero: ∂m(x, t)/∂t = 0. As the localised constant source

being considered as boundary condition, we rewrite Equation 2.2 as

D
d2

dx2
ms(x)− τ−1p ms(x) = 0. (2.3)

The solution to this homogeneous second-order linear equation is given by:

ms(x) = C1 exp
(
−x

λ

)
, (2.4)

with λ =
√

Dτp and C1 = Jλ
D (derivation is shown in Appendix A.2). C1 is the mor-

phogen concentration at the anterior pole where x = 0. λ is the decay length and

the concentration will decrease to C1 exp(−1) when x = λ. This solution shows that

the morphogen profile, given a position x, is only dependent on diffusion constant and

protein life time at steady state.

The concept of steady state emerged from the field of mathematics and has been applied

in many other fields. In the biological reaction-diffusion system, the general idea of the

steady state is that the protein production compensates degradation equally and the

concentration remains stable with developmental time increasing. Most Bicoid studies

are based on steady state by assuming that downstream genes will express after the

morphogen concentration becomes stable. (Reinitz et al., 1995; Aegerter-Wilmsen et al.,

2005; Houchmandzadeh et al., 2005; Jaeger et al., 2004b). However, in the quantitative

measurements, by changing the Bicoid dosage, Houchmandzadeh et al. (2002) revealed

that downstream gene hunchback (hb) undergoes a shift which is much more smaller

than the expected one, which is evaluated using morphogen steady state model. This

simple morphogen model needs to be questioned concerning whether it is sufficient to

explain the fate map of downstream gap genes. Later, this findings was extended by

Gregor et al. (2007a), who found that Bicoid concentration gradient drops 10% between

neighbouring nuclei, independent of the location along the A-P axis and such a gradient

is readout precisely by the target downstream gap gene hunchback with a sigmoidal

dependence. It is worth asking how the nuclei detect the drop reliably. To address this
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question, a possible strategy proposed by Gregor et al. (2007a) is the communication

between the nearby nuclei to estimate Bicoid concentration jointly. This is different

from (Houchmandzadeh et al., 2002), in which the authors assumed other maternal

genes may be involved during interpretation. Although both findings imply the probable

mechanisms to control the variation of gene expression, however, the capability of the

traditional Bicoid steady state system to provide precise downstream gene expression is

still being explored.

Additionally, in biological experiments, a real steady state may take too long time to

be observed if the protein lifetime τp is long and the tissue patterning may occur earlier

before the steady state (Grimm et al., 2010). By simulating the Sonic hedgehog homolog

(Shh) morphogen formation numerically, Saha and Schaffer (2006) provided a different

perspective that the cell fate can be determined when the morphogen increases over the

threshold, instead of reaching steady state.

Based on the query relating to the Bicoid steady state, Bergmann et al. (2007) proposed

a pre-steady state decoding hypothesis that gap gene decoding occurs earlier than mor-

phogen gradient steady state establishing. The small shifts in gap and pair-rule gene

expression domains are observed when the Bicoid dosage changes and the authors found

that these shifts of gap genes are dependent on their positions to the source. Along the

A-P axis, the genes in the posterior part are less sensitive to Bicoid dosage. This is in-

consistent with the traditional assumption that the decoding takes place after the Bicoid

gradient reached steady state. This hypothesis is also supported by the experimental ev-

idence in their work. Figure 2.3 shows the Bicoid gradient shifting comparison between

steady state and pre-steady state models with the Bicoid dosage varying. Such a shift

becomes insensitive in the posterior part of the pre-steady state model (Figure 2.3D),

which is consistent with the measurements. This work also implies that gap gene expres-

sions defined by this transient pre-steady-state could reduce patterning errors caused by

fluctuations in the rate of morphogen production.

At the same time, the Bicoid concentration gradient formation is also questioned by

Gregor et al. (2007b), who characterised Bicoid gradient dynamics in live imaging by re-

placing the endogenous Bicoid with enhanced green fluorescent protein (eGFP) in living

transgenic Drosophila embryos. The authors found that Bicoid gradient forms rapidly

within about 90min after fertilisation, which is inconsistent with the measurement of

diffusion coefficient D, where D = 0.3µm2/s. For example, a gradual morphogen gra-

dient has been found during the experiment, with length scale λ more than 60µm at

90min after fertilisation; however, with the relatively slow diffusion obtained from mea-

surement, the expected length scale is around 40µm. In Gregor and colleagues’ finding,

the traditional Bicoid reaction-diffusion model has been questioned because the low mo-

bility of the Bicoid protein is insufficient to establish a stable gradient within 90min.

A better understanding of how Bicoid gradient forms is still being exploited. Besides

the pre-steady state decoding framework proposed by Bergmann et al. (2007, 2008), an
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Figure 2.3: Bicoid steady state and pre-steady state profiles with Bicoid dosage
changing. A shows traditional exponential steady state profile described in
Equation 2.4. The pre-steady state model from Bergmann et al. (2007)’s work
has been reproduced in B with developmental time increasing. The analytical
derivation is shown in Appendix A.1. The Bicoid gradient shifts of these two
models, caused by dosage changing, are shown in C (steady state) and D pre-
steady state logarithmically.

alternative mechanism based on an additional cytoplasmic flow term proposed by (Hecht

et al., 2009) showed how such a disagreement may be addressed when the flow velocity

has been included. It was believed that the cytoplasmic flow is caused by the viscous

cytoplasm dragged from nuclei motion due to axial expansion and cortical migration.

This was later argued by Von Dassow and Schubiger (1994) who showed that the cy-

toskeletal forcing drives the flow. The fountain steaming pattern is resulted by deep

cytoplasm flowing rapidly from centre of the embryo toward the poles and peripheral

cytoplasm flowing toward the middle region of the embryo.

Alternatives to passive deterministic diffusion from a point source at the anterior end

have been considered by some recent authors. Coppey et al. (2007, 2008) proposed such

a mechanism for Bicoid gradient establishment based on the idea of nuclear trapping.

Their model explicitly accommodates the growth in the number of nuclei in the embryo,
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and the shuttling of Bicoid molecules in and out of nuclei at each cycle. This mechanism,

in essence, serves as a substitute for degradation of the morphogen molecules assumed

in other models. A more recent model was described by Kavousanakis et al. (2010) who

considered an arrangement of periodic components representing nuclei, modelling very

much the same nuclear trapping aspect studied by Coppey et al. (2007, 2008). Cheung

et al. (2011) have considered Bicoid production rate as a variable, i.e. the quantity of

maternally deposited mRNA being a function of the size of the embryo, as an explanation

of morphogen gradient scaling.

2.2.2 Spatial distributed bicoid mRNA model

Although several models have been proposed, the exploration of Bicoid gradient forma-

tion has not been suspended. bicoid mRNA, maternally provided and normally assumed

localised in the anterior pole of Drosophila embryo, encodes Bicoid proteins which dif-

fuse along the A-P axis (St Johnston et al., 1989, 1991). The mRNA-based approach

has attracted attention recently because mRNA provides a better way to understand

morphogen gradient formation.

Contradicting with the traditional SDDmodel proposed in (Driever and Nüsslein-Volhard,

1988a), a totally different perspective for Bicoid profile establishment in (Spirov et al.,

2009) showed that Bicoid profile is formed by bicoid mRNA gradient which is established

by the transport of mRNA along the embryo cortex. By the FISH method and confocal

microscopy, the authors suggested that the inconsistency between the small diffusion

coefficient and gradual protein gradient measured by Gregor et al. (2007b,a) can be ad-

dressed by this active RNA transport and synthesis (ARTS) model. This experimental

observation is also numerically simulated by Dilão and Muraro (2010) who proposed a

computational mRNA diffusion model, in which, mRNA has a spatial diffusion along

the A-P axis and the protein gradient forms without any protein degradation.

Is the spatial distributed bicoid mRNA sufficient to provide protein concentration gra-

dient during embryo development? Capturing the dynamics of bicoid mRNA particles

by the FISH method, Little et al. (2011) found most mRNA is localised within the an-

terior 20% of the embryo and protein diffusion towards the posterior is still required to

establish the gradient. The mRNA spatial distribution can not account for the whole

protein gradient formation. Meanwhile, by evaluating the least square error between the

numerical model and experimental measurements, the authors showed that the error can

be reduced when the non-localised source cooperated with the SDD model. The various

sources such as point and non-localised mRNA have been discussed in (Dalessi et al.,

2011) and the effects on Bicoid morphogen formation have also been analysed.
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2.2.3 Stochastic reaction-diffusion model

The computational chemical reaction-diffusion system, described by the deterministic

differential equation, was introduced above. However, such a continuous system has

limitations when the uncertainties analysis is required. Therefore, a discrete chemical

reaction system, based on stochastic simulation, has been proposed and analysed by a

number of studies (Gillespie, 1977; Gibson and Bruck, 2000; Andrews and Bray, 2004;

Hattne et al., 2005; Erban et al., 2007; Erban and Chapman, 2009). This stochastic

system provides a more detailed understanding of the chemical reactions in biological

systems.

The stochastic simulation algorithm proposed by Gillespie (1977) represents exactly the

distribution of the master equation and correctly accounts for the inherent fluctuations

and correlations that are ignored in the deterministic system. The basic idea of stochas-

tic simulation can be summarised as two questions: which reaction occurs next and

when does it occur? Sometimes, however, this simulation is computationally expensive

when the system contains many reactions. The modified method proposed by Gibson

and Bruck (2000) renders the Gillespie algorithm more efficiently by only updating the

changed chemical reactions at each step. A practical guide to the stochastic simula-

tions based on the Gillespie algorithm are provided by Erban et al. (2007); Erban and

Chapman (2009).

Focusing on the discrete nature of the molecular system, Wu et al. (2007) presented a

probabilistic formulation, treating the embryo as a finite number of compartments, and

formulating the chemical master equation for molecules undergoing transitions between

them. Because it is hard to obtain the analytical solutions of the reaction diffusion mas-

ter equation, numerical simulations by a software MesoRD (Hattne et al., 2005) have

been used in their work. An elegant approximate inference method for such stochastic

models is presented in Dewar et al. (2010), drawing on statistical physics literature.

They proposed a Bayesian approach, based on formulating a Markov jump process, for

estimating parameters from observational data, along with uncertainties in these esti-

mates. While inference from such a system is usually achieved via stochastic simulations,

the authors use approximate inference to circumvent the associated computational com-

plexities. Another stochastic approach can be found in (Fomekong-Nanfack et al., 2009),

in which the gap gene model was simulated stochastically and robustness of this noisy

model was analysed.

2.2.4 mRNA stability regulation model

To the best of our knowledge, the computational models reviewed above assume that the

bicoid mRNA, as a source to translate morphogen proteins, is only a constant supply.

While the control of stability and translation during development has been discussed by
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other authors (e.g. see review by Cooperstock and Lipshitz (1997)), these have not been

included in computational models. The constant assumption is not realistic because

it is common that in animal development, maternally encoded mRNAs degrade during

transition from maternal to zygotic expression (Yasuda and Schubiger, 1992; Schultz,

1993).

A particularly novel insight into the process of Bicoid translation comes from the experi-

mental work of Surdej and Jacobs-Lorena (1998). By analysing bicoid mRNA abundance

during the first three hours of embryogenesis, the authors suggested that the stability

of the maternal mRNA may be systematically regulated; i.e. kept stable for a period

of time (two hours) during which mRNA is translated and morphogen synthesised, and

subsequently rapidly killed off within 30min by bicoid instability element (BIE). BIE

is contained within the first 43 nucleotides of the 3′ untranslated region (3′ UTR) on

bicoid mRNA. This observation matches our natural expectation as there is no need for

the organism to continue to produce Bicoid protein beyond the point in time when it is

decoded. Another experimental finding from Spirov et al. (2009) also confirmed bicoid

mRNA disappeared rapidly during early nuclear Cycle 14.

To our surprise, however, modelling literature over the 30 years since the discovery of

Bicoid ignores this possibility and assumes a constant production rate at the anterior

pole. In the recent Bicoid modelling reviews (Grimm et al., 2010; Dalessi et al., 2011),

the degradation of bicoid mRNA still remains an open question in modelling morphogen

gradient formation. We showed recently in (Liu and Niranjan, 2009, 2011) that it is

possible to model Bicoid production in a manner similar to Surdej and Jacobs-Lorena

(1998)’s experimental findings and computationally extract the time at which mRNA

decay begins, and the rate at which it is killed off, to match data measured on real fly

embryos and archived in FlyEx database (Pisarev et al., 2009). An explicit model of

mRNA stability regulation and a least squares fitting procedure between model output

and observed data are shown in (Liu and Niranjan, 2011).

2.3 FlyEx database

In order to understand gene segmentation expression in Drosophila, accurate quantita-

tive datasets on gene expression are the key sources of information about the develop-

ment of the organism. Meanwhile, the availability of these accurate data is of critical

importance for developing new mathematical models and inferring regulatory interac-

tions in the genetic network.

There are some databases that can provide details of gene functions and developmen-

tal processes, i.e. FlyBase (Tweedie et al., 2009; Gelbart et al., 2003) which provides

Drosophila genetic and genomic information, such as molecular function, biological pro-

cesses and subcellular location, etc. Another database, FlyMove (Weigmann et al.,
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Figure 2.4: A two dimensional image of gene expression patterns: Bicoid (Pink
pattern), Hb (Blue pattern) and Gt (Green pattern) from FlyEx (http://urchin
.spbcas.ru/flyex).

2003), aims to use multimedia presentations like 3-D images to facilitate understanding

of Drosophila development.

In this thesis, the experimental measurements we use are published in FlyEx (Poustel-

nikova et al., 2004; Pisarev et al., 2009), which provides high resolution quantitative

gene expression data, extracted from confocal images on gene expression patterns of the

Drosophila embryo. As noted above, during early embryonic development, there are 14

nuclear divisions. While there is some variability in how these developmental stages map

onto real time, on average, Cycle 14A (temporal classes 1 – 8) lasts for around 50min

Foe et al. (1993). Cycle 11 starts around 100min from fertilisation, and the three cycles

11, 12 and 13 last an average of 10min each. In FlyEx, Bicoid data are available for the

11 temporal classes from cycles 11 to 14A.

The quantitative expression data of 14 genes have been published in FlyEx, i.e. bicoid,

hb and gt, etc. These data are obtained from images of gene expression patterns in 1580

wild-type Drosophila embryos by confocal scanning microscopy of fixed embryos with

immunostained proteins. All the images are obtained in 8-bit format with maximum

intensity at 255. These images then need to be segmented by constructing a binary

nuclear mask to determine the x and y coordinates and estimate the mean fluorescence

of each nucleus. The x and y coordinates for each nucleus correspond to the A-P and D-

V axes, respectively and the coordinates are expressed as a percentage of the maximum

size of the embryo in x and y directions. This compensates for size differences among

embryos (Poustelnikova et al., 2004). The background noise needs to be removed by data

normalisation, whereby fluorescence is transformed to zero if at or below background

level, and maximum possible fluorescence to itself.
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Because segmentation gene expression is largely a function of position along the A-P

axis in the embryo, this can therefore be represented well in one dimension. The one

dimensional integrated data is extracted from the central 10% of y values on the mid-line

of an embryo in the A-P direction (Myasnikova et al., 2001). The data here are grouped

in 100 bins along A-P axis and averaged within each bin. The gene expression data are

mapped to one row of nuclei and a single nucleus is close to 1% of the embryo length in

diameter.

2.4 Gap gene regulatory network

The major developmental activity, that takes place following the establishment and inter-

pretation of maternal morphogen Bicoid, is the formation of the gap gene expression pat-

terns, consisting of a closely coupled network of six transcription factors cross-regulating

each other. These have been studied extensively by experimentally (e.g. ChIP-chip ex-

periments by Perry et al. (2011)), and computationally in a series of papers spanning a

period of two decades, starting from Reinitz and Sharp (1995) to Jaeger et al. (2004b,a).

Bicoid is known to initiate the gap gene expression by binding to the corresponding

enhancers in the regulatory regions of target genes and it is considered as an input to

all gap genes in the computational models.

The establishment of the gap gene formation happens immediately, about two hours after

fertilisation, precisely the time duration in which translation of the maternal mRNA is

switched off. Hence, we are interested in asking what effect rapidly decaying Bicoid

concentration might have on the gap gene expressions. In this section, we give a review

of various aspects of the gap gene network, and later in Chapter 5 present and analyse

our own work on optimising the network parameters with time-varying input data taken

from FlyEx dataset.

The gap genes, as part of segmentation-determined system, are the first zygotic genes

expressed along the A-P axis and all of them are transcription factors. They are nor-

mally recognised by their mutant phenotypes, in which the contiguous body segments

are missing and gaps of the body pattern are formed. The first three gap genes were

identified by Nüslein-Volhard and Wieschaus (1980) by genetic screen: hb, knirps (kni)

and Krüppel (Kr). Further gap genes, giant (gt), tailless (tll) and huckebein (hkb), were

identified in later works (Petschek et al., 1987; Weigel et al., 1990).

Initially, the maternal provided mRNAs are placed in the oocyte, where the bicoid and

nanos (nos) mRNAs are localised in the two opposing ends. The located information is

determined by 3′ UTR of each gene (Frigerio et al., 1986; Berleth et al., 1988; Ferrandon

et al., 1997). The maternal hb and caudal cad mRNAs are uniformly distributed along

the A-P axis (see Figure 2.5).
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Figure 2.5: mRNA distribution during oogenesis.

After fertilisation, bicoid mRNA spreads to the posterior and forms a gradient within

20% of the embryo anterior part (Frigerio et al., 1986; Spirov et al., 2009). Bicoid protein,

translated from bicoid mRNA as stated in previous sections, will bind to a specific region

of 3′ UTR on cad mRNA and inhibits the translation of Cad protein from mRNA in the

anterior regions (Chan and Struhl, 1997). This is important for embryo development

since Cad will result in an improper anterior formation if it has not been repressed in

this region. Similarly, Nos prevents hb translation in the posterior area (Tautz, 1988);

this is the only contribution of Nos found during embryonic development so far (Jaeger,

2011). The connections between Bicoid ⊣1 Cad and Nos ⊣ Hb are shown in Figure 2.6(a)

and 2.6(b). All the protein concentrations are drawn at Cycle 14A.1 from FlyEx except

Nos, which is not included in this database and we use mirrored Bicoid concentration

to replace it.

(a) Bicoid and Cad protein distribution after fertil-
isation

(b) Hb and Nos protein distribution after fertilisa-
tion

Figure 2.6: Proteins distribution at Cycle 14A.1

Bicoid, Hb and Cad, as the earliest transcription factors during Drosophila embryonic

development, activate or repress zygotic genes expression in the concentration-dependent

manner when the embryo is a syncytium. Gap genes can diffuse away from where they

1⊣ represents the repression
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are synthesised in such a stage and their early localised regulation is dependent on those

maternal genes.

The whole gap gene network is initialised by Bicoid. An embryo which lacks hb will

have a severe phenotype such as deletion of gnathal and thoracic segments. Zygotic

Hb, activated by Bicoid binding sites in the hb regulatory region (Driever and Nüsslein-

Volhard, 1989), forms a gradient in the anterior regions of the embryo after Cycle 12.

This protein, associated with maternal Hb, acts as a morphogen to control other gap

gene expression with Bicoid. For example, Kr may be activated by Bicoid by molecular

studies as in (Hoch et al., 1990) and it may also be activated by low level Hb (Struhl

et al., 1992). gt is activated by Bicoid in the anterior domain and is repressed by Hb

in the posterior domain (Tautz, 1988; Rivera-Pomar et al., 1995). The expression of gt

in posterior regions is activated by another maternal gene, Cad (Rivera-Pomar et al.,

1995). There are, however, still some problems in gap gene regulation that need to be

explored. For example, it is unclear which gene controls the expression of Kr and how

the Kr boundaries are defined. The evidence so far is not sufficient to characterise proper

early gap gene regulations. In a recent gap gene review, Jaeger (2011) conjectured that

other unknown maternal genes may still be missing to regulate the gap genes.

This later stage of development, considering the cross-regulation between gap genes,

turns the framework into a much more complicated one. Some powerful computa-

tional tools need to be applied to analyse the connections between genes. Starting

from the computational genetic model proposed by Reinitz and Sharp (1995), Jaeger

et al. (2004b,a) built a mathematical gap gene network during cycles 13 and 14A based

on quantified gene expression data from FlyEx to reveal the connections between such

gap genes. A linear ODE system has been established within the main embryo body

axis from 35% ∼ 92% of embryo length with six genes, hb, cad, tll, kni, Kr and gt. bicoid

gene expression data, as an external input in this system, are averaged as constant. The

key role of this model may explain the gap gene patterns anterior shift, caused by the

asymmetrical repression. An improved gap gene model included terminal gap gene hkb

was proposed in (Ashyraliyev et al., 2009). The main idea of this computational model

remains the same in this work but with a smaller model size, in which there are four

regulated genes ( hb, kni, Kr and gt ) and four external inputs ( bicoid, cad, tll and hkb).

The gap genes connections in the mathematical models are described by the model

parameters, of which the maximum number is 62 in (Jaeger et al., 2004b) and 44 in

(Ashyraliyev et al., 2009). An global optimisation method parallel lam simulated an-

nealing (PLSA) (Lam and Delosme, 1988a,b) has been used to fit the model to quan-

titative data in both of the models. Such a fitting process took between 8 and 160

CPU hours on 10 parallel 2.4-GHz Pentium P4 Xeon processors. The computational

cost is dramatically decreased in (Fomekong-Nanfack et al., 2007) by applying another

global approach – evolution strategy combined with a local search strategy, by which

the computational time is around 8 to 11 CPU hours, much faster than PLSA.
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2.5 Gaussian processes in systems biology

2.5.1 Bayes’ theorem

The Bayes’ rule, yielding the posterior density, is given by:

p(θ|y) = p(y|θ)p(θ)
p(y)

, (2.5)

where p(θ) gives the prior distribution of θ being observed and likelihood is given

by p(y|θ). The marginal likelihood p(y), defined as
∑

θ p(y|θ)p(θ) for discrete θ and∫
p(y|θ)p(θ)dθ for continuous θ, is independent of θ. Hence, p(y) can be considered as a

constant and Equation 2.5 becomes

p(θ|y) ∝ p(y|θ)p(θ). (2.6)

∗ Prediction. Following Bayes’ rule above, we can infer the unknown observable y∗

from the given data y with parameter θ. The posterior predictive distribution of

y∗ is given by:

p(y∗|y) =
∫

p(y∗, θ|y)dθ =

∫
p(y∗|θ, y)p(θ|y)dθ (2.7)

∗ Likelihood. As can be seen in Equation 2.6, the data y affect the posterior distribu-

tion only through p(y|θ), known as likelihood function. Generally, such a function

is from the exponential family (Duda and Hart, 1973; Bernardo et al., 1994)

∗ Prior. The widely used Gaussian distribution prior, is a specific example of the

conjugate prior, in which the posterior distribution has the same form as the prior.

Moreover, the conjugate prior exists for any member of the exponential family.

2.5.2 Gaussian processes

In biological systems, given the observations, we can never know the underlying true val-

ues due to the noise. In machine learning, Bayesian approaches, as powerful tools, can

deal with the uncertainties probabilistically. Bayesian inference has been shown to be

useful in a range of applications including systems biology and bioinformatics. Success-

ful examples range from the identification of genetic regulatory networks (Pe’er et al.,

2001; Husmeier, 2003; Perrin et al., 2003; Beal et al., 2005) and causal protein-signaling

networks (Sachs et al., 2005) by dynamic Bayesian networks, inference of transcription

regulation using a state space model (Sanguinetti et al., 2006a,b), Bayes factors esti-

mating by MCMC and thermodynamic integration methods in non-linear ODE models

(Calderhead and Girolami, 2009), approximate inference using variational methods for
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the spatio-temporal Bicoid system (Dewar et al., 2010), to parameter estimation using

Monte Carlo simulations to understand stochastic dynamics of bacterial gene regulation

(Wilkinson, 2011).

Gaussian processes (GPs) (Rasmussen and Williams, 2006) provide an effective frame-

work for inferring the action of latent functions from partially observed data and learning

the parameters from the model. In particular, such a framework has been successfully

applied to infer unobserved chemical species of tumour repressor p53 in (Lawrence et al.,

2007; Gao et al., 2008), which provides an efficient alternative to the Markov chain Monte

Carlo (MCMC) approach advanced earlier by Barenco et al. (2006). GPs have been

applied to infer the transcription factor given mRNA concentrations because it is very

hard to measure the active concentration of transcription factor proteins which drive the

process and the sensitivity of target genes to these concentrations. This non-parametric

Bayesian probabilistic inference methodology has also been used in (Honkela et al., 2010)

to identify potential targets of a transcription factor using time series expression data.

A GP is defined as

f(x) ∼ GP(µ(x), k(x, x′)), (2.8)

where the mean and covariance functions are given by:

µ(x) = E(f(x)), and (2.9)

k(x, x′) = E((f(x)− µ(x))(f(x′)− µ(x′))). (2.10)

The latest software packages to implement GPs can be found on The Gaussian Processes

Web Site2. Generally, the packages such as NETLAB3 (Nabney, 2001) and BUGS4 (Lunn

et al., 2009) have made Bayesian inference easy to access for practitioners.

In line with previous works (Gao et al., 2008), in this thesis, we use the squared exponen-

tial covariance function (radial basis function (RBF)) to define the covariance between

pairs of two input points:

k(xi, xj) = cov(f(xi), f(xj)) = σ2
r exp

(
−(xi − xj)

2

l2

)
, (2.11)

and to generate smooth function f(x). This covariance function varies inversely with

the distance between two inputs and becomes almost unity when two time points are

very close. The σ2
r and length scale l are the parameters in the squared exponential

covariance function, where l is constant for all inputs. In general, the RBF is a smooth

kernel, which produces smooth functions.

2 http://www.gaussianprocess.org/
3 http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
4 http://www.mrc-bsu.cam.ac.uk/bugs/
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Apart from Dewar et al. (2010)’s work, Bayesian methods mentioned above address

purely temporal phenomena. In the non-biological spatio-temporal system, GPs have

been applied substantially in spatial analysis as a prediction scheme, such as kriging

(Cressie, 1993; Stein, 1999). As a powerful modelling example, kriged kalman filter

proposed by Mardia et al. (1998) provides spatio-temporal prediction of environmental

problems. Another successful application proposed by Alvarez et al. (2009) describes a

attempt at combining a data driven model (GP) with a latent process explaining the

known physics of a system. The authors consider the heat equation, which is a simplified

form of a diffusion system, to model the spatio-temporal profile of pollution.

Modelling biological spatio-temporal system using GPs has not been addressed in liter-

ature so far. In (Liu and Niranjan, 2012), we focused on the inference of bicoid mRNA

regulation, which is an unobserved time-varying function in Bicoid gradient establish-

ment, and placed a Gaussian prior distribution over it. Moreover, we extended the pre-

vious GP works into the spatio-temporal field by implementing the inference for mRNA

regulation and spatio-temporal Bicoid concentration given simulated model output and

real datasets from FlyEx database (Pisarev et al., 2009). This work will introduced in

Chapter 4.



Chapter 3
Establishing Bicoid gradient with

regulated mRNA stability

In this chapter, we introduce the biological spatio-temporal reaction-diffusion system,

starting from Fick’s law in Section 3.1.1. As explained in Section 2.2, it is noted that the

assumption of constant Bicoid proteins supply is unrealistic because the maternal mRNA

is known to decay after a certain time following fertilisation (Surdej and Jacobs-Lorena,

1998). In Section 3.1.2, we incorporate a realistic model of the morphogen source, in

which the stability of bicoid mRNA is regulated. We explicitly regulate bicoid mRNA

stability as a constant supply followed by exponential decay and solve the reaction-

diffusion equation numerically for morphogen propagation. In Section 3.1.3, this work

is extended to further show such mRNA regulation framework combined with a recently

published flow model (Hecht et al., 2009) that takes into account a cytoplasmic flow term.

Moreover, a Bicoid stochastic model based on Gillespie algorithm (Gillespie, 1977; Erban

et al., 2007) which includes regulated mRNA, is shown in Section 3.2. By minimising the

squared error between model outputs and measurements published in FlyEx database, we

will show in Section 3.3 how parameters of diffusion rate, protein and mRNA degradation

times, and the onset of maternal mRNA decay can be assigned sensible values. In line

with recent thinking on the subject (Spirov et al., 2009; Little et al., 2011), we will also

analyse the Bicoid gradient establishment with a spatial gradient of maternal mRNA,

rather than being fixed at only the anterior pole.

25
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Figure 3.1: Diagram of Fick’s first law. The Bicoid molecules, shown as blue
spheres, diffuse between two cubes along the A-P axis in the Drosophila embryo.

3.1 Bicoid deterministic reaction-diffusion model

3.1.1 Fick’s law

The diffusion of Bicoid molecules in the early development of the Drosophila embryo

is introduced in this section. The establishment of the protein concentration gradient

involves three processes: diffusion so that molecules can move around between nuclei,

degradation of molecules themselves and production of molecules from maternal provided

mRNA. Generally, the Bicoid reaction-diffusion computational model is represented by

a second-order PDE, which is a reaction-diffusion equation to simulate Bicoid protein

concentration gradient establishment. Let a spatio-temporal function m(x, t) be defined

as the Bicoid protein concentration at position x (x ∈ [0, L]) along embryo A-P axis and

developmental time t (t ∈ [0, T ]). We start from the basic concept of diffusion which is

explained by Fick’s law, derived by Fick (1855).

3.1.1.1 Fick’s first law

Figure 3.1 shows a representation of two adjacent regions of an embryo across which

Bicoid diffusion is illustrated. For the scenario we consider, i.e. morphogen propagation

in the embryo, diffusion is considered an acceptable model since cell walls around each

nuclei have not formed yet, as introduced in Chapter 2.2. The length of each cube side,

h, is as small as the diameter of a nucleus and the concentrations at those two cubes

can be represented as m(x − h
2 ) and m(x+ h

2 ). The number of molecules in each cube

at time t is given by m(x∓ h
2 , t)h

3.

The transport of molecules, without any degradation and production considered firstly,

is defined by a flux term J , which describes how many molecules move from regions
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of high to low concentration per unit area and unit time. Axis x stands for a one-

dimensional A-P axis with the positive direction from anterior to posterior. Therefore,

the flux is positive if molecules are going right and is negative when they are going left.

During a small time interval (t, t+∆t), the number of molecules at position x is defined

by a simplest random walk model: a random molecule starts from a point (x, t) and

takes h
2 as one step length towards left or right during ∆t. Since the chances of the

molecule going right or left are equal, the probability of going to each direction is 0.5.

That means the molecule will either be at x − h
2 or x + h

2 at time t + ∆t. Assuming

that all of the molecules along the A-P axis are based on the random walk model, the

number of molecules crossing the area at (x, t+∆t) is given by:

1

2
m

(
x− h

2
, t

)
h3

︸ ︷︷ ︸
A→P

−1

2
m

(
x+

h

2
, t

)
h3

︸ ︷︷ ︸
A←P

. (3.1)

Arrows represent the directions of the molecules and the minus means the molecules are

moving from the right cube to the left one.

The flux J(x, t), defined as a number of molecules (Equation 3.1) cross the unit area at

x over unit time, is given by:

J(x, t→ t+∆t) = − 1

∆t

1

h2

[
1

2
m

(
x+

h

2
, t

)
h3 − 1

2
m

(
x− h

2
, t

)
h3
]

= − h2

2∆t

[
m
(
x+ h

2 , t
)
−m

(
x− h

2 , t
)]

h
. (3.2)

As ∆t and h approach zero, the limit of Equation 3.2 is given by:

J(x, t) = − h2

2∆t

∂

∂x
m(x, t)

= −D ∂

∂x
m(x, t), (3.3)

where D (µm2/s) is the diffusion coefficient and Equation 3.3 is Fick’s first law (Fick,

1855).

3.1.1.2 Fick’s second law

Fick’s second law, shown in Figure 3.2, describes the variation of the number of molecules

in one cube (h3) during the time interval (t, t+∆t). This change, counting the incoming

and outgoing molecules at each end of the cube, is defined by the flux (Equation 3.3) at

x− h
2 and x+ h

2 :

h3[m(x, t+∆t)−m(x, t)] = h2∆t

[
J

(
x− h

2
, t

)
− J

(
x+

h

2
, t

)]
. (3.4)
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Figure 3.2: Diagram of Fick’s second law, which describes the concentration
changes in one cube.

Being divided by the volume of the cube (h3) and duration ∆t, Equation 3.4 becomes:

m(x, t+∆t)−m(x, t)

∆t
= −J

(
x+ h

2 , t
)
− J

(
x− h

2 , t
)

h
. (3.5)

Let ∆t and h approach zero, the limit of Equation 3.5 which is Fick’ second law is given

by:

∂

∂t
m(x, t) = − ∂

∂x
J(x, t)

= D
∂2

∂x2
m(x, t). (3.6)

An alternative way of deriving the diffusion equation is to consider the Divergence

Theorem, also known as Gauss’s Theorem, which equates surface integrals and volume

integrals (Morse and Feshbach, 1953). Let Ω = h3 be the volume of the cube and ∂Ω be

the boundary of this region. Combining Divergence Theorem, the total out-flux in this

region is:

∫

∂Ω

−→
J (x, t) · −→n (x)dx =

∫

Ω
div(
−→
J (x, t))dx (3.7)

where −→n (x) is unit outward normal direction at x. The rate of the number of molecules

changing is given by:

∂

∂t

∫

Ω
m(x, t)dx = −

∫

∂Ω

−→
J (x, t) · −→n (x)dx

=

∫

Ω
div

(
D

∂

∂x
m(x, t)

)
dx. (3.8)
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Rewriting Equation 3.8, we get the diffusion equation as:

∂

∂t
m(x, t) = div

(
D

∂

∂x
m(x, t)

)

= D
∂2

∂x2
m(x, t). (3.9)

3.1.2 bicoid mRNA stability regulation

Section 3.1.1 shows how the concentration of molecules varies with diffusion. As intro-

duced in Chapter 2.2, by combining protein reactions such as destruction and creation,

the one dimensional reaction-diffusion equation used to model Bicoid concentration gra-

dient establishing is given by:

∂

∂t
m(x, t) = D

∂2

∂x2
m(x, t)− τ−1p m(x, t) + S(x, t), (3.10)

where m(x, t) is the morphogen concentration as a spatio-temporal function, D, the

diffusion constant and τp, the degradation time of the morphogen protein. S(x, t),

constant source at the anterior pole of embryo. Equation 3.10, which involves localised

constant protein synthesis, diffusion and linear degradation, sets up an exponentially

decaying Bicoid gradient along the embryo A-P axis.

Although the variations in gap gene expression may be reduced according to the stable

morphogen profile, inconsistencies between observed and expected results appear and

the traditional morphogen gradient model has been called into question. Gregor et al.

(2007b) measured Bicoid diffusion coefficient D and found that with this small value, the

observed morphogen profile can not be achieved, and faster protein diffusion is required.

Several morphogen models have been proposed towards this contradiction, i.e. a pre-

steady state decoding of gap gene patterning (Bergmann et al., 2007, 2008), a modified

reaction-diffusion model with cytoplasmic streaming (Hecht et al., 2009), and an active

RNA transport and synthesis (ARTS) model incorporating mRNA spatial distribution

(Spirov et al., 2009).

To the best of our knowledge, however, all the computational models assume that the

translation of maternal mRNA takes place at a constant rate in the anterior pole of the

Drosophila embryo, resulting in a constant supply of morphogen to diffuse in the system.

While mathematically convenient, in that it leads to easy closed-form solutions, this is

an unrealistic assumption, for there is no need for the embryo to continue to maintain

a constant supply of morphogen beyond that is needed for downstream decoding. In

this chapter, we focus on how Bicoid propagates when the bicoid mRNA stability is

regulated.
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(a) Constant mRNA source model
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(b) Unregulated mRNA decay model

Figure 3.3: Two different approaches modelling the source concentrations which
are provided by maternal deposited bicoid mRNA. Figure 3.3(a) shows constant
source which supplies proteins over the whole time scale (0 ∼ 200min). Another
source model, in which mRNA is decaying from the very beginning without any
regulation is shown in Figure 3.3(b)

3.1.2.1 bicoid mRNA without regulation

The usual assumption in solving the Bicoid reaction-diffusion model is that the protein

synthesis process is continuous, which is shown in Figure 3.3(a):

Scon = S0δ(x)Θ(t), (3.11)

where S0 is the source concentration, δ(x) is the Kronecker delta function and Θ(t) is

Heaviside step function.

With the constant protein synthesis, the Bicoid morphogen reaction-diffusion system is

given by:

∂

∂t
m(x, t) = D

∂2

∂x2
m(x, t)− τ−1p m(x, t) + Scon(x, t). (3.12)

Bergmann et al. (2007) provided the analytical solution as

m(x, t) =
S0

2βD

(
exp (−βx)− exp (−βx)

2
erfc

(
2βDt− x√

4Dt

)
− exp (βx)

2
erfc

(
2βDt+ x√

4Dt

))
,

(3.13)

where β is:

β = 1/
√

Dτp. (3.14)

More derivation details can be found in Appendix A.1.
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Figure 3.4: The spatio-temporal Bicoid morphogen profile with constant mRNA
supply, time scale from t = 0 : 200min and embryo length from: L = 0 : 500µm.

The left panel in Figure 3.4 shows the solution to the reaction diffusion model of mor-

phogen propagation, where the production of proteins is a constant. We obtained this

solution by numerically integrating the differential equation using the pdepe Toolbox in

MATLAB with D = 3µm2/s and τp = 87min. The source production rate is shown in

the right panel.

3.1.2.2 Deterministic model with mRNA regulation

In this thesis, following Surdej and Jacobs-Lorena (1998)’s experimental findings that

bicoid mRNA is kept constant in the first two hours then degrades quickly, the mRNA

regulation of stability has been incorporated with morphogen propagation. As shown in

Figure 3.5, such a regulation model is given by

Scon−dec = S0δ(x) [Θ(t)−Θ(t− t0)] + S0δ(x)Θ(t− t0) exp

(
− t− t0

τm

)
, (3.15)

where τm is mRNA degradation time and t0 is the decaying onset time. These two are

key parameters for bicoid mRNA regulation. Unlike the analytic solution shown above,

the solution of this regulated reaction-diffusion system has the imaginary part when the

protein degradation rate is smaller than mRNA decaying rate due to the inverse Fourier

transform (details are shown in Appendix A.1). We instead chose an alternative option of

numerically integrating them with the MATLAB Toolbox pdepe, which is a PDE solver

for both parabolic and elliptic PDEs. In pdepe toolbox, the approximate solutions of

our parabolic PDEs system are integrated temporally by the spatial discretised ODEs.
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Figure 3.5: bicoid mRNA regulation model, which is kept stable for a period of
time during mRNA being translated and subsequently rapidly killed off.
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Figure 3.6: The intensity of the Bicoid spatio-temporal profile with mRNA
stability regulation shown in the right panel.

Figure 3.6 shows the morphogen profile with mRNA regulation, in which the source is a

combination of a constant supply followed by an exponential decay (shown on the right).

As expected, the morphogen intensity in this system, evaluated numerically using the

pdepe Toolbox, sets up a spatially decaying profile which subsequently decays to zero.

For this simulation, D and τp are set to the same values as above while the decay rate

of maternal bicoid mRNA was set as τm = 9min which is much smaller than τp. mRNA

degradation was set to start at 143min (More details of the model parameter estimation

are discussed in Section 3.3).
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3.1.3 Deterministic model with cytoplasmic flow

As reviewed in Chapter 2.2, the alternative morphogen propagation model with an ad-

ditional cytoplasmic flow term is proposed by Hecht et al. (2009). It is motivated by

the argument that, with passive diffusion, the quantitative properties of the morphogen

profiles establishment require higher values of diffusion constant than have been exper-

imentally measured Gregor et al. (2007b).

The one-dimensional flow model is given by:

∂

∂t
m(x, t) = D

∂2

∂x2
m(x, t)− τ−1p m(x, t)− V

∂

∂x
m(x, t) + S(x, t), (3.16)

where V is fluid flow velocity. In the original formulation of this model, the flow term was

permitted to be active only for a short duration in time, nuclear cleavage cycles 4 to 6,

depending on the motion of the nuclei in the viscous cytoplasm. In our implementation,

we allowed this term to be present throughout the developmental time period considered,

to increase its difference from the standard diffusion model.
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Figure 3.7: The spatio-temporal Bicoid reaction-diffusion model profile includ-
ing cytoplasmic streaming, time scale from: t = 0 : 200 and embryo length from
L = 0 : 500µm with regulated source . The parameters here are set as: diffusion
constant D = 0.9µm2/s, Bicoid proteins decaying time τp = 42min and mRNA
decaying rate τm = 7min. Finally, flow velocity V is set to be 0.04m/s.

3.2 Stochastic reaction-diffusion model

In the previous section, we have discussed the deterministic Bicoid reaction-diffusion

model with mRNA stability regulation. In order to analyse the dynamical behaviour of
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Bicoid molecules cooperated with mRNA regulation in this section, we model the Bicoid

reaction-diffusion process based on the Gillespie stochastic algorithm, which provides a

more detailed and precise picture of the molecule interactions. Due to the intractability

of the analytical solution in the stochastic systems, some software packages have been

used to implement stochastic reaction-diffusion simulation numerically (Andrews and

Bray, 2004; Hattne et al., 2005; Erban and Chapman, 2009). Wu et al. (2007) used

publicly available software MesoRD (Hattne et al., 2005) to simulate the stochastic Bi-

coid molecules reaction-diffusion processes to analyse intrinsic fluctuations of the Bicoid

gradient. The realisation of the Bicoid reaction-diffusion system in our work is imple-

mented in MATLAB based on the Gillespie algorithm (Gillespie, 1977) which is introduced

in detail in Section 3.2.1.

3.2.1 Stochastic simulation

3.2.1.1 When does the next reaction occur?

Consider an example of a single chemical reaction:

m
k−→ ∅, (3.17)

where m is the chemical species we are interested in. k is degradation rate which

describes the speed of the molecule decaying. During a small time interval [t, t+dt), the

probability of a random molecule of m degradation is defined by kdt. The propensity

function a which gives the probability that the reaction Equation 3.17 occurs during

[t, t+ dt) is given by:

adt = m(t)kdt, (3.18)

where m(t) is the number of the molecules at time t. Now we need to ask the first

question: when does the next reaction occur? The easiest way to answer this is to

generate some random numbers to decide when the next reaction happens (see Algorithm

1).

Figure 3.8 shows 10 iterations based on Algorithm 1 for degradation reaction, where the

initial number of molecules m(0) is 30, degradation rate k is 0.1min−1 and time step dt

is 0.005min. The accuracy of Algorithm 1 could be achieved if dt is decreased; however,

the computational cost will be increasing along with such a smaller time step.

Sometimes, Algorithm 1 may be computationally expensive since we could generate a lot

of random numbers and find that no reaction happens. In order to design a more efficient

method, we can use only one random number to control when the reaction occurs. We

already know that the probability of the next reaction taking place is defined as a
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Algorithm 1 Stochastic simulation – Degradation

Initialisation: m(0) = 0.
while m > 0 do

Generation:
Generate a uniformly distributed number r, r ∈ (0, 1).
Reaction:
if r < m(t)kdt then

m(t+ dt) = m(t)− 1 (Degradation takes place).
else

m(t+ dt) = m(t).
end if

end while
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Figure 3.8: Ten realisations of degradation stochastic simulation (lines in colour)
and the averaged profile over the realisations (black line).

(Equation 3.18). Gillespie (1977) showed that time step for the next reaction occurring

is defined as:

τ =
1

a
ln(

1

r
), (3.19)

where r is a uniformly distributed number. The derivation details are shown in Appendix

A.3.

An example of production reaction is introduced here to describe how the algorithm is

changed with the time step τ . This reaction is given by

∅ g−→ m, (3.20)
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Figure 3.9: Ten realisations for production stochastic simulation (lines in colour)
of Algorithm 2. The number of molecules in all the realisations starts from zero
at initial time point and the simulation stops at 100min. The production rate
g is 0.3min−1.

where g is the production rate to generate molecules of m. The probability that one

molecule has been created during time interval [t, t + dt] is gdt. The Algorithm 1 has

been changed and shown in Algorithm 2.

Algorithm 2 Stochastic simulation – Production

Initialisation: m(0) = 0; t = 0.
while t < T do

Generation:
Generate a uniformly distributed number r, r ∈ (0, 1).
Calculation:
Calculate when the next reaction happens:

t+ τ, where τ = 1
a ln(

1
r ), a = g.

Reaction:
m(t+ τ) = m(t) + 1
t = t+ τ

end while

Simulated results of Algorithm 2 are shown in Figure 3.9. The computational cost of

Algorithm 1 has been reduced by τ because the reaction happens only at time point

t+ τ . The comparison between these two algorithms for the same degradation reaction

is shown in Figure 3.10, in which the time points in A (6974) are much larger than B

(31).
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Figure 3.10: Simulation of degraded molecule concentration. Figure 3.10A is
implemented by Algorithm 1, in which the computational cost is high. B shows
the same reaction simulated by Algorithm 2, which is more effective.

The time step τ can also be expanded into multi-reactions system. Suppose there are Q

reactions in a chemical system. The time step τ is similar to Equation 3.19:

τ =
1

a
ln(

1

r
) (3.21)

where a is given by all the propensity functions in the system:

a =

Q∑

j=1

aj (3.22)

3.2.1.2 Which reaction occurs?

We have introduced how a random number controls when the next reaction happens in

the last section. However, if there are multi-reactions occurring in one chemical system,

how can we decide which reaction will take place? Consider two independent chemical

reactions (degradation and production) appearing in one system:

m
k−→ ∅, ∅ g−→ m. (3.23)

The probabilities of the reactions taking place here, dependent on Equation 3.18, are

defined as m(t)kdt for degradation and gdt for production. The propensity function aj

is m(t)k for degradation and g for production. The total propensity function of this

system is given by:

a = m(t)k + g. (3.24)
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At time t+ τ , the probability of one molecule decaying is defined by m(t)k/a. Similarly,

the probability of one molecule generated is given by g/a. The detailed pseudo-code is

shown in Algorithm 3.

Algorithm 3 Degradation and Production stochastic simulation

Initialisation: m(0) = 0; t = 0
while t < T do

Generation:
Generate two uniformly distributed numbers r1 and r2,
r1 and r2 ∈ (0, 1).
Calculation:
Calculate when the next reaction happens at t+ τ,
where τ = 1

a ln(
1
r ), a = m(t)k + g.

Reaction:
Decide which reaction takes place at t+ τ,
if r2 < m(t)k/a then

m(t+ τ) = m(t)− 1
else

m(t+ τ) = m(t) + 1
end if
t = t+ τ

end while

Figure 3.11 shows the several realisations of the chemical reactions given by Equation

3.23 and these stochastic results fluctuate around the corresponding ODE which will be

discussed in the next section:

dm(t)

dt
= −km+ g. (3.25)

3.2.1.3 Master equation and stochastic mean

Chemical master equations are used to describe the time evolution of the chemical

system, in which the species movement is treated probabilistically. Assume that there is

only one degradation reaction (Equation 3.17) in a chemical system. At time t+ dt, the

probability that there are n molecules of m in the system is defined as Pn(t+ dt), which

is decided by the previous number of molecules at t. In order to achieve n molecules at

t + dt, the degradation reaction happens if there are n + 1 molecules at time t and no

reactions if there are n molecules at t:

Pn(t+ dt) = Pn+1(t)k(n + 1)dt+ Pn(t)(1 − kndt). (3.26)

Let x→ 0, so the master equation is given by:

dPn(t)

dt
= k(n+ 1)Pn+1(t)− knPn(t). (3.27)
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Figure 3.11: Five realisations for degradation and production stochastic sim-
ulation (lines in colour) of Algorithm 3. The number of molecules in all the
realisations starts from zero at initial time point and the simulation stops at
100min. The production rate g is 1.3 min−1 and degradation rate k is 0.1
min−1.

In much the same way, by assuming that there is only one reaction occurring during

a very small time interval dt, the master equation for the production and degradation

reactions becomes:

dPn(t)

dt
= k(n + 1)Pn+1(t)− knPn(t) + gPn−1(t)− gPn(t). (3.28)

Because the analytical solutions of the master equation are intractable in some compli-

cated systems, such as Bicoid reaction-diffusion processes, the stochastic mean, which

is the mean value of m(t) over many realisations, can be used to describe the average

performance of the system, i.e. average number of molecules. The derivation of the

stochastic mean for the master equation in Equation 3.28 is shown below. The general

stochastic mean is defined by:

m(t) =
∞∑

n=0

nPn(t). (3.29)
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Moreover, since the Pn(t) represents the probability that there are n molecules at time

t, we have:

∞∑

n=0

Pn(t) = 1. (3.30)

Instead of solving Pn(t), we multiply n at both sides of Equation 3.28 and sum over n:

∞∑

n=0

dnPn(t)

dt
=

∞∑

n=0

kn(n+ 1)Pn+1(t)

︸ ︷︷ ︸
n+1→n

−
∞∑

n=0

kn2Pn(t) +

∞∑

n=0

gnPn−1(t)

︸ ︷︷ ︸
n−1→n

−
∞∑

n=0

gnPn(t).

(3.31)

In order to keep the consistence between left and right hand sides, the indices of the first

term and third term should be changed as
∑∞

n=0 k(n+1)nPn(t) and
∑∞

n=0 g(n+1)Pn(t),

respectively, so we get:

∞∑

n=0

n
dPn(t)

dt
=
∞∑

n=0

k(n+ 1)nPn(t)−
∞∑

n=0

kn2Pn(t) +
∞∑

n=0

g(n+ 1)Pn(t)−
∞∑

n=0

gnPn(t).

(3.32)

Combining Equation 3.29 and 3.30, the equation above becomes the ODE shown in

Figure 3.11:

dm(t)

dt
= −km(t) + g. (3.33)

This is the temporal production and degradation ODE without spatial diffusion. The

Bicoid dynamic system will be introduced in the following section.

3.2.2 Bicoid stochastic reaction-diffusion model

Closely following Erban et al. (2007) and Wu et al. (2007), the stochastic Bicoid protein

reaction diffusion system we implemented simulates 100 compartments along the A-P

axis, each with length h = 5µm, which is approximately the average size of one nucleus.

The three chemical reactions involved in this description are:

Bicoid1
d
⇋

d
. . .

d
⇋

d
Bicoidi

d
⇋

d
. . .

d
⇋

d
BicoidN , for i = 1, 2, . . . , N (3.34)

Bicoidi
τ−1
p−−→ ∅, for i = 1, 2, . . . , N (3.35)



Chapter 3 Establishing Bicoid gradient with regulated mRNA stability 41

Figure 3.12: The diagram of Bicoid proteins chemical reaction-diffusion process
along the A-P axis.

∅ S(t)−−→ Bicoidi, for i = 1 (3.36)

The first of these, Equation 3.34, describes diffusion between neighbouring sub-volumes,

allowed to take place in both directions, at a rate d, related to the diffusion constant

of a deterministic model by d = D/h2. The second, Equation 3.35, describes protein

degradation, and the final, Equation 3.36, the source. Translation only takes place in

the first bin, for i = 1.

Bicoid reaction-diffusion master equation is given by:

∂

∂t
P (n, t) = d

N−1∑

i=1

[(ni + 1)P (R±1i n)− niP (n)]

︸ ︷︷ ︸
Diffusion:A→P

+ d
N∑

i=2

[(ni + 1)P (L±1i n)− niP (n)]

︸ ︷︷ ︸
Diffusion:A←P

+ τ−1p

N∑

i=1

[(ni + 1)P (K+1
i n)− niP (n)]

+ S(t)P [(K−11 n)− P (n)], (3.37)

where P (n, t) is joint probability of state vector n = [n1, n2, . . . , ni, . . . , nN ] and N =

100. R±1i , L±1i , K+1
i and K−1i are state operators, which are defined by:

R±1i n =[n1, n2, . . . , ni + 1, ni+1 − 1 . . . , nN ], i = 1, 2, . . . , N − 1 (3.38)

L±1i n =[n1, n2, . . . , ni−1 − 1, ni + 1 . . . , nN ], i = 2, 3, . . . , N (3.39)

K+1
i n =[n1, n2, . . . , ni + 1, . . . , nN ], i = 1, 2, . . . , N (3.40)

K−1i n =[n1, n2, . . . , ni − 1, . . . , nN ], i = 1, 2, . . . , N (3.41)

The first line in the chemical master equation corresponds to the Bicoid proteins diffusion

throughout the A-P axis of the Drosophila embryo. The second line describes proteins
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degradation while the final part is protein synthesis from bicoid mRNA. S(t) is mRNA

regulation function given by Equation 3.15.

Our implementation of the Gillespie algorithm for stochastic simulation of the master

equation closely follows that of Erban et al. (2007) and is given in pseudo-code format

in Algorithm 4. Similar to Algorithm 3, this process consists of the generation of two

random numbers to select the time at which a reaction occurs, and which one that is.

The probability that j-th chemical reaction taking place is given by: aj/a, where a is

a total propensity function, computed in step 2 (Algorithm 4). The vector m contains

the number of molecules along the N = 100 bins while Equations 3.34 – 3.36 define a

total of R = 3N − 1 reactions. The propensity functions for the reactions are:

Bicoid1
d−→ . . .

d−→ BicoidN : a1 =
N−1∑

i=1

dmi (3.42)

Bicoid1
d←− . . .

d←− BicoidN : a2 =
N∑

i=2

dmi (3.43)

Bicoidi
τ−1
p−−→ ∅ : a3 =

N∑

i=1

τ−1p mi (3.44)

The propensity function for the source part is defined by a4 = S(t)m1 because this

reaction occurs in the first bin.

The results for Bicoid stochastic reaction-diffusion in one stochastic simulation realisa-

tion based on the Gillespie algorithm Direct Method (Algorithm.4) are shown in Figure

3.14. This algorithm might be computationally intensive when the numbers of reactions

increasing because it is waste to recalculate all the propensity functions at each time

step. Therefore, Gibson and Bruck (2000) proposed more efficient implementation of

the Gillespie stochastic simulation. For example, we can only update those propensity

functions changed by reactions.
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Algorithm 4 Bicoid reaction-diffusion stochastic simulation

Output: Bicoid molecular numbers, m

Initialisation: m← 0, t← 0

while time<final time do

1. Generate two random numbers which are uniformly distributed in (0, 1):

r(1) and r(2).

2. Calculate propensity functions of all the reactions:

a = a1 + a2 + a3 + a4.

3. Calculate the time when next reaction occurs: t+ τ , where

τ = 1/a ln(1/r(1)).

4. Decide which reaction occurs at t+ τ : find j ∈ R such that:
∑j−1

i=1 ai/a ≤ r(2) <
∑j

i=1 ai/a

5. Update numbers of reactants and products in j-th reaction and set t← t+ τ

end while
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Figure 3.13: One realisation of the Bicoid stochastic simulation with mRNA
regulation at 4 time points along the developmental period (blue bars), where
mRNA decay onset time t0 is 144min. The deterministic simulation is imple-
mented by ODEs given in Equations 3.47 – 3.49.

The results for Bicoid stochastic reaction-diffusion in one run of stochastic simulation

based on the Gillespie algorithm, are shown in Figure 3.14. This model provides a more

detailed understanding of the protein distribution, partitioned in compartments along
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Figure 3.14: One realisation of stochastic simulation by Gillespie algorithm.
Blue histogram, A, shows the numbers of Bicoid molecules along anterior and
posterior axis in the embryo at a particular time point: Cycle 14A class 5.
Average of several such simulations is used as model output to match against
measurements. B shows the realisation jointly in space and time.

A-P axis. We note that such a stochastic model characterises a detailed view arising

from molecular level variabilities.

In order to estimate parameters used in stochastic model, we have calculated vector m

by multiplying ni and summing over the vector n, (i = 1, 2, . . . , N) rather than averaging

several Gillespie realisations of stochastic simulation.

m ={m1,m2, . . . ,mi, . . . ,mN}, i = 1, 2, . . . , N (3.45)

mi(t) =

∞∑

n1=0

∞∑

n2=0

. . .

∞∑

nN=0

niP (n, t) =
∑

n

niP (n, t), i = 1, 2, . . . , N (3.46)

where mi(t) gives the mean number of Bicoid molecules at time t in i-th sub-volume.

The details are introduced in Appendix A.4. Then we have a system of equations for m

followed as:

∂

∂t
m1 =d(m2 −m1)− τ−1p m1 + S(t), i = 1 (3.47)

∂

∂t
mi =d(mi+1 +mi−1 − 2mi)− τ−1p mi, i = 2, 3, . . . , N − 1 (3.48)

∂

∂t
mN =d(mN−1 −mN )− τ−1p mN , i = N (3.49)

Equations 3.47 – 3.49 are ODEs for the Bicoid reaction-diffusion system, where d is

diffusion rate for each sub-volume (d = D/h2). This is a discretised system of Equation

3.10.
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As a averaged result of the stochastic simulation, this system is used to estimate param-

eters in the following section.

Embryo Length (µm)

Ti
m

e 
t (

m
in

ut
es

)  

 

 

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

180

200 0

50

100

150

200

250 0

20

40

60

80

100

120

140

160

180

200
0 50 100 150 200

Ti
m

e 
t (

m
in

ut
es

)

Production Rate S
con−dec

Figure 3.15: Spatio-temporal Bicoid morphogen profile of averaged stochastic
model (ODEs) given by Equations 3.47 – 3.49. The mRNA regulated stability
is shown in the right panel.

3.3 Parameter estimation

3.3.1 Matching models to quantitative measurements

In this section, we use the experimental measurements from FlyEx to estimate pa-

rameters in the three computational models we discussed above. It is notice that the

measurements published in FlyEx are nuclear concentrations of Bicoid. The models

we use, however, correspond to the total Bicoid. We make the assumption that the

two concentrations are proportional across the developmental cycles. In recent work,

Gregor et al. (2007b) published some measurements of nuclear and cytoplasmic Bicoid

concentrations, showing the dynamical balance between the two during cycles of nuclear

division. Their data are suggestive that the use of nuclear concentrations as proxy for

total concentrations is reasonable. Once we assume the two are proportional, the param-

eters we infer by matching model outputs and data are unaffected, as any discrepancy

will be absorbed by the source amplitude term S0, computed by Equation 3.52.

The spatio-temporal data for Bicoid we use span 100 points uniformly spaced along the

A-P axis, and cover 11 points in time. The temporal range of measurements starts from

nuclear cleavage Cycle 11 to the end of Cycle 14A. Cycle 14A is of specific interest,

because it is during this period that gap gene network is established and the established

Bicoid profile begins to decay due to the decaying bicoid mRNA.
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The squared error between model output and measured intensities is

Err =

T2∑

t=T1

L∑

x=1

{S0m (x, t) − md (x, t)}2 , (3.50)

θ =argmin
θ∈R

(Err(θ)), (3.51)

where m(x, t) is the model output while md(x, t) denotes the measured intensities from

FlyEx. T1 and T2 are the boundaries of cleavage cycles 11 − 14A. θ in Equation (3.51)

represents a vector of all unknown model parameters and R is the space over which we

search for optimum values.

Because the model output is linear in the source amplitude S0 and is independent of

the other parameters used in the three models, we calculate it in closed form rather

than searching for an optimum in a grid. In order to minimise error Err in Equation

(3.50), we differentiate it with respect to S0 and equate it to zero. Then we have S0 as

following:

S0 =

∑T2

t=T1

∑L
x=1m(x, t)md(x, t)

∑T2

t=T1

∑L
x=1m(x, t)2

. (3.52)

3.3.2 Results and discussion

For the deterministic diffusion and stochastic models, there are four parameters (diffu-

sion constant D, protein degradation time τp, source mRNA degradation time τm and

decay onset time t0). For Hecht et al. (2009)’s cytoplasmic flow model, there is an

additional parameter, the flow velocity V .

Table 3.1 shows the search spaces used in optimising the parameters of the three models

considered. We used a coarse grid in the first round to get a rough estimate of the

sensible range of parameters and followed it with a second round of search with a higher

resolution and a reduced search range. Such a strategy is feasible, given that we have

only five parameters to estimate. Further, given the noisy nature of the available data,

searching over a finer grid to optimise parameters to a higher level of numerical precision

does not make sense. If data of higher quality become available in the future, a scheme

based on simulated annealing or population-based optimisation needs to be considered.

With the grid sizes we chose, shown in Table 3.1, it was possible to do least squares

fitting of all three models on a desktop PC, with at most three days of wall clock time.

Values of estimated parameters for the different models are shown in Tables 3.2 and

5.1, for the regulated stability model and a model in which source mRNA is permitted

to decay from time zero (unregulated mRNA regulation, as shown in Figure 3.3(b)),

respectively. We note that parameter values estimated by the fitting procedure are in

sensible ranges used by previous authors.
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Table 3.1: Parameter optimisation on a regular grid.

Space and resolution for the first round of search.

Parameters Diffusion model Stochastic model Flow model

D(µm2/s) 0.1:0.2:5 0.1:0.2:5 0.1:0.3:5
t0 (min) 120:2:160 120:2:160 120:3:160
τp (min) 40:2:100 40:2:100 40:3:100
τm (min) 1:2:30 1:2:30 1:3:30
V (µm/s) Null Null 0.01:0.02:0.1

Space and resolution for the second round of search.

Parameters Diffusion model Stochastic model Flow model

D(µm2/s) 2:0.1:4 2:0.1:4 0.1:0.1:1.5
t0 (min) 135:1:150 135:1:150 135:1:150
τp (min) 70:1:95 70:1:95 35:1:50
τm (min) 1:1:15 1:1:15 1:1:12
V (µm/s) Null Null 0.02:0.01:0.06

Table 3.2: Parameter estimation – Regulated stability.

Estimated Parameters Diffusion Stochastic Flow

Diffusion constant D (µm2/s) 3 3 0.9
mRNA decaying onset time t0 (min) 143 144 142

Bicoid proteins degradation time τp (min) 87 86 42
bicoid mRNA degradation time τm (min) 9 9 7

Flow velocity V (µm/s) N/A N/A 0.04
Source intensity S0 352 72 104

Parameter values estimated by matching model outputs to observed data from FlyEx.
Least squares fitting of model outputs to FlyEx with exhaustive search for the best
combination of parameters on a regular grid suggests sensible values for the mRNA
decay onset time, t0, in all three models. Regulated stability corresponds to an
optimised period in time during which the mRNA is held stable and translated at a
constant rate, followed by rapid decay.

Figure 3.16 shows how the models achieve a reduction of a quarter, in the root mean

square error between model outputs and FlyEx measurements in the post-peak region of

nuclear cleavage cycles 11 – 14A. This comparison between modelling errors, with and

without our regulated source, confirms the merits of explicitly modelling the destruction

of maternally deposited mRNA.

As seen in Figure 3.17, for the mRNA regulated stability estimates, there is strong

agreement across the three different models with respect to the onset of source decay

(t0), and the speed at which it is decayed (τ−1m ), the main focus of our investigation.
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Table 3.3: Parameter estimation – Unregulated stability.

Estimated Parameters Diffusion Stochastic Flow

Diffusion constant D (µm2/s) 1.1 1.1 0.4
mRNA decaying onset time t0 (min) 0.01 0.01 0.01

Bicoid proteins degradation time τp (min) 250 250 156
bicoid mRNA degradation time τm (min) 38 37 13

Flow velocity V (µm/s) N/A N/A 0.01
Source intensity S0 901 188 980

Parameters values estimated cooperating with unregulated stability, where the mRNA
is allowed to decay from the very beginning; these parameters were estimated by
forcing t0 = 0.01 min in the optimisation loop.
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Figure 3.16: Reduction in squared error between model outputs and FlyEx

measurements. In all three models, nearly a quarter reduction is achieved by the
improved source whose parameters are optimised. Blue bars represent modelling
errors for a constant source model and the red bars correspond to the regulated
mRNA model.

As noted in Section 2.2, these observations confirm the experimental findings in (Surdej

and Jacobs-Lorena, 1998) and (Spirov et al., 2009). Surdej and Jacobs-Lorena (1998)

argued that the mRNA is developmentally regulated, i.e. being held stable for up to the

first two hours and then rapidly killed off in the next 30min. Spirov et al. (2009) also

suggested that the rapid degradation takes place over a 15 – 20min interval. The rapid

decay of mRNA suggested in both these papers is consistent with degradation times of

9, 9 and 7 minutes inferred from our models.

We note that the diffusion constant estimated for Hecht et al. (2009)’s cytoplasmic flow

model is smaller than the other two. This is to be expected since the motivation of this

model is to use cytoplasmic flow as an additional trafficking mechanism that offsets a

low diffusion constant. The value we estimated for flow velocity (0.04 µm/s) is close to
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Figure 3.17: Spatio-temporal profiles of Bicoid and regulated anterior mRNA
profiles inferred using three different computational models. A and B spatio-
temporal profiles for a conventional model that assumes a constant source
(drawn over two timescales). Inferred source profiles are in shown in D, for
deterministic diffusion (blue), cytoplasmic flow (red) and the stochastic (green)
models. They differ in the source amplitudes required to fit the data, but the
estimated decay onset times are very close. The corresponding spatio-temporal
profile is shown in C over the full time and space axes. E and F: model output
and FlyEx data in the space-time range over which optimisation was carried
out. Profile shown in E is only for the deterministic diffusion model for clarity.

what was used in (Hecht et al., 2009) (0.08 µm/s), who take this estimate from observed

nuclear motions. They note a 20-fold large range of possible values for this parameter,

and use an average value. It is encouraging that the parameter obtained by fitting to

FlyEx happens to be quite close.
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Table 5.1 shows the parameter estimation for an unregulated source which allows for

mRNA decay from time zero (0.01min in our simulation). This possibility is a natural

expectation we need to explore, since mRNA molecules are inherently unstable. In order

to match the measurements in the post-peak region, it turns out that this model not

only has to amplify the source (S0) to almost ten times that of the other models but also

has to retain the protein in the medium for a much longer period (τp = 250&156min).

These values of protein degradation time are significantly higher than what is thought

to be of Bicoid proteins (Driever and Nüsslein-Volhard, 1988b). Further, the source

amplitude being so high is inconsistent with the observation that Bicoid protein is often

undetectable during the very early stages of development (Driever and Nüsslein-Volhard,

1988b; Grimm et al., 2010). Thus, it is reasonable to conclude that the source supply is

regulated as suggested by Surdej et al., rather than either being kept constant throughout

or being subject to natural decay.

Figure 3.18 shows cross sections of the error function at the optimum point found by

grid search. We have shown this with respect to all parameter combinations, taken

pair-wise, setting the parameters not shown to their optimum values. The unimodal

form of these error functions, shown here for the deterministic diffusion model, confirms

that the optimisation strategy we chose was adequate for this purpose. Similar error

surface plots for the other two models are given in Figures 3.19, 3.21 and 3.23. Over the

parameter ranges considered for the search, the error surface turns out to be unimodal

for all three models.

We note that previous authors working on Bicoid profiles have used a range of different

values for diffusion and protein degradation parameters. For the diffusion constant,

for example, values of, 0.3 (Gregor et al., 2007b), 7.0 (Little et al., 2011; Abu-Arish

et al., 2010; Porcher et al., 2010) and 17µm2/s (Gregor et al., 2005; Bergmann et al.,

2007) have been used. With our models, we explored the effect of fixing one or more

of the parameters at a value used by previous authors and optimising the remaining

parameters. We found the dominant effect is one of the diffusion terms compensating

for the protein degradation time, with the decay onset time and transcript degradation

time we compute showing far less variation.

We have further quantified the uncertainties in our estimates of t0 and τm by fitting the

models to individual embryo measurements in FlyEx rather than their average profiles.

We achieved this by constructing 50 reference datasets by uniformly bootstrapping from

each temporal class in FlyEx. Figure 3.25 shows these uncertainties as box plots and

confirms the fact that the estimated onset and decay rates are consistent across all three

models.

Our models permit the exploration of other published hypotheses about potential mRNA

regulation. For example, Salles et al. (1994), treating the poly(A) tail length of bicoid

mRNA as proxy for its translational competence, suggest that protein production may be
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Figure 3.18: Cross sections through the error function between deterministic
diffusion model output and measurements. Figures show the error function
with respect to parameters taken pairwise, with those not shown held constant
at their optimum values given in Table 3.2.

restricted in time, peaking between 1 to 1.5 hours in development. We have simulated

this by implementing the source as a rectangular function between 60min and Cycle

14A, and computing the resulting Bicoid profile, shown in Figure 3.26. We found the

corresponding modelling error to be significantly higher, caused mainly by forcing the

decay to be instantaneous.

Our implementation in deriving the main results for the stochastic model in 3.2, fol-

lowing the technique of Erban et al. (2007), via simultaneous ordinary differential equa-

tions corresponding to discrete bins along the spatial axis, captures average behaviour.

Asymptotically (i.e. with increasing number of bins), this is the equivalent of averaging

a large number of Gillespie simulations, and should also give the same solution as the

deterministic differential equation. To estimate the effect of molecular level variation,

we matched profiles generated by individual Gillespie simulations to bootstrap samples

of Bicoid profiles from FlyEx (the same data used to derive uncertainties in Figure 3.25).

As this process is computationally demanding, we restricted ourselves to estimating the

variability in mRNA decay onset time only, with the remaining parameters fixed to

their optimal values given in Table 3.2. Matching such individual simulations to data

resulted in an increase in the standard deviation of estimation from 3.9min to 5.5min.

While this increase suggests that the variability at the molecular level may be captured
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Figure 3.19: Modelling error displayed as functions of parameters taken pair-
wise. Stochastic simulation model.

by stochastic simulations, the resulting estimation uncertainties in both cases are still

small for the mRNA decay onset.

3.3.3 bicoid mRNA with spatial distribution

While nearly all modelling works on Bicoid assume a spatial point source for bicoid

mRNA, as noted in Chapter 2, Spirov et al. (2009) suggested that the bicoid mRNA

may have spatial distribution which alone explains the morphogen gradient at the pro-

tein level. They argued for an active transport mechanism along a cortical microtubular

network. This proposal is questioned by Little et al. (2011) who showed experimental

evidence that a distributed spatial gradient of mRNA is not sufficient to achieve the

required morphogen profile. Since computational modelling of active transport hypoth-

esised by Spirov et al. (2009) is outside the scope of this study, we instead follow Dilão

and Muraro (2010) who have postulated an mRNA diffusion model to achieve an effect

similar to that of (Spirov et al., 2009). Instead of a reaction-diffusion equation (incorpo-

rating a term for natural mRNA decay (Dilão and Muraro, 2010)), we restrict ourselves

to the heat equation given by:
∂R

∂t
= Dr

∂2R

∂x2
, (3.53)
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Figure 3.20: Contour plot for parameter estimation in diffusion and stochastic
model according to 3D plot in Figure 3.18 and 3.19.
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Figure 3.21: Modelling error displayed as functions of parameters taken pair-
wise: Cytoplasmic flow model.

where Dr is mRNA diffusion constant. This is justified because our model for the

temporal regulation of bicoid mRNA is one which holds it stable up to t0 followed by an

active degradation.
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Figure 3.22: Contour plot for parameter estimation in flow model according to
3D plot in Figure 3.21.
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Figure 3.23: Modelling error surface for the cytoplasmic flow model as functions
of flow velocity parameter and each of the other parameters.

Figure 3.27 shows protein intensities with a spatial distribution for bicoid mRNA. Figure

3.27A is profile obtained with only spatially distributed mRNA, while B is the result
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Figure 3.24: Contour plot for parameter estimation in flow model according to
3D plot in Figure 3.23.
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Figure 3.25: Uncertainty estimates of mRNA decay onset time t0 in A and
degradation time τm in B by fitting the models to 50 bootstrap samples of
individual embryo measurements from FlyEx.

obtained with spatial distribution and temporal regulation and the post peak decay is

clearly observed. Thus, even with simulated spatial distribution of maternal mRNA,

our model finds a set of feasible parameter values that account for observed profiles in

FlyEx. The corresponding parameter estimates are shown in Table 3.4. We find that

the differences are in directions we would naturally expect, i.e. a spatially distributed

maternal mRNA is compensated primarily by protein degradation. But it is encouraging

to see that the onset of decay (t0) changes only slightly.
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Figure 3.26: Spatio-temporal Bicoid profiles with source regulation as a step
function, with constant rate of translation between 60min and onset of Cycle
14A

Table 3.4: Parameter optimisation for the Bicoid stochastic mean model with
mRNA regulation and spatial distribution.

Parameter: D(µm2/s) t0min τpmin τmmin Dr(µm
2/s) S0

3.7 148 30 19 0.4 170

Parameter values estimated by matching model outputs to observed data from FlyEx.
Least squares fitting of model outputs to FlyEx with exhaustive search for the best
combination of parameters on a regular grid suggests sensible values for the mRNA
decay onset time, t0, in all three models. Regulated stability corresponds to an
optimised period in time during which the mRNA is held stable and translated at a
constant rate, followed by rapid decay.

Embryo Length (µm)

Ti
m

e 
t (

m
in

)

 

 

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

180

200

Embryo Length (µm)

Ti
m

e 
t (

m
in

)

 

 

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

180

200 0

50

100

150

200

250BA

Figure 3.27: The effect of bicoid mRNA spatial gradient. A protein intensity
without mRNA temporal regulation; B Bicoid profile with mRNA temporal
regulation.
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3.4 Summary

In this chapter, the bicoid mRNA stability regulation is proposed, which has been ig-

nored for decades in literature since Bicoid was discovered. We have implemented three

computational protein reaction-diffusion models cooperating such a regulated source

function. The grid search has been used to estimate parameters for each model since

the number of unknown parameters is small. According to the model parameters, our

hypothesis of mRNA regulation has been confirmed that the source should be kept con-

stant around two hours and followed by quickly decay. Comparing with the traditional

models with constant source, the root mean square error between model outputs and

database have been reduced with the regulated mRNA.





Chapter 4
Gaussian process modelling for bicoid

mRNA regulation

In the previous chapter, we introduced the bicoid mRNA stability regulation mechanism,

and how the protein profile changes with this source model. To match the measurement

on real fly embryos from the database FlyEx, we have estimated the regulation pa-

rameters t0, at which mRNA starts decaying and τm, the decaying rate, by exhaustive

searching.

By looking at the noisy observations of the Bicoid spatio-temporal profile, this may gen-

erate the question as to how we can infer the mRNA regulation function, without making

any strict assumptions as in Chapter 3. In this chapter, we bring a powerful Bayesian

non-parametric machine learning methodology – Gaussian process (GP) regression – to

study the establishment of the Bicoid morphogen profile by considering maternal mRNA

as a latent function. By modelling the spatio-temporal morphogen profile as the output

of a linear dynamical system, driven by the source function, we are able to exploit the

published measurements in a novel way.

Our work builds on similar approaches by Gao et al. (2008) for temporal models, but

takes a significant leap into a spatio-temporal problem. With synthetic data from a one

dimensional diffusion model with a source simulated to model mRNA stability regula-

tion, our results establish that the GP method can accurately infer the driving function

and capture the spatio-temporal dynamics of embryonic Bicoid propagation. On real

data from FlyEx database, too, the reconstructed source function, is indicative of sta-

bility regulation, but is temporally smoother than what we expected, partly due to the

fact that the dataset is only partially observed. As similar in Chapter 3, we also analyse

this model with a spatial gradient of maternal mRNA, rather than the mRNA being

fixed at only the anterior pole.

59
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We start this chapter with the basic concept of GPs, which are introduced in the begin-

ning of Section 4.1. An toy problem of applying GPs on a simple time-varying biological

model is shown in the end of this section. From Section 4.2, we show the details of bicoid

mRNA GP inference in the spatio-temporal Bicoid profile. The corresponding results

are discussed in Section 4.3.

4.1 Gaussian processes

4.1.1 Multivariate Gaussian

An univariate Gaussian distribution is defined as x ∼ N (µ, σ2), in which the probability

density function of x is given by:

p(x;µ, σ) =
1√
2πσ

(
−(x− µ)2

2σ2

)
, (4.1)

where µ and σ are mean and standard deviation. Given a n-dimensional random vector x

(x ∈ ℜn), of which each variate has an univariate Gaussian distribution, the probability

density function of such a vector, which has a multivariate Gaussian distribution, is

given by:

p(x;µ,Σ) = (2π)−n/2|Σ|−1/2 exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (4.2)

where µ (µ ∈ ℜn) is the mean vector. Σ (Σ ∈ ℜn×n), a covariance matrix, must be

symmetric positive semidefinite in order to be valid.

To make the concept of multivariate Gaussian more clear, we show a bivariate example

here by generating a two-dimensional vector a (a ∈ ℜ2, a = [a1, a2]
T ) where

a ∼ N (µ,Σ). (4.3)

The mean and covariance matrix are given by:

µ =



µ1

µ2


 , and Σ =




σ2
1 ρσ1σ2

ρσ2σ1 σ2
2


 . (4.4)

ρσ1σ2 is the cross-covariance of the two variates a1 and a2. The correlation between a1

and a2 becomes high with a large correlation parameter ρ, and is zero when the two

components are independent.
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Figure 4.1: Contours of the multivariate Gaussian joint distribution over two
variates a1 and a2. The covariance matrix is [1 0.86; 0.86 1] in Figure 4.1A and
[1 0; 0 1] in Figure 4.1B. There is no correlation between the two components in
Figure 4.1B.

We now consider two vectors a (a ∈ ℜn) and b (b ∈ ℜn), which have joint Gaussian

distribution: 

a

b


 ∼ N





µa

µb


 ,



A CT

C B




 . (4.5)

The covariance matrix Σ ([ACT ;CB]) is separated into the block matrices above, in

which, A and B are corresponding to the covariance matrices for a and b, respectively.

C is the cross-covariance matrix between a and b and becomes zero when a and b are

uncorrelated. We simplify the representation by zero-mean assumption (µa = µb = 0)

and the joint distribution can be rewritten as:

p(a,b) ∝ exp


−1

2



a

b



T 

A CT

C B



−1 

a

b





 . (4.6)

By the Schur complement, the block matrix is given by (derivation details are shown in

Appendix A.5):



A CT

C B



−1

=




I O

−B−1C I





(A−CTB−1C)−1 O

O B−1





I −CTB−1

O I


 (4.7)
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The joint distribution in Equation 4.6 becomes:

p(a,b) ∝ exp


−1

2



a−CTB−1b

b



T 

(A−CTB−1C)−1 O

O B−1





a−CTB−1b

b







∝ exp

(
−1

2
(a−CTB−1b)T (A−CTB−1C)−1(a−CTB−1b)

)
exp

(
−1

2
bTB−1b

)
.

(4.8)

The conditional distribution of a given b can be calculated as:

p(a|b) = p(a,b)

p(b)
= N (CTB−1b,A−CTB−1C) (4.9)

With the non-zero means, equation above becomes:

p(a|b) = N (µa +CTB−1(b− µb),A−CTB−1C) (4.10)

4.1.2 Gaussian processes

Nowadays, GPs are becoming increasingly popular in machine learning for both re-

gression and classification problems (Rasmussen and Williams, 2006). Differing from

Gaussian distribution, GPs specify distributions over the functions. With the input

time points x∗, known as test inputs, we can generate a sample function from GP prior

with the covariance matrix Kf∗,f∗ generated from RBF.

f∗ ∼ N (µf∗
,Kf∗,f∗) (4.11)

This random sampled function, which provides a functional view in Gaussian distribu-

tion, and the covariance matrix are both shown in Figure 4.2.

Instead of drawing random functions from the Gaussian prior above, we combine the

information from the observation function f , with the inputs given by x, known as

training inputs, to make predictions for the function f∗ at the locations given by x∗.

Therefore, the joint distribution of training outputs f and test outputs f∗ is given by:



f

f∗


 ∼ N





µf

µf∗





Kf ,f Kf ,f∗

Kf∗,f Kf∗,f∗




 (4.12)

If there are n training points in x and n∗ test points in x∗, we can generate covariance

matrices Kf ,f (n× n) and Kf∗,f∗ (n∗ × n∗) associated with training data and test data,

respectively. Kf ,f∗ (n × n∗) and Kf∗,f (n∗ × n) are the corresponding cross-covariance

matrices.
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Figure 4.2: A sample function drawn from GP. A shows a function f(x) drawn
from Gaussian prior and the squared exponential covariance matrix between
time points is shown in B, where σr = 1 and l = 1. The matrix is valued
between 1 (red) and 0 (blue).

The conditional distribution is then given by

p(f∗|f) ∼ N (m,Σ), (4.13)

with the mean and covariance function (derivations have been shown in Section 4.1.1

and Appendix A.5):

m = µf∗
+Kf∗,fK

−1
f ,f (f − µf ), (4.14)

Σ = Kf∗,f∗ −Kf∗,fK
−1
f ,fKf ,f∗. (4.15)

Now the function f∗ with test points x∗ can be sampled by mean and covariance functions

from the posterior distribution (shown above) by given the observations.

4.1.3 Noisy observations

In most cases, the realistic observations y are corrupted by noise. An easy way to

deal with the noisy data in the GP framework is to add the independent identically

distributed Gaussian noise ε, in which the covariance is defined by σ2
n. We have

y = f + ε, and (4.16)

cov(y) = Kf ,f + σ2
nI. (4.17)

The joint probability of noisy observations and test function f is given by:



y

f∗


 ∼ N





µf

µf∗


 ,



Kf ,f + σ2

nI Kf ,f∗

Kf∗,f Kf∗,f∗




 . (4.18)



64 Chapter 4 Gaussian process modelling for bicoid mRNA regulation

−5 0 5
−3

−2

−1

0

1

2

3

x
*

f(
x *)

Prior

−5 0 5
−3

−2

−1

0

1

2

3

4

x
*

f(
x *)

Posterior

−5 0 5
−3

−2

−1

0

1

2

3

4

x
*

f(
x *)

Posterior

A

B C

Figure 4.3: A shows five functions drawn from GP prior in different colours
with input vector from [−5, 5]. B shows three time-varying functions (dashed
lines) randomly drawn from the posterior which is conditioned on six noise free
observations (blue points). The mean function is shown with red solid line.
length scale l and signal standard deviation σr are both equal to 1. C shows
three randomly drawn posterior functions (dashed lines) conditioned on the
same six observation points with Gaussian noise ε. The mean function is shown
with a red line. The hyperparameters l and σr remain in 1. In these figures, the
grey area, known as the 95% confidence area, is defined by the mean function
with two times the standard deviation.
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The posterior of test function f∗ given observations becomes:

p(f∗|y) ∼ N (m,Σ), (4.19)

where

m = µf∗
+Kf∗,f (Kf ,f + σ2

nI)
−1(f − µf ), and (4.20)

Σ = Kf∗,f∗ −Kf∗,f (Kf ,f + σ2
nI)
−1Kf ,f∗. (4.21)

4.1.4 Maximum likelihood estimation

Let θ be the parameters of f . The marginal likelihood p(y|θ) is given by

p(y|θ) =
∫

p(y|f , θ)p(f |θ)df . (4.22)

We already have the knowledge that prior p(f |θ) is Gaussian, in which

p(f |θ) = (2π)−1/2|Kf ,f |−1/2 exp
(
−1

2
(f − µf )

TKf ,f
−1(f − µf )

)
. (4.23)

Normally, the prior mean µf = 0. The logarithm of the prior becomes

log p(f |θ) = −1

2
fTKf ,f

−1f − 1

2
log |Kf ,f | −

1

2
log(2π). (4.24)
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From Equations 4.16 and 4.17, the likelihood and probability density function are given

by

p(y|f) = (2π)−1/2|σ2
nI|−1/2 exp

(
−1

2
(y − f)T (σ2

nI)
−1(y − f)

)
. (4.25)

Similarly, the logarithm of the likelihood is shown below:

log p(y|f , θ) = −1

2
(y − f)T (σ2

nI)
−1(y − f)− 1

2
log |σ2

nI| −
1

2
log(2π). (4.26)

Rewriting marginal likelihood integration in Equation 4.22, we have

log p(y|θ) = log

∫
p(y|f , θ)p(f |θ)df

=− 1

2
yT (Kf ,f + σ2

nI)
−1y − 1

2
log |Kf ,f + σ2

nI| −
1

2
log(2π). (4.27)

The gradient of parameter θ can be obtained by

∂ log p(y|θ)
∂θ

=− 1

2
yT (Kf ,f + σ2

nI)
−1 ∂(Kf ,f + σ2

nI)

∂θ
(Kf ,f + σ2

nI)
−1y

− 1

2
tr

(
(Kf ,f + σ2

nI)
−1 ∂(Kf ,f + σ2

nI)

∂θ

)
. (4.28)

The MLE can be obtained by solving

∂ log p(y|θ)
∂θ

= 0. (4.29)

Normally, the closed-form solutions of such equations are intractable. In this regard,

some numerical methods need to be resorted to, such as conjugate gradient (Shewchuk,

1994). In our work, the conjugate gradient is implemented by Rasmussen’s minimise1.

4.1.5 Gaussian process inference for time-varying model

From this section, the biological applications of GPs are introduced. We start with a

toy problem, a time-varying example based on Gao et al. (2008)’s work. This model-

based approach is popular to undertake inference and learning work, such as inferring

the action of unobserved chemical species and learning the parameters from the model.

A linear dynamical ODE system, as an toy problem here, is given by:

ẋ(t) = −Bx(t) + sf(t), (4.30)

where x(t) = [x1(t), ..., xN (t)]T , the concentrations of N genes driven by a latent function

f(t). In this biological system, the driven function f(t) is not observed and we treat it

1http://www.gaussianprocess.org/gpml/code/matlab/util/minimize.m
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as a latent function with a GP prior:

f(t) ∼ N (µ(t), kf,f (t, t
′)), (4.31)

where µ(t) is the mean of f(t) and kf,f (t, t
′) is the covariance function:

µ(t) = E[f(t)] = 0, (4.32)

kf,f (t, t
′) = E[(f(t)− µ(t))(f(t′)− µ(t′))]

= exp

(
−(t− t′)2

l2

)
, (4.33)

and l is the time scale of the covariance function.

The model parameters, s = [s1, ..., sN ]T and decaying rate B, a diagonal matrix with

diagonal vector [B1, ..., BN ]T , and hyperparameters are estimated by MLE firstly. The

solution of the model in Equation 4.30 is achieved by

x(t) =

∫ t

0
exp(−B(t− u))︸ ︷︷ ︸
matrix expontial

sf(u)du, (4.34)

with the initial condition given by:

x(0) = 0. (4.35)

Because x(t) is a linear function of f(t), it turns out to be a GP:

x(t) ∼ N (0,Kx,x(t, t
′)) (4.36)

where Kx,x(t, t
′) is given by:

Kx,x(t, t
′) =

∫ t

0

∫ t′

0
exp(−B(t− u))s[exp(−B(t′ − u′))s]T kf,f (u, u

′)dudu′ (4.37)

The cross covariance between x(t) and f(t) is defined as:

kx,f (t, t
′) =

∫ t

0
exp(−B(t− u))skf,f (u, t

′)du (4.38)

From Equations 4.14 and 4.15, the posterior p(f |x) of the latent function f(t) given

concentration x(t) becomes:

p(f |x) ∼ N (f
post

,Σpost
f,f ) (4.39)



68 Chapter 4 Gaussian process modelling for bicoid mRNA regulation

where

f
post

= Kf,xK
−1
x,xx (4.40)

Σpost
f,f = Kf,f −Kf,xK

−1
x,xKx,f (4.41)

The observation can be modelled at time t as:

yi(t) = xi(t) + ei(t), (4.42)

Σyy = Σ+Kxx, (4.43)

where ei(t) ∼ N (0, σ2
i (t)) and Σ = diag(σ2

11, ..., σ
2
1T , ..., σ

2
N1, ..., σ

2
NT ).

To predict the gene expression profiles corresponding to the testing time points, we let

f∗ be the latent function and x∗i be the concentration of i-th gene. The testing vector

h∗ = [f∗,x
∗
1, ...,x

∗
N ]T . Similarly, we have the training vector containing observations

given by h = [f,x1, ...,xN ]T with a fixed value for f(0). Rewriting Equations 4.40 and

4.41, the mean and covariance matrix become:

h
post
∗ = Kh∗,hK

−1
h,hy (4.44)

Σpost
h∗,h∗

= Kh∗,h∗
−Kh∗,hK

−1
h,hKh,h∗

(4.45)

In this example, we created a five-gene model driven by a latent function f(t) by adding a

homogeneous noise. We inferred the functions by 10 noisy observations of each gene over

100 test time points. The inferred latent function f(t) and five gene profiles are shown in

Figure 4.6. By comparing the inferred and true functions, the GP inference framework

provides good predictions of unobserved latent function f(t) and gene concentrations

given a few observations.

Model parameters (B and s) and hyperparameters (l and σn) are estimated by maximis-

ing likelihood in Section 4.1.4. Results of the parameter maximum likelihood are shown

in Figure 4.7. The covariance matrices are shown in Figures 4.8 – 4.10.
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

Kf∗,f∗ Kf∗,x∗

1
· · · Kf∗,x∗

5

Kx∗

1
,f∗ Kx∗

1
,x∗

1
· · · Kx∗

1
,x∗

5

...
...

. . .
...

Kx∗

5
,f∗ Kx∗

5
,x∗

1
· · · Kx∗

5
,x∗

5




 h

 h
*

 

 

10 20 30 40 50

100

200

300

400

500

600 0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.9: Covariance matrix
Kh∗,h (600 × 51)

Kh∗,h =

1+5×10︷ ︸︸ ︷


Kf∗,f Kf∗,x1
· · · Kf∗,x5

Kx∗

1
,f Kx∗

1
,x1

· · · Kx∗

1
,x5

...
...

. . .
...

Kx∗

5
,f Kx∗

5
,x1

· · · Kx∗

5
,x5




 h

 h

 

 

10 20 30 40 50

10

20

30

40

50

0.5

1

1.5

2

2.5

3

3.5

Figure 4.10: Covariance matrix
Kh,h (51 × 51)

Kh,h =

1+5×10︷ ︸︸ ︷


Kf ,f Kf ,x1
· · · Kf ,x5

Kx1,f Kx1,x1
· · · Kx1,x5

...
...

. . .
...

Kx5,f Kx5,x1
· · · Kx5,x5






Chapter 4 Gaussian process modelling for bicoid mRNA regulation 71

4.2 Inference of bicoid mRNA in spatio-temporal Bicoid

profile

4.2.1 Bicoid linear dynamical system

we start from the Bicoid reaction-diffusion PDE which is the fundamental model in our

work introduced in Chapter 3,

∂

∂t
m(x, t) = D

∂2

∂x2
m(x, t) − τ−1p m(x, t) + S0f(t), (4.46)

where f(t), the source, is the mRNA regulation function which we consider unknown in

this chapter and place a prior distribution over. A linear gain term S0 is included to

allow scaling of the data to match observations.

As in the case of the stochastic model we discussed in Chapter 3, we consider the embryo

as consisting of N cubes along the A-P axis in order to derive a linear dynamical system

model from the continuous spatial diffusion equation. The basic idea for this stems from

the work of Erban et al. (2007). With this discretisation into N cubes, the chemical

reactions involved in the diffusion process are:

Bicoidi
d
⇋

d
Bicoidi+1, for i = 1, 2, . . . , N − 1 (4.47)

Bicoidi
τ−1
p−−→ ∅, for i = 1, 2, . . . , N (4.48)

∅ S0f(t)−−−−→ Bicoid1. (4.49)

The first of these reactions, Equation 4.47, is Bicoid protein diffusion between neigh-

bouring sub-volumes with rate constant d, where d is given by d = D/h2 and h is length

of each cube. The second process in Equation 4.48 describes Bicoid protein degradation.

Finally, Equation 4.49 is the translation of Bicoid proteins from the maternal mRNA

with f(t) being the latent function that needs to be inferred.

We implemented a model in which source production occurs in a smaller first cube with

length hf (5µm – the length of a nucleus) and the other N−1 cubes (h = 10µm) equally

splitting the remaining A-P axis. The rate constants are different between the first cube

(df ), where mRNA is produced and its stability regulated, and the other cubes (d):

df ≈ D/(hfh), (4.50)

d = D/h2. (4.51)

More details of the diffusion rate in the compartments with different sizes can be found

in (Engblom et al., 2008).
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In order to develop a linear dynamical system for Bicoid profile, following Erban et al.

(2007), we rewrite the partial differential equation in Equation 4.46 as a system of ODEs

for the morphogen concentration in each bin (i = 1, ..., N):

∂

∂t
m1(t) =df (m2(t)−m1(t))− τ−1p m1(t) + S0f(t), (4.52)

∂

∂t
mi(t) =d(mi+1(t) +mi−1(t)− 2mi(t))− τ−1p mi(t), (4.53)

∂

∂t
mN (t) =d(mN−1(t)−mN (t)) − τ−1p mN (t). (4.54)

The derivation details are shown in Appendix A.4.

Definingm(t) = [m1(t), ...,mN (t)]T , the linear dynamical system for the Bicoid reaction-

diffusion system is then vectorised as:

∂m(t)

∂t
= Am(t) + sf(t), (4.55)

where the spatial transition matrix A (N ×N) is defined by:




−(df + τ−1p ) df 0 · · · 0 0

d −(2d+ τ−1p ) d · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · d −(d+ τ−1p )




and source production rate s = [S0, 0, . . . , 0]
T .

The solution to Equation 4.55, m(t), giving the Bicoid spatio-temporal profile, is in

terms of a matrix exponential and is given by:

m(t) = exp(tA)m(0) +

∫ t

0
exp((t− u)A)sf(u)du, (4.56)

where m(0) is zero at the beginning of the embryo’s development.

4.2.2 Gaussian process modelling

We treat bicoid mRNA as a function drawn from a GP and extend it to the spatio-

temporal application of the Bicoid dynamical system. The GP prior for the latent

mRNA regulation is defined by mean and covariance functions:

f(t) ∼ N(0, kf,f (t, t
′)), (4.57)
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where kf,f (t, t
′) is given by squared exponential covariance function with the length scale

l:

kf,f (t, t
′) = exp

(
−(t− t′)2

l2

)
. (4.58)

Because the right-hand side of Equation 4.56 is linear, as noted in the previous section,

m(t) turns out to be a multivariate function drawn from a GP:

m(t) ∼ N(exp(tA)m(0),Km,m(t, t′)). (4.59)

The corresponding cross-covariance function Km,m(t, t′) is given by:

Km,m(t, t′) = (4.60)
∫ t

0

∫ t′

0
exp((t− u)A)s(exp((t′ − u′)A)s)T kf,f (u, u

′)dudu′.

The cross covariance-function between m(t) and f(t) becomes

km,f (t, t
′) =

∫ t

0
exp((t− u)A)skf,f (u, t

′)du. (4.61)

These expressions can be derived analytically and the derivation details are shown in

Appendix A.6.

4.2.3 Predictive distribution

Let f∗ be a vector of J∗ values of the source function at equally spaced time points, and

m∗i be the corresponding protein profiles at these instances in time, within the i th cube

along the A-P axis. Concatenating these we define h∗ = [f∗,m
∗
1, ...,m

∗
N ]T corresponding

to J∗ + NJ∗ test points. The corresponding training data consists of the morphogen

values in the N cubes, taken at J points in time, and a fixed source value f , contained

in the vector h = [f,m1, ...,mN ]T of dimension 1 +NJ .

With the above notation, the mean and covariance of the posterior distribution are given

by:

h̄post
∗ = Kh∗,hK

−1
h,hy, (4.62)

Σpost
h∗,h∗

= Kh∗,h∗
−Kh∗,hK

−1
h,hKh,h∗

. (4.63)
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Each covariance matrix in Equations 4.62 and 4.63 is partitioned across the source and

N Bicoid intensities in different cubes. Illustrating this for Kh∗,h,

Kh∗,h =




Kf∗,f Kf∗,m1
Kf∗,m2

· · · Kf∗,mN

Km∗

1
,f Km∗

1
,m1

Km∗

1
,m2

· · · Km∗

1
,mN

Km∗

2
,f Km∗

2
,m1

Km∗

2
,m2

· · · Km∗

2
,mN

...
...

...
. . .

...

Km∗

N
,f Km∗

N
,m1

· · · · · · Km∗

N
,mN




Therefore, the dimensions of the covariance matrices Kh∗,h, Kh,h and Kh∗,h∗
are (J∗ +

NJ∗)× (1 +NJ), (1 +NJ)× (1 +NJ) and (J∗ +NJ∗)× (J∗ +NJ∗) respectively. The

observations, collected in vector y of dimension 1 + NJ , are assumed to be corrupted

by additive noise as

yi(t) = mi(t) + ei(t), (4.64)

where ei(t) are drawn from N(0, σ2
i (t)). Hence,

Σy,y = Kh,h +Σ, (4.65)

Σ = diag(σ2
f , σ

2
11, . . . , σ

2
1J , . . . , σ

2
N1, . . . , σ

2
NJ ). (4.66)

With the hyperparameter vector θh = [l, σ2
f , σ

2
11, . . . , σ

2
1J , . . . , σ

2
N1, . . . , σ

2
NJ ], the likeli-

hood is:

p(y|θh) =
∫

p(y|θh, f)p(f |θh)df . (4.67)

The observations are taken from FlyEx database as the data used in Chapter 3. To get

the estimate of the noise levels and the length scale l, we maximised the above likelihood

following Section 4.1.4 and the results are given later in Section 4.3. When simulating

synthetic data, we added zero mean Gaussian noise of standard deviation σ = 0.1, and

assumed it to be known.

In this chapter, we set the model parameters by least squares fitting following Chapter 3,

Equations 3.50 – 3.52. Ideally, one would like to exploit the elegance of the GP framework

and estimate all of these by maximum likelihood. To achieve this, we need analytical

expressions for the covariance matrices and their derivatives. While the covariance

matrices of interest can be derived analytically in Appendix A.6, we encountered serious

numerical issues in evaluating these expressions. This arises from the finite precision

representation within MATLAB because the error function erf(.) is not evaluated to

sufficient precision in the range of input values of its arguments that we needed2. The

alternate approach we tried was to work with MPFR library written in C which has a

2 e.g. erf(9.5) = erf(10) = 1
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Figure 4.11: Inferred bicoid mRNA regulation and spatio-temporal protein con-
centration from a synthetic dataset; time scale from 0 ∼ 200 min in 51 cubes
along the A-P axis. A training datasets from Bicoid reaction-diffusion ODE
simulation with additive noise. B inferred mRNA regulation function (red line)
with 95% confidence interval. Source function used in the simulation is shown as
a black dashed line. C posterior mean GP approximation of the spatio-temporal
profile.

MATLAB interface34. The results of this, in evaluating the covariance matrices, were

consistent with the numerical evaluations reported in the main text. However, computing

time for this toolbox was excessive, and we abandoned this approach.

The above are attempts at using the analytic expressions for evaluation of the covariance

matrices. However, what we really need, to estimate the model parameters by maximum

likelihood, are the derivatives of the expressions. These happen to include eigenvectors

(Equations A.80 and A.89), derivatives of which we considered a significant distraction

from the main point of this study. Therefore, in our work, model parameters D and τp

are taken from Chapter 3 while the estimation of l and σ are implemented by Rasmussens

minimise.

4.3 Results and discussion

4.3.1 Inference of mRNA regulation function

We first assume that bicoid mRNA is localised and its regulation occurs only in the

anterior pole, the first cube in our model. Therefore, the source production amplitude

vector is given by

s = [S0, 0, . . . , 0]
T . (4.68)

We examine the performance of our GP approach on two synthetic datasets (Figures

4.11 and 4.12) and an experimental dataset (Figure 4.13).

3 http://www.mathworks.com/matlabcentral/fileexchange/6446
4 http://www.mpfr.org/; http://gmplib.org/
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Figure 4.12: Predicted results for bicoid mRNA and Bicoid spatio-temporal
profile using only partial data (106 – 178 min): cycles 11 – 13 and Cycle 14A
class 1 – 8. A partial data used in training. B and C inferred source and
spatio-temporal profiles respectively.
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Figure 4.13: Source function and Bicoid profile inferred from FlyEx database.
A average profile of the real data with time scale: cycles 11 – 13 and Cycle 14A
class 1 – 8. B inferred source and C Bicoid concentration over the whole time
scale (0 –200 min). The dashed line in B is the assumed source function.

As was the case in Chapter 3, to generate synthetic data, we implemented mRNA

stability regulation by the function

f(t) = δ(x) (Θ(t)−Θ(t− t0)) + δ(x)Θ(t− t0) exp

(
− t− t0

τm

)
, (4.69)

which characterises mRNA, and hence the production of Bicoid protein, to be stable

and constant to time t0, followed by an exponential decay of time constant τm. The

parameter values taken from Table 3.2, estimated by a least squares fit between model

output and FlyEx measurements, are t0 = 144 min and τm = 9 min. The black dashed

lines in Figures 4.11B, 4.12B and 4.13B show the true source function according to our

hypothesis on regulation.

Figure 4.11A shows the synthetic training data using the ODE system of equations 4.52

– 4.54 with additive noise over the entire developmental period of 0 – 200 min, with

20 equally spaced time points and 51 cubes along the A-P axis. Figure 4.11B shows

the estimated mRNA regulation function, S0f(t), from the GP approach. We see that

the GP is able to recover the regulated source function quite well, though the resulting
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Figure 4.14: Predicted temporal posterior distribution of Bicoid protein concen-
trations in individual cubes on different training datasets. The mean inference
and 95% confidence intervals are shown with red solid lines and grey area. The
black crosses represent three different training datasets shown in Figures 4.11,
4.12 and 4.13. Figure 4.14A-C are inferred on the synthetic dataset with full
time scale while the partial synthetic dataset is used in Figure s4.14D-F. Figures
4.14G-I are inferred on real dataset from FlyEx.

estimate is smoother. This is to be expected from a GP model, for which a function with

a sharp discontinuity will have very low likelihood in the prior. Still, the decay beyond 2

hours is very rapid. The posterior mean of the inferred Bicoid concentration profile from

the model is shown in Figure 4.11C. The temporal dynamics of a morphogen gradient

being established and then killed off is clearly present in the model output.

In the above, shown in Figure 4.11, we have used the synthetic data over the full develop-

mental time scale of interest. However, in FlyEx dataset, we do not have measurements

available over the whole time scale and the source has to be inferred from partial data,

starting from 100 min. In order to simulate this situation with synthetic data, we ran our

GP models with only the partial data, shown in Figure 4.12A as input. As expected, in

Figure 4.12B, the credible interval is wider at the early stages where no data are present

and narrow during 106 – 178 min. Still, the GP posterior of the morphogen profile

captures the spatio-temporal dynamics well and contains the sharp post-peak decay.

Figure 4.13 shows the behaviour of the GP model on real data from FlyEx, the three sub-

figures A, B and C showing the data, inferred source and model-based spatio-temporal
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Figure 4.15: Inferred posterior distribution of spatial Bicoid protein concen-
trations in the fixed time points from Cycle 11 (Figure 4.15A) to Cycle 14A.6
(Figure 4.15I) on the real dataset. The black crosses show the observed protein
spatial data in different developmental time points.

morphogen profile respectively. We see that the reconstructed profile accurately repro-

duces the establishment of Bicoid gradient and subsequent decay. The inferred source

function is smoother than our hypothesised model, but contains the basic elements of an

approximately constant part and subsequent decay. The noisy nature of the data causes

the resulting uncertainties to be very high. Noise levels inferred from a maximum like-

lihood setting (Equation 4.67) is shown in Figure 4.16. These are much higher than

the variance of the additive noise we used to construct the synthetic data of Figures

4.11 and 4.12. Further, we note that the source of uncertainty in the data is not purely

additive instrument noise. FlyEx measurements do not come from observations on a

single embryo. They are taken from populations of embryos, harvested at various stages

of development. The effect of this is not modelled anywhere in our approach.

As noted, the GP-inferred source functions are smoother than hypothesised by our

model. A consequence of smooth functions fitting the data is also that the temporal

point at which mRNA begins to decay starts earlier. The rapid change between mRNA

being translated and killed off is not explicitly modelled in the GP approach. Such

rapid changes may well be better modelled in a probabilistic framework that explicitly

incorporates switching behaviour, such as the two-state Markov Jump process (also

known as a telegraph process) considered in (Sanguinetti et al., 2009).
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Figure 4.14 shows the predicted temporal profiles of the Bicoid at three adjacent spatial

points along the embryo5. The training data are also shown. The three rows in the

figure correspond to cases illustrated in Figures 4.11, 4.12 and 4.13. We see that at the

level of the GP model generating the data, reasonably good fits are obtained. With real

data, we see high uncertainties in regions where data are not present.

4.3.2 Hyperparameter estimation

Since the hyperparameters, length scale l and noise standard deviation σ, are not the

elements of matrix A and the corresponding derivatives are easily obtained, we estimate

these parameters by maximum likelihood similar as the case in Section 4.1.5.

The estimated length scales were similar on the different training datasets used: 51.0

for synthetic data with full time scale (Figure 4.11), 50.3 for partial synthetic data (Fig-

ure 4.12) and 51.7 for real dataset (Figure 4.13). Estimated noise standard deviations

{σi,j}N J
i=1,j=1 (Equation 4.66) for the real dataset are shown in Figure 4.16. We note

that the Bicoid expression data show spatio-temporal dependence and the noise levels

we estimated, shown in Figure 4.16, are different at each point. The noise levels in the

anterior part are much higher than in the posterior part of the embryo because the pro-

tein intensities are exponential decaying. In addition, such a noise level becomes higher

in later stage, around 180min, due to the measurements are not accurate in Cycle 14A.7

and 8 in FlyEx.

To study the effect of non-homogeneous noise on synthetic data, we re-synthesised data

with a noise profile similar to what was inferred from the real data (Figure 4.16), tapering

down linearly from 0.4 to 0.1 in standard deviation along the A-P axis and repeated the

estimation procedure. Figures 4.17 and 4.18 show the results of these.
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Figure 4.16: Estimated noise level at each spatio-temporal point. The intensities
are shown to a logarithm scale.

5These cubes are chosen for illustration because these are locations where much of the variation is
happening
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Figure 4.17: Inferred bicoid mRNA regulation and spatio-temporal protein con-
centration from a synthetic dataset with non-homogeneous noise; time scale
from 0 – 200 min in 51 cubes along the A-P axis. A training datasets from Bi-
coid reaction-diffusion ODE simulation with additive noise. B inferred mRNA
regulation function (red line) with 95% confidence interval. Source function
used in the simulation is shown with black dashed line. C posterior mean GP
approximation of the spatio-temporal profile.
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Figure 4.18: Predicted results for bicoid mRNA and Bicoid spatio-temporal
profile using only partial data (106 – 178 min): cycles 11 – 13 and Cycle 14A
class 1 – 8. A partial data used in training with non-homogeneous noise. B
and C inferred source and spatio-temporal profiles respectively.

4.3.3 Inference of non-localised maternal mRNA

Additionally, in Figure 4.15 we show cross sections of the spatio-temporal profiles, taken

along the A-P axis at different developmental cycles. Here, we see that the exponential

spatial decays of FlyEx measurements are faithfully captured by the GP model. We also

observe that most of the mismatch between model output and measured data is towards

the anterior part of the A-P axis. This mismatch motivates one to question the use of

a highly localised point source as the input to the diffusion system.

As reviewed in Chapter 2, Spirov et al. (2009) and Little et al. (2011) have discussed the

scenario in which maternal bicoid mRNA itself has a spatial gradient. We also simulated

this possibility in our GP models, with maternal mRNA being spatially distributed in

the first 10 of the 50 cubes (h = 10µm) with an initial exponentially decaying spatial

profile. The corresponding results of the inferred mean source (now a spatio-temporal



Chapter 4 Gaussian process modelling for bicoid mRNA regulation 81

Embryo Length (µm)

T
im

e 
t (

m
in

) 
11

 te
m

pr
oa

l c
la

ss
es

,
   

   
 C

yc
le

 1
1−

14
A

.1
−

8 
   

   
   

   
   

 

 

 

0 100 200 300 400 500

110

120

130

140

150

160

170

180

Embryo Length (µm)

 

 

0 100 200 300 400 500

0

50

100

150

200 0

50

100

150

200

250

Embryo Length (µm)

T
im

e 
t (

m
in

)

 

 

0 50 100

0

50

100

150

200 0

5

10

15

20
A B C

Figure 4.19: Inferred mRNA regulation and protein profile on real dataset from
FlyEx. mRNA spatially distributed over 20% EL (10 cubes) rather than being
localised. A training data from FlyEx database. B inferred disperse source in
the first 10 cubes along developmental time. C inferred Bicoid profile.
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Figure 4.20: Inferred spatial protein profile with spatially distributed bicoid
mRNA (red line) on real dataset (crosses) from FlyEx at the fixed developmen-
tal stage of Cycle 14A.2. For comparison, the predicted protein profile with
localised mRNA is shown as a dashed line.

profile) and the GP mean morphogen profile are shown in Figure 4.19B and C. We note

that in this case, the onset of mRNA decay begins slightly earlier than for the point

source in the first bin, which is to be expected since the mRNA spatial distribution

contributes to the generation of morphogen upto 20%EL, and the destruction has to

start earlier to compensate. However, since the training dataset is partially observed

and additional degree of freedom is introduced in this non-localised source model, the

over-fitting problem occurs and the predicted results are negative during the beginning

and end of development (0 – 20min & 170 – 200min in Figure 4.19B and 0 – 30min in

Figure 4.19C). Only the positive values are shown here.

As seen in Figure 4.20, the fit to the data does improve with spatially distributed mRNA.

We include this for completeness, showing that a GP model can be applied in a flexible

way in this manner, but do not think that the results can resolve the differences discussed

by Spirov et al. (2009) and Little et al. (2011).
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Figure 4.21: A sample drawn from the neural network covariance function with
Σ = diag([32, 102]) is shown in the left panel and the corresponding covariance
matrix is shown in the right panel.

4.3.4 Model and kernel selection

It is evident from our empirical results that GP with RBF kernel is not suitable for the

inference of bicoid mRNA regulation. Functions based on RBF kernel are tend to be

smooth, which are difficult to fit our hypothesis or the ground truth in the synthetic

data. In turn, the prediction results are also not appealing. Within the GP framework,

it is clear that one should explore non-stationary covariance functions such as neural

network kernel (Rasmussen and Williams, 2006). This covariance function is given by

kNN (x,x′) =
2

π
sin−1

(
2x̃⊤Σx̃′√

(1 + 2x̃⊤Σx̃)(1 + 2x̃′⊤Σx̃′)

)
, (4.70)

where x̃ = (1, x1, x2, ..., xd)
⊤ is an augmented input vector and Σ = diag([σ2

0 , σ
2]). It

is notable that this kernel can produce functions with sharp transition, which could

potentially match our hypothesis. An example is shown in Figure 4.21. However, it is

not straightforward to integrate this kernel within our current GP framework.

When dealing with prediction, it is very likely that results from a single model choice

is not good enough. It might be worthwhile to combine results from multiple models

by Bayesian model averaging. On the other hand, it is also possible that our biological

hypothesis is not true in vivo. The source function might be in fact behaves smoothly.

Thus, assumptions on both modelling and biology shall be refined. An iterative process

of Bayesian modelling and wet-lab experiment, might be preferred (Xu et al., 2010).
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4.4 Summary

In this chapter, we have shown that the non-parametric GP regression model can be ap-

plied to the problem of inferring biologically useful information from the spatio-temporal

distribution of the Bicoid morphogen in early Drosophila embryogenesis. Discretisation

of the spatial domain, transforms the spatio-temporal problem into a dynamical sys-

tem for which, with a GP prior imposed on the source, the solution can be obtained

as a matrix exponential. With synthetic data obtained from a linear spatio-temporal

dynamical system, our results show that the GP approach is able to recover the driving

input and model the Bicoid distribution. On real world data, our results estimate a

rough version of the driving input due to the data being available only during part of

the developmental process, yet, the part of the source decay is estimated. In addition,

such a smoothed source function is predicted in our work because the covariance func-

tion we used is RBF, which provides smooth functions and the sharp change of our

regulation hypothesis is hard to capture. As result, some shortcomings have been shown

when the data are partially available, such as the negative values of the predicted source

function occurring in Figure 4.12, which is unrealistic for the protein concentration and

the confidence interval is under estimated in the sharp decaying region. Moreover, the

over-fitting problem occurs in Figure 4.19, when the source spatial diffusion has been

considered.

These results imply that even with the sophisticated modelling and inference strategy,

such as GP in our work, it is still essential to collect data as much as possible. Secondly,

more kernel functions, alternative to RBF, could be considered in different applications

in order to capture various driving functions. For prediction purposes, it is advisable

to average out parameters and hyper-parameters with Bayesian approaches, to avoid

over-fitting problem.





Chapter 5
Gap gene regulatory network with

realistic Bicoid input

In this chapter we discuss an analysis of the gap gene model (reviewed in Section 2.4)

with time-varying Bicoid input. First, we implement and exactly reproduce the results

claimed in (Reinitz and Sharp, 1995; Jaeger et al., 2004b,a) using their model and the

parameters they published. We then replace the regulatory Bicoid input, which they set

to be constant, by a time-varying input taken from FlyEx. This replacement necessitates

a different set of values for the parameters of the model. We show that this new set of

parameter values can be obtained by a local search using Jaeger’s published values as

initial guess.

5.1 Gap gene model

In Drosophila embryonic development, the expression of gap genes occurs in cleavage

cycles 13 and 14A, during which there are three main stages of nuclei behaviour1 as

shown below:

∗ Interphase. The related gene transcription is activated and chromatin is replicated

to prepare mitosis.

∗ Mitosis. The chromatin is in a condensed state, known as chromosome, and gene

transcriptions are inactivated. Only the protein diffusion and degradation occur.

∗ Division. It is instantaneous in this model, where chromosomes are separated and

the nucleus is replaced by two equal daughter nuclei after division. The distance

between two nuclei is halved.

85
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Figure 5.1: Temporal stages for gap gene model (modified from (Jaeger et al.,
2004b))

The time schedule for the gap gene model is shown in Figure 5.1. This model covers the

developmental period from the beginning of Cycle 13 (time= 0min), when the gap genes

are firstly detected clearly shown in FlyEx, to the end of Cycle 14A (time= 71.1min),

when the gastrulation starts. Mitosis takes 5.1min at the end of Cycle 13 followed

by transient division. The FlyEx quantitative gene expression data, shown in Figure

5.2, have one time class of Cycle 13 at 10.55min and 8 classes during Cycle 14A as

shown in the schedule. As noted in previous chapters, Cycle 13 in FlyEx is only staged

around 10min which is 10min less than Jaeger et al. (2004b)’s schedule. Such a mapping

variability between developmental stages and real time, found in literature, is expected

to be unified in the future.

The mathematical simulated model, which is a widely used gap gene pattern formation

model following Jaeger et al. (2004a)’s work, is defined by

dvai
dt

= RaΦ

(
N∑

b=1

Wabvbi +mavBicoid
i + ha

)
Regulated synthesis

+Da(vai−1 − vai + vai+1 − vai ) Diffusion

− τ−1a vai Degradation (5.1)

Six (N = 6) transcription factors (cad, hb, Kr, gt, kni, and tll), indexed by a, are cross-

regulated each other gene with the external maternal input – Bicoid. The maternal hb

and cad expression data in Cycle 12 from FlyEx are included as the initial inputs. vi

is concentration of each nucleus of gene a and nuclei denoted by i − 1 and i + 1 are

the neighbours of i. Because the D-V patterning system is mostly independent of the

A-P axis in the trunk region of the blastoderm embryo (Jaeger et al., 2004b), all the

1More detailed stages such as prophase, prometaphase and metaphase in mitosis are not considered
in this gap gene model.
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Figure 5.2: Observations from FlyEx, where the seven genes express along the
A-P axis. The grey area represents partial axis within 35 – 92%EL. Bicoid
gradient as an external input varies in the developmental stages.

nuclei in this model are distributed on the one-dimensional A-P axis only. Moreover, the

regulatory domain is narrowed between 35% – 92% of embryo length since additional

factors are required if the domain is extended to 0% – 100% (Jaeger et al., 2004a). For

example, the regulation of head gap genes needs to be considered in the anterior of 35%

A-P axis (Cohen and Jürgens, 1990; Grossniklaus et al., 1994) and hkb, a terminal gap

gene, effects posterior region of 92% A-P axis (Weigel et al., 1990; Brönner and Jäckle,

1991).

The gap gene model in Equation 5.1 comprises three parts:

∗ Regulated synthesis, describing the interconnections between zygotic genes. Wab

(N × N) is a genetic regulation matrix, in which each element represents the

regulatory effect of gene b on a. This matrix is shown below




wcad←cad wcad←hb wcad←Kr wcad←gt wcad←kni wcad←tll

whb←cad whb←hb · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·



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Figure 5.3: Observations from FlyEx and all the expression data are only shown
within 35% – 92% of the A-P axis.

The regulatory effect for each gene a from input Bicoid concentration is represented

by ma. The total regulated synthesis, a sigmoid function, is then given by the

genetic interactions, threshold parameter ha and a maximum synthesis rate Ra:

RaΦ(x
a) = 0.5Ra

(
xa√

(xa)2 + 1
+ 1

)
, (5.2)

where xa =
∑N

b=1 W
abvbi +mavBicoid

i + ha.

∗ Diffusion, representing the diffusive exchanging of proteins between neighbouring

nuclei. The diffusion coefficient D varies inversely with the squared distance be-

tween the nuclei after each division. In this model, the diffusion coefficient D in

Cycle 14 is equal to four times the one in Cycle 13.

∗ The last term is protein degradation, where τ−1a is decaying rate.
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Figure 5.4: The simulated gap gene model with real Bicoid concentration during
Cycle 13 and 8 temporal classes in 14A. Six regulated genes are shown with
different colours.

5.2 Results and discussion

The Bicoid concentration has been considered as constant in previous works (Jaeger

et al., 2004b,a; Fomekong-Nanfack et al., 2007). In this thesis, we implement the model

with realistic Bicoid expression data from FlyEx.

Since the input has been changed, the 66 parameters of this gap gene model need to be

re-estimated in order to find reasonable connections. A global optimisation algorithm,

Parallel Lam Simulated Annealing (PLSA), has been used by Jaeger and colleagues in

all of their works. This algorithm takes quite a long time, 8 – 160 h on 10 processors.

Another method, evolution strategy, has been implemented on the same gap gene model

(Fomekong-Nanfack et al., 2007, 2009) and the computational cost is much lower than

PLSA.

In this thesis, we focus on the effect of the zygotic gene network from input Bicoid

concentration. Due to the time limitations, instead of the global optimisation mentioned,

we used a local search and started from the optimised parameter values from Jaeger et al.

(2004a)’s work when Bicoid has been replaced by real data. The main contribution of

Jaeger’s well known gap gene model is that the gap genes’ anterior shifts can be explained
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Figure 5.5: Pattern image of three gap genes: gt (green), kni (blue) and Kr
(red) from FlyEx.
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Figure 5.6: Three main gap genes Kr, gt and kni expression data drawn from
FlyEx in Cycle 14A with 8 temporal classes. T1 and T8 are shown with red
and black dashed lines, respectively.

by the asymmetric repression (see Figure 5.7). The same shift also occurs when the input

Bicoid is changed to decay (see Figures 5.8 and 5.9).

The gap gene cross-connections are described by the genetic interconnectivity matrix

W (see Section 5.1). It is worth asking how does such a regulatory mechanism change

with the realistic Bicoid concentration? Differing from Jaeger et al. (2004b)’s network

topology, the gene kni activates rather than represses gt according to our parameter

estimation. It implies that the decaying Bicoid not only initialises the gene network, but

also has a potential contribution to the cross-regulation in gap gene network. The model-

based regulated Bicoid profile from Chapter 3 could also have the same contribution

since this model fits the database well. However, in Chapter 3, the anterior fitting has a

significant effect because the Bicoid concentration in the anterior domain is much larger

than in the posterior part. In the gap gene model, only the main body domain, 35%

– 92%EL, is considered. The synthetic Bicoid profile does not undergo distinguished

degradation during this domain. In order to obtain the simulated decaying Bicoid in

Cycle 14A at the middle and posterior parts, an improved weighted fitting procedure

can be applied to match the database in future work, in which the higher weight factor

is needed between 35% – 92%EL.
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Figure 5.7: The reproduction of Jaeger et al. (2004a)’s work, in which Bicoid is
an averaged constant vector. The parameters can be found in their work with
numbered 28008.
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Figure 5.8: Simulated results for the gap gene model with the realistic Bicoid
obtained from FlyEx, which shows a degradation during Cycle 14A (see Chapter
3 for more details) The parameters have remained the same as those set by
Jaeger et al. (2004a).
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Figure 5.9: Simulated results for the gap gene model with real Bicoid concen-
tration. The 66 parameters are estimated by local search starting from Jaeger
et al. (2004a)’s estimation.
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Table 5.1: Regulatory weight matrix W

cad hb Kr gt kni tll

cad 0/0/12 0/0/12 0/0/12 0/ 0/12 0/0/12 0/0/12

hb 12/ 0/0 12/0/0 6/1/5 (8/2/2) 12/0/0 (11/0/1) 0/0/12 5/4/3 (8/2/2)

Kr 12/0/0 0/1/11 (0/0/12) 12/0/0 0/0/12 0/0/12 0/0/12

gt 12/0/0 2/0/10 (1/0/11) 0/0/12 12/0/0 (10/1/1) 10/0/2 (4/0/8) 0/0/12

kni 12/0/0 0/0/12 2/2/8 (3/0/9) 0/0/12 12/0/0 (11/1/0) 0/0/12

tll 6/0/6 0/0/12 0/0/12 1/0/11 1/0/11 9/1/2 (7/1/4)

Parameter estimation by local search starting from Jaeger’s 12 parameter sets. Each regulatory
interaction is described by the number of interactions in triplet format: activation / no interaction /
repression. The interactions in bold are the results from local search which are different from Jaeger’s
work.

5.3 Summary

The gap gene network establishes around two hours after fertilisation in embryo de-

velopment. This is the same time duration that bicoid mRNA is decayed. Since the

traditional gap gene model only considers constant Bicoid, it is interesting to ask what

will happen if Bicoid is regulated. We use the Bicoid measurements from FlyEx as the

external input to this network and did local search to estimate parameters by starting

from the values in literature. The network topology has been changed in our result: kni

activates gt rather than represses. More effects of regulated Bicoid need to be exploited

in the future and some possible network parameter optimisations will be discussed in

Chapter 6.



Chapter 6
Conclusions and Future Work

6.1 Conclusions

This dissertation has proposed computational analyses for modelling Bicoid gradient for-

mation during Drosophila embryonic development. Its focus has been on the regulation

of stability of the maternally provided bicoid mRNA. While there is some evidence in

the biological literature that the stability may be regulated, computational models over

the last three decades have not taken this into account. This work has presented two

methods of modelling source regulation, and shows that model parameters can be in-

ferred from a public domain dataset (FlyEx) of Bicoid measurements in space and time.

The work further addresses a gap gene regulatory network which is activated precisely

during the time when bicoid mRNA stability is degraded.

The first contribution in this thesis, described in Chapter 3, imposes a stylised regulation

function on the production (source) of maternal Bicoid, based on the assumption that

these are proportional. By matching the observations from a quantitative database

FlyEx, our regulated Bicoid deterministic reaction-diffusion model results in better fit

by searching the parameters exhaustively. A recent model, in which a cytoplasmic flow

is included, has also been implemented with mRNA regulation. In addition to these

deterministic models, we also implemented a stochastic simulation of Bicoid propagation

and analysed it with the Gillespie algorithm. We made three observations from this

study. Firstly the modelling error, i.e. the squared error between model outputs and

FlyEx measurements turned out to be unimodal. Hence with the small number of

unknown parameters in the models, it was possible to do parameter estimation by a grid

search. Secondly, the parameters inferred by this process were largely consistent across

the three models. In particular, the onset time of decay and its speed were very close.

Finally, because the FlyEx measurements come from a population of embryos, we were

93
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able to construct bootstrap samples of morphogen data and quantify the uncertainty in

our inferred parameter values.

The alternative approach of modelling with non-parametric Bayesian methods, now

popular in the machine learning literature, was described in Chapter 4. Here, we applied

the GP method to infer source regulation in a spatio-temporal setting. While this

approach of using GPs for gene regulation has been addressed by Gao et al. (2008)

previously, our work is the first to study a spatio-temporal problem in developmental

biology. For the synthetic data from the reaction-diffusion model of Chapter 3, our

results showed that GP framework in our spatio-temporal system can accurately infer

the source function and capture the protein propagation. On real data from FlyEx, the

reconstructed source function was indicative of stability regulation, but was temporally

smoother than what we expected, partly due to the fact that the dataset is only partially

observed.

Chapters 3 and 4 focus on the regulated bicoidmRNA stability and the Bicoid concentra-

tion gradient formation. Bicoid, as a key maternal transcription factor, has contribution

on regulating gap gene expression. The establishment of gap gene network occurs around

two hours since fertilisation, which is the same time at which the translation of bicoid

mRNA is switched off. In Chapter 5, we have analysed the dynamical topology of the

gap gene network with the regulated Bicoid rather than the constant input from liter-

ature. In this contribution, we have estimated model parameters, which indicate the

cross-regulatory network topology, by local search started from Jaeger et al. (2004b)’s

global optimisation results. This early result from our work suggests potential change

within the network structure.

6.2 Future Work

In this thesis, however, bicoid is the only morphogen has been studied systemically.

Some other morphogens are still be attractive, such as Decapentaplegic (Dpp), which is

believed to make a contribution to the Drosophila D-V axis and the wing imaginal disc

(Ferguson and Anderson, 1992), and Sonic hedgehog homolog (Shh), which is crucial for

the growth of digits on limbs and the brain (Roelink et al., 1995), etc. These morphogen

gradients, which control the gene expression similar to the way that bicoid does, could

be formatted in the future by the modelling tools introduced in our work.

Our ongoing work is to optimise the gap gene network parameters. Due to the large

scale of the parameters in the gap gene model and the limitations of the implementation

time, we have only finished the local search for the fitting parameters when the input

has been changed. In order to investigate the effect of the maternal gene bicoid with

mRNA regulated in gap gene model, a global search is required. Instead of PLSA,

which has been successfully implemented by Jaeger and colleagues with the expensive
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computational cost, we will follow Fomekong-Nanfack et al. (2007)’s work to estimate

the 66 parameters by evolutionary strategy. The concept of such an efficient global

algorithm includes crossover, selection and mutation.

There are many specialised evolution strategies (ESs) and the (µ, λ)-ES will be consid-

ered in our future work based on (Runarsson and Yao, 2005). The basic idea is that,

during each iteration, a new population is generated only by the best µ of λ parents.

We firstly assume θ is a N -parameter vector (N = 66 in the gap gene network), σ is

the step size and the total population is λ. Initially, there are λ combinations of θ with

the uniformly distributed matrix U. The pseudo-code is shown in Algorithm 5

Algorithm 5 (µ, λ)-evolution strategy

Initialisation: σ′j = (θup − θlow)/
√
N ; θ′j = θlow + (θup − θlow)Uj(0, 1).

while termination criteria not satisfied do

1. Evaluate cost function f(θ′j) and the penalty function g(θ′j), j ∈ (1, λ).

2. Rank the λ populations stochastically. The choice of the probability depends on

the strength of penalisation.

3. Choose the best µ populations, σ′k and θ′k, as the new parents for the next

generations, k ∈ (1, µ).

for j = 1 : λ do

k ← mod(j − 1, µ) + 1

Apply Gaussian mutation on the step size:

σ′j,i ← σ′k,i exp(τ
′N (0, 1) + τNi(0, 1)), i ∈ (1, N).

Generate new population:

θ′j ← θk + σ′jN (0, 1), and

σ′j ← σk + α(θ′j − θk)

end for

end while

Another interest in our future work is expression variation of gap gene network. Due

to the limited measurements in FlyEx, the potential network connections (activation,

no-interaction and repression) and gene expression patterns, are hard to be inferred.

Furthermore, with the deterministic gap gene model, we can not guarantee that the

inferred gap gene network topology is biologically realistic because the regulatory process

is highly fluctuated. To address such problems, the variability and robustness of gap

gene model should be analysed based on stochastic model rather than deterministic one.

In particular, we can assume the real data are generated by the model output with

additive Gaussian noise, which leads to a probabilistic gap gene network.
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Appendix

A.1 Analytical solution for Bicoid reaction-diffusion model

with constant source

Constant production rate

The usual assumption in solving the Bicoid reaction-diffusion model is that the protein

synthesis process is continuous, which is shown in Figure 3.3(a):

Scon = S0δ(x)Θ(t), (A.1)

where S0 is the production rate, δ(x) is the Kronecker delta function and Θ(t) is Heav-

iside step function.

With the constant protein synthesis, the Bicoid morphogen reaction-diffusion system is

given by:

∂

∂t
m(x, t) = D

∂2

∂x2
m(x, t)− τ−1p m(x, t) + Scon(x, t). (A.2)

(Bergmann et al., 2007) provides the analytical solution by two-dimensional Fourier

Transform:

m̃(k, ω) =

∫∫ ∞

−∞
m(x, t)e−i(kx+ωt)dxdt. (A.3)

Therefore, Equation A.2 is transformed as follow:

iωm̃(k, ω) = −(k2D + τ−1p )m̃(k, ω) + S̃con(k, ω), (A.4)
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where S̃con(k, ω) is given by:

S̃con(k, ω) =

∫∫ ∞

−∞
S(x, t)e−i(kx+ωt)dxdt = − iS0

ω
. (A.5)

The morphogen concentration in (k, ω) domain is shown as below:

m̃(k, ω) =
S0

k2D + τ−1p

(
1

iω
− 1

iω + k2D + τ−1p

)
. (A.6)

By one-dimensional inverse Fourier Transform (IFT), m̃(k, t) becomes as:

m̃(k, t) =
1

2π

∫ ∞

−∞
m̃(k, ω)ejωtdω =

S0

k2D + τ−1p

(
1− e−(k

2D+τ−1
p )
)
Θ(t). (A.7)

Finally, the solution to Bicoid spatio-temporal model with constant source is given by:

m(x, t) =
S0

2βD

(
exp (−βx)− exp (−βx)

2
erfc

(
2βDt− x√

4Dt

)
− exp (βx)

2
erfc

(
2βDt+ x√

4Dt

))
,

(A.8)

where β is:

β = 1/

√
Dτ−1p . (A.9)

Decaying production rate

Considering decaying source with exponential function:

Sdec = S0δ(x)Θ(t) exp−
t

τm (A.10)

where 1/τm is decaying rate of bicoid mRNA.

S̃dec(k, ω) is transformed as:

S̃dec(k, ω) =

∫∫ ∞

∞
S(x, t)e−i(kx+ωt)dxdt

= S0

∫ ∞

∞
δ(x)eikxdx

∫ ∞

∞
e−

t
τmΘ(t)e−iωtdt

=
S0

iω + τ−1m
, (A.11)

and

m̃(k, ω) =
S0

τ−1m + iω
· 1

Dk2 + τ−1p + iω

=
S0

Dk2 + τ−1p − τ−1m
·
(

1

τ−1m + iω
− 1

Dk2 + τ−1p + iω

)
. (A.12)
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With one-dimensional IFT, we have:

m̃(k, t) =
S0

Dk2 + τ−1p − τ−1m
·
(
e−τ

−1
m t − e−(Dk2+τ−1

p )t
)
Θ(t)

=
S0 · e−τ

−1
m t

Dk2 + τ−1p − τ−1m
·
(
1− e−(Dk2+τ−1

p −τ−1
m )t

)
Θ(t) (A.13)

Protein decaying faster than source decaying (τ−1p − τ−1m > 0)

Equation A.13 is similar to the solution with constant source when τ−1p − τ−1m > 0, in

which the protein degrades faster than source. The morphogen spatio-temporal model

with decaying source is given by:

m(x, t) =
S0 · exp

(
− t

τm

)

2β1D(
exp (−β1x)−

exp (−β1x)
2

erfc

(
2β1Dt− x√

4Dt

)
− exp (β1x)

2
erfc

(
2β1Dt+ x√

4Dt

))

(A.14)

where β1 is:

β1 =

√
τ−1p − τ−1m

D
(A.15)

Source decaying faster than protein decaying τ−1p − τ−1m < 0

When τ−1p − τ−1m < 0, the Bicoid concentration.

β2 = iβ1 (A.16)

m(x, t) =
S0 · e−

t
τm

2iβ1D(
exp (−iβ1x)−

exp (−iβ1x)
2

erfc

(
2iβ1Dt− x√

4Dt

)
− exp (iβ1x)

2
erfc

(
2iβ1Dt+ x√

4Dt

))

(A.17)
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A.2 Bicoid steady state

When the concentration remains unchanging in time, as an equilibrium maintained

between the production and degradation of morphogen molecules, this reaction-diffusion

system reaches steady state, in which ∂m(x, t)/∂t = 0, and is defined as:

D
∂2

∂x2
ms(x) = τ−1p ms(x). (A.18)

As a second-order homogeneous linear equation, Equation A.18 has a general solution

as follow:

ms(x) = C1m1(x) + C2m2(x), (A.19)

where C1, C2 are the constants to be determined and the two solutions m1(x) and m2(x)

are linearly independent. The corresponding auxiliary equation is given by:

Dr2 − τ−1p = 0,

and the roots are:

r1,2 = ±
√

1

Dτp
. (A.20)

Because r1 and r2 are real and distinct, the general solution is given by:

ms(x) = C1 exp(r1x) + C2 exp(r2x). (A.21)

Let λ (λ =
√

Dτp) be the decay length scale of the concentration gradient. We get:

ms(x) = C1 exp
(
−x

λ

)
+ C2 exp

(x
λ

)
. (A.22)

The constants C1 and C2 are determined by two boundary conditions:

D
∂m

∂x

∣∣∣∣
x=0

= −J, and (A.23)

D
∂m

∂x

∣∣∣∣
x=L

= 0, (A.24)

where J is the diffusive flux at anterior pole (x = 0) shown in Equation 3.3. The flux

at the other end of embryo is defined as zero (x = L by assuming that the length of

embryo is L).
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Substituting Equation A.22 into boundary conditions, we have:

C1 =
Jλ

D

(
1

1− exp
(−2L

λ

)
)
, (A.25)

and

C2 =
Jλ

D

(
exp

(−2L
λ

)

1− exp
(−2L

λ

)
)
. (A.26)

If the embryo length L is much larger than length scale λ, C2 becomes zero and C1 is

simplified as Jλ
D . The finial solution for the steady state is defined by:

ms(x) = C1 exp
(
−x

λ

)
, (A.27)

where C1 = Jλ
D , as a boundary condition, is morphogen concentration at source end

(x = 0). λ, the decaying length, is given by
√

Dτp, which defines the distance between

the source and the spatial point, at which the concentration is exp(−1) of C1.
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A.3 Gillespie stochastic simulation algorithm

This appendix shows the derivation details about how to obtain time step τ that the next

reaction takes place in stochastic simulation (Gillespie, 1977; Erban et al., 2007). The

basic idea of finding τ is dependent on the probability of the reaction occurring in the

future. Suppose Pno(A(t), τ) is the probability that no reaction occurs during [t, t+ τ ],

given A(t) molecules at time t in this system. Let Pre(A(t), τ)dτ be the probability that

the next reaction takes place during [t+ τ, t+ τ + dτ), where dτ is a small time interval.

Therefore, we can get:

Pre(A(t), τ)dτ = Pno(A(t), τ)A(t + τ)kdτ. (A.28)

Because there is no reaction during [t, t + τ), we have A(t + τ) = A(t) and Equation

A.28 can be changed as follow:

Pre(A(t), τ)dτ = Pno(A(t), τ)A(t)kdτ. (A.29)

Now we need to calculate Pno(A(t), τ). The probability that no reaction occurs in

[t, t+ τ + dτ) is defined as no reaction happens in [t, t+ τ) and [t+ τ, t+ τ + dτ):

Pno(A(t), τ + dτ) = Pno(A(t), τ)[1 −A(t+ τ)kdτ ]

= Pno(A(t), τ)[1 −A(t)kdτ ] (A.30)

After algebraic manipulation and let dτ → 0, we can obtain that:

dPno(A(t), τ)

dτ
= −A(t)kPno(A(t), τ) (A.31)

Solving this ODE with initial condition Pno(A(t), 0) = 1, we get:

Pno(A(t), τ) = exp(−A(t)kτ) (A.32)

Combining Equation A.29 and A.32, we have:

Pre(A(t), τ)dτ = A(t)k exp(−A(t)kτ)dτ. (A.33)

Defining a function R of τ , in which

R(τ) = exp(−A(t)kτ). (A.34)

For an arbitrary τ ∈ (0,∞), R(τ) a random number in (0, 1). Given two random

numbers a ∈ (0, 1) and b ∈ (0, 1), where a < b, the probability that R(τ) ∈ (a, b) is

equal to τ ∈ (R−1(b), R−1(a)) because R is a monotone decreasing function of τ . The
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probability of τ ∈ (R−1(b), R−1(a)) is given by:

∫ R−1(a)

R−1(b)
Pre(A(t), τ)dτ =

∫ R−1(a)

R−1(b)
A(t)k exp(−A(t)kτ)dτ

=−R(τ)
∣∣R−1(a)

R−1(b)

=b− a. (A.35)

Therefore, the probability that R(τ) ∈ (a, b) is b−a which leads to that R(τ) is uniformly

distributed in (0, 1). For a given τ , we define a uniformly distributed number r, where

r = exp(−A(t)kτ), and

τ =
1

A(t)k
ln(

1

r
). (A.36)

This derivation can also be expanded to multi-reactions system. Suppose there are N

reactions a chemical system. The time step τ is similar as Eq.A.36:

τ =
1

a0
ln(

1

r
) (A.37)

where a0 is defined by all of the propensity functions in the system:

a0 =

N∑

j=1

aj (A.38)
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A.4 Derivation of stochastic mean

The master equation of Bicoid reaction-diffusion system is given by:

∂

∂t
P (n, t) = d

N−1∑

i=1

[(ni + 1)P (R±1i n, t)− niP (n, t)]

︸ ︷︷ ︸
Diffusion:A→P

+ d

N∑

i=2

[(ni + 1)P (L±1i n, t)− niP (n, t)]

︸ ︷︷ ︸
Diffusion:A←P

+ τ−1p

N∑

i=1

[(ni + 1)P (K+1
i n, t)− niP (n, t)]

+ S(t)P [(K−11 n, t)− P (n, t)], (A.39)

where P (n, t) is joint probability of state vector n = [n1, n2, . . . , ni, . . . , nN ] and N =

100. R±1i , L±1i , K+1
i and K−1i are state operators, which are defined by:

R±1i n =[n1, n2, . . . , ni + 1, ni+1 − 1 . . . , nN ], i = 1, 2, . . . , N − 1 (A.40)

L±1i n =[n1, n2, . . . , ni−1 − 1, ni + 1 . . . , nN ], i = 2, 3, . . . , N (A.41)

K+1
i n =[n1, n2, . . . , ni + 1, . . . , nN ], i = 1, 2, . . . , N (A.42)

K−1i n =[n1, n2, . . . , ni − 1, . . . , nN ], i = 1, 2, . . . , N (A.43)

In order to estimate parameters used in stochastic model, we have calculated vector m

by multiplying ni and summing over the vector n, (i = 1, 2, . . . , N) rather than averaging

several Gillespie realizations of stochastic simulation.

m =[m1,m2, . . . ,mi, . . . ,mN ], i = 1, 2, . . . , N (A.44)

mi(t) =

∞∑

n1=0

∞∑

n2=0

. . .

∞∑

nN=0

niP (n, t) =
∑

n

niP (n, t), i = 1, 2, . . . , N (A.45)

Where mi(t) gives the mean number of Bicoid molecules at time t in i-th sub-volume.

By multiplying Equation A.39 by nj and sum over n, the diffusion term (first line in

A.39) becomes:

∂

∂t

∑

n

niP (n, t)

∣∣∣∣
A→P

=d
N−1∑

j=1

[
∑

n

ni(nj + 1)P (R±1j n, t)−
∑

n

ninjP (n, t)

]

︸ ︷︷ ︸
a©

+d

N∑

i=2

[
∑

n

ni(nj + 1)P (L±1j n, t)−
∑

n

ninjP (n, t)

]

︸ ︷︷ ︸
b©

(A.46)
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We first consider i goes through A-P axis except anterior and posterior ends, in which

i = 2, ..., N − 1.

1. j=i

The right hand side term a© in Equation A.46 with j = i becomes:

a©|j=i =
∑

n

ni(ni + 1)P (R±1i n, t)−
∑

n

n2
iP (n, t). (A.47)

In order to change P (R±1i n) to P (n, t), we define the transformation as follow:

R±1i n ={n1, n2, . . . , ni + 1, ni+1 − 1 . . . , nN}, to (A.48)

n ={n1, n2, . . . , ni, ni+1 . . . , nN}, i = 1, 2, . . . , N − 1 (A.49)

Equation A.47 becomes:

a©|j=i =
∑

n

(ni − 1)niP (n, t)−
∑

n

n2
iP (n, t)

=−
∑

n

niP (n, t)

=−mi(t) (A.50)

For diffusion term b© with j = i, we have:

b© =
∑

n

ni(nj + 1)P (L±1j n, t)−
∑

n

ninjP (n, t) (A.51)

where the transformation of L±1i is given by:

L±1i n ={n1, n2, . . . , ni−1 − 1, ni + 1 . . . , nN}, to (A.52)

n ={n1, n2, . . . , ni, ni+1 . . . , nN}, i = 2, 3, . . . , N (A.53)

and b© becomes:

b©|j=i =
∑

n

(ni − 1)niP (n, t)−
∑

n

n2
iP (n, t)

=−
∑

n

niP (n, t)

=−mi(t). (A.54)
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2. j=i-1

When j = i− 1, we get

a©|j=i−1 =
∑

n

ni(ni−1 + 1)P (R±1i−1n, t)−
∑

n

nini−1P (n, t),

(A.55)

where

R±1i−1n ={n1, n2, . . . , ni−1 + 1, ni − 1 . . . , nN}, to (A.56)

n ={n1, n2, . . . , ni−1, ni . . . , nN}, i = 1, 2, . . . , N − 1 (A.57)

and Equation A.55 becomes:

a©|j=i−1 =
∑

n

(ni + 1)ni−1P (n, t)−
∑

n

nini−1P (n, t)

=
∑

n

ni−1P (n, t)

=mi−1(t). (A.58)

When j = i− 1, the b© will become zero because:

b©|j=i−1 =
∑

n

ni(ni−1 + 1)P (L±1i−1n, t)−
∑

n

nini−1P (n, t),

=
∑

n

nini−1P (n, t)−
∑

n

nini−1P (n, t)

=0 (A.59)

3. j=i+1

When j = i+ 1, a© is zero as similar as Equation A.59. b© is given by:

b©|j=i+1 =
∑

n

ni(ni+1 + 1)P (L±1i+1n, t)−
∑

n

nini+1P (n, t),

=
∑

n

(ni + 1)ni+1P (n, t)−
∑

n

nini+1P (n, t)

=mi+1(t) (A.60)

The corresponding ODEs of the master equation for degradation and production (second

and third lines in Equation A.39) can be derived by the same way, which is also true

when we consider the two ends of the compartments (i = 1 and i = N). Finally, we get
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the ODEs, which is used in Chapter 3 Section 3.3 for parameter estimation, as follow:

∂

∂t
m1 =d(m2 −m1)− τ−1p m1 + S(t), i = 1 (A.61)

∂

∂t
mi =d(mi+1 +mi−1 − 2mi)− τ−1p mi, i = 2, 3, . . . , N − 1 (A.62)

∂

∂t
mN =d(mN−1 −mN )− τ−1p mN , i = N (A.63)



108 Appendix A Appendix

A.5 Schur complement

The idea of Schur complement has been introduced since 1851. After 150 years, it still

plays an important role in matrix analysis, statistics and many areas of mathematics.

In this appendix, we provide the details of Schur complement closely following Gal-

lier (2011)’s work in order to derive multivariate Gaussian distribution in Section 4.1,

Chapter 4.

Let a k × k matrix be partitioned as a 2× 2 block matrix:




A︸︷︷︸
m×m

B︸︷︷︸
m×n

C︸︷︷︸
n×m

D︸︷︷︸
n×n


 . (A.64)

where A, B, C and D are: m×m, m×n, n×m and n×n matrices, respectively. Notice

that k = m+ n.

Consider a linear system, where

Ax+By = c, (A.65)

Cx+Dy = d. (A.66)

Solving the system for y, we have

y = D−1(d−Cx), (A.67)

where D is invertible. Substituting it into Equation A.65, we get

Ax+B(D−1(d− Cx)) = c, (A.68)

and

(A−BD−1C)x = c−BD−1d. (A.69)

By assuming that matrix A−BD−1C is invertible, the solution becomes:

x = (A−BD−1C)−1(c−BD−1d), (A.70)

and

y = D−1(d− C(A−BD−1C)−1(c−BD−1d)). (A.71)

Rewriting the above equations, we have

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d, (A.72)

y = −D−1C(A−BD−1C)−1c+ (D−1 +D−1C(A−BD−1C)−1BD−1)d. (A.73)
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Finally, the solution for the matrix [AB,CD]−1 of the linear system is given by:



A B

C D



−1

=




(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 (D−1 +D−1C(A−BD−1C)−1BD−1)d




=




I 0

−D−1C I





(A−BD−1C)−1 0

0 D−1





I −BD−1

0 I


 . (A.74)
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A.6 Derivations of Gaussian process covariance functions

Here we derive the analytical solutions for the covariance function km,f (t, t
′) in Equation

4.61 and Km,m(t, t′) in Equation 4.60 referred to in the main thesis. In our linear

dynamical system, the matrix A, defined in thesis, is a non-diagonal matrix due to the

protein diffusion term. We need eigendecomposition of the system matrix to arrive at

this solution which is expressed in forms of the eigenvectors (Polderman and Willems,

1998).

Derivation of covariance km,f(t, t
′)

km,f(t, t
′) =

∫ t

0
exp((t− u)A)skf,f (u, t

′)du, (A.75)

where kf,f is the squared exponential covariance function given by:

kf,f = exp

(
−(t− t′)2

l2

)
. (A.76)

We rewrite Equation (A.75) as

km,f (t, t
′) =

∫ t

0
exp(At−Au)s exp(−(t′ − u)2

l2
)du. (A.77)

Replacing -A by its eigendecomposition,

exp(−A) = exp(VPV−1) = V exp(P)V−1, (A.78)

where matrix P is a diagonal matrix with the eigenvalues of −A on the diagonal and

V is the matrix of eigenvectors. Substitute Equation (A.78) into Equation (A.77) and

collecting terms in a convenient way:

km,f (t, t
′) =V exp(−Pt)

∫ t

0
exp

(
Pu−

(
t′

l

)2

I+
2t′u

l2
I−

(u
l

)2
I

)
duV−1s

=V exp(−Pt)

∫ t

0
exp

[
−
((u

l

)2
I− 2t′u

l2
I+

(
t′

l
I+

Pl

2

)2
)

+

(
t′

l
I+

Pl

2

)2

−
(
t′

l

)2
]

duV−1s

=V exp

(
−Pt+Pt′ +

(
Pl

2

)2
)∫ t

0
exp

(
−
(
u

l
I− t′

l
I− Pl

2

)2
)
duV−1s.

(A.79)
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Here we recognize the error function erf(x) = 2√
π

∫ x
0 e−t

2

dt, and can write the solution

as:

km,f (t, t
′) =

l
√
π

2
V exp

(
−P(t− t′) +

(
Pl

2

)2
)(

erf

(
t′

l
I+

Pl

2

)
+ erf

(
t− t′

l
I− Pl

2

))
V−1s.

(A.80)

Derivation of covariance Km,m(t, t′)

km,m(t, t′) =

∫ t

0

∫ t′

0
exp((t− u)A)s

(
exp((t′ − u′)A)s

)T
kf,f (u, u

′)dudu′. (A.81)

With the same transformation as in Equation (A.78), we get:

km,m(t, t′) = V

∫ t

0

∫ t′

0
exp((u− t)P)V−1ssT (V−1)T

(
exp((u′ − t′)P)

)T
kf,f (u, u

′)dudu′VT .

(A.82)

Denoting E = V−1ssT (V−1)T and rearranging terms,

km,m(t, t′) =V

∫ t

0
exp((u− t)P)E

∫ t′

0

(
exp((u′ − t′)P)

)T
exp

(
−(u− u′)2

l2
I

)
du′duVT

=
l
√
π

2
V

∫ t

0
exp((u− t)P)E

{[
erf

(
u

l
I+

Pl

2

)
+ erf

(
t′ − u

l
I− Pl

2

)]
exp

[
(u− t′)P+

(
Pl

2

)2
]}

duVT .

(A.83)

In order make the derivation clear, we define two diagonal matrices X, Y as:

X =exp((u− t)P) (A.84)

and

Y =

[
erf

(
u

l
I+

Pl

2

)
+ erf

(
t′ − u

l
I− Pl

2

)]
exp

[
(u− t′)P+

(
Pl

2

)2
]
. (A.85)

Equation (A.83) then becomes:

km,m(t, t′) =
l
√
π

2
V

∫ t

0
XEYduVT . (A.86)
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We proceed to integrate Equation (A.86) as follows. First rewriting elementwise

km,m(t, t′) =
l
√
π

2
V

∫ t

0



















E(1, 1)X(1, 1)Y(1, 1) E(1, 2)X(1, 1)Y(2, 2) · · · E(1, N)X(1, 1)Y(N,N)

E(2, 1)X(2, 2)Y(1, 1) E(2, 2)X(2, 2)Y(2, 2) · · · E(2, N)X(2, 2)Y(N,N)

...
...

. . .
...

E(N, 1)X(N,N)Y(1, 1) E(N, 2)X(N,N)Y(2, 2) · · · E(N,N)X(N,N)Y(N,N)



















duVT

(A.87)

Collecting the eigenvalues of matrix -A in vector p, we rewrite Equation (A.83) as:

km,m(t, t′) =
l
√
π

2
V

∫ t

0{
E. ∗

[
exp((u − t)pT )

((
erf

(
u

l
I+

pl

2

)
+ erf

(
t′ − u

l
I− pl

2

))
. ∗ exp

(
(u− t′)p+

(
pl

2

)2
))]}

duVT .

(A.88)

This can be evaluated as:

km,m(t, t′) =

√
πl

2
V (E. ∗ F)VT , (A.89)

where

F(i, j) =
1

p(i) + p(j){
exp(b1)

[
erf

(
p(j)

2
l +

t

l

)
− erf

(
p(j)

2
l +

t− t′

l

)]

+ exp(b2)

[
erf

(
p(j)

2
l − t′

l

)
− erf

(
p(j)

2
l

)]

+ exp(b3)

[
erf

(
p(i)

2
l − t

l

)
− erf

(
p(i)

2
l

)]

+ exp(b4)

[
erf

(
p(i)

2
l +

t′

l

)
− erf

(
p(i)

2
l − t− t′

l

)]}
,

and

b1 =

(
p(j)

2
l

)2

+ p(j)t − p(j)t′; b2 =

(
p(j)

2
l

)2

− p(i)t− p(j)t′;

b3 =

(
p(i)

2
l

)2

− p(i)t− p(j)t′; b4 =

(
p(i)

2
l

)2

− p(i)t+ p(i)t′.
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