
Looking at Computations from a Different Angle

Omar Inverso1, Salvatore La Torre2, Gennaro Parlato1, and Ermenegildo
Tomasco1

1 University of Southampton, UK
2 Università degli Studi di Salerno, Italy

Abstract. We present a novel framework to reason about programs
based on encodings of computations as graphs. The main insight here is
to rearrange the programs such that given a bound k, each computation
can be explored according to any tree decomposition of width k of the
corresponding behaviour graph. This produces under-approximations pa-
rameterized on k, which result in a complete method when we restrict to
classes of behaviour graphs of bounded tree-width. As an additional fea-
ture, the transformation of the input program can be targeted to existing
tools for the analysis, and thus, off-the-shelf tools based on fixed-point,
or capable of analyzing sequential programs with scalar variables and
nondeterminism, can be used.
To illustrate our approach, we develop this framework for sequential
programs and discuss how to extend it to handle concurrency. For the
case of sequential programs, we develop a compositional approach to
generate on-the-fly tree decompositions of nested words, which is based
on graph-summaries. To illustrate our technique, we also implement our
algorithms for C programs.

1 Introduction

Program computations are typically described as runs of flat transitions systems
with possibly infinite states. The basic information stored in a state is the current
control location and the valuation of the statically allocated variables. Depending
on the class of programs, a state can also store heap structures if the program
uses dynamic memory allocation, and the call stack in presence of recursive calls,
and in general, additional data structures to handle concurrency (multiple call
stacks, and/or FIFO channels, etc.).

Computations can be represented also as graphs (behaviour graphs) where
the nodes capture the basic (finite) information and different types of edges are
used to capture the transitions and the relations deriving from the use of the
additional data structures (see [17]). For example, a stack can be captured by
linking the pair of states corresponding to a push and a matching pop, a queue
by linking an enqueue to a matching dequeue, and so on.

Depending on the aspects and the granularity of the information we wish
to capture, several classes of behaviour graphs can be defined. Nested words
naturally capture the control-flow structure of sequential programs [1], multiply
nested words that of shared-memory multi-threaded programs and stack-queue
graphs that of both distributed programs with recursive calls and sequential
programs with queues and stacks [17], and more definitions are possible.

A very general result on the decidability of problems on classes of behaviour
graphs is the decidability of MSO for all MSO-definable classes of graphs of
bounded tree-width [17], which generalizes to classes of graphs Courcelle/Seese’s
theorem [6, 20]. For interesting classes of programs, most of the decidability
results of relevant decision problems in verification, such as reachability, model-
checking and decidability of logics, are indeed subsumed by this general result.

A class of graphs has tree-width k if for each graph there is a tree decom-
position of width at most k + 1, that is, the graph can be rearranged on a tree
by assigning to each node a set of at most k + 1 graph vertices (bag) such that
all vertices and edges are covered and vertices replicated in two nodes also be-
long to all the bags on the path connecting them. Essentially, for a behaviour
graph G, a tree decomposition T of width k ensures that we can execute the
computation described by G by checking the consistency of the information at
each vertex (i.e., its program counter and variable valuation) locally to a node
and its neighbors: in fact, to check the consistency across the edges of G, it is
sufficient to consider one bag at a time, and to ensure that each vertex has the
same information in any bag, it is sufficient to check this among the bags of a
node and its children.

This way of looking at the tree decompositions is the crucial intuition of the
approach we present in this paper. We design a general framework for analyzing
programs where given a parameter k, we transform an input program P such
that the resulting encoding P ′ interprets the behaviours of P as described above,
according to all the tree decompositions of width k of P behaviour graphs, and
then P ′ is analyzed in a separate tool.

Our approach gives a novel and natural way of representing and analyzing
systems and has several other features. First, each tree decomposition rearranges
the transitions of a computation and gets a way to explore them in a totally inde-
pendent order, and thus our approach is likely to be less sensitive to “pathological
patterns”. Second, the width of a tree decomposition gives a natural parameter
for bounding the additional storage needed to explore the program computa-
tions, and thus we get under-approximation methods of adjustable precision for
arbitrary classes of systems. Third, and probably more importantly, we get a
general way to encode unbounded heap structures captured in configurations
into a thick tree where we need to associate a fixed amount of data stored at
each node. The tree encodings of computation graphs will allow us to encode
complex features of programs (recursion, concurrency, heap, etc.) in a uniform
way where we can exploit off-the-shelf solutions for computing the fixed point
of finite relations, or sequential programs that handle only recursion, to analyze
these otherwise complex systems.

We develop our framework for sequential programs with recursive procedure
calls and use as behaviour graphs the nested words augmented with the program
counters and the variable valuations (program nested words). A crucial aspect is
to find an efficient way to generate tree decompositions for this class of graphs.
For this, we introduce the concept of shape of a program nested word (pnw-
shape) to summarize portions of program nested words. Namely, a pnw-shape

2

is either a fragment of a nested word (ground pnw-shape), or a merge of two
“compatible” pnw-shapes, or a contraction of a pnw-shape on a set of vertices. By
compatible we essentially mean that the pnw-shapes can share nodes but edges
do not overlap, and the contraction has the effect of keeping only the vertices in
the contraction set and projecting on them the edges of the starting pnw-shape.
Essentially, in the construction of a tree decomposition, we use these pnw-shapes
to summarize the information of the portion of the nested word covered by the
nodes of a subtree. In particular, we start from the leaves that are labeled each
with a ground pnw-shape. At each internal node v, we add a ground pnw-shape
which is compatible with the pnw-shape of the children of v, and compute the
pnw-shape of v by first merging these three pnw-shapes and then contracting
the resulting pnw-shape on the vertices of the ground one (which form the bag
of v). We give a test for the root to ensure that the constructed tree is indeed a
tree decomposition.

To illustrate the approach, we implement a tool that performs a code-to-code
translation of C programs that do not make use of dynamic memory allocation.
The output of the transformation is a program that essentially builds a tree
decomposition using recursive procedure calls as in a DFS traversal of the tree.
The ground program pnw-shapes are nondeterministically guessed, and the con-
sistency of program counters and variable valuations associated to each vertex
is checked for each edge (according to the semantics of the input program).
Moreover, there are procedures to implement the tests, and the merging and
contraction operations. Our implementation is based on the same framework we
have used for CSeq [8] that translates concurrent C programs with the pthread
library to standard C programs, that are then analyzed with bounded model
checking tools for C.

The resulting tool is just a prototype and is essentially meant to experiment
in practice our methodology on a simple class of programs. This tool is a first
core of a more general tool that we plan to implement and has in it all the
features to handle the sequential aspects in more complex classes of programs.

As a further contribution, we give an informal though detailed description
on how this approach can be extended to handle concurrent shared-memory
programs and how this relates to the sequentialization algorithms (see [19, 16,
11, 7, 3] for a sample research). We believe that our approach can be extended to
many other classes of programs and systems, such as concurrent programs with
a weak memory model assumption, distributed programs, and programs with
dynamic data-structures, to mention some.

2 Programs with recursive procedure calls

We consider sequential programs with possibly recursive procedure calls. For
the sake of simplicity and without loss of generality, we omit local variables and
procedure parameters (in a procedure call, when needed, the values are passed
through the global variables). Since we only admit global variables, henceforth
we refer to them simply as variables.

3

Var x, y;

procedure main begin
0: assume(x=1 || x=2);
1: call boo;
2: return;

end

procedure boo begin
3: y := x;
4: call foo;
5: assert(x=1);
6: call foo;
7: return;

end

procedure foo begin
8: if (y > 0) then
9: y := y − 1;
A: call foo;
B: else skip; fi
C: return;

end

Fig. 1. A sample program.

In the rest of the paper, we use program P of Fig. 1 as a running example. P is
a simple program with three possible behaviours depending on the initial values
of the variable x being 1, 2 or an other value. In the last case, the condition of the
assume statement does not hold and thus the computation immediately halts. In
the remaining cases, the procedures boo and foo gets recursively called until the
assert statement at program counter 5 is reached. Now, a computation with
x = 2 violates the assertion, and thus reaches an error state, while a computation
with x = 1 continues through the end of the procedure main.

〈prgm〉 ::= Var ; 〈proc〉+

〈proc〉 ::= procedure p begin 〈pc stmt〉+ end

〈pc stmt〉 ::= pc : 〈stmt〉;
〈stmt〉 ::= g :=〈expr〉 | skip

| assume(〈pred〉) | assert(〈pred〉)
| if 〈pred〉 then 〈pc stmt〉+ else 〈pc stmt〉+ fi
| while 〈expr〉 do 〈pc stmt〉 do
| call p | return

Syntax. The BNF grammar on the
right gives the formal syntax of
programs. A program starts with
the declaration of a finite set of
variables Var that are visible to all
procedures. We assume variables
range over some (potentially infi-
nite) data domain D, a language of expressions 〈expr〉 interpreted over D, and
a language of predicates 〈pred〉 over the variables. Thereafter, there is a decla-
ration of a non empty list of procedures, among which one called main that is
initially executed to start the program. Each procedure is formed by a nonempty
sequence of labeled statements of the form pc : 〈stmt〉 where pc is the program
counter (or program location) and 〈stmt〉 defines a simple language of C-like
statements. We assume that each procedure has return as last statement.

For a program P , we denote with PC (resp., Call , Ret) the set of all program
counters pc such that pc : stmt (resp., pc : call p, pc : return) is a labeled
statement of P . Furthermore, for every pc ∈ Call we denote with afterCall(pc)
the (unique) program counter pc′ such that pc′ : stmt is the statement that is
executed after returning the procedure call with program counter pc.

Semantics. The semantics is given as a transition system. Each program can
make procedure calls and manipulate variables. Thus, a state is a configuration
of the form 〈ν, pc,St〉 where ν is a valuation of the variables (i.e., ν : Var 7→ D),
pc ∈ PC is a program counter, and St is the content of the call stack (i.e., the
control locations of the pending procedure calls). A configuration C = 〈ν, pc,St〉
is initial if pc is the program counter of the first statement of the procedure
main and St is the empty stack.

The transition relation, denoted ↪→, is defined as usual. The control-flow
statements update the program counter, possibly depending on a predicate (con-
dition). The assignment statements update the variable valuation other than

4

moving to the next program counter. At a procedure call, the current location of
the caller (pc) is pushed onto the stack, and the control moves to the first loca-
tion of the called procedure. At a return statement the control location at the top
of the stack is popped, say pc, and the control moves to location afterCall(pc).

A computation of a program is a sequence of configurations C0C1 . . . Cn such
that C0 is initial, and Ci−1 ↪→ Ci for every i ∈ [1, n].

3 Graphs representing program executions

In this section, we recall some definitions on graphs and define the notion of
program nested word that we use in the rest of the paper to represent the
executions of a program.

Σ-labeled graphs. Fix a finite alphabet Σ of relation names. A Σ-labeled graph
is a structure G = (V, {E}E∈Σ), where V is a finite set of vertices, and for each
E ∈ Σ, E ⊆ V × V is a set of E-labeled directed edges. An edge (u, v) ∈ E is
also denoted as uEv. A graph G = (V,E) is a line graph if there is an ordering
of all vertices of G, say v0, v1, . . . , vn, such that E = {vi−1Evi | i ∈ [1, n]}.

Nested words. A nested word3 is a labeled graph (V,→,y) where (V,→) is a
line graph and y is a matching edge relation such that for every u, v, u′, v′ ∈ V :

– if uy v then u→+ v;
– if uy v, u′ y v′ are distinct edges then (1) u, v, u′, v′ are all distinct nodes,

and (2) if u→+ u′ then either v →+ u′ or v′ →+ v.

Program nested words. We wish to look at the computations of a program via
their behaviour graphs, i.e., finite graphs that carefully model with their edges
the control-flow structure. In particular, we use as behaviour graphs the nested
words annotated with the program counter (pc, for short) and the valuation of
the variables of each state. We refer to such annotated nested words as program
nested words. In Fig. 2, we give the behaviour graph of a computation of the
program from Fig. 1 when x = 1 holds. The vertices of the nested word v0, . . . , v17
are labeled with the corresponding pc in the program. Also, in the figure, we
report the variable valuation at the beginning and update it at each node after
an assignment. Moreover, the y-edges are represented as curved arrows and
the →-edges are represented as straight arrows. The →-edges capture the linear
ordering of the program states in the computation (and thus the transitions
of the computation). The y-edges match the vertices corresponding to the pc
of a call to a procedure to the pc of the next statement of the procedure that
will be executed after returning the call (return location). Consider for example
v1 y v17, v1 corresponds to the state that precedes the call to boo from main

(with pc 1) and v17 corresponds to the state after returning from this call (with
pc 2); also we have v1 → v2, and v2 corresponds to the begin of the first activation
of boo (with pc 3).

3 We assume that there are no unmatched calls and returns, differently from [1].

5

v0

0PC :

V :

Val :

[

x :1
y :∗

]

v1

1

v2

3

v3

4

[

x :1
y :1

]

v4

8

v5

9

v6

A

[

x :1
y :0

]

v7

8

v8

B

v9

C

v10

C

v11

5

v12

6

[

x :1
y :0

]

v13

8

v14

B

v15

C

v16

7

v17

2

Fig. 2. Program nested word of a run of the program in Fig. 1.

Below, we give a logical characterization of program nested words. For the
ease of presentation we assume that all the procedure calls in the computations
are returned. Note that this is without loss of generality, since we can always
append a possibly empty sequence of additional transitions (which are not actual
program transitions and thus can be recognized as such) to match all pending
calls in the call stack.

Definition 1 (Program Nested Word). A program nested word of a pro-
gram P with set of variables Var and set of program counters PC , is a tuple
(nw ,Val , pc) where

– nw = (V,→,y) is a nested word; let V = {v0, v1, . . . , vn} such that vi−1 →
vi for i ∈ [1, n];

– Val and pc are labeling functions that map each vertex of V respectively with
a valuation of Var and a program counter in PC such that pc(v0) is the
program counter of the first statement of procedure main and for u, v, z ∈ V :
• if u→ v then 〈Val(u), pc(u), st〉 ↪→ 〈Val(v), pc(v), st ′〉, for some st , st′;
• if u y v then pc(u) ∈ Call , pc(v) = afterCall(pc(u)), and pc(z) ∈ Ret

where z → v;
• if pc(u) ∈ Call , then uy v exists;
• if u→ v and pc(u) ∈ Ret, then z y v exists. ut

From executions to program nested words and back: Let π = C0C1 . . . Cn be a
computation of P , where Ci = 〈νi, pci,St i〉 for i ∈ [0, n]. For each i ∈ [0, n]
with pci ∈ Call , we say that i matches j if j is the smallest index such that
j > i and Stj = St i. We denote with NW (π) the tuple (nw ,Val , pc) where
nw = ({v0, . . . , vn},→,y) is a nested word such that (1) vi−1 → vi for i ∈ [1, n],
(2) vi y vj iff i matches j in π, and (3) Val(vi) = νi and pc(vi) = pci, for
i ∈ [0, n]. We can show that NW (π) is indeed a program nested word of P .

Vice-versa, consider a program nested word pnw = (nw ,Val , pc) of P and
let {v0, . . . , vn} be the set of vertices of nw such that vi−1 → vi for i ∈ [1, n].
We denote with RUN (pnw) the sequence of configurations C0C1 . . . Cn where
denoting Ci = 〈Val(vi), pc(vi),St i〉, St0 is the empty stack and for i ∈ [1, n]:
(1) if pc(vi−1) ∈ Call then St i = pc(vi−1).St i−1 (procedure call), (2) if vj y vi
then St i−1 = pc(vj).St i (return from a call), (3) otherwise St i = St i−1 (internal
move). We can show that RUN (π) is indeed a computation of P .

Thus the following holds:

Theorem 1. Given a program P there is a one-to-one mapping (modulo a ver-
tex renaming) between the computations and the program nested words of P .

6

4 Bounded tree-width analysis of programs

The main intuition behind our methodology is to use the tree decompositions of
the behaviour graphs of a program, to guide the exploration of its computations.

Informally, a tree decomposition of a graph G is a binary tree whose nodes
are labeled with sets of G vertices, which are called bags, such that every edge or
vertex of G is covered by at least one bag, and if a vertex v belongs to two bags
labeling two different nodes then all the bags on the unique path connecting
such nodes also contain v. Fig. 3(a) gives a tree decomposition of the program
nested word of Fig. 2 where each bag is implicitly defined by the vertices of the
graph that labels the node. A formal definition of tree decomposition is given at
the end of this section.

We illustrate the role played by tree decompositions in our methodology
on the sample program nested word of Fig. 2 and with respect to the above
mentioned tree decomposition.

We augment the tree decompositions by adding to each node some edges of
the graph such that each edge is mapped exactly to a node whose bag contains
both of its endpoints (note that such a labeling is always possible since by
definition each edge is covered by at least one bag). The tree decomposition
of Fig. 3(a) is augmented in such a way.

Now, by assuming that we have an augmented tree decomposition for a pro-
gram nested word of a program P (we will discuss in the next section how to
generate efficiently such tree decompositions), we check that a labeling of each
vertex in each bag with a program counter and a variable valuation of P forms a
computation of P : that is, we can reconstruct a program nested word of P from
the additional labeling and the tree decomposition.

Starting from the leaves, we locally check the consistency of the transitions
captured by the edges in the bag. For example, in node n5, we can check for
the consistency of the program counters and variable evaluations of the vertices
v6, v7, v8, v9, v10, v11 according to (1) the transitions of P corresponding to the
→-edges (v6, v7), (v7, v8), (v9, v10) and (v10, v11) and (2) the y-edge (v6, v10).
Then, moving up to the parent of n5, i.e., n2, we do not need to keep the
information for v7, v8, v9, v10, since all the edges involving them have already
been examined (this is carefully captured by the tree decomposition that does
not contain these vertices in the bag of n2). However, we need to check that the
program counter and the variable valuation associated with the vertices that are
kept, i.e., v6 and v11, are the same as in n2 and n5.

In this use of tree decompositions, a bag associated with a node n is the
interface, or the sticking vertices, of the portion of nested word corresponding
to the subtree rooted at n with the rest of the computation. Thus, if we restrict
to tree decompositions with bags of size bounded by a parameter k (the width),
at each node we only need to track O(k) information. By choosing k ≥ 3, for
the class of programs that we have defined, we can explore the whole set of
computations of a program, as stated by Theorem 2 at the end of this section.

7

n0

v0 v1

v17

v5 v11

v16

n1

v1 v2 v3

v5 v11

n2

v11v12 v16

v5 v6

n3

v2 v3

n4

v3 v4
v5 v11

n5

v6

v10

v11

v7
v8 v9

n6

v12

v13v14

v15v16

shn0

v0 v1

H

v5

▽

v11

H

v16

H▽

v17

H

v0

gsh

v1

H

v5 v11 v16 v17

H

sh

n1

v1 v2 v3

H

v5 v11

H

v1

gsh

v2 v3 v5 v11

sh

n2

v5 v6

▽H

v11 v12

H

v16

H

v5

gsh

v6 v11 v12

H

v16

H

n3

v2 v3

n4

v3

H

v4 v5 v11

H

n5

v6

H

v7 v8 v9 v10

H

v11

n6

v12 v13 v14 v15 v16

(a) (b)

Fig. 3. Example of a tree decomposition (a) and a nw-shape tree (b) for the program
nested word of Fig. 2.

Tree decompositions and tree-width. A tree-decomposition of a Σ-labeled graph
G = (V, {E}E∈Σ) is a pair D = (T, {bagt}t∈N), where T is a binary tree with
set of nodes N , and bagt ⊆ V satisfying the following:

– for every v ∈ V , there is a node t ∈ N such that v ∈ bagt;
– for every E ∈ Σ and (u, v) ∈ E, there is a node t ∈ N such that u, v ∈ bagt;
– if u ∈ (bagt ∩ bagt′) then u ∈ bagt′′ for every T node t′′ that lies on the

unique path connecting t to t′ in T .

The width of a tree decomposition (T, {bagt}t∈N) is the size of the largest bag in
it, minus one; i.e. maxt∈N{|bagn|}− 1. The tree-width of a graph is the smallest
of the widths overall its tree decompositions.

Theorem 2 ([17]). Any nested word has tree-width at most 2.

5 Getting tree decompositions for program nested words

In the description of our approach from the previous section, we assume that a
tree-decomposition of a program nested word is given. Indeed, we compute such
decompositions on the fly. For this, we need to carry in our summaries (at each
node) some structural information about the portion of the nested word so far
explored, such that we can correctly check portions of nested words separately,
then combine them in the same structure, and in the end claim that we have
constructed a valid tree decomposition for a computation of the program.

The informal scenario. Our notion of summary for nested words is a shape of a
nested word, nw-shape for short. Informally, a nw-shape is either a fragment of a
nested word (ground nw-shape), or a merge of two “compatible”nw-shapes, or a
contraction of a nw-shape on a set of vertices. By compatible we essentially mean
that the nw-shapes can share nodes but the edges do not overlap. For example,
each of the graphs labeling the nodes of the tree in Fig. 3(b) is a nw-shape.

8

In addition to the notation used for nested words, we also use the symbols
H and O to annotate respectively that an end-point of a y-edge is the actual
one or it replaces one that has been abstracted away. In particular, for a ground
nw-shape all the endpoints of a y-edge are marked with H.

To generate a tree decomposition, we construct a nw-shape tree. In Fig. 3, we
give a nw-shape tree for the nested word from Fig. 2. We start from the leaves
that are assigned each with a ground nw-shape. For each internal node n, we add
a ground nw-shape (marked with gsh below the line in each node) and compute
a summary of the ground nw-shapes in the subtree rooted at n (marked with
sh above the line). The summary is computed by merging the summaries at the
children and the ground nw-shape of the current node, and then contracting the
resulting nw-shape on the vertices of the ground nw-shape (note that at each
node the nw-shape and the ground nw-shape have the same set of vertices).

For example, consider the node n1. The nw-shapes from nodes n3 and n4
just share the vertex v3 and therefore they can be merged (in fact they are
compatible since when glued on v3 no pair of edges overlaps). Similarly, the
resulting nw-shape can be merged with the ground nw-shape of n1, and the
resulting nw-shape has vertices v1, v2, v3, v4, v5 and v11. In the contraction, only
v4 gets abstracted away. The effect of the contraction is thus to remove v4 and
connect v3 to v5 to store the information that all in between v3 and v5 has been
already explored.

The contraction is slightly more intricate when an endpoint of a y-edge
is abstracted away. In fact, in this case, the new endpoint (if any) is selected,
among those that have not been removed, as the closest one which is included
in the portion of the graph below the edge. In particular, the y-edge from v3
to v11 in n1 is replaced (in the contraction) by the y-edge from v5 to v11 in n0,
and since v5 is not the actual left endpoint of this edge, we annotate the left end
of v5 y v11 with O. Also observe that in case there is no such vertex (both the
endpoints are abstracted away and no vertices in the between are kept in the
new set of vertices) the edge is canceled. This is in fact the case, for the self-loop
on v6 in node n2, that does not appear in the nw-shape of n0.

There are two more conditions to ensure in order to get a nw-shape tree. First,
the vertices of a ground shape at an internal node must contain all the vertices
at the “borders”of the maximal lines defined by →-edges in the nw-shapes of its
children and the endpoints of the y-edges that have not been added yet in the
shapes of the subtree (see for example vertex v11 in n2). Second, the nw-shape of
the root must be entirely connected through the →-edges (linerarly connected)
and should have all the endpoints of y matched (fully matched).

An augmented tree decomposition is easily obtained from an nw-shape tree
by retaining for each node just its ground shape. Since also the vice-versa holds,
i.e. for each augmented tree decomposition there is a corresponding nw-shape
tree, our method captures all the augmented tree decompositions of a program.
Moreover, it can be implemented on the fly, being all the operations local.

Nested word shapes. Let T = {O,H} be an alphabet, where the symbol O stands
for abstract, and H stands for concrete.

9

Definition 2 (Nested Word Shapes). A nested word shape (nw-shape) is a

tuple S = (V,⇒,→, {t,zy}t,z∈T) where

– V is a finite set of vertices;
– (V,⇒) is a line graph;
– the set of linear edges → is a subset of ⇒;

– the set of the matching edges y= (
⋃
t,z∈T

t,z
y) where

t,z
y⊆ V ×V and is such

that (where a, b, c, d,∈ T and u, v, x, y ∈ V):
• if uy v then also u⇒∗ v;
• if uy v and xy y, then the following does not hold:
∗ u⇒+ x⇒+ v ⇒+ y (matching edges do not cross);
∗ (u, v) 6= (x, y) and v = x (call and return of distinct matching edges

must not coincide);

• u H,H
y u does not hold;

• at most one among u
H,O
y v, u

O,H
y v and u

H,H
y v holds;

• if u
a,b
y v, u

c,d
y y and y ⇒+ v then a = O;

• if u
a,b
y v, x

c,d
y v and u⇒+ x then b = O.

S is ground if all of its matching edges are concrete, i.e. y is exactly
H,H
y . S is

linearly connected if → is exactly ⇒. ut

A linear border of a shape S is a vertex u ∈ V without a linear successor or
a linear predecessor, i.e., either u 6→ v for each v ∈ V or v 6→ u for each v ∈ V .

Operations on shapes. In the following, we fix S = (V,⇒,→, {t,zy}t,z∈T), S′ =

(V ′,⇒′,→′, {
t,z

y′}t,z∈T), and Si = (Vi,⇒i,→i, {
t,z
yi}t,z∈T) for i = 1, 2.

An nw-shape S′ is the contraction of an nw-shape S on a set of vertices
V ′ ⊆ V , denoted S′ = contraction(S, V ′), if the following holds:

– ⇒′∗ is the total order on V ′ induced by ⇒∗;
– →′ is the set of all pairs (x, y) ∈ V ′ × V ′ such that either (1) x → y,

or (2) there is a sequence of vertices u1, u2, . . . , um ∈ (V \ V ′) such that
x→ u1 → u2 → . . .→ um → y.

– for each matching edge (u, v) of S, denote with contractiony(u, v) the pair
(x, y) if the following holds:
• u⇒∗ x⇒∗ y ⇒∗ v;
• x is the smallest vertex x′ ∈ V ′ with u⇒∗ x′; and
• y is the greatest vertex y′ ∈ V ′ with y′ ⇒∗ v.

For every t, z ∈ T ,
t,z

y′ is the minimal set containing all pairs (x, y) such that

there exist u, v ∈ V where (1) u
p,s
y v for some p, s, (2) contractiony(u, v) =

(x, y), (3) t = H iff u = x and p = H, and (4) z = H iff v = y and s = H.

S is the merge of two nw-shapes S1 and S2, denoted S = merge(S1, S2), if S
is an nw-shape and the following holds:

10

– V = V1 ∪ V2;
– ⇒1,⇒2⊆⇒;
– (→1 ∩ →2) = ∅, and →= (→1 ∪ →2);

– For every t, z ∈ T ,
t,z
y= (

t,z
y1 ∪

t,z
y2).

Tree decompositions via nw-shapes. In an nw-shape tree T , the vertices of the
nw-shape are typed as either left (L) or right (R) endpoint of a matching edge,
or none of them, with the meaning that u ∈ L, resp. v ∈ R, iff there is a ground

nw-shape of T that contains an edge u
H,H
y v.

Definition 3 (nw-shape Tree). An nw-shape tree T is a triple (T, sh, gsh)
where T is a binary tree with set of nodes N , and sh and gsh label each node
of T with respectively an nw-shape and a ground nw-shape such that for each
n ∈ N the following holds:

– if n is a leaf, then sh(n) = gsh(n);
– if n is an internal node, denoting with n1 and n2 its left and right children

and with Vn the set of the vertices of gsh(n):
• sh(n) = contraction(S(n), Vn) where S(n) is the merge of sh(n1), sh(n2)

and gsh(n);
• denoting with LR the set of all vertices from L∪R that are not concrete

endpoints of y-edges of sh(n1) and sh(n2), Vn contains LR and all the
linear borders of sh(n1) and sh(n2);

• if n is the root, then additionally sh(n) is also linearly connected and
fully matched, that is, all its vertices from L∪R are concrete endpoints
of some y-edge.

We denote with G(T) the graph
⋃
n∈N gsh(n). ut

Note that in the above definition for each n ∈ N , gsh(n) and sh(n) have the
same vertices and each edge of gsh(n) is also an edge of sh(n). By structural
induction, it is possible to show that the graph obtained by the union of the
ground nw-shapes of the leaves of a subtree is a ground nw-shape corresponding
to a fragment of a nested word. When the nw-shape associated with the root
of the subtree is also linearly connected and fully matched, then the resulting
ground nw-shape corresponds to a nested word.

Lemma 1. For any nw-shape tree T , G(T) is a nested word.

For a nested word w denote with •−w−• the nested word obtained from w by
adding two new vertices vL and vR along with the edges vL → v and v′ → vR
where v denotes the first vertex and v′ the last vertex of w according to →∗.

From a nw-shape tree T = (T, sh, gsh) such that G(T) = •−w−•, define
D(T) = (T, {Vn}n∈N) where N is the set of nodes of T and Vn is the set of all
the vertices of sh(n) but vL and vR. By the definitions of nw-shape tree and tree
decomposition, we get that D(T) is a tree decomposition of w.

Vice-versa, consider a tree decomposition D = (T, {Bn}n∈N) of a nested
word w = (V,→,y). Add to each bag Bn the vertices vL and vR and define:

11

– {→n}n∈N such that each edge u→ v of w, belongs to exactly one →n such
that u, v ∈ Bn, and each of vL → v and v′ → vR belongs to exactly one →n;

– {yn}n∈N such that for each edge u y v of w, u
H,H
y v belongs to exactly

one yn such that u, v ∈ Bn;
– each ⇒n is the total order on Bn induced by →∗;
– gsh(n) = (Bn,⇒n,→n,yn), L = {u | uy v} and R = {v | uy v}.

Starting from the parents of the leaves of T we compute for each node n, sh(n)
as the contraction on Vn of the merge of gsh(n), sh(n1) and sh(n2) where n1 and
n2 are the children of n. By the definition, we can show that T = (T, sh, gsh) is
an nw-shape and G(T) = •−w−•. Therefore, the following theorem holds.

Theorem 3. For any nested word w, there exists a tree decomposition D of
width k iff there exists a nw-shape tree T = (T, sh, gsh) such that •−w−• = G(T)
and each gsh(n) has at most k vertices of w.

Note that the additional vertices vL and vR do not correspond to any state
of the program and are not really needed to have the above theorem. In fact,
it would be sufficient to modify the definition of nw-shape tree such that a left
(respectively right) linear border can be abstracted away as soon as a prefix
(resp. a suffix) of the nested word has been explored.

Shapes and shape trees for programs. We augment nw-shape and nw-shape trees
with program counters and variable valuations. In particular, we define a pnw-
shape inductively from portions of program nested words and with merging and
contraction operations. The merging requires that a same vertex is labeled with
the same program counter and the same variable valuation. Analogously to nw-
shape trees, we define the pnw-shape tree with respect to the notion of pnw-shape.
More details can be found in Appendix A.

6 Implementation

In this section, we report on the prototype tool that we have implemented.
Our implementation is targeted to use a verifier of sequential programs (with
recursive procedure calls), though also fixed-point translations in the style of [9,
10, 13] are possible.

The input program P is transformed into a program P ′ that is essentially
composed of procedure main and five more procedures: ShapeTree(), check(S),
CreateGroundShape(k), merge(S1,S2) and contraction(S1,S2). Except for
ShapeTree(), all the other procedures do not contain recursive calls. Procedure
check verifies that S is indeed a pnw-shape that can label the root of a pnw-shape
tree, i.e., it is linearly connected and fully matched. (Observe that fully matched
within a program nw-shape-tree refers to all the vertices that are marked with
a program counter from Call or correspond to the return states after a call.) If
this is the case and the last vertex (according to the linear order) corresponds to
an error state, then a statement assert(0) is reachable (which defines the error

12

state in P ′). Procedures merge and contraction implement the corresponding
operations on pnw-shapes. Additionally, contraction also ensures that S2 has
as vertices all the linear borders of S1 along with the vertices corresponding to
calls and return states that have not been yet matched with y-edges (which is
required by Definition 3). Procedure CreateGroundShape nondeterministically
generates a ground pnw-shape with k vertices and for each edge of the nw-shape
it ensures that the program counters of its endpoints conform to the meaning of
the edge in the program (i.e., a transition or a matching of a call and a return
state). Moreover, if an edge corresponds to a transition, it ensures also that the
values of the variables at its endpoints are consistent with the semantics of the
transition.

const k

shape ShapeTree() {

shape S;

S = CreateGroundShape(k);

if (nondet()) {

S1 = contraction(ShapeTree(),S);

S2 = contraction(ShapeTree(),S);

S = merge(S, merge(S1,S2));

}

return S;

}

int main(){ shape S=ShapeTree();

check(S);}

Procedure ShapeTree (on the
side) computes the pnw-shape at
the nodes of a possible pnw-shape
tree. When invoked from main, it
starts from the root. At each node,
it guesses a ground nw-shape S by
invoking CreateShapeGround.Then,
nondeterministically it decides whether
the current node is a leaf or is in-
ternal. In the first case, S is re-
turned, otherwise two recursive calls
to ShapeTree are done (one for the
left child and the other for the right
one). The pnw-shapes returned by these calls are meant to label the two chil-
dren, then according to the definition of pnw-shape tree these are merged and
contracted, thus obtaining the pnw-shape for the current node, that is returned.

Observe that ShapeTree exactly implements the properties of Definition 3. To
reduce the memory usage, we do the contraction of the nw-shape of the children
of a node before merging them. This avoids the construction of an intermediate
nw-shape with 2k nodes.

We have implemented this schema for C programs as a code-to-code trans-
lation that serves as a preprocessor for an off-the-shelf tool that automatically
verify C programs. Our implementation is based on the framework we have used
for CSeq [8] and that translates concurrent C programs with the pthread library
to standard C programs, that can be then analyzed with model checking tools
for C (e.g., CBMC [4], ESBMC [5], LLBMC [18]).

Our tool is meant to illustrate our methodology and to make a first step to-
wards its implementation for more complex classes of programs. Also, note that
although the target tool can analyze sequential programs by itself, we force it
to explore the state space according to all the possible tree decompositions of
the program behaviour graphs. We have tried an handful of toy examples with
CBMC as backend and we have registered that our transformation slows down
the tool used in the experiments. The problem seems to be that the implemen-
tation of the nw-shape procedures spans ∼500 l.o.c. in addition to the code of

13

the original program, which makes the resulting program substantially bigger.
One possible fix for this is to build the shapes nondeterministically and then
constrain them logically by using assume statements. Further information on
our tool, along with the programs and the corresponding translated programs
we used, are available http://users.ecs.soton.ac.uk/gp4/cav13.html.

7 Discussion

In this paper, we have presented a new methodology to perform software analysis.
The main idea is to transform the input programs such that the exploration of the
computations is guided by the tree decompositions of their behaviour graphs.
We have developed in details our methodology for sequential programs with
recursive procedure calls and without dynamic data structures, and implemented
such transformation as a code-to-code translation of C programs. The resulting
tool is just a prototype and is essentially a proof of concept where we experiment
in practice our methodology on a simple class of programs.

In this section, we discuss how to extend our approach to concurrent pro-
grams and how it relates to sequentialization of concurrent programs. We then
conclude with some remarks and future work.

Concurrent programs. Concurrent programs consists of a finite number of threads
where each of them is defined by a sequential program. All threads run in par-
allel and communicate through a finite number of shared variables according
to the sequential consistency memory model (SC). A natural graph encoding
for the computations of concurrent programs is the following. The behaviour of
each thread is modeled with a nested word. Further, the behaviour of the shared
memory is represented by a line graph capturing the sequence of memory opera-
tions, where each vertex represents an unique read or write operation. Vertices of
the nested words are labeled, as usual, with a program counter and a valuation
of the global variables, while memory vertices are labeled with a valuation of the
shared variables. A vertex u of a nested word that “reads” a shared variable for
executing the local transition, it is linked through a memory edge to the mem-
ory vertex representing that operation. The direction of this edge is reversed if
the vertex “writes” to a shared variable. Since each memory vertex u represents
exactly one memory operation, u has exactly one memory edge incident on it.
Of course memory edges will never cross w.r.t. temporal events (as we assume
SC). Let us call these behaviour graphs concurrent nested words (cnw for short).

Concurrent nested words admit natural summaries that reflect their com-
position. A concurrent nw-shape (cnw-shape for short) is formed by a distinct
nw-shape for each component nested word, and an additional memory-shape
that is a nw-shapes without matching edges. Additional care should be taken
for the memory edges to avoid crossing. We have indeed worked out the de-
tails of this representation. For example, a contraction operation on a cnw-shape
can be accomplished by executing a contraction on each component nw-shape
and the memory-shape. Furthermore, memory edges are contracted similarly to

14

matching edges of nw-shapes. The merge operation is defined exactly as for nw-
shapes. By defining cnw-shape trees using the same combination of operations
seen for nw-shape trees, we can show an equivalent of Theorem 3 for the concur-
rent setting. In addition, a code-to-code translation for concurrent programs is
again possible (it is similar to that described in Section 6). The important fact
here is that we can reuse verification tools designed for sequential programs for
analyzing concurrent programs.

Here we convey the idea that our approach actually leads to a sort of sequen-
tialization when applied to concurrent programs and implemented as a code-to-
code translation to sequential programs. A sequentialization translates a con-
current program P into a nondeterministic sequential program P ′ that (under
certain assumptions) behaves equivalently [19, 16, 11]. To make the approach ef-
fective, P ′ should not track the whole state space of the concurrent program,
as in the cross product of the thread states. All sequentializations that have
been proposed in literature only track one local state at a time and use k copies
of the shared variables, for a given parameter k. Under these restrictions, such
approaches can only cover a strict subset of computations in which each thread
can at most interact k times with the other threads. These features are indeed
desirable as we get a parameterized analysis technique that aims at exploiting
as much as possible by tuning k for the underlying sequential verification tool.
By increasing the parameter k, we can capture more computations, but this of
course comes with a cost in terms of computational resources.

Our analysis schema shares all the good features of the sequentializations
with the advantage of covering even more computations for the same parameter
k. In fact, by considering cnw-shapes with at most k nodes we also track k copies
of the variables (either global or shared), but cover all cnw of tree-width k vs.
existing sequentializations being only able to intercept a very small subset of
them. Moreover, a different sequentialization needs to be designed to capture
new classes of behaviours (parameterized programs [12], thread creation [7, 3],
scope bounded [14, 15], etc.), while our schema is uniform for all of them.

Future work. We believe that obtaining scalable solutions for sequential programs
based on our approach will pave the way to lift such results to the concurrent
settings. On the theoretical side, it would be interesting to study how com-
putations of concurrent programs running under weak memory models can be
modeled with behaviour graphs. Similarly, for distributed programs where the
communication among threads happens through FIFO channels (see [17] for be-
haviour graphs of these programs). Further, we believe that our approach could
be useful to reason about programs manipulating heaps. The intuition is that
concurrent and distributed programs can be seen as sequential programs that
use stacks for recursion and queues to simulate FIFO channels. We thus wonder
whether our approach can be lifted to more general data structures.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)

15

2. Ball, T., Sagiv, M. (eds.): Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011. ACM (2011)

3. Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs. In:
Yahav, E. (ed.) SAS. Lecture Notes in Computer Science, vol. 6887, pp. 129–145.
Springer (2011)

4. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. In:
Jensen, K., Podelski, A. (eds.) TACAS. Lecture Notes in Computer Science, vol.
2988, pp. 168–176. Springer (2004)

5. Cordeiro, L., Fischer, B., Marques-Silva, J.: Smt-based bounded model checking
for embedded ansi-c software. IEEE Trans. Software Eng. 38(4), 957–974 (2012)

6. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball and
Sagiv [2], pp. 411–422

8. Fischer, B., Inverso, O., Parlato, G.: Cseq: A sequentialization tool for C (compe-
tition contribution). TACAS (2013)

9. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI. pp.
405–416. ACM (2012)

10. Hoder, K., Bjørner, N., de Moura, L.M.: Z- an efficient engine for fixed points
with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. Lecture Notes in
Computer Science, vol. 6806, pp. 457–462. Springer (2011)

11. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV.
Lecture Notes in Computer Science, vol. 5643, pp. 477–492. Springer (2009)

12. La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing parameterized pro-
grams. In: Bauer, S.S., Raclet, J.B. (eds.) FIT. EPTCS, vol. 87, pp. 34–47 (2012)

13. La Torre, S., Madhusudan, P., Parlato, G.: Analyzing recursive programs using
a fixed-point calculus. In: Hind, M., Diwan, A. (eds.) PLDI. pp. 211–222. ACM
(2009)

14. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.P., König, B. (eds.) CONCUR. Lecture
Notes in Computer Science, vol. 6901, pp. 203–218. Springer (2011)

15. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: Fixed-
point, sequentialization, and tree-width. In: D’Souza, D., Kavitha, T., Radhakr-
ishnan, J. (eds.) FSTTCS. LIPIcs, vol. 18, pp. 173–184. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012)

16. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

17. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball and
Sagiv [2], pp. 283–294

18. Merz, F., Falke, S., Sinz, C.: Llbmc: Bounded model checking of c and c++ pro-
grams using a compiler ir. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE.
Lecture Notes in Computer Science, vol. 7152, pp. 146–161. Springer (2012)

19. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: Pugh, W., Chambers,
C. (eds.) PLDI. pp. 14–24. ACM (2004)

20. Seese, D.: The structure of models of decidable monadic theories of graphs. Ann.
Pure Appl. Logic 53(2), 169–195 (1991)

16

A Shapes and shape trees for programs

As described in Section 4, we aim to use augmented tree decompositions anno-
tated with the program counters and the variable valuations. This corresponds
to adding this annotations to nw-shapes and nw-shape trees.

For a mapping f : A→ B and C ⊆ A, we denote with f|C the restriction of
f to C. For mappings fi : Ai → Bi i = 1, 2, we denote with f1 ∪ f2 the mapping
defined as f1(x) for each x ∈ A1 and f2(x) for each x ∈ A2 \A1.

Fix a program P .
A ground pnw-shape S of P is (S,Val , pc) such that S is a ground nw-shape

and there exists a program nested word (nw ,Val ′, pc′) of P such that S is a
subgraph of nw , Val = Val ′|V and pc = pc′|V .

A pnw-shape S of P is either a ground pnw-shape or S = (S,Val , pc) is:

– the contraction of a pnw-shape, that is, there is pnw-shape S ′ = (S′,Val ′, pc′)
and denoting with V the set of vertices of S, S = contraction(S′, V), Val =
Val ′|V to V and pc = pc′|V , or

– the merging of two pnw-shapes, that is, there are two pnw-shapes S1 =
(S1,Val1, pc1) and S2 = (S2,Val2, pc2) for which, denoting with V the
intersection of the sets of vertices of S1 and S2, Val1(v) = Val2(v) and
pc1(v) = pc2(v) for every v ∈ V , then S = merge(S1, S2), Val = Val1 ∪Val2
and pc = pc1 ∪ pc2.

Analogously to nw-shape tree, we define the pnw-shape tree with respect to
the notion of pnw-shape. The definition is exactly that given there except that
the merging and contraction operations are on pnw-shape, and thus we omit
further details.

17

