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Abstract

We introduce a new representation scheme for
coalitional games, called coalition-flow networks
(CF-NETs), where the formation of effective coali-
tions in a task-based setting is reduced to the
problem of directing flow through a network. We
show that our representation is intuitive, fully ex-
pressive, and captures certain patterns in a signifi-
cantly more concise manner compared to the con-
ventional approach. Furthermore, our representa-
tion has the flexibility to express various classes
of games, such as characteristic function games,
coalitional games with overlapping coalitions, and
coalitional games with agent types. As such, to
the best of our knowledge, CF-NETs is the first
representation that allows for switching conve-
niently and efficiently between overlapping/non-
overlapping coalitions, with/without agent types.
We demonstrate the efficiency of our scheme on
the coalition structure generation problem, where
near-optimal solutions for large instances can be
found in a matter of seconds.

1 Introduction

Cooperation is a central concept in artificial intelligence
and at the heart of multi-agent systems design. Coalitional
game theory is the standard framework to model coopera-
tion; it provides theoretical constructs that allow agents to
take joint actions as primitives [Ieong and Shoham, 2006].
One of the most important research questions in this domain
is the coalition structure generation problem (CSG), i.e.,
how can the set of agents be partitioned into groups (coali-
tions) such that social welfare is maximized? This problem
has attracted considerable attention in the recent Al literature
[Bachrach and Rosenschein, 2008; Michalak et al., 2010;
Rahwan et al., 20111, as it has important applications and in-
spires new theoretical and computational challenges. Existing
work on coalition structure generation focuses on character-
istic function games (CFGs), i.e., games in which the outcome
obtained by a coalition is not influenced by agents outside the
coalition.!

"Recently, a coalition structure generation algorithm has been
proposed in games with “externalities” (i.e., possible influences be-

The prevailing assumption in CSG algorithms is that coali-
tion structures are disjoint. However, there exist many realis-
tic scenarios in which this assumption does not hold [Chalki-
adakis et al., 2010]. For example, in multi-sensor systems,
where sensors coordinate their movements to monitor partic-
ular targets of interest, the performance can be improved by
allowing the sensors to form overlapping coalitions [Dang et
al., 2006].

A second prevailing assumption in existing CSG algo-
rithms is that every agent is unique, i.e., such works do not
consider situations where some agents are identical. Again,
the ability to differentiate between identical and non-identical
agents can often improve performance. For example, in disas-
ter response scenarios, one should distinguish between a fire
brigade and an ambulance (as they are aimed for different ac-
tivities), but may be indifferent between two ambulances with
equal capabilities. The theory of coalition structure genera-
tion has been extended only recently to such domains [Aziz
and de Keijzer, 2011; Ueda et al., 2011].

The standard CFG representation explicitly lists the values
of all the possible coalitions and requires space that is expo-
nential in the number of agents. However, in many classes
of games, there exists additional structure (such as identical
agents) that can be exploited, and well-crafted representation
schemes can significantly improve performance [Deng and
Papadimitriou, 1994; Ieong and Shoham, 2006; Elkind et al.,
2009; Aadithya et al., 2011]. However, the majority of works
in this line of research focused on computing solution con-
cepts, rather than solving the coalition structure generation
problem.

To date, with very few exceptions (e.g., [Shehory and
Kraus, 1998; Dang and Jennings, 2006]) the incorporation of
tasks is absent from the research on coalition structure gen-
eration. The advantage of incorporating tasks is that it allows
for capturing a much wider range of applications. In partic-
ular, many real-world applications involve a set of tasks to
be achieved, where the agents need to form coalitions since
(some of) those tasks cannot be performed by an individ-
ual agent, or can be achieved more efficiently by a group of
agents (compared to an individual). However, the disadvan-
tage of incorporating tasks is that it makes the optimization
problems (such as coalition structure generation) significantly
harder to solve. This is because the value of a coalition does

tween co-existing coalitions) [Rahwan et al., 2012].



not depend solely on the identities of its members; it depends
on the tasks being achieved by the coalition. As such, a coali-
tion does not necessarily have a single value. Instead, it can
have a different value for every task.

Our Contribution

We formulate a unified approach for modelling different types
of coalitional games in task-based settings. In particular, we
formulate the coalition structure generation problem as a net-
work flow problem—a problem widely studied in the combi-
natorial optimization literature, with many important applica-
tions in the real world [Schrijver, 2003]. More specifically:

e We propose a new representation of coalitional games,
namely coalition-flow networks (CF-NETs), where the
coalition formation process is represented as the pro-
cess of directing the flow through a network with
edge-capacity constraints. We show that CF-NETs are
an appropriate representation for several important
classes of coalitional games, such as conventional (non-
overlapping) coalitional games, overlapping coalitional
games, and coalitional games with agent types. Impor-
tantly, to the best of our knowledge, this is the first rep-
resentation with which one can easily and efficiently
switch between cases with overlapping/non-overlapping
coalitions, with/without agent types. In addition, we
show how CF-NETs allow for the succinct storage of
certain, potentially useful patterns.

e We show that under the CF-NET representation, the
coalition structure generation problem in a task-based
setting can be reformulated as a mathematical program
related to the well-known production-transportation
problem [Tuy et al., 1996; Holmberg and Tuy, 1999;
Hochbaum and Hong, 1996].

e We provide an anytime approximation technique for the
CSG problem, which provides worst-case guarantees on
the quality of the solutions produced. Using numerical
simulations, we show that our algorithm scales to thou-
sands of agents. For example, for n = 5000 agents, it
finds solutions within 75-85% of the optimum in a mat-
ter of seconds.

Related Work

Researchers have attempted to circumvent the intractability
of the characteristic function form by developing alternative
representations, which are more compact and allow efficient
computations. These representations can be divided into two
main categories:

1. The representation is guaranteed to be succinct, but is
not fully expressive (i.e., it cannot represent any arbi-
trary characteristic function game) [Deng and Papadim-
itriou, 1994; Wooldridge and Dunne, 2006].

2. The representation is fully expressive, but is only suc-
cinct for some problem instances [leong and Shoham,
2006; Elkind et al., 2009; Conitzer and Sandholm,
2004b]). Our CF-NET representation scheme falls in
this category.

Most previous work focuses on the computation of solu-
tion concepts, such as the Shapley value [Deng and Papadim-
itriou, 1994; Ieong and Shoham, 2006; Elkind et al., 2009;
Conitzer and Sandholm, 2004bl, the core [Conitzer and
Sandholm, 2004a; 2004b], the bargaining set, and the ker-
nel [Greco et al., 2009]. On the other hand, the coalition struc-
ture generation problem has recently attracted attention, with
most of the studies focusing on characteristic function games
[Rahwan et al., 2009].

Among the very few works that consider overlapping coali-

tions, we mention the works by Shehory and Kraus [1996]
and Dang et al. [2006]. The former only proposes a greedy
algorithm for a subclass of these games, whereas the latter
makes heavy use of several strong assumptions placed on the
characteristic function. Recently, Chalkiadakis et al. [2010]
introduced a formal model of overlapping coalition forma-
tion, in which an agent can participate in multiple coalitions
simultaneously, by contributing a portion of its resources to
each coalition containing it.
Our CF-NET representation is designed for the purpose of
solving the coalition structure generation problem efficiently.
The only other representation designed with this problem in
mind is due to Ohta et al. [2009]. However, unlike our rep-
resentation, theirs does not incorporate tasks, and does not
consider games with agent types or overlapping coalitions.

The basic idea of applying network flows to model coali-
tional games has been examined before, for example by Kalai
and Zemel [1982] and by Bachrach and Rosenschein [2009].
However, the fundamental difference is that, in those papers,
the units of flow can be thought of as utility units (so the so-
Iution to a network flow problem influences the value of a
coalition). In our representation, what flows in the network is
“agents”, so solving a flow problem returns a coalition struc-
ture. This is precisely what gives flexibility to our framework,
allowing for overlapping coalitions, or identical agents, to be
considered whenever needed.

2 Preliminaries

In this section, we provide the standard definitions for the
classes of coalitional games studied in this work.

We define a task-based characteristic function game,
TCFG, as a coalitional game given by a tuple (A, K, v),
where

o A={ay,...,a,} is aset of agents;
o K ={kq,...

e v : 24 x K — R is a function that assigns a value to
every pair (C, k;), where C is a coalition and k; is a task.

,kq} is a set of tasks;

In this paper, we assume that every performed task is per-
formed by exactly one coalition. The possibility of having a
group of agents that does not perform any tasks can easily
be incorporated by adding a single dummy task. On the other
hand, the possibility of having a single coalition perform mul-
tiple tasks can be incorporated by allowing overlapping coali-
tions (in which case every performed task is performed by a
single, not necessarily unique, coalition).

An implicit assumption is that every agent can participate
in exactly one coalition. When an agent is allowed to be-
long to multiple coalitions simultaneously, the tuple (A, v)



defines a task-based coalitional game with overlapping coali-
tions, denoted by TCFG®. In such a game, each agent can be
a member of up to 2"~ ! coalitions. In reality, this number is
reasonable only if coordination costs are low and the number
of available resources is sufficiently large.

Thus, the definition can naturally be extended to a task-
based resource-constrained coalitional game with overlap-
ping coalitions (TCFG™®). In such a game, each agenta; € A
has an upper bound on the number of coalitions it can join,
which can be interpreted as a a limit on the resources that can
be employed by an agent to perform tasks. In this setting, a
game is formally defined by a tuple (A, r, v), where A and v
are defined as above, and the functionr : A — {1,...,2"71}
assigns to every agent its resource constraints.> Note that
the TCFG® and TCFG representations are special cases of
TCFG™°, where the number of coalitions that an agent can
join is maximal (2" ') and minimal (1), respectively.

Next, we formalize task-based coalitional games with
agent types. Let A and v be defined as above and T' =
{t1,...,tm : m < n} a set of types, such that each agent
in A is associated with one type in 7. Let ¢t : A — T
be a function that returns the type of any given agent. An
important situation to model in such games is that of two
agents with the same type bringing the same marginal con-
tribution to any coalition they belong to. That is, given a type
tx € T, for any two agents a;, a; of type t; and any coalition
C € A\{a;, a;}, the following holds: v (C' U {a;})—v(C) =
v(CU{a;}) —v(C).

Recall that the conventional TCFG representation can be
used to represent (albeit not concisely) the agent-type set-
ting. Clearly, however, the game can be represented more con-
cisely by considering the values of coalitions as a function of
the types (rather than the identities of the agents). To this end,
we define coalitional games with agent types.

Definition 1 A rask-based coalitional game with agent types
(TCFG™) is a tuple (A, T, t, T,v%), where:

o A={ay,..
o T' = {t1,...,tm<n} is a set of agent types;

et : A — T is a function that returns the type of any
agent, a; € Ay

T = Ti U - UT, is a multi-set of agent
types, such that T, = {tg,--- ,tr}, where |Tg| =
Ha; € A:t(a;) =t }|, Vk € {1,--- ,m};

K = {k1,...,kq} is a set of tasks;

., Qp } is a set of agents;

o v : 27 x 2K 5 R is a characteristic function of agent
types.

3 The CF-NET Representation

Next, we introduce the framework of coalition-flow networks
(CF-NETs) to represent the classes of coalitional games dis-
cussed above.

The above definitions of overlapping coalitional games can be
viewed as a special case of a highly theoretical construct of Chalki-
adakis et al. [2010], where each agent can devote a unit of resource
to an infinite number of (possibly identical) coalitions.

Definition 2 A coalition-flow network (CF-NET) is a tuple
(N,E, X,Y, Z), where (1) (N, E) is an acyclic digraph with
a set of nodes N and a set of directed edges F, and (2) X, Y
and Z are sets of constraints. In particular:
1. The set of nodes, N, is the union of the following dis-
joint sets:
e {S, G} contains the source node S from which the
“flow” is pushed into the network and the sink node
G towards which the flow needs to be directed.
o N is the set of agent nodes: each agent (or type)
is represented by exactly one such node. As such,
IN?| = n.
o NF is the set of task nodes: each task is represented
by exactly one such node. Thus, |N*| = q.

2. Thesetofedgesis E = ({S} x N ) UE'U(N* x{G}),
where E' C {(ni,n;) : n; € N, nj € NF}L

3. The set of constraints is X UY U Z, where X = {X; :
i=1...n} Y ={Y;; i =1...n,j = 1...q},
and Z = {Z; : j = 1...q}, which restrict the possible
values of the flow through the edges in {S} x N®, E'
and N* x {G}, respectively. In particular:

o X, represents the permitted multiplicities of agent
a; (or the permitted numbers of agents whose type
is t;) in the game.

o Y, represents the permitted multiplicities of agent
a; (or permitted numbers of agents of type t;) that
will perform task k;.

e Z; represents the sizes of the coalition that will per-
Sform task k;.

An illustration of the CF-NET representation can be found
Figure 1). Now, based on the network structure (N, F) de-
fined above, and the constraints X U ) U Z imposed on the
flow through the edges, we introduce next the notion of CF-
Sflow. Intuitively, the CF-flow depicts the coalition formation
process. Analogously to the flow in the network, the pro-
cess of directing the flow from the source node to the sink
node (through the agent/type nodes and the task nodes) can
be interpreted as the process of determining which coalition
should perform each task.

Definition 3 A coalition formation flow (CF-flow) in a CF-
NET (N,E, X, Y, Z) is a function f : E — R with the fol-
lowing properties:

. f(S, ’I’Ll) e X, Vn; € N
2. f(ni,nj) €, V(ni,nj) € F.
3. f(’I’L7,G) € Z, an S Nk.
4

~

o fgng) = X flng, ),
(ni,n;)EE (nj,ni)EE
Vn; € N* U NF.

Let (x,y, z) be an instantiation of a CF-flow f in a CF-NET
(N,E,X,Y, Z),suchthat z; = f(S,n;) forn, € N, y;; =
f(ni,n;) for (n;j,n;) € E',and z; = f(n;,G) forn; € N*.
Then, from Definition 3, we have:

m n
T :Zyij7 Vi=1,...,n; 2 :Zym Vi=1...,m; (1)
j=1 i=1

i €Xi, yij €Yij, 2, € Z;,Vi=1,...,n,Vji=1,...,m.



&1

=)

z3

Figure 1: Sample CF-NET representation

Given a CF-flow, we define next the values of the coalitions
constructed by it. To this end, we equip a CF-NET with three
valuation functions as follows:

Definition 4 Given a CF-NET (N, E, X)), Z), let ¢,d, g be
the valuation functions defined, respectively, on {S} x N¢,
E'" and N* x {GY}, such that:

o Forall (S,n;) € {S}x N ¢; = c(S, n;) represents the
value of a singleton coalition of agent a; (or an agent of
type t;).

e Forall (n;,n;) € E', d;j = d(n;,n;) is the contribution
of agent a; (or an agent of type t;) to task k;.

e Forall (n;,G) € N* x {G}, g;(2j) = g(n;,G) is a
synergy function, where z; € Z; is the size of the coali-
tion performing task k;.>

That is, the value of a coalition C performing task k; is given

as:
0(Coky) = > dijyi; +;(IC]). 2
a; €C
The first advantage of CF-NETs is their ability to represent
any of the four classes of games discussed above, (i.e. TCFG,
TCFG®, TCFG™®, and TCFG™). This can be done simply by
setting the appropriate X', ), and Z. In more detail,

e In TCFG, Va; € A,Xi = {1}, Va; € A,ij S
Ka}/ij = {O,l},andej € K,Zj = {O,...,n};

e In TCFG®, Va; € A X, = {1,...,2"7 '}, Va; €
A,Vk‘j S K,Y;j = {0,1}, and V]{JJ S K,Zj
{0,...,n};

e In TCFG™, Va; € A, X; = {1,...,7(a;)}, Va; €
A,ij € K,Y;'j = {071}, and Vk] S K,Zj
{{0,...,n}}

e In TCFG¥, Va; € A,Xi = {|7;|}, Va; € A,Vk'j S
K)Y,; = {0,...,|7;}, and ij c K, z; =

m}.

ey
Next, we discuss expressiveness.

Proposition 1 Every coalitional game that can be modelled
as a TCFG, TCFG®, TCFG™° and/or TCFG*, can also be
represented as a CF-NET.

>Throughout the paper this is assumed that g;(0) = 0.

Proof : 'We demonstrate that, for any arbitrary coalitional
game under consideration, there exists a CF-NET representa-
tion that uniquely defines this game. Specifically:

1. TCFG: Our aim is to construct CF-NET representing an
arbitrary game (A, K, v). First, we create a one-to-one
function I : 24 x K — {1,...,2" x ¢}. Now, for ev-
ery coalition C' € 24 and task k; € K, we create a
hypothetical task w;(c,x;) which is connected to all the
agents in C' and none of the agents in A\ C. Furthermore,
forevery a; € C, we set X; = {1}, Y; rcx,) = {0, 1},
and d; (¢ k,) = 0. We also set Zy(c.x,) = 10, |C|}, and
set gr(o,k;) (|C]) = v(C, k;) and gr(c k) (0) = 0.

2. TCFG®°/TCFG™: This case is similar to the previous
one. The difference is only in the definition of X;, which
is now given by X; = {1,...,2""!} in the case of
TCFG®, or by X; = {1,...,r(a;)} in the case of
TCFG™°.

3. TCFG": Here, agent nodes depict available types of

agents. That is, every node n; € N® represents a type

t;. This case is similar to TCFG case, except that we
now set X; = {|7;|} and Y ;(ck,) = {0,|C N Til}.

O

The constructs in the proof of Proposition 1 imply that
CF-NETs are no less concise than the corresponding TCFG,
TCFG°/TCFG™ and TCFG* representations. Indeed, the
edges do not need to be explicitly represented; for every hy-
pothetical task w,, it is possible to identify to it simply by us-
ing the inverse of function / (which in turn can be concisely
represented).

Observe that, for certain patterns often encountered in
coalitional games, CF-NETs provide much more concise rep-
resentations. For instance, suppose there exist additional re-
quirements for coalitions to be formed, such as certain agents
being incompatible with each other, or constraints on the
coalition sizes. In these cases, one can simply exclude “infea-
sible” coalitions from the set of coalition nodes. This only de-
creases the size of the representation, which for certain game
classes makes CF-NETs exponentially more concise than the
corresponding characteristic function representations.

Next we prove our main technical result, demonstrating
the computational power of the CF-NET representation in the
coalition structure generation problem.

4 Coalition Structure Generation in CF-NETs

In this section, we formally define the coalition structure
generation (CSG) problem and propose an approximation
method for solving it on CF-NETs. Our technique utilizes the
advantages of the CF-NET representation to produce anytime
solutions and estimate their quality.

The CSG Problem

First, we make explicit the notion of a coalition structure for
each of the classes TCFG, TCFG°, TCFG'™° and TCFG*.

1. TCFG: A coalition structure, 7, is a partition of the
agents:

ﬁ:{C:CQA, UC:A,VC,CIGWICOC/:Q}

Cernm



2. TCFG®: Similar to TCFG, except that coalitions can now
overlap. A coalition structure, 7°, is defined as:

w“:{C:CCA, UC:A}

Cem

3. TCFG™®: In this case, each agent a; € A can be-
long to at most r(a;) coalitions simultaneously:

qreo —

C:CCA, UC=AVa,e A:|{Cem:a;€C} < r(ai)}
Cerm
4. TCFG*: Coalitions are multi-sets of types, rather
than sets of agents as in previous cases. Let m,(z)
denote the multiplicity of element z in multi-set y; then:

ot = {C’: CCT, U C=T,Vt;, €T: > me(ti) = mT(ti)}
Cen Cen
Let II” denote the sets of all possible coalition structures
1n TCFG”” where index z is either empty or stands for “0”
“rco” or “at”. The CSG problem in TCFG* is to find an op-
timal coalition structure, 7§ pp, that maximizes the sum of
coalition values:

TOpr € arg max E
T ,,( s =

where v* = v® if TCFG¥, and v* = v, otherwise.

Solving the CSG Problem in CF-NETs

We now formalize the CSG problem in terms of CF-NETs.
Here, since the value of a coalition performing a task is de-
fined by (2), the value of a coalition structure is:

n q q
>0 digyis + ) 9(%)
=1

i=1j=1
——

individual marginal contributions synergy values

For ease of exposition, we focus next on the non-
overlapping model. However, we emphasize the fact that our
method can be easily extended to games with overlapping
coalitions or with agent types (by defining X;,Y;; and Z;
accordingly).

For all ¢, j, we have X; = {1}, Y;; = {0,1} and Z; =
{0,...,n}. The coalition structure generation problem can
then be formulated as a mathematical program:

;ng); Z Z dijyij + ZQJ zj)

=1 j=1

CSG =
st =3 Vi-l.a 3)

q
Ti= Yy,
=1

xz={1}",y€{0,1}"*%, z € {0,...

Vi=1,...,n, @)

;ntt (5

Note that if the synergy functions g; are linear, the problem
is equivalent to the classical maximum network flow problem
and can be solved efficiently [Cormen et al., 2001]. However,
for non-linear synergies, C'SG becomes a non-linear integer

v*(C, ki),

programming problem, which is generally NP-hard [Sand-
holm ez al., 1999]. In this paper, we solve/approximate C'SG
for general synergy functions.

First, observe that our problem is related to the production-
transportation problem from Operations Research [Tuy et
al., 1996; Holmberg and Tuy, 19991, which also has a net-
work flow interpretation. Here, the non-linear terms g;(z;)
can be viewed as the production part that the decision mak-
ers have to decide upon. Once the production z has been
fixed, the problem becomes a standard transportation prob-
lem - of finding (¢, y) — and can be solved efficiently. How-
ever, solving for optimal (i, y) and z simultaneously is non-
trivial [Hochbaum and Hong, 1996].

Therefore, in this work we develop an approximation tech-
nique for C'SG. Our method has two advantages: it gives an
anytime algorithm and it provides upper and lower bounds on
the optimal value; as a result, one can quantify how far the
solution provided is from the optimal solution. Specifically,
we use constraint relaxation and duality to modify the math-
ematical program as follows.

Relax the constraint (3) z; = Z;’/:l ¥i; in CSG and con-
sider the corresponding dual problem:

miny  max 2:1 221 dijYij + Z 9(25)
i=1j
q
- Z Aj(z5 — ZZ‘IU)
j=1 i=1
st (4),(5)
Now, for each fixed A, consider the inner problem:
n q
h(X) ma Z Z(dij + Xj)yij
v j=1
q
+ Z 9i(25) — Ajzj)
s.t. (4)7 (5)

By replacing every x; with 23:1 y;; and noticing that h(X))
is now separable in y and z, we can show that h(A) =

D iz1 P (X) + 3752 hoj (X)), where:
hii(A) = maxzz dij + X\j)yis
=1 j=1
q
s.t. Zyij <1,
j=1
y; €{0,1}9, and
haj(A;) = Zje%z}.)'cwn} 9i(z) — Ajzj.
Finally, by simplifying h;(A)  to  hy(N) -

max{0, max;(d;; + A;)}, we get a one variable inte-
ger programming problem, which can be easily solved.
Thus, for each fixed A, we can compute h(X) very ef-
ficiently. Notice that miny h(\) provides an upper bound
on C'SG (duality theory) and hence any choice of A gives



an upper bound (but we are interested in the smallest one,
miny h(A)). Notice also that k() is a piece-wise linear func-
tion on A with possible jumps. We then can solve the problem
miny ~(A) using a sub-gradient based method for updating
A, ie., wereduce \; if (z; — Y. ¥;;) < 0 and increase \;
otherwise. Although we might not be able to solve miny h(A)
to optimality, a sub-optimal solution still provides us with an
upper bound on C'SG.

Finally, lower bounds are obtained. First, for each A, the
inner problem can be solved to find its optimal solution on
(z,y, z). This solution is a feasible solution to C'SG and
hence its objective value provides a lower bound. Another
method for producing a lower bound is to fix the optimal z
found in the inner problem and then solve the transportation
problem to find the corresponding optimal (,y). This will
give another feasible solution and hence, a new lower bound.*

5 Performance Evaluation

We perform numerical tests on the algorithm for various set-
tings with the number of agents n varying between 100 and
5000 and the number of tasks ¢ varying between 50 and 200.
For each combination of (n, ¢), we generate 100 random sam-
ples using random seeds between 1 and 100. In total, we have
tested the algorithm with 2000 random instances. On each in-
stance, the parameters ¢ and d are generated uniformly, i.e.,
d;; ~ UJ0,1]. The synergy function g,(z;) is also a random
discrete function of the following form:

g](k) = Ej1+€j2+---+€jka szln, VJilq,

where €;; ~ UJ0,1] are uniform random variables. This
means the synergy function g; is the sum of uniform ran-
dom variables and the coalition value increase by €;, when
the coalition size increases from s — 1 to s. By creating 100
random instances, we can test the robustness of the algorithm
when input data varies®.

Figure 2 shows the performance of the algorithm when the
number of agents varies between 100 and 5000, while the
number of tasks is fixed at 100. Sub-figure (A) shows the to-
tal computational time, sub-figure (B) shows the number of
iteration, while sub-figure (C) shows the optimality bound be-
tween the feasible coalition structure found and the worst up-
per bound. We can see a linear trend in the computational time
from sub-figure (A) with less than three minutes® to solve the
largest and the worst instance (among 600 random instances
for this case). The linear trend in the computational time can
be explained by the fact that the number of arithmetic oper-
ations in each iteration grows linearly, while the number of
iterations (shown in sub-figure (B)) does not change much.

*With the obtained bounds, it is possible to extend the algorithm
in the future by incorporating branch-and-bound techniques to im-
prove solution quality.

3For each pair of (n, ¢), we will present box plots that show the
statistics among 100 random instances generated with the middle
red horizontal lines showing the medians, the boxes showing the 25
and 75 percentiles, and the red crosses showing the outliers.

®All the numerical tests appear in this manuscript are performed
on a personal computer, Intel® Xeon® CPU W3520 @2.67GHz
with 12GB RAM and under Windows 7 operation system. The code
was written and tested on Matlab R2012a.

Sub-figure (C) shows the guaranteed bound between the fea-
sible coalition structure found and the optimality. Notice that
these bounds are guaranteed despite the fact that we don’t
know the optimal coalition structures thanks to the availabil-
ity of the upper bounds derived by the algorithm. This also
means that the actual optimality bounds could be higher than
the average optimality bounds between 75-81% that appear
in sub-figure (C).

Figure 3 shows the performance of the algorithm when the
number of agents varies is fixed at n = 2000, while the num-
ber of tasks varies between 50 and 200. We can see a very
similar linear trend in the computational time in sub-figure
(A) and the optimality bounds between 75-81% in sub-figure
(C). The total computational time for the largest instance is
less than 35 seconds.

Figures 4, 5 show the same set of statistics as in Figures 2, 3
except that the CFG™ games now allow each players to join
up to 5 coalitions. The guaranteed optimality bounds vary be-
tween 76-85% on these instances. We can also see a linear
trend in the computational time as the number of players and
the number of tasks increase and the algorithm takes less than
90 seconds for the worst instance.

6 Conclusions

We introduced CF-NETs, a representation scheme for coali-
tional games in task-based settings, which is inspired by
network flows. We examined its qualities with respect to
conventional coalitional games with non-overlapping coali-
tions, (resource-constrained) overlapping coalitional games,
and coalitional games with agent types. We utilized the ad-
vantages of this representation to develop an approximation
technique for coalition structure generation, which applies to
all these game classes and allows to effectively solve large
instances of the problem.

Our work can be extended in several ways. It would be in-
teresting to extend the CF-NET framework with components
that would allow to capture game patterns other than those
considered in this paper. Furthermore, we are keen on test-
ing the properties of the CF-NET representation with respect
to computing different solution concepts such as the Shapley
value and the core.
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