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Abstract

We study the spin-wave spectra in magnonic antidot waveguides (MAWs) for two limiting cases

(strong and negligible) of the surface anisotropy at the ferromagnet/air interface. The MAWs

under investigation have the form of a thin stripe of permalloy with a single row of periodically

arranged antidots in the middle. The introduction of a magnetization pinning at the edges of

the permalloy stripe and the edges of antidots is found to modify the spin-wave spectrum. This

effect is shown to be necessary for magnonic gaps to open in the considered systems. Our study

demonstrates that the surface anisotropy can be crucial in the practical applications of MAWs and

related structures and in the interpretation of experimental results in one- and two-dimensional

magnonic crystals. We used three different numerical methods i.e. plane waves method (PWM),

finite difference method and finite element method to validate the results. We showed that PWM in

the present formulation assumes pinned magnetization while in micromagnetic simulations special

care must be taken to introduce pinning.

PACS numbers: 75.75.+a,76.50.+g,75.30.Ds,75.50.Bb
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I. INTRODUCTION

A relatively new and rapidly emerging field of physics,1–4 magnonics is mainly aimed at

exploiting the properties of spin waves (SWs) to harness them for technological applica-

tions in a variety of fields. These include spintronics, microwave systems, metamaterials

for electromagnetic waves, and other magnonic devices using spin waves for carrying and

processing information. Except for microwave technology, the other three fields are new and

their development is at the initial stage.2,5–8

The possibility of tailoring metallic magnetic materials with nanoscale precision provides

a tool for miniaturization and shaping the dispersion of high-frequency spin waves. This

can be done by periodic modulation in magnonic crystals (MCs),1,9 the magnetic analogues

of photonic crystals, in which frequency gaps open in the spin-wave spectrum for certain

structural and material parameters. Not until recently have the first one-dimensional10 (1D)

and two-dimensional11 (2D) bi-component MCs been realized at the nanoscale. In particular,

2D antiots lattices can be easily prepared experimentally by creating periodic arrays of

holes in ferromagnetic films. These systems have been intensively studied in the last few

years, on various length scales and considering various antidot geometry and crystallographic

arrangement.12–16

This paper is focused on the boundary conditions imposed on the dynamic components

of the magnetization vector and their effect on the spectrum of spin waves in magnonic

waveguides. These boundary conditions17 are additional to the electromagnetic ones, which

describe the degree of freedom of the magnetization vector at the edges of the ferromagnetic

material. The effect of the boundary conditions on the spectrum of SWs in uniform thin

films has been investigated broadly.17–21 The general form of boundary conditions at external

faces of the ferromagnetic plane proposed by Guslienko18 takes into account both dipolar

pinning and pinning induced by uniaxial surface anisotropy:

M ×
(

λ2
ex

∂M

∂n
+

2Ks

µ0M2
s

(M · na)na + Hdm2c

)

= 0, (1)

where λex and Ms denote exchange length and magnetization saturation, respectively. The

symbol ∂
∂n

stands for directional derivative along the normal to the face. The uniaxial surface

anizotropy is defined by its strength Ks and orientation na. The demagnetizing field Hdm

taken at the given face determines the contribution of dipolar pinning. Hdm depends on the

thickness 2c and in-plane sizes of the system R ( e.g. stripe width). In was shown18 that for
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small systems (
√
Ru < λex) the magnetization pinning can be achieved only in the presence

of strong surface anisotropy. Therefore in exchange limit the Rado-Weertman boundary

condition17, which neglect the dipolar pinning, are sufficient.

The research comparing the role of different types of boundary conditions has not been

conducted so far in periodic waveguides, in a form of antidot lattices. In this structures the

interfaces with air can play an important role in the formation of magnonic bands.22,23 Only

free boundary conditions are assumed in the vast majority of papers dealing with periodic

waveguides. Thus, there is a gap in the research, which we attempt to fill in with this study.

We decide to explore two limiting cases: free boundary conditions and strong pinning using

different computational techniques. Note that the surface anisotropy field (second term in

the brackets in Eq. (1)) depend monotonously on the Ks. As a result, the logarithmic

derivate of the components of dynamical magnetization ( ∂
∂n
mα)/mα (α indicates the Carte-

sian components) taken on the side faces of waveguide has also monotonous dependence on

Ks in the regime of linear dynamics18 and approaches the values ±∞ (pinned boundary

conditions) and ≪ 1 (unpinned boundary conditions) for high and low values of Ks, respec-

tively. Therefore these two extreme cases limit the area of investigation for the impact of

boundary conditions on the spin waves spectra in confined geometry of waveguide close to

exchange regime.

In this paper we study the magnonic band structure in waveguides, a basic element of any

magnonic device.24,25 Waveguides for exchange spin waves have been recently investigated

theoretically with the use of micromagnetic simulations;26–28 periodic waveguides have been

demonstrated to have filter properties due to the folding effect and the opening of magnonic

gaps in the spin-wave spectrum.29,30 Here we investigate a periodically modulated waveguide

with a series of antidots in the center. Aware of the fact that the periodicity of the waveguide

can be realized in many different ways—by width or shape corrugation, or by applying a

specific magnetic field28–30—we are confident that the fundamental features of this quasi-1D

periodic system are conserved and the conclusions drawn for the model considered will be

of general nature.

We show that a magnetization pinning introduced at the edges of the waveguide can sig-

nificantly change its spin-wave spectrum. To crosscheck our results we perform calculations

based on different methods: micromagnetic simulations and the plane wave method (PWM).

These techniques have already been successfully used for the interpretation of experimental
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data obtained for systems of various geometry in the formulation used here.

We show that the pining is intrinsic for PWM at the interface of magnetic/nonmagnetic

material. For micromagnetic calculations the magnetic moments are not forced to be pinned

by default. We introduce pining by placing on the interface thin layer for which the dynamics

of magnetization was frozen with the amplitude of precession equals to zero.

The paper is organized as follows. In Section II we describe the structure under inves-

tigation and the calculation methods used. In Section III we explain the effects that the

boundary conditions imposed on the dynamic magnetization components at the edges of the

ferromagnetic material have on the magnonic spectrum. Our results are summarized in the

closing Section IV.

II. THE WAVEGUIDE STRUCTURE AND THE CALCULATION METHODS

The magnonic waveguide under consideration is shown in Fig. 1. It has the form of a thin

and infinitely long permalloy stripe with a single row of square holes disposed periodically

along the central line. A bias magnetic field is applied along the stripe and assumed to be

strong enough (H0 = 1.01T) to saturate the sample. The following parameter values are

assumed in all the calculations: saturation magnetization in Py 0.8 × 106 A/m, exchange

constant 1.3 × 10−11 J/m, and gyromagnetic ratio 175.9 GHz/T.

We use three methods of calculating the dispersion of spin waves in the permalloy MAW:

the finite difference method, the finite element method and the PWM, with OOMMF,31

Nmag32 and a home-developed Fortran code, respectively. All the methods solve the Landau-

Lifshitz-Gilbert equation:

∂M(r, t)

∂t
= γµ0M(r, t) ×Heff(r, t) (2)

− α

Ms

(

M(r, t) × ∂M(r, t)

∂t

)

,

with a first term on the right hand side related to the torque inducing precession and the

second one describing the damping process. The symbols: γ and α denotes gyromagnetic

ratio and damping constant, respectively. The effective field Heff consists of the following

terms:

Heff(r, t) = H0 + Hdm(r, t) + Hex(r, t) (3)
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with H0, Hdm(r, t) = Hdm(r) + hdm(r, t), Hex(r, t) being external field, demagnetizing

field and exchange field, respectively.

A. Micromagnetic simulation

The micromagnetic simulations (OOMMF, Nmag) are performed in two steps. The mag-

netic ground state is obtained first. We let the magnetization evolve in the presence of

damping to reach the static equilibrium orientation. In the next step, with damping ne-

glected (α = 0), a small pulse of magnetic field was applied in the shape as given by

Eq. (4) with a small amplitude (which guarantees the linear regime of spin dynamics). After

recording the magnetization in each mesh point for each time step, Fourier transformation is

performed in the time and space domains to obtain the SW dispersion, i.e. the wave-vector

dependence of the SW frequency.33,34

The excitation signal used to study the dynamics is of the form:

hz(t, x, y) = h0
zsinc

(

2πfcut(t− t0)
)

×sinc
(

kcut

(

x− xmax

2

))

×
N
∑

n=1

sin

(

nπ
y

ymax

)

, (4)

where sinc function is taken in the form: sinc(θ) = sin(θ)/θ. The strength of the signal is

defined by µ0h
0
z = 5 mT. The parameter fcut = 490 GHz sets the upper limit of frequencies

of spin waves exited by the sinc-like pulse. An offset t0 = 50 ps was given to avoid the high

spikes close to the fcut in the frequency domain of the signal. The kcut is a wave number

cutoff defined later. The symbols: xmax=3 µm and ymax = 15 nm denote the sizes of sample.

The summation in (4) was done for N = 30 subdivisions.

The benefits for using such a signal and the procedure to obtain the desired dispersion

relation are described in further detail in Ref. 34. In the case of an antidot lattice the effect

of convolution of the periodic array of holes will be observed in the wave-vector domain. A

wave-vector cutoff kcut, which is an odd multiple of half the Brillouin zone (BZ) length (here

3π/a) may be used to mitigate this effect. Also, in order to generate both symmetric and

anti-symmetric wave-fronts a suitable dependence (which, here, is a sum of symmetric and

anti-symmetric excitations along the width) on y has been applied to the signal.
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The OOMMF simulations are performed with 1D periodic boundary conditions applied

along the x-axis with the formulation defined in Ref. 35. A 1.5 nm mesh is used in these

simulations. The correctness of the assumed discretization was verified by comparing the

results with those of simulations using a 0.5 nm mesh.

The micromagnetic simulations do not assume by default any torque acting on the exter-

nal interfaces (numerical calculations are limited to the magnetic medium only). Therefore

the spins are precessing freely on the systems boundaries with dipolar effects taken fully

into account.

We can force the pinning in all mesh cells located on the interfaces between magnetic and

non-magnetic materials (see the pinning area red-coloured in Fig. 1). It can be done by freez-

ing the magnetization dynamics: ∂
∂t
M(r, t) = 0 with initial conditions: Mz(r, t = 0) = 0

and My(r, t = 0) = 0 at the beginning of the second stage of calculation when the system

managed to reach the ground state. From Landau-Lifshitz-Gilbert Eq. (3) follows that the

initial condition for z- and y-components of magnetization will be sustain while the condition

Mz(r, t = 0) = 0 is by keep in pinning layer. We checked that for strong external filed we

used (µ0H0 = 1.01 T) the magnetization in the ground state is uniform and co-linear with

the direction of H0 even in the vicinity of the interfaces.

Because of the use of the finite difference method in OOMMF simulations, space is

discretised into small cuboids. Nmag uses the finite element method, in which, in contrast,

the modeled object is discretised on a tetrahedral mesh. In general this allows for better

modelling of arbitrarily shaped objects, but for the considered antidot waveguide, this does

not provides an advantage because our simulating object consists bascally of orthogonal

walls. For the mesh creation, we use the open source generator ’NETGEN’. When creating

the unstructured mesh, care must be taken on providing the software with a proper value of

the maximum-mesh-size parameter. Only when this value is small enough, it is possible to

calculate the exchange and magnetostatic fields with reasonable accuracy. Unfortunately, as

the maximum-mesh-size parameter decreases, the number of tetrahedral elements increase,

making the computing time and memory demands increase as well. The one way to partially

overcome this problem is to use adaptive mesh with the smaller cell sizes in the vicinity of

antidots edges. We must select a value below the exchange length, which in the case of

permalloy is 5.1 nm. Therefore, we selected a maximum size of 4.5 nm for the edge length

of all tetrahedra to achieve accurate results. However, the average edge length was about
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2.5 nm with standard deviation equals 0.6 nm. It was decided to not use periodic boundary

conditions in Nmag simulations but instead use a finite segment of this waveguide of length

1.8 micrometer, containing 120 repetitions of the unit cell. The waveguide is surrounded

by non-magnetic material which does not have to be discretised. This is because Nmag

used a hybrid finite elements/boundary elements method to calculate the magnetostatic

contribution.

The steps to obtain the dispersion relation are the same as in OOMMF. As a first step, a

high value of the Gilbert damping parameter is chosen and the system is evolved under the

external field to find the energy-minimizing configuration of the system. This state is used

as the starting point during the second part. Now damping is neglected and the system

is excited with a pulse containig a broad frequency range. Using the Fourier transform,

the resonating values of (k,ω) are obtained as local maxima. These values constitute the

dispersion diagram.

B. Plane waves method

In the PWM, periodic Bloch conditions are applied both along the MAW axis and in

the direction perpendicular to this axis. An artificial periodicity in the y direction creates

a periodic series of non-interacting copies of the original waveguide–this is the supercell

approach.36 We used the supercell (marked in Fig. 1 by dashed line). The assumed peri-

ods are 15 nm (antidot period) and 100 nm (artificial supercell) along the x- and y-axes,

respectively.

The antidots and spacer areas were filled with artificial material characterized by high

values of volume anisotropy field and extremely low value of magnetization saturation what

squeezed the magnetization dynamics in this regions (effect of the low magnetisation satu-

ration) and shifted the frequencies of spurious modes appearing in results into very high

frequency range (impact of the high volume anisotropy field). Note that according to

Landau-Lifshitz equation the increase of the effective field in the artificial material (as a

result of big volume anisotropy) will also decrease the amplitudes of dynamical magnetiza-

tion if one wants to keep the spin wave frequency constant. We have made sure that the

assumed 65 nm waveguide spacing is sufficient to neglect the interactions between adjacent

copies. We plotted the dispersion relation in Γ-Y direction (i.e. for propagation direc-
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tion perpendicular to the waveguides axis). The branches that we obtained were flat what

confirmed the localization of spin waves in Y-direction and the lack of crosstalks between

adjacent copies of waveguides. We also check the amplitude of spin waves in the spacers

separating waveguides, which occurred to be canceled. The canceling of spin dynamics in the

air gaps (spacers and antidot areas) results in magnetization pinning at the interface with

magnetic material. I order to simulate the system of planar geometry with partially pinned

magnetization on the interfaces with nonmagnetic material one can artificially change the

in-plane sizes of the system from R to effective one Reff to achieve non-zero value of dy-

namical magnetization when the position r coincide with R.19. We used this procedure to

perform PWM calculations in dipolar-exchange regime for 2D antidot lattices of holes.37

We used in the calculation Eq. (3) with damping effects neglected. We are considering

the magnetization dynamics in the linear approximation only. We are assuming that the

magnetization precesses around x-axis in a cone with small angle (as it is presented in the

Fig. 1) with angular frequency ω. Under this assumption we can write:

Mx(r) ≈ Ms,

My(r, t) = my(r)eiωt,

Mz(r, t) = mz(r)eiωt.

(5)

The exchange term can be expressed as:38

Hex = ∇λ2
ex∇M(r, t) (6)

and directly deviated form the Heisenberg model.39

To describe the demagnetizing field for a periodic slab of finite thickness we used the

ideas proposed by Kaczer40 and then developed in Ref. 41 where each component of (static

Hdm(r) and dynamic hdm(r, t)) demagnetizing field is depending, in general, on the spatial

distribution of all components of magnetization. The components of the static and dynamic

demagnetizing fields within the linear approximation taken into account are:

Hdm,x(r) = −
∑

G

Ms(G)
(

Gx

G

)2

(1 − C(z, G))

×e−i(G·r‖), (7)

hdm,z(r, t) =
∑

G

[

−mz(G)C(z, |G + k|)

+imy(G)
|ky + Gy|
|G + k| S(z, |G + k|)

]
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×eiωte−i((G+k)·r‖), (8)

hdm,y(r, t) =
∑

G

[

−my(G)
(ky + Gy)

2

|G + k|2
× (1 − C(z, |G + k|))

+imz(G)
|ky + Gy|
|G + k| S(z, |G + k|)

]

×eiωte−i((G+k)·r‖), (9)

where G = [Gx, Gy] and r‖ = [x, y] are 2D reciprocal lattice vector and position vector in

real space. The symbols: Ms(G) and mα(G) denote the coefficient of Fourier expansion for

magnetization saturation Ms(r‖) =
∑

G M(G)e−i(G·r‖) and periodic part of Bloch functions:

mα(r‖) =
∑

G mα(G)M(G)e−i((G+k)·r‖), α = y, z, where k is wave vector. The functions

C(z, κ) and S(z, κ) are defined as:

C(z, κ) =
sinh(zκ)

sinh(cκ) + sinh(cκ)
, (10)

S(z, κ) =
cosh(zκ)

sinh(cκ) + sinh(cκ)
, (11)

where 2c is the thickness of MAW (in z-direction). The demagnetizing fields do not change

a lot across the slab except the regions in the close vicinity of the external surfaces (note

that the structure is uniform in z-direction). Therefore we assumed that all fields: Hdm(r‖)

and hdm(r‖, t) are independent on z-coordinate by taking its values from the top of the slab.

This simplification allowed us to consider the system as a 2D one.

In the linearization procedure we take advantage of the assumption: mα(r) ≪ Ms, α =

y, z and dropped all small terms non-linear with respect to mα(r). Then after apply-

ing the Fourier transformation we were able to convert the linearized differential equa-

tions for my(r), mz(r) into the set of algebraic equation in the form of eigen-problem with

my(G), mz(G) as eigen-vectors and ω playing the role of eigen-frequency.

We checked that the sufficient convergence for the presented dispersion plots (Fig. 3) is

achieved for 11x91 plane waves propagating in x- and y-direction, respectively (described by

different x- and y-component of reciprocal vectors G). The details of the PWM, its supercell

formulation and the application of this technique are available in the literature.9,36,37,41
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III. THE EFFECT OF PINNING ON THE MAGNONIC SPECTRUM

Figure 2 shows the magnonic band structure obtained form the OOMMF and Nmag simu-

lations. The spin-wave spectrum is very rich, with a clear evidence of periodicity and folding

effects. Three repetitions of the BZ, delimited by vertical solid lines, are considered. Free

boundary conditions for the dynamic components of the magnetization vector (unpinned

magnetization) at the edges of Py were used in these calculations. The lack of pinning is

confirmed by the mode profiles (bottom of Fig. 2a and 2b ) computed with the OOMMF

and Nmag, where the nonzero values of |mz|2 at the air/Py interfaces are observed. The

profiles for lowest modes for the frequencies marked by red horizontal lines were presented.

The profiles calculated in OOMMF and Nmag show some differences in the distribution of

the amplitude |mz|2 along the waveguide. The maps of |mz|2 manifest also the lack peri-

odicity in x-direction what is unexpected for Bloch function. This behavior is a result of

superposition of Bloch waves having the same frequencies with a different k-numbers. Note

that in micromagnetic simulations the spatial distribution of |mz|2 contains all contributions

form different bands intersecting the same frequency level. This bands (eigenmodes) can be

populated differently depending on: (1) the way how the system was excited and (2) the

peculiarities of the computational methods (finite differences - OOMMF and finite elements

- Nmag). However the amplitudes |mz|2 both in Figs. 2a and 2b preserve the one important

property related to the mode quantization by constriction in y-direction - the finite width of

the waveguide. One can notice that the successive modes (denoted by I, II, III, IV) having

the increased number of horizontal nodal lines. Surprisingly, the results obtained by the

PWM is different. The PWM spectra are shown in Fig. 3 (red dashed lines). The bands are

seen to be shifted up in the frequency scale, and the modes seem less numerous.

In search of explanation of this discrepancy we calculated the profiles of the dynamic

components of the magnetization vector in the PWM. The colored maps in Fig. 3, bottom,

represent the modulus |mz|2 of the z component for a number of lowest-frequency modes;

blue and red correspond to low and high values of |mz|2, respectively. In all the modes in

question the magnetization is pinned at the Py/air interfaces (thin white lines). Therefore,

we will show that the main reason for the discrepancy between the results of PWM and

the micromagnetic simulation are the different boundary conditions applied in these two

methods.
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Unfortunately, no extension of the PWM method has been developed yet to allow for un-

pinned magnetization at the interfaces with nonmagnetic material. We can extend the micro-

magnetic simulations, though, imposing specific boundary conditions on the magnetization

vector M . The procedure described in the previous section allows to achieve m = 0 (i.e.

pinning of the magnetization M) at the interfaces with non-magnetic material. Figure 3,

top panel, shows the results of the OOMMF simulations (gray lines) and, superimposed, the

PWM data. The agreement between the OOMMF and PWM results is satisfactory now,

and the effect of the pinning on the magnonic spectrum of the MAW can be explained in

detail.

The changes in the spin-wave spectrum resulting from the introduction of pinning are

relatively simple in uniform thin films. The main difference is the occurrence of an extra

mode, uniform across the film thickness, in the case of unpinned surfaces; surface-localized

modes (surface spin waves) can occur, too.21,42 The frequencies of the higher modes for

pinned and unpinned surfaces are quite similar. As we have shown already, the changes

in a MAW are more significant and complex. Many additional modes are seen to occur in

the MAW spectrum calculated for unpinned magnetization (see Fig. 2) compared to those

obtained in the pinned case (see Fig. 3). Due to the pinning in the row of antidots some

modes existing in unpinned system (the modes with high amplitude of |mz|2 in center of

MAW - see modes I and III in Fig. 2) can appear in pinned system. The pinning in the

center of the MAW reduces the degrees of freedom of the spin waves and practically divides

the waveguide into two parallel sub-waveguides weakly coupled through the barrier formed

by the antidot series. This is due to the small edge-to-edge distance between neighboring

antidots, which results in a minor crosstalk between the spin waves propagating in the two

sub-waveguides. The confinement of the modes increases their separation on the frequency

scale in the case of MAW with pinned magnetization. Moreover, due to the minor interaction

between the sub-waveguides, the eigenstates are almost degenerate for frequencies up to 200

GHz in a wide wavenumber range.

In the absence of pinning, spin waves spread freely over the whole width of the waveguide.

This is why the unpinned modes are distributed more densely on the frequency scale. The

dispersion branches of some unpinned modes are the reminescent of the continuous parabolas

in Fig. 2. In the low-frequency range this behavior is seen in every second band, i.e. the

2nd, 4th and 6th bands from the BZ center, where a nodal line should appear in the center
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of the MAW. The lower amplitude of the spin waves in the center of the MAW results in

a negligible impact of the antidot series on the spin dynamics. The effect of the antidot

series on the spin dynamics is similarly small in (1) the dispersion branches of unpinned

modes with a nodal line in the center of the MAW (see Fig. 2c), and (2) all the dispersion

branches of pinned modes. In spite of this, their frequencies are not equal due to the different

boundary conditions at the external edges of the MAW. Therefore, no frequency agreement

can be expected between the unpinned and pinned modes in wires of the same width.

Another important property of the magnonic band structure of MAWs found in our

study is that the magnetization pinning at the edges of the MAW results in the opening of

magnonic gaps (yellow bars in Fig. 3). This means that even MAWs with as little as 5% air

can be used as filters with stop and pass bands. As the first magnonic gap occurs at the

border of the BZ, its opening is clearly related to the periodicity of the MAW. However, the

second gap (between the 4th and 5th bands) is seen to open inside the BZ. This indicates a

different origin of this gap.

The second gap results from the anticrossing between two pairs of modes: modes with no

nodal line within each sub-waveguide and modes with a nodal line in each half of the MAW.

In other words, the anticrossing occurs between two parabolas (connected with the lower

and higher harmonics across the MAW width) of the spin-wave dispersion crossing due to

folding to the 1st BZ.

It is worth to notice that the closing of the gaps in the system with unpinned magneti-

zation is due to the presence of additional bands (1st, 3rd, 5th, . . .) corresponding to modes

with a significant magnetization amplitude in the center of the MAW (see Fig. 2a,b - 1st and

3rd mode). These modes are, in fact, more affected by antidots and more separated from

each other than the modes with nodal line in the center of MAW but their presence makes

the spectrum of the unpinned system denser and results in more effective bands overlapping.

The relatively small width of the gaps in the system with pinned magnetization is due to

the less effective impact of antidots on modes with low value of dynamical magnetization in

the center of MAW.

The above discussion applies to the low-frequency range, in which the mode quantization

is related to the confinement of spin waves between one edge of the waveguide and the

central row of antidots. In the high-energy range the following effects can interfere with this

simple mechanism: (1) spin waves can be localized between antidots in the central region
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of the MAW; (2) the crosstalk can be much more efficient in the case of short spin waves,

which can easily ’leak out’ from one sub-waveguide to the other.

Let us discuss in detail the profiles of the dynamic magnetization component |mz|2 pre-

sented in the bottom panel of Fig. 3. Three types of modes can be distinguished by profile:

(1) modes (a-h) originating from the first mode of each sub-waveguide (no nodal line inside

each sub-waveguide); (2) modes (i-p) related to the second mode in the completely isolated

sub-waveguides (one nodal line in the MAW); (3) modes (r-u), high-frequency excitations

localized mostly between antidots in the center of the MAW. The modes are plotted for

different BZ points, indicated in the top panel of Fig. 3. The modes in the center of the BZ

have no nodal line perpendicular to the MAW axis, while the modes at the edge of the BZ

only have one such line in each BZ. At intermediate points the non-zero amplitude oscillates

more smoothly along the MAW axis.

In the low-frequency range the spin-wave modes show the following characteristics: (1)

modes occur in pairs with in-phase and out-of-phase correlation between excitations in the

two sub-waveguides; (2) the frequency difference between the modes in each pair increases

with growing frequency; (3) the mode splitting can be suppressed (even for relatively high

frequencies) in every second pair of modes at the edge of the BZ, where the nodal line

between antidots blocks the crosstalk between sub-waveguides (cf. modes o,p to m,n).

In order to verify the modes profiles calculated using PWM we plotted also some profiles

with the aid of micromagnetic simulation (OOMMF). They are present in Fig.3 in a hot

colors scale and their frequencies are marked by horizontal lines to show from which bands

they collect the contributions. The labels: a-b, e-f and k-l-m-n present what kind of mixture

of Bloch states (calculated using PWM) exist in the profiles calculated with the aid of

OOMMF.

Helpful for practical realizations of MAWs is the insensitivity of the magnonic gaps to the

shape of the antidots until its filling fraction and mirror symmetry of MAW is unchanged.

On such a small scale, with a feature size of a few nanometers, the shape can be expected

to play a minor role. The situation will be different in the magnetostatic regime, i.e. for

smaller wave vectors and larger antidot periods where the demagnetizing field is strongly

shape dependent and can affect on spin-wave spectrum in low frequency regime43.
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IV. CONCLUSIONS

We have shown that the boundary conditions for the dynamic components of the mag-

netization vector at ferromagnetic material/air interfaces are of much importance for the

SW spectra in nanoscale magnonic antidot waveguides. Our results demonstrate that the

magnetization pinning facilitates the opening of magnonic gaps in magnonic antidot waveg-

uides with air filling fraction even as low as 5%. This indicates an additional functionality

of this type of waveguides as filters with tunable stop and pass bands. Also, our results

show that the pinning will be an important factor to be considered in the interpretation of

experimental data obtained for antidot lattices or designing new devices in which the antidot

arrangement is periodic in nanoscale. The pinning or unpinning at the interfaces is usually

related to the surface magnetic anisotropy, determined by the shape of the atomic orbitals

modified at the interfaces by the surrounding material and the reconstruction or relaxation

processes. Thus, the surface anisotropy can depend on many factors, such as the interface

structure on the atomic or nanometer scale, the strain, the crystallographic structure or the

chemical composition.44 In two-dimensional systems the investigation of these effects can be

regarded as an extension of the research in magnetic bilayers and multilayers, which were

in focus at the time of the discovery of the GMR effect. We have also shown that peculiar

properties of computational methods often used in the calculations are related to specific

boundary conditions for dynamical component of magnetization implicitly assumed in each

method.
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FIG. 1: (color online) Magnonic antidot waveguide under investigation: a 3 nm thick and 45 nm

wide infinite Py stripe with a periodic series of 6 nm ×6 nm square antidots disposed centrally

along the x-axis with a period of a=15 nm. Bias magnetic field µ0H0 = 1.01T is oriented along

the x-axis. The 1.5 nm wide red lines at the Py/air interfaces mark the regions in which pinning

is assumed in the OOMMF calculations. The dashed box shows the supercell size used in PWM

calculations.
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FIG. 2: (color online) Dispersion of spin waves in the MAW presented in Fig. 1, as calculated with

(a) OOMMF and (b) Nmag. The vertical lines delimit the 1st Brillouin zone. The magnetization is

assumed to precess freely at the Py/air interface, i.e., unpinned magnetization. Bottom in (a) and

(b): maps of |mz(x, y)|2 for the different values of frequency (I to IV) calculated with (a) OOMMF

(b) Nmag. Note that the each distribution of |mz(x, y)|2 obtained by micromagnetic calculations

contains contributions of the eigenmodes differing in the wave numbers.
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FIG. 3: (color online) Dispersion of spin waves in the MAW presented in Fig. 1, as calculated

with OOMMF with dynamic magnetization pinned at the Py/air interfaces (gray lines). PWM

results are plotted with red dashed lines. Yellow bars represent the magnonic gaps (in OOMMF

calculations). Bottom: maps of |mz(x, y)|2 at points (a) to (u) in the plot above. Green (a-h)

and blue (i-p) labels refer to modes originating from the first and second dispersion parabolas,

respectively, of each isolated sub-waveguide at the right and left of the central row of antidots.

Brown labels denote high-frequency modes localized in the row of antidots. The maps plotted

in full colors scale and hot colors scale present the results calculated with OOMMF and Nmag

respectively. The horizontal color lines in dispersion plot mark the contributions from different

Bloch bands to the OOMMF profiles.
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