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In this, the final paper of the Acoustofluidics series of tutorial articles, we discuss applications in 

which acoustic radiation forces are used in conjunction with competing or complementary force-

fields.  This may be in order to enable manipulation operations that would not be easily performed 

by either force-field alone, or may be used to effect separation based on the different physical 

principals underlying competing fields. Examples are given of a number of different applications in 

which acoustic forces are combined with gravitational fields, hydrodynamic forces, electric fields 

(including dielectrophoresis), magnetic forces and optical forces. 

 

Introduction 
This series of tutorial articles has explored the theory underlying acoustic radiation forces1 and 

acoustically-induced streaming2, has described experimental techniques for evaluating these effects3, 

4 and has discussed a variety of applications5-8 based on both bulk acoustic waves9 and surface 

acoustic waves10.  It has become apparent that the acoustic phenomena employed have a potentially 

large scale of action11, can trap and manipulate relatively large particles and agglomerates8, are 

appropriate for biological use12, and are suitable for integration with many microfluidic fabrication 

techniques13.  There are situations in which these properties make the technology attractive for use 

in combination with other forces, for example when its scale of action complements technologies 

that generate more localised force fields, or in cases when competition with force fields that scale 

with other physical properties allows for separation and fractionation. 

Integrating acoustophoretic action with other systems within microfluidic devices can create design 

problems as acoustophoretic systems typically rely on acoustic resonances dependent on the 

boundaries of the fluid channels, and modifying these boundaries to suit other technologies can 

interrupt the intended action.  In traditional planar resonators9 the transducer is usually placed 

under the channel, with corresponding primary radiation forces out of the plane of the substrate. 

The in-plane designs of Peterson et al.14, 15, along with devices actuated by surface acoustic waves 10, 

16, coupling wedges17 or flexural waves18 have enabled the acoustic excitation to be placed some 

distance from the channel, allowing easier integration with other technologies.   

For the examples considered here, the way in which the forces scale with particle size and properties 

is crucial for applications intended to differentiate between particles. For example, in the viscosity 

dominated regime found in microfluidic applications the Stokes drag force is proportional to particle 

radius compared to the acoustic radiation force which is proportional to the radius cubed.  Thus by 



balancing, or opposing these two forces it is possible to differentiate between particles of different 

sizes19. 

With this in mind it is instructive to consider the factors that contribute to the acoustic radiation 

force 
acF  on a small sphere1 (that is small in comparison to a wavelength) of radius r , given by: 
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The force is proportional to the volume of the particle and to the gradients of the time averaged 

kinetic and potential acoustic energy densities 
kinE  and 

potE .  The kinetic energy gradient is 

weighted by a function of the particle and fluid densities 
p  and 

f , while the potential energy 

gradient is weighted by the particle and fluid compressibilities, 
p  and 

f
20.   Thus we have the 

potential to differentiate between particles based on their size, density, and compressibility (in 

addition, to any other properties to which the second force is sensitive).  In practice the effects of 

varying particle size tend to dominate over the other parameters, which can be problematic if, for 

example, one wishes to separate two populations of particles whose size distribution overlaps (e.g.  

separating biological cells). 

The following sections describe how different force fields have been used in combination with 

acoustic forces in a variety of applications.  Examples are given of acoustic forces combined with 

gravitation fields, hydrodynamic forces, electric fields (including dielectrophoresis), magnetic forces 

and optical forces. At the beginning of each subsection the system properties that influence the 

complementary force are briefly discussed.  For a recent overview of magnetic, dielectrophoretic 

and optical forces in microfluidic systems, and a comparison with acoustic forces, the reader is 

referred to Tsutsui and Ho21. 

Gravitational Forces 
While levitation against the force of gravity is common in acoustic manipulation, we are concerned 

here with some example microfluidic systems that utilise the gravitational force in competition with 

acoustic forces.  In equilibrium a particle in an ultrasonic force-field will settle to a position where 

the gravitational forces (including the buoyancy) balance with the acoustic forces, i.e. when  
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where g  is the gravitational constant.  The gravitational force is dependent on the densities of the 

particle and the fluid and its direction of action relative to other forces can be modified by altering 

the orientation of the acoustofluidic device. Like the acoustic radiation force, gravitational forces are 

proportional to particle volume (for homogenous particles), so the equilibrium position is 

independent of particle size.  This size independence can be utilised to provide a method for 

estimating acoustic energy densities in a manipulation device as described by Spengler et al.22.  A 

test particle is placed in the field; as the acoustic field is decreased the particle equilibrium position 

sinks, until it reaches the turning point (at a position of one eighth of a wavelength below the 

pressure node, marked ‘O’ in Figure 1), where further decrease leads to the particle dropping.  Since 



the material properties and hence buoyancy force on the particle are known, the acoustic energy 

density and hence pressure amplitude can be calculated.  However this experiment is prone to high 

measurement errors due to the difficulty in distinguishing a particle in equilibrium from one that is 

slowly dropping, and the uncertainty in material properties for the bead.  Much more accurate 

measurements can be produced in lateral aspect devices using PIV based methods23.  The general 

presence of the earth’s gravitational field makes it a particularly simple field to use yet its relative 

weakness compared to the acoustic forces in microfluidic systems means that time must be allowed 

when equilibrium situations have to be reached. 

 

Figure 1. Pressure and force distribution in a 1D standing wave for a half-wave device for two different 
transducer voltages.  For each voltage the cross or circle marks the equilibrium position of a particle with 
the net gravitational force, Fg,. When performing a ‘voltage drop’ experiment, the pressure amplitude is 

steadily reduced until the test particle reaches the height of the position marked with ‘O’.  At this stage the 
gravitational forces are balanced by the maximum available force at any height within the fluid, any further 

reduction in pressure causes the particle to drop. Since this position is independent of particle size, the 
pressure at the ‘drop voltage’ can be calculated. 

 

A similar configuration is used by Masudo and Okada 24, shown here diagrammatically in Figure 2, 

who tested the acoustic field / displacement relation in detail for a range of different particle types, 

finding good agreement between experimental results and theoretical predictions.  In a later paper25 

they demonstrate the possibility of sorting particles by their acoustic properties in a size 

independent manner using the gravity / acoustic field balance. 



 

Figure 2.  Schematic representation of device used by Masudo and Okada
24

 to investigate particle 
separation in a coupled gravity-acoustic field.  Fac and Fg represent the acoustic and net gravitational forces 
respectively. 

Kanazaki et al.26 made use of this relation to monitor ion-exchange processes.  An acoustically 

levitated ion-exchange bead was optically monitored in a system similar to that shown in Figure 2.  

In response to a varying chemical environment, counter-ions were replaced in the bead, which led to 

a change in the physical properties bead including its density and compressibility.  Thus the 

equilibrium position of the bead was directly related to its chemical environment.  In contrast to off-

line sensors, the system offers a compact and dynamically sensitive reading. 

The combination of sedimentation and acoustic radiation forces underlie a commercial application 

of acoustic manipulation technology27, 28.  In continuously perfused bioreactors, acoustic forces are 

used to aggregate cells such as yeast near the outlet of the reactor.  As the aggregates reach a 

certain critical size, they sediment and drop back into the reactor.  In this way the perfusion flow can 

be maintained without loss of the reactor contents.  Similar modes of operation can be found in a 

range of other work29, 30. 

Hydrodynamic Forces 
Particles within a fluid flow experience a number of hydrodynamic forces. The drag force (dependent 

on particle size and shape, the fluid flow field, and the fluid viscosity) is discussed here as many 

particle sorting technologies balance the drag force against the acoustic radiation force.  For a 

sphere of radius r  in a low Reynold’s number flow, the Stokes drag is 

6 ,DF rU

 
where   is the dynamic viscosity and U  is the relative velocity between the particle and the fluid. 

In such particle sorting techniques the active section of the devices is too short to allow particles to 

reach their equilibrium position in the acoustic field (which would be roughly the same for particles 

of similar density with only a small deviation due to gravitational forces). Typically, particles are 

initially aligned to a starting position within a flow chamber using a sheath flow14, 31, 32, or an acoustic 

pre-alignment stage33, then deflected under the action of the sorting acoustic field which can be 

excited using bulk axial28, bulk lateral29, or surface acoustic wave excitation16.  It can be shown34 that 

in the low Reynolds number regime typically found in this work, particles reach their terminal 

velocity within a matter of milli-seconds.  Since the hydrodynamic drag scales with particle radius 

(competing with the cubic dependence of radiation force), this terminal velocity (and hence the 
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displacement during the time it is in the active region) scales with the square of particle radius.  

While the acoustic force also depends upon the acoustic properties of the particle, the size 

dependence will often dominate.  Thus when applying this techniques to sorting biological cells, its 

use is currently restricted to separating cell types whose size distributions do not significantly 

overlap35.  A similar principle of competing drag and acoustic forces can be used to separate particles 

by frequency switching36, 37, in which the driving frequency of a channel switches between two 

resonances with a different number of pressure nodes.  The time spent at each resonance is chosen 

so that large particles have time to move to their destination, but the small particles do not move 

sufficiently far before being pulled back to their original nodal plane as shown in Figure 3 

 

 

Figure 3.  Competing drag and acoustic forces used to separate particles by frequency switching.  At T0 
particles are dispersed and then (T1) they align at the nodes of the first harmonic.  The frequency is 
switched between the fundamental (T2) and the first harmonic (T3) at a rate such that only the largest 
particles have time to reach the region where at T3 exerts a force towards the centre, and hence reach the 
single node of the fundamental.  Reproduced from reference

36
. 

Mandralis and Feke19 reported the incorporation of acoustic radiation forces into a Field-flow 

Fractionation (FFF) scheme.  In field flow fractionation38 a force field is used to cause suspended 

particles to move into differing positions within a laminar flow field.  Particles in regions of higher 

flow are eluted more quickly than those that remain in slower regions near walls.  In this case, two 

acoustic modes were chosen that drove particles to the centre and wall of the channel respectively. 

By synchronising an oscillating flow field with the switching between the two acoustic modes, they 

demonstrated effective separation of a range of polystyrene particles in the range 2-30µm. Bhat and 

Chakraborty39 present a theoretical analysis of acoustic flow-field fractionation subject to the 

interaction of near-wall attractive and repulsive forces such as electric double-layer fields, and Van 

Der Waals forces.  They predict enhanced sorting resolution under certain combinations of these 

fields.   

Due to boundary and bulk losses, acoustic streaming flow fields are almost universally present in 

acoustic radiation force devices6.  The hydrodynamic drag force resulting from this streaming often 

acts in competition with the radiation force.  As above, this effect scales with the square of particle 

radius, and Bruus has shown34 that there is a critical particle radius below which the ultrasonic 

radiation forces no longer dominate and particle motion is determined primarily by the streaming 

fields.  This phenomenon has been used by Rogers and Neild40 to selectively trap particles through a 

combination of secondary radiation forces (Bjerknes forces) and streaming induced drag forces. In 

their system, bubbles oscillating in an acoustic field generate strong local streaming currents and 

attract particles through Bjerknes forces.  Depending on their size and density particles are either 



trapped by the Bjerknes forces or carried away from the bubble by the streaming vortex.  Figure 4 

shows how this was used to selectively trap 5 µm silica particles but not 5 µm polystyrene particles 

 

Figure 4.  Approach used by Rogers and Neild to selectively trap particles.  The grey, silica particles are 
trapped in contact with the oscillating bubble, while the polystyrene particle (marked in red) circulates 
within the streaming field. Reproduced from reference

40
. 

The balancing of viscous drag forces with acoustic forces can also be used to characterise the forces 

within a resonant acoustic field.  Woodside et al.41 estimated the distribution of acoustic energy 

density within a resonant field by observing the speed of polystyrene particles.  They showed how 

the lateral variations in energy were related to the variation of amplitude across the face of the 

transducer boundary. 

Forces induced by electrical fields 
An approach to particle manipulation based on an electrical field that has been widely exploited in 

microfluidic systems uses dielectrophoresis (DEP)42.  The force on a sphere, 
DEPF , depends on the 

complex permittivities of the particle, p , and the fluid medium, f , at the angular frequency of 

operation,  , such that43 
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The field induces dipoles in neutral particles by moving the mobile charges associated with them. A 

gradient in the applied field puts an unequal force on the dipole and moves the particles. The 

process is effective under AC fields which have the advantage of avoiding electrolysis at the 

electrodes. DEP can be seen as complementary to ultrasonic manipulation in that DEP performs best 

in terms of fine control of small numbers of particles over relatively short length scales, while 

ultrasonic forces can easily act on a large number of particles over rather greater length scales. 

While DEP is typically sensitive to the conductivity of the fluid medium, with potential heating 

problems due to electrical currents, acoustic manipulation usually creates less heating due to the 

low acoustic losses found in most host fluids.  Acoustic manipulation is often difficult to control 

precisely due to the multiple reflection of the waves at surrounding boundaries, while electric fields 

are much easier to predict from the geometry of their electrodes. 



Wiklund et al. 44 first demonstrated the integration of both acoustophoretic and DEP particle 

manipulation within a microfluidic device, as shown in Figure 5.  Acoustic standing waves were set 

up across the width of the channel, to assemble linear arrays and aggregates of particles, which 

could then be further manipulated by DEP produced by co-planar electrodes at the bottom of the 

channel.  Various manipulation operations were demonstrated.  In addition to the possibility of 

sorting cells through balancing of forces the longer range acoustic forces were used to pre-align 

populations of cells in preparation for more locally specific DEP switching/manipulation operations. 

 

 

Figure 5.  Schematic representation of the combined ultrasonic/DEP system described by Wiklund et al.  
The piezoceramic transducer (1) is coupled into the structure of the chip (3-5) through a PMMA block (2).  

The refracted ultrasonic field (6) excites the fluid channel adjacent (12) to the transducer and particles 
brought into the region by bulk fluid flow (11) are driven to the lateral pressure nodes (7). Hench the 
particles are pre-aligned before crossing the DEP electrodes (8-10) where combined DEP/ultrasonic 

manipulation can be implemented.  Reproduced from reference
44

. 

Ravula et al. 45 describe a layout that utilised the levitation forces generated by ultrasound in a 

planar resonator coupled to either glass or silicon-substrate DEP chips. Particles are pre-

concentrated and aligned by the acoustic radiation forces to increase throughput and reduce the 

positional variability of particles prior to fine adjustments by the DEP electrodes.  The authors note 

that this pre-alignment also reduces the tendency of particles to clump, or to stick to channel walls. 

Wiklund et al. 46 also combined acoustic radiation forces with a capillary electrophoresis (CE) system, 

to enhance the detection of proteins.  The system is designed so that acoustic radiation forces are 

parallel to the direction of flow, such that viscous drag forces are balanced against the acoustic ones.  

The electro-osmotic flow (EOF) creates a flow profile that is uniform across the width of the capillary, 

which ensures that the particle separation is not dependent on lateral particle position.  Polystyrene 

micro-beads functionalised with antibodies indicate the presence of the target protein by forming 

bead-protein-bead complexes.  At the chosen flow rate these complexes tend to be trapped in the 

acoustic field, while the single beads are carried through by the viscous drag.  A CCD detection stage 

counts the trapped fluorescent beads. 



Neale et al.47 describe a combination of DEP and acoustophoresis in which DEP electrodes within a 

channel immobilise a population of beads into a line which can be further focussed by the acoustic 

radiation forces into an aggregate.  The strength of this combination is in utilising the DEP forces to 

hold particles against the flow, which although possible acoustically is not easy to achieve or control, 

while simultaneously using the longer range nature of the acoustic forces to bring the particles to a 

single focussed location. They also remark on the use of the two alternative forces to effect size 

dependent sorting.  Alternatively, they suggest a 2D sorting approach that fractionates particles into 

spatial locations that indicate the response of particles to forces from both technologies.  

Yasuda et al. 48 demonstrated a system that allowed electrophoretic forces on particles in water to 

compete with acoustophoretic ones as shown in Figure 6.  Electrodes within a resonant chamber 

created an electric field of order 10 V/mm.  In the absence of acoustic excitation the effective charge 

on polystyrene micro-beads was calculated by observing their movement in a low frequency 

alternating electric field.  By then activating the acoustic field, and measuring the position of the 

beads relative to the pressure node, the acoustic radiation force was determined (in a manner 

analogous to that described Figure 1, but in this case the electric field replaces the gravitational one), 

permitting verification of analytical expressions for radiation force. 

  

Figure 6.  Combined Electrostatic and acoustic forces (after Yasuda et al.
48

).  Electrostatic forces generated 
by four electrodes are balanced against acoustic radiation forces arising from a standing wave field, 

permitting accurate measurement of both types of force. 

Magnetic forces 

Magnetic forces, which scale with the difference in susceptibility between the particle, p , and the 

fluid, f , have been mentioned previously in this tutorial series in the context of enhanced 

agglutination49 and the force on a sphere in a field of flux density B  is50   
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where 0  is the magnetic permeability of free space.  Adams et al.51 demonstrate a microfluidic 

sorting system that comprises an acoustic sorting stage followed serially by magnetic sorting that 



can operate at rates of up to 108 particles per hour.  As shown in Figure 7, the input sample is thus 

separated into three streams: those having low response to both magnetic and acoustic forces, (b) 

those that respond to acoustic forces only, and (c) those that respond to both magnetic forces and 

acoustic forces.  This could, for example, correspond to separating a sample of cells into streams that 

correspond to waste material, un-labelled cells, and cells labelled with magnetic beads. 

 

Figure 7: Integrated acoustic and magnetic separation, after Adams et al.
51

. In two successive stages, 
acoustic then magnetic forces displace particles from their initial position to create three sorted outlets.  
The red dotted lines indicate the acoustic standing wave field, and orange diagonal elements represent a 
magnetic comb. 

In a device described by Hill et al.52, a combination of magnetic, gravitational, and acoustic forces are 

used to facilitate stages in the sample preparation and concentration of tuberculosis bacteria. Figure 

8 shows the device. Initially the bacteria from a sputum sample are labelled with ferrous beads (TB-

Beads, supplied by Microsens Biotechnologies), and then a resonant acoustic field is used to create 

numerous small aggregates of the labelled bacteria/bead complexes; the combination of both 

acoustic and magnetic forces helps agglomerates to form more rapidly than would occur with 

magnetism alone.  When the acoustic field is switched off the aggregates quickly sediment to the 

bottom, allowing the supernatant to be washed away.  When the acoustic field is reactivated the 

aggregates are re-suspended, and further washing cycles can take place.  Finally, with the acoustic 

field active, the aggregates can be eluted with a minimum of loss since they are suspended in the 

centre of the chamber where the flow profile has maximum velocity.  The advantage of the acoustic 

re-suspension over a comparable magnetic stage is that a magnetic process would usually leave the 

aggregates on a surface, which would cause the aggregate to become disrupted by shearing forces 

as flow was actuated to remove it. 

  
(a) (b) 

Figure 8. (a) Triple force unit prototype, utilising magnetic, acoustic and gravitational forces for sample 
preparation in a TB detection system.  Constructed in Macor, glass and aluminium.  (b)  Acoustically 
enhanced aggregation of magnetic beads seen in a disposable chamber created entirely from polymeric 
materials.   



Optical Forces  
Optical traps based on focused laser beams represent another well-established technique for 

manipulating microparticles and generate a force dependent on the refractive indices of the particle 

and the fluid medium.  When handling particles that are also amenable to acoustic manipulation 

optical traps will be operating in the Mei regime, where the particle cannot be assumed to be much 

smaller than a wavelength.  However optical gradient forces for small particles in the Rayleigh 

scattering regime have a similar form to the other gradient forces discussed here.  Optical traps, with 

a wavelength of the order of 1 µm are able to manipulate single small particles with a very high 

degree of precision, while acoustic radiation forces are able to handle a large number of particles 

simultaneously and can levitate relatively large, dense particles efficiently.  Thalhammer et al.53 use 

a combination of acoustical and optical techniques to undertake a variety of manipulation tasks.  The 

ultrasonic field is set up in a square capillary which is held between a glass slide and an optical mirror 

backed with a PZT transducer, as shown schematically in Figure 9.  The mirror allows a laser source, 

placed below this setup, to act like a dual beam trap54, and allows optical manipulation from a large 

working distance.  In this trap, radial optical trapping is due to the lateral gradient force, while axially 

it is the balancing of the scattering forces.  Motile micro-organisms within the fluid in the capillary 

can be confined within the nodal plane of a half wave acoustic resonance.  Once the micro-

organisms are confined within a plane, an individual organism can be selected, optically trapped, and 

then moved across the width of the capillary. A further advantage of the combined force fields is 

that relatively large particles, including a 75 µm polystyrene bead and a starch grain, can be 

manipulated.  The force required to levitate the starch grain is of the order of 1 nN, which can be 

achieved comfortably with the acoustic field for a large, high acoustic contrast factor particle.  This 

then allows a relatively low power optical trap to undertake lateral manipulation of the large 

particles.  Finally Thalhammer et al. demonstrate the use of the optical tweezers to measure the 

trapping forces of the acoustic field at different ultrasonic excitation frequencies. 

 

Figure 9.  Schematic representation of the setup used by Thalhammer et al. to demonstrate simultaneous 
acoustic and optical manipulation.  A glass capillary is placed between a glass slide and a mirror, on top of 

which sits a PZT transducer that excites an ultrasonic standing wave in the layered structure.  The clear 
optical path allows a long working distance optical tweezers to further manipulate particles levitated within 

the ultrasonic field 

Conclusions 
As the technologies of acoustofluidics (the combination of microfluidics with ultrasonic particle 

manipulation) mature there is increasing scope for integrating other force field technologies with 

it.  As with other approaches, acoustofluidic manipulation has operations that it can perform well 



and other operations that benefit from complementary force systems.  Acoustofluidics is particularly 

good for:  

 The ability to manipulate large numbers of particles simultaneously over a wide range of 

sizes and types 

 The relatively low complexity of the actuation schemes 

 The ability to continuously manipulate cells and maintain viability 

 The ability to create multi node traps with simple geometric trapping patterns, including 

points, lines, planes, and cylinders of trapped particles. 

 Creating forces that discriminate on volume, density and compressibility.  

Combining these strengths with technologies able to applying forces to single particles among a 

population, or to discriminate particles on other physical bases will lead to a richer range of 

microfluidic applications.   
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