Coarse non-amenability and coarse embeddings
Coarse non-amenability and coarse embeddings
We construct the first example of a coarsely non-amenable (= without Guoliang Yu’s property A) metric space with bounded geometry which coarsely embeds into a Hilbert space.
22-36
Arzhantseva, Goulnara
cb099fac-8639-46ef-bac8-a93f68309758
Guentner, Erik
0efa2b74-da7d-497d-8a80-e668eb8f41f1
Spakula, Jan
c43164e4-36a7-4372-9ce2-9bfbba775d77
2012
Arzhantseva, Goulnara
cb099fac-8639-46ef-bac8-a93f68309758
Guentner, Erik
0efa2b74-da7d-497d-8a80-e668eb8f41f1
Spakula, Jan
c43164e4-36a7-4372-9ce2-9bfbba775d77
Arzhantseva, Goulnara, Guentner, Erik and Spakula, Jan
(2012)
Coarse non-amenability and coarse embeddings.
Geometric And Functional Analysis, 22 (1), .
(doi:10.1007/s00039-012-0145-z).
Abstract
We construct the first example of a coarsely non-amenable (= without Guoliang Yu’s property A) metric space with bounded geometry which coarsely embeds into a Hilbert space.
Text
10.1007%2Fs00039-012-0145-z.pdf
- Version of Record
Restricted to Repository staff only
Request a copy
More information
e-pub ahead of print date: 26 January 2012
Published date: 2012
Organisations:
Pure Mathematics
Identifiers
Local EPrints ID: 351508
URI: http://eprints.soton.ac.uk/id/eprint/351508
PURE UUID: e00f5117-b65f-4660-85c6-909eddb6221e
Catalogue record
Date deposited: 23 Apr 2013 11:42
Last modified: 28 Apr 2022 02:09
Export record
Altmetrics
Contributors
Author:
Goulnara Arzhantseva
Author:
Erik Guentner
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics