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A finite element based method is presented for calculating the acoustic radiation force on arbitrarily

shaped elastic and fluid particles. Importantly for future applications, this development will permit

the modeling of acoustic forces on complex structures such as biological cells, and the interactions

between them and other bodies. The model is based on a non-viscous approximation, allowing the

results from an efficient, numerical, linear scattering model to provide the basis for the second-

order forces. Simulation times are of the order of a few seconds for an axi-symmetric structure. The

model is verified against a range of existing analytical solutions (typical accuracy better than

0.1%), including those for cylinders, elastic spheres that are of significant size compared to the

acoustic wavelength, and spheroidal particles. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4794393]

PACS number(s): 43.25.Qp [JDM] Pages: 1885–1893

I. INTRODUCTION

Ultrasonic standing wave fields can be used to exert a

radiation force on small particles, including biological cells.

The radiation force is a nonlinear phenomenon generated by

the interaction of ultrasound scattered by the particle and

energy gradients within the ultrasonic field. The length

scales of ultrasonic standing waves are highly compatible

with the scales required for manipulation of cells within

micro total analysis systems (lTAS) and this has led to sig-

nificant recent interest in the phenomenon. Biological appli-

cations of the technology are particularly attractive as there

is clear evidence that the acoustic energy required for the

levitation and manipulation of cells does not significantly

impair their viability.1,2

Ultrasonic manipulation is complementary to techniques

such as optical trapping and dielectrophoresis as the poten-

tial wells generated can be relatively large, making ultra-

sound suitable for the formation and manipulation of cell

agglomerates, but less suitable for the precise manipulation

of individual cells.

Recently reported applications of the technology include

trapping of cells for microscopy,3 biosensor enhancement,4

fractionation,5 medium exchange,6 and tissue engineering.7

Most of the modeling of radiation forces that underpins these

applications has been based on the work of King8 or of

Yosioka and Kawasima.9 As investigators explore the poten-

tial of the technology in biosciences applications, there is a

need for models of radiation force that offer more flexibility

in terms of the geometry, size and material characteristics of

the cells, particles and agglomerates formed within ultra-

sonic fields. The approach taken in this work uses a finite

element representation that allows for the estimation of

forces on fluid or elastic scatterers of arbitrary sizes and

geometries, and with material inhomogeneities. Despite its

power and flexibility the implementation is efficient enough

to allow multiple parametric studies to be undertaken in ac-

ceptable timescales.

II. BACKGROUND

The first comprehensive theoretical investigation of

radiation forces on small scatterers was undertaken by King

in 1934.9 King considered a rigid sphere in an inviscid fluid

in both plane progressive and plane standing waves. Many

authors have subsequently revisited the radiation force prob-

lem to overcome one or more of these assumptions. The

behavior of bubbles in acoustic fields led Yosioka and

Kawasima9 to derive an expression for the force on a com-

pressible particle within a plane wave. This was reformu-

lated by Gor’kov10 to express the time averaged radiation

force, F(r) on a sphere of volume V located at r within sta-

tionary acoustic fields other than plane standing waves, char-

acterized by their time averaged kinetic and potential energy

densities (Ekin and Epot, respectively):

FðrÞ ¼ rV
3ðqp � qf Þ
ð2qp þ qf Þ

EkinðrÞ � 1�
bp

bf

 !
EpotðrÞ

" #
:

(1)

The energy density terms are weighted by functions of the

compressibilities (bp and bf) and densities (qp and qf) of the

particle and the surrounding fluid.

Other authors have studied the phenomenon in specific

fields of non-planar geometry.11–13 Westervelt14 included

viscosity effects in radiation force calculations and

Doinikov15,16 demonstrated that thermal and viscous effects

play only a small role on acoustic radiation forces on par-

ticles significantly larger than the viscous and thermal pene-

tration depths within standing waves. King17 also modeled

the force on thin discs in planar fields and subsequent
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investigations have included theory for the forces on discs,18

deformed water drops,19 cylinders,20–23 and ellipsoids.24

The theory of Yosioka and Kawasima9 was restricted to

the force on compressible fluid particles significantly smaller

than a wavelength. Hasegawa and Yosioka25 and

Hasegawa26 investigated elastic scatterers (i.e., scatterers

that can support shear wave propagation in addition to the

purely compressive waves in a fluid scatterer) in plane pro-

gressive and stationary waves, and included investigations of

particles sizes that were significantly larger than is the case

for the small scatterer approximation.

Many studies of the behavior of particles within stand-

ing wave fields have relied on the small, compressible fluid

scatterer approximations of Yosioka and Kawasima9 and

Gor’kov10 and combined these with numerical representa-

tions of the field itself. Gr€oschl27 used Nowotny’s one-

dimensional transfer matrix model28 to predict forces on par-

ticles within multi-wavelength resonators and a similar

approach by Hill et al.29 has been used to predict particle

behavior in sub-wavelength planar resonators.30,31 Such one-

dimensional approximations can provide useful information

for the design of resonators but fail to represent the complex-

ity of behavior in the lateral directions that is observed in

real systems. A number of authors have addressed this using

numerically derived two-dimensional representations of

acoustic fields32–34 which can be combined with Gor‘kov’s

force potential formulation.35,36

Other authors have used a numerical formulation to sim-

ulate both the field and the radiation force itself, without

resorting to Yosioka and Kawasima’s approximations.

Haydock21 used a Lattice Boltzmann approach that included

viscosity to calculate the radiation force on cylinders in a

standing wave, and Wang and Dual23 also used a full numer-

ical simulation of the viscous Navier-Stokes equations to

calculate forces on a rigid cylinder, in this case using a finite

volume representation. While these simulations are poten-

tially very powerful, particularly in cases such as particles

near boundaries where viscosity effects are important, the

simulations are typically very computationally demanding.

Cai et al.20 used a finite difference time domain method

to calculate the radiation force generated by propagating

waves in an inviscid fluid. Again, the computational demand

of this method is significant. A finite element approach has

been used by Liu et al.37 to examine the shape dependency

of radiation forces in complex acoustic fields. This has

generated useful results relating to the trapping of particles

of different shapes, but the analysis is based on a fixed parti-

cle boundary so requires assumptions of a rigid, fixed

particle.

The work described in this paper combines the effi-

ciency and flexibility (in terms of the geometry of the scat-

terer and the field) of the finite element method, but uses the

approach developed by Yosioka and Kawasima9 to allow for

the compressibility of the particle, allowing the behavior of

both compressible and elastic particles in an inviscid fluid to

be modeled. Finally, to validate key aspects of the model

and its development, the paper draws from a range of analyt-

ical solutions given in the literature including those for cylin-

ders, spheres, and spheroids.

III. METHOD

A. Theoretical basis

To find the acoustic radiation force on an arbitrary

shaped particle, we take advantage of the useful relation that

in the inviscid approximation, the acoustic radiation forces

to second order can be expressed as functions of first-order

acoustic quantities. Thus, we can take the results of a compu-

tationally efficient, numerical, linear, first-order acoustic

scattering simulation and use them to calculate the radiation

force on a particle. We will refer to this method as the per-

turbation FEA method in the remainder of the paper. This

approach is very similar to the analytical approach used by

Yosioka and Kawasima9 to derive the force on a compressi-

ble sphere.

In the manner of a perturbation analysis, we write the

total pressure and velocity as a series, beginning with the

constant steady state terms, followed by the much smaller

periodic linear acoustic terms p1 and v1, followed by the

second-order terms p2 and v2 that are functions of the lower-

order terms.

p ¼ p0 þ p1 þ p2 þ � � � ;
v ¼ 0 þ v1 þ v2 þ � � � :

(2)

Bruus38 shows that with the approximation of an invis-

cid fluid, the time averaged second-order acoustic pressure

term is given by

hp2i ¼
1

2q0ca
2
hp1

2i � 1

2
q0hv1

2i (3)

where q0 is the quiescent fluid density, and ca is the speed of

sound in the medium. This equation is central to this paper,

and all the FEA results we present subsequently are based on

substituting the first-order quantities derived from a finite

element scattering simulation into the equation to obtain the

time averaged second-order pressure.

We take the first-order terms to be harmonic, so that to

first order the pressure at any point averages to zero. The

second-order pressure terms, however, do not average to

zero as they are formed from squares of the first-order quan-

tities. If the particle boundary is fixed, with a slip condition

at the boundary, the time averaged radiation force on the par-

ticle is found by integrating the normal component of the

total pressure over the surface of the particle (this is the

approach used by Liu37). To second order, this is given by

�Ffixed ¼
ð ð

S

p2n dS

� �
(4)

where S is the surface of the particle and n the surface nor-

mal unit vector.

If the particle is free to move in response to the move-

ments of the fluid, then it is necessary to apply this integra-

tion over the moving particle surface, S(t). Performing this

integration is difficult to implement. Yosioka and

Kawasima9 showed that this integral can be approximated

(to second order), as the integral of the second-order pressure
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component over the equilibrium position of the particle, S0,

plus a correction term, also integrated over the equilibrium

position.

�Ffixed ¼
*ð ð

SðtÞ
p2n dS

+
¼
*ð ð

S0

p2n dS

+

þ
*ð ð

S0

q0ðn � u1Þu1 dS

+
þ � � � (5)

where F is the time averaged force on the particle.

The derivation by Gor’kov10 for the force on a sphere in

an arbitrary field, evaluates the acceleration of the material

inside a control surface larger than the particle. The terms

include both pressure terms on the boundary, and momentum

flux carried across the boundary by fluid crossing the bound-

ary. If the control surface is reduced to the same size as the

particle, we find the force takes the same form as Eq. (5)

above. Thus Yosioka and Kawasima’s correction term for

the moving particle can be thought of as a momentum flux

through a fixed control surface. In the light of Gor‘kov’s

approach we see that the boundary of integration for Eq. (5)

can be a region larger than the particle. It has been verified

that the results presented in Secs. IV B and IV C below are

insensitive to taking a larger integration boundary.

If the first-order pressure and velocity fields are decom-

posed into first-order incident and scattered fields, then the

squared terms in Eq. (3) can be written out as products, for

example,

p2 ¼ p2
i þ 2pipsc þ p2

sc (6)

where the subscripts i, sc, refer to incident and scattered.

The p2
i and v2

i terms ultimately cancel when integrated over

the control surface in Eq. (5) (or lead to a hydrostatic over-

pressure, as described by Lighthill39). For a small scattering

particle, the p2
sc and v2

sc terms will also be negligible com-

pared to the larger pipsc and vivsc mixed products. These

simplifications are implemented in the approximations used

by Gor’kov and by Yosioka and Kawasima in their deriva-

tions of the forces on a small particles. Numerically, for

small particles, it may be more accurate to use these approxi-

mations, as the incident squared terms (which should inte-

grate to zero over the particle surface but may not integrate

due to mesh discretization) will introduce numerical errors

due to their larger magnitude compared to the remaining

terms. The squares of the scattered pressure and velocity

terms must be included when calculating the forces on scat-

terers that are a significant size in comparison with a wave-

length (see below). Unless otherwise stated (when the

approximation is called the “small scattering approx-
imation” and the result is referred to as “mixed terms only”),

the total field is used for the calculations in this paper.

B. Numerical implementation

Figure 1 shows a typical 2D implementation of the

model. The model is constructed in COMSOL v.4.0a, a

commercial multi-physics finite element method package. In

order to establish good agreement with the analytical solu-

tions for compressible scatterers, the model is initially

implemented with both the particle and the surrounding fluid

as fluid domains supporting linear, scalar acoustic represen-

tations. In Sec. IV C elastic scatterers are considered; the

particle is represented as a linear elastic solid, and the effect

of shear wave propagation on the resulting forces is

discussed.

The model is axi-symmetric, with the axis of symmetry

on the left-hand boundary of Fig. 1. The particle is repre-

sented by a semi-circular domain, with a base on this axis,

and the surrounding fluid is shown as a rectangular domain,

also with a base on this axis. Non-reflecting boundary condi-

tions (NRBCs) delimit the computational domain and allow

an acoustic field to be introduced by specifying pressure con-

ditions over the boundary while simultaneously absorbing

the majority of acoustic energy incident upon the boundary

from the scatterer. COMSOL provides a NRBC based on

FIG. 1. (Color online) Finite element model to find

radiation forces on a compressible sphere along

with the scattered pressure distribution (Pa). Non-

reflecting boundary conditions marked NRBC. The

standing wave field is introduced by specifying

acoustic pressures at all of the NRBC boundaries.
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Bayliss et al.40 In this manner the simulated domain spans

only a fraction of a wavelength. Bayliss et al. also suggest

that these second-order boundary conditions work accept-

ably even in the near field and this is borne out by results

below. It has also been verified that similar numerical accu-

racy can be produced using a perfectly matched layer (PML)

in place of the NRBC for the results presented in Sec. IV B.

The particle and fluid domains are coupled such that only

normal velocity components are transmitted across the

boundary. The model is solved using a harmonic analysis at

a frequency of interest. The forces are evaluated by perform-

ing the integration from Eq. (5) over the boundary of the

particle.

Figure 1 also shows the pressure distribution of the scat-

tered field resulting from a sphere when a standing wave of

pressure amplitude of 200 kPa is applied via the boundary.

The material and domain parameters are listed in Table I;

these parameters will be used throughout the paper as a base-

line set of data unless otherwise stated. Evaluating Eq. (5)

over the particle surface, we deduce a radiation force of

127.66 pN acting upwards on the particle, which compares

well with the analytical result of 127.83 pN predicted by

Yosioka and Kawasima. It is interesting to note that in the

case of a fixed, rigid sphere (i.e., without the momentum

flux correction required for a moving sphere), the force is

150.80 pN.

C. Mesh and domain dependency, computational load

To evaluate the mesh density and fluid domain size

required to achieve an appropriate level of accuracy, these

parameters were varied using the parameters in Table I as a

basis. By fluid domain size, we mean the length of the rec-

tangular boundary that delimits the fluid region. We also

investigated using a circular fluid domain and found the dif-

ference in the results negligible. Figure 2 and Fig. 3 show

how the predicted force compares to Hasegawa’s analytical

results for the force on a compressible, fluid sphere26,41 (see

Sec. IV B, below). Both a uniform mesh and a mesh that is

denser at the particle boundary were tested.

We also compare in Fig. 2 the effect of making the

small scattering approximation (see above), decomposing

the field into incident and scattered components. The results

show higher accuracy (approaching 0.005% difference from

Hasegawa’s analytical result in the limit of mesh refinement)

when making the small scatterer approximation (see above

for why this may be the case) compared to the full-field

implementation (approaching 0.015% in the limit of mesh

refinement). Both results will be satisfactory for most appli-

cations. If the model were modified to predict forces in pro-

gressive waves the difference is likely to become more

important, as the resulting forces are much smaller, and

more likely to be obscured by these numerical errors. It will

be demonstrated below (Sec. IV B) that for larger particles,

the error introduced by considering only the incoming/scat-

tered mixed products becomes significant.

At these settings running a set of 100 simulations (to

lessen the effects of setup overheads on the simulation time)

takes a total of 186 s (solving for 13 913 degrees of freedom

on a desktop PC with a 2.67 GHz Intel(R) Xeon(R) CPU

with 12.0 GB RAM). This demonstrates the advantage of the

FEA perturbation approach over the lengthier Navier-Stokes

simulations described by Wang and Dual23 in which an indi-

vidual simulation takes many hours to complete. It should be

noted, however, that the Wang and Dual approach also mod-

els viscous effects and the resulting streaming fields. It has

been shown by Doinikov16 that for a spherical particle whose

diameter is significantly greater than the thermal and viscous

penetration depths (of order <1 lm in the cases examined in

TABLE I. Baseline parameters.

Parameter Value

Particle speed of sound, cp 6559 m/s

Particle density, qp 2000 kg/m3

Particle radius 10 lm

Mesh size 0.2 lm (particle boundary)

4 lm (maximum)

Distance of Particle from

pressure node

3 k/8 (force is maximum here

for small particles)

Fluid speed of sound, cf 1480 m/s

Fluid density, qf 1000 kg/m3

Fluid Domain dimensions 140 lm high (along acoustic axis)

70 lm wide

Frequency 1 MHz

Wavelength in fluid, k 1.48 mm

FIG. 2. Mesh dependency plot with y-axis as the % difference from

Hasegawa analytical result with a domain size of 70 lm.

FIG. 3. Domain size variation plot of fluid model with y-axis as the % dif-

ference from Hasegawa analytical result with a mesh size of 0.2 lm.
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this paper), the viscous and thermal effects can be ignored to

a reasonable degree of accuracy.

IV. RESULTS

A. Force on a rigid cylinder in a standing wave

Wang and Dual23 present both an analytical solution

and a finite volume (FVM) approach that predict the force

on a rigid cylinder in a standing wave. In order to verify the

analytical result, and evaluate the efficiency of the FEA per-

turbation method, this geometry is explored first. Table II

compares results of both their analytical and FVM models to

our perturbation FEA approach with the particle imple-

mented as a linear elastic solid. The set of parameters used

are as described in their Table II. Readers are referred to

Wang and Dual23 for these normalized parameters. The ana-

lytical results below are calculated from their equations, and

the remaining data are taken from their Table II. For these

results, the model described above was modified to no longer

be axially symmetric and can be seen in Fig. 4. The domain

size was of the same size as that used by Wang and Dual.

We see that the FEA perturbation approach provides

good results with similar agreement to the analytical result

as their FVM Navier-stokes method. Wang and Dual also

calculate results for systems where viscosity is important

(small radius particle or high viscosity); however, our

approach is not valid for this.

B. Force on a fluid sphere in a standing wave

In this section we initially verify the FEA perturbation

method for small, compressible spheres as first derived ana-

lytically by Yosioka and Kawasima (and Gor’kov for arbi-

trary standing wave fields) and then test the small scatterer

assumption against Hasegawa’s results for arbitrary sized

spheres. Hasegawa presents the more general case of an elas-

tic sphere, and the fluid sphere can be considered as the spe-

cial case of an elastic sphere with zero shear velocity.

However, to implement the fluid particle case in FEA with

COMSOL it is necessary to use acoustic elements (i.e., a

potential formulation) for the particle, as solid elements with

zero shear velocity are not supported. See the next section

for discussion of Hasegawa’s equations.

Table III shows results for the parameters described in

Table I but over a range of particle sizes. For the smaller

radii, good agreement is found; however, when the radius

reaches 80 lm (ka of 0.34), the difference is greater than 7%

due to the error in making the small scatterer approximation

described above. The Hasegawa results, from Eq. (10)

below, are seen to match the results more closely. For exper-

imental work it is useful to see in more detail how the force

deviates from the small radius approximation of Gor’kov or

Yosioka and Kawasima as the radius increases (Fig. 5).

Throughout the range considered, the FEA perturbation

approach follows the Hasegawa results closely. See Sec.

III B above for explanation of the difference between the

FEA perturbation results labeled “mixed terms only,” and

“total.”

Figure 6 shows how the direction of the radiation force

on a compressible sphere in a plane standing wave, as pre-

dicted by Gor’kov in Eq. (1) above, is affected by the com-

pressibility and density of the particle. The line of zero force

is of interest as near this line small numerical offset errors

lead to higher percentage errors.

In order to verify the FEA result over a range of parame-

ters, the radiation force was calculated on an array of particle

material properties (other properties as Table I) covering the

range of compressibilities (4.56e-11 to 6.85e-10 Pa�1 in 13

steps) and densities (100 to 2500 kg m�3 in 12 steps) such

that all 156 combinations of these properties are explored

(but ignoring the 18 cases where the force is less than

15 pN), it is found that the FEA perturbation result is always

within 0.25% of the Hasegawa result.

C. Three-dimensional FEA perturbation model of a
fluid sphere

The FEA perturbation approach is also computationally

suited to 3D particle modeling. The model has been imple-

mented in 3D, and for the parameters in Table I (but with an

increase in mesh size to 0.4 lm) produces a prediction for
FIG. 4. Finite element model for a rigid cylinder in a standing wave. All

external boundaries are NRBCs.

TABLE II. Forces on a rigid cylinder: FEA perturbation compared to Wang and Dual results. Parameters are normalized as in Wang and Dual (Ref. 23) and

Haydock (Ref. 21).

R

Wang and Dual

analytical (10�5)

Percent of difference

(Wang and Dual

analytical / FVM)

FEA perturbation

(10�5)

Percent of difference

(Wang and Dual anatyical /

FEA perturbation)

5 �1.2337 �0.813 �1.2353 �0.130

10 �4.932 �0.000 �4.9521 �0.408

20 �19.654 �0.051 �19.718 �0.326

40 �76.719 �0.508 �76.774 �0.072

80 �257.22 1.571 �249.82 2.877
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the force that is within 0.03% of the analytical predictions of

Hasegawa above. This is comparable to the accuracy of the

2D model. The model was found to produce solutions on an

Intel Nehalem compute node with 22 GB RAM in approxi-

mately 320 s. A 3D model will be used in the future to inves-

tigate forces on particles that are not rotationally symmetric.

With the 3D model it will also be possible to calculate tor-

ques on particles set at an angle to the direction of sound

propagation, and model multi-particle and particle-wall

interactional effects.

D. Force on an elastic sphere of arbitrary size in a
standing wave

Hasegawa presents an analytical solution for the radia-

tion force on elastic spheres of arbitrary size.26,41 In order to

normalize results, he uses a radiation force function, Yst,

defined as the force per unit cross section of a sphere and

unit energy density of the standing wave field. Mitri42 points

out two typographical errors in Hasegawa.

(a) Equation (19) of Hasegawa:26

The final expression for the radiation force function for

a standing wave field should be

Yst¼
8

x2

X1
n¼0

ðnþ1Þð�1Þnþ1½bnð1þ2anþ1Þ�bnþ1ð1þ2anÞ�

(7)

without the additional x2 term found in the original.

(b) Equation (9) of Hasegawa:41

The equation for the coefficient term, Bn, should be

Bn ¼
2nðnþ 1Þjnðx2Þ

ð2n2 � x2
2 � 2Þjnðx2Þ þ 2x2jnþ1ðx2Þ

; (8)

where previously there was a squaring of the second x2

in the denominator.

We further notice another typographical error.

(c) Equation (5) of Hasegawa:41

The function, Fn, is given as

Fn ¼
qx�½njnðx�Þ � x� jnþ1ðx�Þ�

q�jnðx�Þ
(9)

but should be

Fn ¼
q½njnðx�Þ � x� jnþ1ðx�Þ�

q�jnðx�Þ
: (10)

This can be seen most directly by allowing the shear ve-

locity to approach zero in Hasegawa’s elastic equation [Eq.

(7) in Ref. 41]. Please refer to the original papers for the def-

inition and meaning of the symbols used.

We can now mutually verify these corrected Hasegawa

equations against the FEA perturbation method. Representing

the particle using linear elastic elements in COMSOL, the

following results are obtained.

FIG. 5. Force on a compressible sphere as the radius is increased. See Table

I for parameters.

TABLE III. Comparison of FEA perturbation result with analytical results for forces on compressible spheres. All forces in pN.

Particle

Radius (lm) Force Y&K

Force Haseqawa

(fluid particle)

Force FEA

perturbation

Percent of

difference

(Y&K/FEA)

Percent of

difference

(Hasegawa/FEA)

5 15.979 15.975 15.966 0.062 0.054

10 127.83 127.68 127.645 0.137 0.029

20 1022.7 1017.9 1018.7 0.433 �0.076

40 8181.2 8031.6 8033.0 1.802 �0.018

80 65450 60824 60682 7.284 0.233

FIG. 6. Particle-fluid combinations for which the force on a small particle in

a plane standing wave equals zero. Particles to the right of and below the

line move to the pressure node in a plane standing wave.

1890 J. Acoust. Soc. Am., Vol. 133, No. 4, April 2013 Glynne-Jones et al.: Finite element modeling of radiation forces

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  152.78.36.31 On: Thu, 17 Jul 2014 10:04:04



Figure 7 plots the force on a steel sphere as the radius is

increased. The example is taken from Hasegawa,26 and the

sphere has a density of 7900 kg m�3, longitudinal velocity of

5240 m s�1, and shear velocity of 2978 m s�1. The results

show an identical shape to that plotted in his Fig. 2, indicat-

ing that the errors pointed out above are typographic, since

the corrections are required to reproduce the original figure.

It can be seen that after an initial growth, the force oscil-

lates about zero, in a complex manner. Our FEA perturbation

results are seen to be in close agreement with Hasegawa’s.

Also plotted is the force calculated using the small scattering

approximation that omits all but the incoming/scattered

mixed products (see above), and it is interesting to note how

this provides a close approximation until ka � 2 and then

begins to fail as the particle size grows.

Table IV is also presented to highlight results that are of

experimental significance. It shows the modeled force on

particles made from a number of different materials and

compares the result to the Yosioka and Kawasima approxi-

mation. It can be seen that for some materials there is a sig-

nificant difference—particularly for the polystyrene beads.

E. The force on compressible spheroids in a standing
wave

The cases discussed above and indeed the majority of

cases modeled in the literature are based on scatterers of

simple geometry such as spheres and cylinders. While this is

necessary to provide useful analytical expressions for scat-

tered fields, a significant advantage of a numerical approach

such as the FEA perturbation method discussed here is the

ability to model the force on arbitrary geometries. This is of

importance as many cells (including the commonly encoun-

tered red blood cells and neuronal cells) are known to have

geometries that are neither cylindrical nor spherical. We

begin by verifying our model against the results presented

by Marston et al.24 for the radiation force on rigid, fixed

spheroids. Although our ultimate aim is to model arbitrary

shaped scatters of an elastic nature, Marston et al. do not

extend their theory to include elasticity therefore verification

is limited to the arbitrary shape aspect, and as such we use

fluid elements. They define a shape parameter,

e ¼ ½ðb=aÞ � 1� (11)

where a and b are the radii in the direction of, and perpendic-

ular to, sound propagation, respectively.

They derive an approximate expression for the ratio

between the force on the spheroid and a sphere of identical

volume that is valid for jej� 1,

FspheroidðeÞ
Fsphere

� 1 þ 6

25

� �
e þ 9

875

� �
e2 þ � � � : (12)

Figure 8 compares Marston’s analytical result and our

FEA perturbation model. It can be seen that there is good

agreement between the two, even approaching e¼ 1. The

modeled parameters for the simulation are as described in

Table I except the particle boundary is fixed, removing any

dependence on particle properties.

Relaxing the constraints of having a rigid, fixed particle

and small e, Fig. 9 shows how the force on compressible par-

ticles (of constant resting volume) changes as they are

deformed for a variety of particle densities. The variation,

however, is also sensitive to the particle’s compressibility.

Figure 10 shows how the force varies for a range of both

densities and compressibilities; this is for an oblate spheroid

with e¼ 2.41. Areas of low force with correspondingly

higher numerical errors have been excluded and so left

white.

It can be seen that when the particle is of the same den-

sity as the surrounding fluid, the ratio is close to unity, and

the shape makes little difference. This result is of particular

importance in cell manipulation and sorting applications—

the near neutral buoyancy of most cells means that small

deformations away from a spherical shape are unlikely to

have a significant effect on the magnitude of the force

FIG. 7. Force function for a stainless steel sphere vs ka (where k is the wave

number and a is the particle radius), compared to model results.

TABLE IV. Effect of elastic material properties on modeled force compared to Yosioka and Kawasima (Y&K), and Hasegawa. Other parameters as listed in

Table I.

Longitudinal

velocity

(m/s)

Shear

velocity

(m/s)

Density

(kg/m3)

FEA modeled

force (N)

Y&K

force (N)

Percent of

difference

Y&K/FEA

Hasegawa

force (N)

Percent of

difference

Hasegawa/FEA

Glass (crown) 5100 2800 2240 1.31 E-10 1.33 E-10 1.70 1.310 E-10 0.040

Nylon, 6/6 2600 1100 1120 5.93 E-11 6.67 E-11 11.2 5.926 E-11 0.018

Polystyrene, Styron 666 2400 1150 1050 4.27 E-11 5.57 E-11 23.4 4.266 E-11 0.007

Steel-stainless 347 5790 3100 7890 1.80 E-10 1.81 E-10 0.40 1.798 E-10 0.037

Aluminum-rolled 6420 3040 2700 1.43 E-10 1.44 E-10 0.61 1.434 E-10 0.021
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experienced. However, non-spherical cells such as red blood

cells have been shown to experience a torque that tends to

align them with the pressure node of a system,43 so there

may still be scope to exploit this for cell sorting on a shape

basis.

V. CONCLUSIONS

This paper has presented and verified a numerical

method for predicting the acoustic radiation force on par-

ticles of arbitrary shape, composition, and size (in the non-

viscous approximation). This paves the way for modeling

more practically relevant particles such as biological cells,

and the interactions of multi-body systems. This has poten-

tial to facilitate applications such as cell sorting and manipu-

lation. The method has been verified against a range of

analytical solutions and shown to produce accurate results in

a short computational time, and we have highlighted a num-

ber of interesting trends relating to particle shape, size, and

elasticity.

Future work will investigate complex, multi-material

particles. We will also pursue 3D models to better predict

multi-body interactions and torques.
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