The University of Southampton
University of Southampton Institutional Repository

Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors

Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors
Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors
Three sequencing batch reactors, R1, R2 and R3, with a 1.5-h, 4-h and 8-h cycle time, respectively, were used to cultivate aerobic granules with the same synthetic wastewater containing 1000 mg l?1 COD. As the initial COD concentrations in the cycles were the same, three different cycle times led to three different starvation times in repeated cycles of the three reactors. It was found that 63 cycles were needed to form granules with the longest starvation time in R3 while it took 256 cycles in R1 with the shortest starvation time. However, as far as the formation time was concerned, granules were formed on day 16 with 1.5-h cycle time while on day 21 with 8-h cycle time, which indicated that a shorter cycle time with a shorter starvation time speeded up the granulation. This was mainly due to the stronger hydraulic selection pressure at shorter cycle time. However, it was found that granules formed with cycle time of 1.5 h were unstable. Fluffy granules with poor settling ability were observed in R1 in the 4th month, which led to the collapse of R1 after 160-day of operation. Granules in R2 and R3 showed good stability during the long-term operation. Therefore, a reasonable starvation time was necessary to maintain the long-term stability of aerobic granules
0960-8524
980-985
Liu, Yong-Qiang
75adc6f8-aa83-484e-9e87-6c8442e344fa
Tay, Joo-Hwa
1bd3ce87-355e-460f-835b-56cb81f3a1b0
Liu, Yong-Qiang
75adc6f8-aa83-484e-9e87-6c8442e344fa
Tay, Joo-Hwa
1bd3ce87-355e-460f-835b-56cb81f3a1b0

Liu, Yong-Qiang and Tay, Joo-Hwa (2008) Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresource Technology, 99 (5), 980-985. (doi:10.1016/j.biortech.2007.03.011).

Record type: Article

Abstract

Three sequencing batch reactors, R1, R2 and R3, with a 1.5-h, 4-h and 8-h cycle time, respectively, were used to cultivate aerobic granules with the same synthetic wastewater containing 1000 mg l?1 COD. As the initial COD concentrations in the cycles were the same, three different cycle times led to three different starvation times in repeated cycles of the three reactors. It was found that 63 cycles were needed to form granules with the longest starvation time in R3 while it took 256 cycles in R1 with the shortest starvation time. However, as far as the formation time was concerned, granules were formed on day 16 with 1.5-h cycle time while on day 21 with 8-h cycle time, which indicated that a shorter cycle time with a shorter starvation time speeded up the granulation. This was mainly due to the stronger hydraulic selection pressure at shorter cycle time. However, it was found that granules formed with cycle time of 1.5 h were unstable. Fluffy granules with poor settling ability were observed in R1 in the 4th month, which led to the collapse of R1 after 160-day of operation. Granules in R2 and R3 showed good stability during the long-term operation. Therefore, a reasonable starvation time was necessary to maintain the long-term stability of aerobic granules

This record has no associated files available for download.

More information

Published date: March 2008
Organisations: Civil Maritime & Env. Eng & Sci Unit

Identifiers

Local EPrints ID: 351889
URI: http://eprints.soton.ac.uk/id/eprint/351889
ISSN: 0960-8524
PURE UUID: 212fcf20-8617-4b83-bee7-a896859be389
ORCID for Yong-Qiang Liu: ORCID iD orcid.org/0000-0001-9688-1786

Catalogue record

Date deposited: 25 Apr 2013 14:44
Last modified: 15 Mar 2024 03:47

Export record

Altmetrics

Contributors

Author: Yong-Qiang Liu ORCID iD
Author: Joo-Hwa Tay

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×