
On Multi-stack Visibly Pushdown Languages

Salvatore La Torre1, Margherita Napoli1, Gennaro Parlato2

1 Dipartimento di Informatica, Università degli Studi di Salerno, Italy
2 School of Electronics and Computer Science, University of Southampton, UK

Abstract. We contribute to the theory of formal languages of visibly
multistack pushdown automata (Mvpa). First, we show closure under
the main operations and decidability of the main decision problems for
the class of Mvpa restricted to computations where a symbol can be
popped from a stack S only if it was pushed within the last k contexts
of S, for a given k (in each context only one stack can be pushed or
popped). In particular, this class turns out to be determinizable. Second,
we show the closure under complement of the class of languages accepted
by ordered Mvpa, where the limitation is that a stack can be popped only
if all the lower indexed stacks are empty. This also gains the decidability
of universality, inclusion and equivalence. As a further contribution, we
compare the classes of languages accepted by different models of Mvpa.

1 Introduction

Pushdown automata working with multiple stacks (multistack pushdown au-
tomata, Mpa for short) are a natural model of concurrent programs. As an
acceptor of formal languages, they are equivalent to Turing machines already
with only two stacks: the input word is entirely parsed and pushed onto one
stack, then by ε-moves (i.e., moves that do not consume input) any Turing ma-
chine computation can be simulated by maintaining the tape into the stacks.

A way to limit the power of Mpa is to make the stack operations visible in
the input symbols. A multistack visibly pushdown automaton (Mvpa) has an
input alphabet that is partitioned into n sets of call alphabets (Σi

c) and return
alphabets (Σi

r), where n is the number of stacks, and an internal alphabet (Σint),
and the automaton pushes or pops from stack i only when it reads a call from
Σi
c or a return in Σi

r, respectively.
Visibility of stack operations was first introduced for standard pushdown

automata [2] and on Mpas has two main consequences. First, when reading a
same input the use of the stacks of any Mvpa is synchronized and thus closure
under intersection can be shown with the usual cross product construction (recall
that standard pushdown automata are not closed under intersection). Second,
the stack height is bounded by the length of the input word (ε-moves are not
allowed), and thus any language accepted by an Mvpa is context-sensitive (see
[10]). However, main decision problems such as emptiness are still undecidable:
an Mvpa can accept the encodings of the runs of a given Mpa.

The quest for a naturally-defined notion of a robust class of Mvpa has lead
to consider some restrictions on the allowed behaviors. In [13], the admissible
runs are restricted to those formed by a bounded number of phases, where in

each phase, symbols can be pushed into all stacks but popped only from one.
The corresponding class of languages is closed under all Boolean operations
and has many of the properties of the class of regular languages, such as, de-
cidability of emptiness, membership, universality, inclusion, equality, a logical
characterization and a Parikh theorem. In [12], the model is restricted to runs
with a bounded number of contexts, where in each context, only one stack can
be used. The notion of context is more restrictive than phases (each context is
contained into a phase and a phase can be composed of unboundedly many con-
texts), and thus the resulting class of languages is a subclass of the previous one.
All the above results hold also for this class, further the decision problems are
computationally simpler (for example, emptiness is NP-complete [19, 17] instead
of 2ETIME-complete [13, 11]) and the model is determinizable, i.e., the deter-
ministic and nondeterministic versions characterize the same class of languages.
Another decidable restriction of Mpa is ordered Mpa [8], where symbols can be
popped from stack i only if all the stacks from 1 to i − 1 are empty. Visibly
2-stack Mpa are studied in [6, 9].

In this paper, we contribute to the formal language theory of Mvpas in
several ways. First, we study the formal languages theory of Mvpa restricted to
scope-bounded computations [14, 15]: a computation is k-scoped if for each stack
i, each popped symbol was pushed within the last k contexts of i. For this class,
closure under union and intersection can be shown with standard constructions,
and being the reachability problem Pspace-complete [14], we immediately
get that also emptiness is Pspace-complete. Decidability of membership is
straightforward: guess a run over the input word and then check it. Our main
result here is the determinization of scope-bounded Mvpa. The construction is
based on switching masks of bounded size, that are formed of switching vectors,
one for each stack, and summarize the states of the Mvpa at context-switches
by considering for each stack only the top portion (i.e., the symbols that can still
be popped according to the considered restriction). The resulting deterministic
Mvpa has size doubly exponential in both the number of stacks and the bound
k. Determinization gains the closure under complement and thus, by the closure
under intersection and the decidability of emptiness, we get the decidability of
universality, inclusion and equality. Being this restriction more permissive than
bounding the number of contexts (unboundedly many contexts are possible, even
between two contexts of the same stack), to the best of our knowledge this is
the largest class of formal languages with all the above properties.

Another main contribution of this paper is the proof of the closure under
complement for the class of languages accepted by ordered Mvpa. This result
was shown via determinization in [9], however that is wrong since ordered Mvpas
cannot be determinized. In fact, the language of all the words (ab)icjdi−jxjyi−j

is inherently nondeterministic for Mvpas [12] and can be accepted by a simple
ordered Mvpa with two stacks. In our proof, we first translate an ordered Mvpa
to an equivalent tree automaton, then complement it, and finally translate the
resulting tree automaton back to an ordered Mvpa. The overall scheme is the
same used in [13] for phase-bounded Mvpa, and as there, the base of our trans-

lation are the stack trees (where the right-child relation captures the matching
calls and returns and if any, the left child gives the linear successor). The analogy
with [13] ends here and note that the tree translation given there does not apply
to ordered Mpa. In contrast, we give a simpler and more general tree translation
that applies also to classes of languages wider than ordered Mvpas. Namely, lan-
guages that can be mapped to classes of graphs admitting a tree decomposition
of bounded tree-width and based on stack trees. The main difference with [13]
is that we augment the stack trees (path-trees) with an additional labeling that
plays a crucial role in reconstructing the linear order of each word. The main
technical challenge is to characterize the resulting class of trees and show that
can be accepted by a tree automaton. We observe that we do not need to char-
acterize precisely in the tree automaton the restriction imposed on the Mvpa,
it is instead sufficient to show a bound on the size of the labels of the resulting
trees. Thus, we exploit the fact that the multiply nested words corresponding to
the language accepted by an ordered Mvpa have bounded tree-width and the
tree decomposition can be given with path-trees [18]. We further observe that
this also holds for phase-bounded Mvpas and thus our approach can be used
to show complementation also for this class of languages. As a consequence of
the closure under complement, we get the decidability of universality, inclusion
and equivalence. We complete the theory of ordered Mvpa by addressing the
complexity of the membership problem.

As a further contribution, we compare the expressiveness of the introduced
classes of Mvpas. We show that ordered, phase-bounded and scope-bounded
Mvpas define classes of languages that are pairwise incomparable; the class
of the phase-bounded (resp. scope-bounded) languages strictly includes that of
the context-bounded languages, while the ordered and the context-bounded lan-
guages are incomparable. We further observe that by the path-tree characteriza-
tion we can show a Parikh theorem for both scope-bounded and ordered Mvpa
(we omit this here).

The notion of bounded context-switching was introduced in [19] to define
an under-approximation method for model-checking multi-threaded programs.
Scope-bounded matching relations were introduced to extend bounded-context
switching to capturing unboundedly many context switches [14]. This notion
naturally extends to infinite words and temporal logic model checking [15, 4].
The notion of scope-bounded matching relations used in this paper is that in-
troduced in [15] that allows unboundedly many context-switches also between
to consecutive contexts of a same stack. More work on decision problems is done
in [20, 7] for phase-bounded Mpa and ordered Mpa [5].

2 Preliminaries

For i, j ∈ N, we denote with [i, j] = {d ∈ N | i ≤ d ≤ j}, and with [j] = [1, j].
Words over call-return alphabets. Given a finite alphabet Σ and an integer
n > 0, an n-stack call-return labeling is a mapping labΣ,n : Σ → ({ret , call} ×
[n]) ∪ {int}, and an n-stack call-return alphabet is a pair Σ̃n = (Σ, labΣ,n). We

fix the n-stack call-return alphabet Σ̃n = (Σ, labΣ,n) for the rest of the paper.

For h ∈ [n], we denote Σh
r = {a ∈ Σ | labΣ,n(a) = (ret , h)} (set of returns)

and Σh
c = {a ∈ Σ | labΣ,n(a) = (call , h)} (set of calls). Moreover, Σint = {a ∈

Σ | labΣ,n(a) = int} (set of internals), Σh = Σh
c ∪ Σh

r ∪ Σint , Σc =
⋃n
h=1Σ

h
c

and Σr =
⋃n
h=1Σ

h
r .

A stack-h context is a word in (Σh)∗. For a word w = a1 . . . am over Σ̃n,
denoting Ch = {i ∈ [m] | ai ∈ Σh

c } and Rh = {i ∈ [m] | ai ∈ Σh
r }, the matching

relation ∼h defined by w is such that (1) ∼h⊆ Ch×Rh, (2) if i ∼h j then i < j,
(3) for each i ∈ Ch and j ∈ Rh s.t. i < j, there is an i′ ∈ [i, j] s.t. either i′ ∼h j
or i ∼h i′, and (4) for each i ∈ Ch (resp. i ∈ Rh) there is at most one j ∈ [m] s.t.
i ∼h j (resp. j ∼h i). When i ∼h j, we say that positions i and j match in w.
If i ∈ Ch and i 6∼h j for any j ∈ Rh, then i is an unmatched call. Analogously,
if i ∈ Rh and j 6∼h i for any j ∈ Ch, then i is an unmatched return. Note that,
by the definition it is not possible to have both unmatched calls and unmatched
returns in the same word.
Multi-stack visibly pushdown languages. A multi-stack visibly pushdown
automaton over an n-stack call-return alphabet pushes a symbol on stack h when
it reads a call of the stack h, and pops a symbol from stack h when it reads a
return of the stack h. Moreover, it just changes its state, without modifying any
stack, when reading an internal symbol. A special bottom-of-stack symbol ⊥ is
used: it is never pushed or popped, and is in the stack when computation starts.

Definition 1. (Multi-stack visibly pushdown automaton) A multi-stack

visibly pushdown automaton (Mvpa) over Σ̃n, is a tuple A = (Q,QI , Γ, δ,QF)
where Q is a finite set of states, QI ⊆ Q is the set of initial states, Γ is a finite
stack alphabet containing the symbol ⊥, δ ⊆ (Q × Σc × Q × (Γ\ {⊥})) ∪ (Q ×
Σr × Γ × Q) ∪ (Q × Σint × Q) is the transition function, and QF ⊆ Q is the
set of final states. Moreover, A is deterministic if |QI | = 1, and |{(q, a, q′) ∈
δ}∪{(q, a, q′, γ′) ∈ δ}∪{(q, a, γ, q′) ∈ δ}| ≤ 1, for each q ∈ Q, a ∈ Σ and γ ∈ Γ .

A configuration of an Mvpa A over Σ̃n is a tuple α = 〈q, σ1, . . . , σn〉, where
q ∈ Q and each σh ∈ (Γ \ {⊥})∗.{⊥} is a stack content. Moreover, α is initial
if q ∈ QI and σh =⊥ for every h ∈ [n], and accepting if q ∈ QF . A transition

〈q, σ1, . . . , σn〉
a−→A 〈q′, σ′1, . . . , σ′n〉 is such that one of the following holds:

[Push] a ∈ Σh
c , ∃γ ∈ Γ \ {⊥} such that (q, a, q′, γ) ∈ δ, σ′h = γ ·σh, and σ′i = σi

for every i ∈ ([n] \ {h}).
[Pop] a ∈ Σh

r , ∃γ ∈ Γ such that (q, a, γ, q′) ∈ δ, σ′i = σi for every i ∈ ([n]\{h}),
and either γ 6=⊥ and σh = γ · σ′h, or γ = σh = σ′h =⊥.

[Internal] a ∈ Σint, (q, a, q′) ∈ δ, and σ′h = σh for every h ∈ [n].

For a word w = a1 . . . am in Σ∗, a run of A on w from α0 to αm, denoted
α0

w−→A αm, is a sequence of transitions αi−1
ai−→A αi for i ∈ [m]. A word w ∈ Σ∗

is accepted by an Mvpa A if there is an initial configuration α and an accepting
configuration α′ such that α

w−→A α′. The language accepted by A is denoted
with L(A).

A language L ⊆ Σ∗ is called a multi-stack visibly pushdown language (Mvpl)
if there exist n > 0 and an n-stack call-return labeling labΣ,n such that L is

accepted by an Mvpa over Σ̃n = (Σ, labΣ,n).

A visibly pushdown automaton (Vpa) [2] is an Mvpa with just one stack. A
visibly pushdown language (Vpl) is an Mvpl accepted by a Vpa.

Bounded number of contexts/rounds. A round over Σ̃n is a word of the
form w1w2 . . . wn where wh is a stack-h context, for each h ∈ [n]. A k-round word

over Σ̃n is a word that can be obtained as the concatenation of k rounds. We
denote with Round(Σ̃n, k) the set of all the k-round words over Σ̃n. The notion
of bounded number of rounds is strictly related to that of bunded number of
contexts: each k-round word is indeed the concatenation of at most nk contexts,
and a word which is the concatenation of k contexts is a k′-round word for some
k′ ≤ k (empty contexts can be used to complete rounds).

Bounded number of phases. A phase over Σ̃n is a word in (Σc∪Σint ∪Σh
r)∗,

for a given h ∈ [n]. For an integer k, a k-phase word over Σ̃n is a word that can

be obtained as the concatenation of k phases. We denote with Phase(Σ̃n, k) the

set of all the k-phase words over Σ̃n.
Scope-bounded matching relations. A word w = a1 . . . am ∈ Σ∗ is k-scoped
over Σ̃n if for each i, j ∈ [m] such that i ∼h j, for some h ∈ [n], there are at
most 2k − 3 indexes x1, . . . , xk−1, y1, . . . , yk−2 ∈ [i, j] such that x1 < y1 < . . . <
xk−2 < yk−2 < xk−1 and ax ∈

⋃
h′ 6=h(Σh′

c ∪ Σh′

r), for each x ∈ {x1, . . . , xk−1},
ay ∈ Σh

c ∪ Σh
r for each y ∈ {y1, . . . , yk−2}, With Scoped(Σ̃n, k), we denote the

set of all the k-scoped words over Σ̃n.
Ordered matching relations. A word w = a1 . . . am ∈ Σ∗ is ordered over Σ̃n
if for each h ∈ [n] and for each i, j ∈ [m] such that i ∼h j, it holds that for each
x < j such that ax ∈ Σh′

c , with h′ < h, there exists y < j such that x ∼h′ y
holds (all calls of lower-index stacks preceding j are already matched at j). With

Ordered(Σ̃n), we denote the set of all the ordered words over Σ̃n.
Classes of languages. A language L ⊆ Σ∗ is a bounded-round Mvpl (Rmvpl)
if there exist k, n > 0, an n-stack call-return labeling labΣ,n, and an Mvpa

A over Σ̃n = (Σ, labΣ,n) such that L = Round(Σ̃n, k) ∩ L(A). Analogously,
we define bounded-phase Mvpl (Pmvpl), scope-bounded Mvpl (Smvpl) and
ordered Mvpl (Omvpl).

3 Determinization of Mvpa over scoped words

Here, we show that, when restricting to k-scoped words, deterministic and non-
deterministic Mvpas are equivalent. Fix an integer k > 0 and an Mvpa A =
(Q,Q0, Γ, δ, F) over Σ̃n.
Scope-bounded switching-vector Vpa. Let h ∈ [n] and k > 0. We define a
Vpa Ahk over the alphabet Σh ∪ {[,]} where the calls are Σh

c ∪ {]}, the returns
are Σh

r , and the internals are Σh
int ∪ {[}, with [,] 6∈ Σ. In each run, Ahk collects

in its state a list of at most k pairs of states from Q (k-switching vector [12]):
it starts from a list containing only a pair (q, q) and then updates the second
component according to the transitions of A on the symbols from Σh. On [, Ahk
nondeterministically appends a new pair (q, q), for any q ∈ Q, to the current
switching vector, if this has less than k pairs, and halts otherwise. On], Ahk
starts a new switching vector and pushes onto the stack a new symbol O. The

symbol O is used to denote the bottom of the (top) stack portion that is actually
generated by Ahk to collect the new switching vector, and thus is never popped
from the stack. The set of Ahk states is S =

⋃
m∈[k](Q×Q)m, each state is also a

final state and the set of initial states is S0 = {(q, q)|q ∈ Q}. We omit the formal
definition of the transitions. Denoting with L the language of all words of the
form w1[w2 . . . [wr with r ≤ k and wi ∈ (Σh)∗ for i ∈ [r], we observe that the
language accepted by Ahk is contained in (L.{]})∗.L.

Fix a word z over the alphabet Σh ∪ {[,]}. With Ihk (z), we denote the set
of the switching vectors I ∈

⋃
r>0(Q × Q)r s.t. there exists a run ρ of Ahk on z

and I is the concatenation of `1, . . . , `d, `d+1 where: `d+1 is the state of the last
configuration of ρ and `1, . . . , `d is the ordered sequence of states occurring at the
configurations of ρ from which a transition on] is taken (in the order they appear
in ρ). Note that for a switching vector I ∈ Ihk (z), the number of pairs is the
number of occurrences of [and] in z plus one. For I = (in1, out1) . . . (inm, outm),
we denote I also with 〈(ini, out i)〉i∈[m], and st(I) = in1 and cur(I) = outm.

Switching masks. For a word w over Σ̃n, we denote with 〈wi〉i∈[r] a splitting
of w into contexts s.t. w = w1 . . . wr and, for each each i ∈ [r], wi is a stack-hi
context, for i ∈ [1, r− 1], hi 6= hi+1 and for i ∈ [2, r], wi starts with a symbol in
Σhi
c ∪Σhi

r . Note that for each word w such a splitting is unique.

Fix the splitting 〈wi〉i∈[r] of w, where each wi is a stack-hi context. With

conth(w) = (wh1 , . . . , w
h
rh

), for h ∈ [n], we denote the ordered sequence of all
the stack-h contexts in 〈wi〉i∈[r], i.e., there exist i1, . . . , irh such that 1 ≤ i1 ≤
. . . ≤ irh ≤ r, whj = wij for j ∈ [rh], hi1 = . . . = hirj = h, and hi 6= h, for

every i /∈ {i1, . . . , irh}. Moreover, for each d and s such that wds = wi for some
i ∈ [r], we denote with next(d, s) the pair (d′, s′) such that wd

′

s′ = wi+1 (i.e., for
the contexts in the tuples conth(w), h ∈ [n], next captures the order in which
they appear in 〈wi〉i∈[r]).

A tuple M = (I1, . . . , In) is a k-scoped switching mask for w if: (1) for each
h ∈ [n], Ih ∈ Ikh(wh1 \1w

h
2 . . . \rh−1

whrh) where each \i ∈ {[,]} and conth(w) =

(wh1 , w
h
2 , . . . , w

h
rh

), and (2) denoting Ih = 〈inhs , ouths 〉s∈[rh], ouths = inh
′

s′ for each
h, s, h′, s′ such that next(h, s) = (h′, s′). Moreover, we let st(M) = st(Ih1) and
cur(M) = cur(Ihr

) (recall that each wi is a stack-hi context). Thus:

Lemma 1. Let A = (Q,Q0, Γ, δ, F) be an Mvpa over Σ̃n and w ∈ Scoped(Σ̃n, k).
It holds that: w ∈ L(A) if and only if there exists a k-scoped switching mask M
for w such that st(M) ∈ Q0 and cur(M) ∈ F .

We recall that a switching vector from Ikh(z) is called a thread interface in
[16], where it is also shown that, for k-scoped words, such switching vectors can
be obtained by concatenating thread interfaces formed of at most k pairs, which
is exactly what is captured by the definitions of Ahk and Ihk (w). Observe that
this property does not hold in general for thread interfaces of arbitrary Mvpas.

Determinization. For an Mvpa A, we define a deterministic MVPA AD that,
for a k-scoped input word w, constructs the set of all switching masks accord-
ing to any splitting of w into contexts. Thus, AD accepts w iff it constructs a
switching mask as in Lemma 1, and by supposing w∈Scoped(Σ̃n, k), iff w∈L(A).

For h ∈ [n], let Dh
k = (SD, SD,0, Γ

h
D, δ

h
D, FD) be the deterministic Vpa equiv-

alent to Ahk = (S, S0, Γ ∪ {O}, δh, S) and obtained through the construction
given in [2]. We recall that, according to that construction, the set of states SD
is 2S×S × 2S, and the second component of a state is updated in a run as in the
standard subset construction for finite automata. For a state q̂ ∈ SD, denote
with R(q̂) ⊆ S its second component.

We construct AD = (QD, QD0 , Γ, δ
D, FD) building on the cross product of

D1
k, . . . , D

n
k ; a state of AD is (h, q̂1, . . . , q̂n,M), where h > 0 denotes the stack

that is active in the current context, h = 0 denotes the initial state, q̂h is a
state of Dh

k , and M is a set of tuples (I1, . . . In) where for h ∈ [n], Ih is a state
of Ahk belonging to R(q̂h). The idea is to accumulate in the M component the
tuples corresponding to the current switching vectors that are tracked in the
states of A1

k, . . . , A
n
k while mimicking a run of A on the input word. Therefore,

within each context of stack h, we update the h-th component of all such tuples
according to Ahk transitions. On context switching from stack j to stack h, since
[and] are not in the input alphabet of AD, we compute the effects of both
any transition of Ajk over such symbols and any transition of Ahk over input a,
while reading the first symbol a of the stack-h context. Namely, in each tuple
(I1, . . . In) in theM component, we update Ij according to any transition of Ajk
on [or] (a different update is computed in either case), and Ih according to
any transition of Ahk on a. The components q̂1, . . . , q̂n are updated essentially
by mimicking each deterministic automaton Dh

k on the stack-h contexts of the
input word. Again, a transition over [and] is mimicked in parallel with that of
the deterministic automaton for the next context.

Formally, QD = [0, n]×(SD)n×2S
n

and QD0 = {0}×(SD,0)n×2(S0)
n

. The set
of final states is FD = {(h, q̂1, . . . , q̂n,M) | h ∈ [n] and there is (I1, . . . In) ∈ M
with cur(Ih) ∈ F}.

For each push transition t = (q̂, a, γ, q̂′) of Dh and I ∈ R(q̂), we denote with
Yt(I) the set of all I ′ ∈ R(q̂′) such that there is a push transition of Ahk from I
to I ′ on input a. Analogously, we can define Yt(I), when t is either a pop or an
internal transition. We use Yt to update the switching masks in our construction.

For h > 0 and j ≥ 0, let X=(j, q̂1, . . . , q̂n,M) and X ′=(h, q̂1
′, . . . , q̂n

′,M′)
be two states from QD s.t. q̂i = q̂i

′, for every i /∈ {j, h}.
For t = (q̂h, a, q̂h

′, γ) (resp. t = (q̂h, a, γ, q̂h
′), t = (q̂h, a, q̂h

′)), if a ∈ Σh

and t ∈ δhD then (X, a,X ′, γ) ∈ δD (resp. (X, a, γ,X ′) ∈ δD, (X, a,X ′) ∈ δD)
provided that one of the following cases holds:

1. j = 0 and M′ is the set of all (I ′1, . . . , I
′
n) s.t. there exists (I1, . . . , In) ∈M,

in(Ih) ∈ Q0, Ii = I ′i for i 6= h, and I ′h ∈ Yt(Ih) (initial move);
2. h = j > 0, andM′ is the set of all (I ′1, . . . , I

′
n) s.t. there exists (I1, . . . , In) ∈

M, Ii = I ′i for i 6= h, and I ′h ∈ Yt(Ih) (move within a context);
3. h 6= j > 0, a ∈ Σh

c ∪Σh
r and M′ is the set of all (I ′1, . . . , I

′
n) s.t. there exists

(I1, . . . , In) ∈ M, cur(Ij) = cur(Ih), Ii = I ′i for i /∈ {j, h}, I ′h ∈ Yt(Ih), and

I ′j ∈ Yt′(Ij), where either t′ = (q̂j , [, q̂j
′) ∈ δjD or t′ = (q̂j ,], q̂j

′, γ′) ∈ δjD,
(context-switch).

The transition relation δD is the smallest one such that the above holds.

The tuples in the component M of AD states of a run can be composed by
concatenating the component switching vectors Ih as done for the single Ahk to
define Ihk (z). Thus, for each run ρ of AD we define a set of tuples obtained in
this way. Denote this set as Lρ. It is possible to prove that Lρ is exactly the set
of all the k-scoped switching masks for the input word. From the definitions of
the initial move and the set of initial states of AD, we get that for each switching
masks M ∈ Lρ, st(M) ∈ Q0 holds. Moreover, from the definition of FD and by
the transition relation δD, we can show that if ρ is accepting, then there is at
least a switching mask M ∈ Lρ such that cur(M) ∈ F . Therefore, by Lemma 1:

Theorem 1. For any n-stack call-return alphabet Σ̃n and any Mvpa A over
Σ̃n, there exists a deterministic Mvpa AD over Σ̃n such that Scoped(Σ̃n, k) ∩
L(AD) = Scoped(Σ̃n, k) ∩ L(A). Moreover, the size of AD is exponential in the
number of the states of A and doubly exponential in both k and n.

4 Closure under complement of Omvpl

Fix an ordered Mvpa A over a call-return alphabet Σ̃n.
Outline of the construction. We construct an ordered Mvpa Ā that ac-
cepts all the ordered words over Σ̃n that are not in L(A), i.e., the language

Ordered(Σ̃n) \ L(A), thus showing closure under complement of Omvpl. The
style of the construction is to translate the Mvpa to a tree automaton, then by
exploiting the closure under complementation of tree automata, construct a tree
automaton for the complement, and finally, translate the resulting tree automa-
ton back to an Mvpa. The crux is a regular-tree characterization of words such
that each word w over a call-return alphabet corresponds to a labeled tree T
where: each node corresponds to a position of w, the labeling encodes the linear
order of w, and the right-child relation captures the matching relations. For this
we introduce the concepts of T -path and path-tree.

We start recalling some notation on trees and tree automata.
Tree automata. A (binary) tree T is any finite prefix-closed subset of {↙,↘}∗.
A node is any x ∈ T , the root is ε and the edge-relation is implicit: edges are
pairs of the form (v, v.d) with v, v.d ∈ T and d ∈ {↙,↘}; for a node v, v. ↙
is its left-child and v. ↘ is its right-child. We also denote with v. ↑ the parent
of v, and with D = {↑,↙,↘} the set of directions. For a finite alphabet Υ , a
Υ -labeled tree is a pair (T, λ) where T is a tree, and λ : T → Υ is a labeling map.

We assume standard nondeterministic tree automata (see [21]). Also, in our
construction, we use tree-walking automata [1] which are tree automata that can
traverse the input tree by following a path (at any time the control is at a single
node). We will use the fact that given a walking-tree automaton with r states,
one can construct a language-equivalent tree automaton with 2O(r) states [1].
Encoding paths on trees. For a tree T , a T -path π is a sequence that contains
at least one occurrence of each node of T , and corresponds to a visit of T starting
from the root and ending at a node that appears only once in π. Namely, a T -
path is any sequence π = v1, v2, . . . , v` of T nodes s.t. (1) v1 is the root of T , (2)
for i ∈ [`− 1], vi+1 is vi.di for some di ∈ D (π corresponds to a traversal of T),
(3) for i ∈ [` − 1], v` 6= vi (the last node occurs once in π), (4) π contains at

least one occurrence of each node in T , and (5) for i ∈ [2, `], if vi is a left child,
i.e., vi = v.↙ for some v ∈ T , then vi−1 is the first occurrence of v in π (in the
T traversal, we first visit the left child of any newly discovered node).

ǫ

(ւ, 1) (ց, 1) (ւ, 4)

1(ւ, 1) (ց, 1) (↑, 2) (ւ, 2) 2 (ւ, 1) (↑, 3)

3(↑, 2) (ւ, 1) 4(↑, 3)

6(X,X)

5 (↑, 2)

Fig. 1. A sample path-tree T1.

For the tree T1 in Fig. 1, π1 =
ε, 1, 3, 1, 4, 1, ε, 2, 5, 2, ε, 1, 3, 6 is
a T1-path. By deleting exactly
one occurrence of any node
in π1 or concatenating more
occurrences, the resulting se-
quence would not satisfy one
of the above properties.

We introduce the notion
of path-tree, that is, a labeled
tree (T, λ) that encodes a T -
path in its labels as follows. Except for one node that is labeled with (X,X),
each other node is labeled with a sequence of pairs in D × N. The labeling is
such that by starting from the first pair of the root, we can build a chain ending
at (X,X) by appending to a (d, i) labeling a node u, as the next pair in the
chain, the i-th pair labeling u.d (i.e., a child or the parent of u depending on
d). For example, a pair (↙, 2) at a node u denotes that the next pair in the
chain is the second pair labeling its left child. The sequence of nodes visited by
following such a chain is the path defined by λ in T . To ensure that the defined
path is a T -path, we require some additional properties on λ which are detailed
in the formal definition below. In Fig. 1, we give a path-tree T1 and emphasize
the chain defined by the labels of T1 by linking the pairs with dashed arrows.
The path defined by the labeling of T1 is the path π1 above which is a T1-path.

Formally, denote dir+
X = dir+∪{(X,X)} where dir = D×N and X 6∈ D∪N.

Also, for a sequence ρ = (d1, i1) . . . (dh, ih) ∈ dir+
X, we let |ρ| = h and denote

with ρ[j] the pair (dj , ij), for j ∈ [h].

Definition 2. A dir+
X-labeled tree (T, λ) is a path-tree if:

1. there is exactly one node labeled with (X,X); and
for every node v of T with λ(v) = (d1, i1)(d2, i2) . . . (dh, ih), and j ∈ [h], the

following holds:
2. if ij 6= X then v.dj is a node of T and ij ≤ |λ(v.dj)| (existence of the pointed

pair);
3. if v 6= ε or j > 1, then there are exactly one node u and one index i ≤ |λ(u)|

s.t. λ(u)[i] = (d, j) and u.d = v (except for the first pair labeling the root,
every pair is pointed exactly from one adjacent node);

4. if v 6= ε then there exists i ∈ [|λ(v. ↑)|] s.t. λ(v. ↑)[i] = (d, 1), d ∈ {↙,↘},
and v. ↑ .d = v (except for the root the first pair in a label is always pointed
from the parent);

5. if v. ↙∈ T then λ(v)[1] = (↙, 1) (the first pair in a label always points to
the first pair of the left child, if any);

6. if j < h there is a i > ij s.t. λ(v.dj)[i] is (↑, j + 1), if dj ∈ {↙,↘}, and
(↙, j + 1) (resp. (↘, j + 1)), if dj =↑ and v is a left (resp. right) child (if

a pair of u points to a pair β of an adjacent node v, the next pair of u is
pointed from a pair β′ that follows β in the v labeling); moreover, for all
` ∈ [ij + 1, i− 1], λ(v.dj)[`] does not point to a pair of v.

Path-trees define T -paths. We define a function tp that maps each path-tree
(T, λ) into a corresponding sequence of T nodes, and show that indeed tp(T, λ)
is a T -path. Let π = v1, . . . , v`, and d1, . . . , d`, and i1, . . . , i` be the maximal
sequences such that (1) v1 is the root and λ(v1)[1] = (d1, i1), and (2) for j ∈ [2, `],
vj = vj−1.dj−1 and λ(vj)[ij−1] = (dj , ij). We define tp(T, λ) as the sequence π.
Also, we say that, in π, vj+1 is pointed at its ij-th pair for j ∈ [` − 1]. The
following lemmas hold (see Appendix for the proofs).

Lemma 2. For any path-tree T = (T, λ), the first occurrence of each node u in
tp(T) is the one that is pointed at the first pair of u.

Lemma 3. For any path-tree T = (T, λ), tp(T) is a T -path.

From T -paths to path-trees. We introduce a function pt that maps a T -path π
into a corresponding path-tree (T, λ), and show that pt and tp are each the
inverse function of the other.

For a T -path π = v1, . . . , v`, we define the tree pt(π) such that its labeling
map defines exactly π. For this, we iteratively construct a sequence of labeling
maps λπi for i ∈ [`], by concatenating a suitable pair at each iteration. Formally,
denote dir∗X = dir∗ ∪ {(X,X)}. For a T -path π = v1, v2, . . . , v` and i ∈ [`], let
λπi : T → dir∗X be the mapping defined as follows:

– λπ1 (v1) = (d1, 1), v2 = v1.d1 and λπ1 (v) = ε for every v ∈ T \ {v1};
– for i ∈ [2, `− 1], λπi (vi) = λπi−1(vi).(di, j + 1) where j = |λπi−1(vi+1)|, vi+1 is
vi.di and for every v ∈ T \ {vi}, λπi (v) = λπi−1(v);

– λπ` (v`) = (X,X), and λπ` (v) = λπ`−1(v) for every v ∈ T \ {v`}.
We define pt(π) as (T, λπ`).

From the definitions we get (see Appendix for a proof):

Lemma 4. For any T -path π and path-tree Z, tp(pt(π))=π and pt(tp(Z))=Z.

Bounded-labeled path-trees are regular. We define PathTree as the set of all path-
trees, and for any k ∈ N, PathTreek as the set of all path-trees where nodes are
labeled with at most k pairs.

Note that each property of the path-tree definition can be checked locally by
looking just at the labels of a node and its children, and thus, by a top-down
tree automaton that stores in its states the label of the parent of the current
node. Since the number of different labels is exponential in k, the size of such
automaton is also exponential in k.

Lemma 5. For any k ∈ N, there is an effectively constructible tree automaton
accepting PathTreek whose size is exponential in k.

From words to trees. In this subsection, we introduce a representation of
words over a call-return alphabet as path-trees augmented with labels from this
alphabet. Then, given an ordered Mvpa A, we use this representation to con-
struct a tree automaton A that accepts such a path-tree if and only if A accepts
the corresponding word.

Tree encoding of words. For a word w over Σ̃n we define a labeled tree wt(w) =
(T, (λdir , λΣ)) such that (T, λdir) is a path-tree and λΣ labels the nodes of T
s.t. (i) the right-child relation in T captures the matching relations in w (i.e.,
a call and its matching return label respectively a node and its right child, and
unmatched calls, internals and returns do not label nodes with a right child) and
(ii) w can be obtained by taking the ordered sequence of the Σ labels of the first
occurrences of each vertex in tp(T, λdir).

Fix a word w = a1 . . . a` over Σ̃n. More precisely, T , λdir and λΣ in the
definition of wt(w) are as follows.

The labeled tree (T, λΣ) is such that |T | = `, a1 labels the root of T and for
i ∈ [2, `]: ai labels the right child of the node labeled with aj , j < i, if j ∼h i for
some h ∈ [n], and labels the left child of the node labeled with ai−1, otherwise.

Define a path πw = v1π2 . . . π` of T such that v1 is the root of T and for
i ∈ [2, `], πi is the ordered sequence of nodes that are visited on the shortest
path in T from the node labeled with ai−1 to that labeled with ai (first node
excluded). From the definition of T -path, we get that πw is a T -path. Thus, we let
λdir be such that (T, λdir) ∈ PathTreek, for some k ∈ N, and tp(T, λdir) = πw.

For wt(w) = T , we denote with wordT the word w (note that wordT is well-

defined by Lemma 4). With PathTreek(Σ̃n) we denote the set of all labeled trees
wt(w) = (T, (λdir , λΣ)) such that (T, λdir) ∈ PathTreek (the length of the labels
by λdir is bounded by k).

Regularity of PathTreek(Σ̃n). We construct a tree automaton for PathTreek(Σ̃n)
as the intersection of two automata respectively checking the following two prop-
erties over the input (T, (λdir , λΣ)): I. (T, λdir) ∈ PathTreek and II. v is the right
child of u if and only if posT (u) ∼h posT (v) in wordT , for some h ∈ [n], where
posT (v) denotes the position of λΣ(v) within wordT .

The first automaton can be easily obtained by Lemma 5. In the following,
we sketch the construction of the second automaton. The idea is to go through
the negation of property II. For this, fix T = (T, (λdir , λΣ)) and denote with <
the total order over the T nodes such that u < v iff the first occurrence of u
precedes the first occurrence of v in tp(T, λdir). By the definition of ∼h, h ∈ [n],
the negation of II holds iff either:

1. there are u, v ∈ T s.t. v is the right child of u, λΣ(u) ∈ Σh
c (call of stack h)

and λΣ(v) 6∈ Σh
r (not a return of stack h); or

2. there are u, v ∈ T s.t. (i) u<v, λΣ(u)∈Σh
c and u has no right child, and (ii)

λΣ(v)∈Σh
r and v is not a right child (i.e., by the right-child relation, there

are a call and a return of stack h that are both unmatched); or
3. there are u, v ∈ T s.t. v is the right child of u, λΣ(u)∈Σh

c , and either:
i. there is a w ∈ T s.t. u < w < v and either (a) λΣ(w) ∈Σh

c and w has
no right child, or (b) λΣ(w)∈Σh

r and w is not a right child (i.e., the right-
child relation leaves unmatched either a call or a return occurring between
a matched pair of the same stack h); or
ii. there are w, z ∈ T s.t. z is the right child of w, λΣ(w)∈Σh

c , and either
w < u < z < v or u < w < v < z (i.e., the right-child relation restricted to
stack h is not nested).

For h ∈ [n] and an input tree T = (T, (λdir , λΣ)), by assuming (T, λdir) ∈
PathTreek, we construct an automaton Bh that accepts T iff the right-child
relation of T does not capture properly the matching relation ∼h of wordT (i.e.,
property II does not hold w.r.t. the matching relation ∼h). Bh is given as the
union of four automata, one for each of the above violations 1, 2, 3.i and 3.ii.

The first automaton nondeterministically guesses a node u and then accepts
iff u has a right child, say v, and the labels of u and v witness the violation 1.
The size of this automaton is constant w.r.t. k and n.

In the other violations, the < relation is used. It is simple to design a tree-
walking automaton that visits the nodes of the input tree according to the se-
quence tp(T, λdir) (just follow the chain of the pairs in the λdir labeling). From
Lemma 2, we get a simple criteria that can be checked locally on a node to
determine the first occurrence of a vertex in a tree traversal, and thus we can
check u < v. Thus, using this as base in our constructions, we can design the
remaining tree automata quite easily. For example, to check 2.ii, we can assume
that the automaton first guesses four nodes u, v, w, z (we can assume that such
nodes are marked in the input tree and then remove the marking as in the usual
projection construction) and then while visiting the tree according to tp(T, λdir),
it checks that: if v is the right child of u, z is the right child of w, and u,w are
labeled with calls of stack h, then either one of the orderings violating the nest-
ing property holds. The size of this automaton is linear in k and thus we can
construct a corresponding standard tree automaton of size 2O(k). Similarly for
the other violations we get corresponding tree automata of size 2O(k), and thus
Bh also has size 2O(k).

For each tree T that is not accepted by Bh and is such that (T, λdir) ∈
PathTreek, we get that its right-child relation does not violate the ∼h relation.
Thus, denoting with B̄h the automaton obtained by complementing Bh, if we
take the intersection of all B̄h for h ∈ [n], we get an automaton checking property
(II) provided that the input tree T is such that (T, λdir) ∈ PathTreek. Since

complementation causes an exponential blow-up, the size of each B̄h is 22
O(k)

, and

the automaton resulting from their intersection has size 2O(n) 2O(k)

. Therefore,
by Lemma 5:

Lemma 6. For k ∈ N, there is an effectively constructible tree automaton ac-
cepting PathTreek(Σ̃n) of size exponential in n and doubly exponential in k.

Complement automaton. Consider an ordered Mvpa A over Σ̃n. By assum-
ing that the input tree T belongs to PathTreek(Σ̃n), we can construct a tree
automaton Ak that captures the runs of A over wordT . The idea is to construct
first a tree-walking automaton Wk that visits the nodes as in tp(T) and mimics
the A transitions on each newly visited vertex. To handle the stacks we can de-
sign Wk s.t. in the input tree the nodes labeled with calls are also labeled with
the A stack symbol that has to be pushed, this way we can synchronize a push
with a matching pop on this label. The size of Wk is linear in k and |A|. Ak
is obtained by converting Wk to a tree automaton and then projecting out the
additional labeling, therefore its size is exponential in k and |A|.

By intersecting Ak with the tree automaton Pk accepting PathTreek(Σ̃n),

we get a tree automaton Bk accepting all the trees in PathTreek(Σ̃n) s.t. wordT
is accepted by A. By [18], if we let κ = (n + 1)2n−1 + 1, any ordered word

over Σ̃n can be obtained as wordT for some T ∈ PathTreeκ(Σ̃n). Therefore,
the set of ordered words wordT s.t. T is accepted by Bκ is exactly the set of
ordered words accepted by A. Thus, we can complement Bκ and then take the
intersection with Pκ, thus capturing all the trees T ∈ PathTreeκ(Σ̃n) s.t. the
word wordT is not accepted by A (note that wordT does not need to be ordered
now, but the intersection language still contains all the T s.t. wordT is ordered
and not accepted by Bκ). The size of the resulting tree automaton B̄κ is doubly
exponential in |A| and κ, and since κ = O(n2n), triply exponential in n.

From B̄κ, we can construct an Mvpa Ā that mimics B̄κ transitions as follows
(see Appendix for more details): on internal symbols, Ā moves exactly as B̄κ
(there is no right child); on call symbols, Ā enters the state that B̄κ would enter
on the left child and pushes onto a stack the one that B̄κ would enter on the
right child; on return symbols, Ā acts as if the current state is the one popped
from the stack. (We recall that the stack is uniquely determined by the input
symbol.) The correctness of this construction relies on the fact that for each

tree T ∈PathTreeκ(Σ̃n), the successor position in wordT corresponds to the left
child in T , if any, or else, to a uniquely determined node (a right child) labeled
with a return matching the most recent still unmatched call of the stack. If
wordT ∈Ordered(Σ̃n), such a stack is that with the lowest index among those
with unmatched calls. In Ā, popping the current state from the stack allows to
restore properly the simulation of B̄κ from a right child. Being the size of Ā
polynomial in |B̄κ|, we get:

Theorem 2. The class of Omvpl’s is closed under complement. Moreover,
given an Mvpa A, there is an effectively constructible Mvpa Ā s.t. L(Ā) ∩
Ordered(Σ̃n) = Ordered(Σ̃n) \ L(A), and the size of Ā is doubly exponential in
the size of A and triply exponential in n.

5 Other results and summary of the properties

Comparisons among the classes. All the classes of Mvpl languages we con-
sider in this paper are contained into the class of context-sensitive languages
(CSL). The following languages allow us to distinguish among them:

L1 = {aibjcidj | i, j > 0}∗, L2 = {aibjchdjci−h | i > h > 0, j > 0},
L3 = {(ab)icidi | i > 0}, and L4 = {aibjcidj(ab)h | i, j, h > 0}.
Fix Σ = {a, b, c, d}, n = 2 and labΣ,n such that Σ1

c = {a}, Σ2
c = {b},

Σ1
r = {c}, and Σ2

r = {d}. For each r ∈ [4], an Mvpa over Σ̃n = (Σ, labΣ,n)
exists accepting Lr. It turns out that all languages, besides L2, contain only
ordered words. Moreover, observe that words in L1 are 2-scoped, but there is
not a bound on the number of phases. Words in L2 are 3-round. Words in L3

are 2-phase but they are not k-scoped, for any k. Finally, words in L4 are both
2-scoped and 2-phase but there is not a bound on the number of rounds. Thus,

Closure properties Decision Problems
∪ ∩ Compl. Determin. Membership Emptiness Univ./ Equiv./Incl.

Vpl Yes Yes Yes Yes Ptime-c Ptime-c Exptime-c
CFL Yes No No No Ptime-c Ptime-c Undecidable

Rmvpl Yes Yes Yes Yes NP NP-c 2Exptime
Pmvpl Yes Yes Yes No NP-c 2Etime-c 3Exptime
Smvpl Yes Yes Yes Yes NP-c Pspace-c 2Exptime
Omvpl Yes Yes Yes No NP-c 2Etime-c 3Exptime

CSL Yes Yes Yes Unknown NLinspace Undecidable Undecidable

Fig. 2. Summary of the main results on Mvpls (new results are in bold).

L1∈ (Smvpl∩ Omvpl)\Pmvpl, L2 ∈Rmvpl\Omvpl, L3 ∈ (Pmvpl∩Omvpl)\
Smvpl, and L4∈(Pmvpl∩Smvpl∩Omvpl)\Rmvpl.

Theorem 3. 1) Rmvpl is strictly contained in Smvpl∩Pmvpl. 2) Rmvpl and
Omvpl are incomparable. 3) Smvpl, Omvpl, Pmvpl are pairwise incomparable.

Closure properties and decision problems. The table in Fig. 2 summarizes
the closure properties and decision problems for the classes of languages we
consider, and the known results for VPLs, CSLs, and CFLs (in the table, Nlog-
c stands for Nlog-complete, and so on). We refer to [2] for Vpls, [13, 12] for
Pmvpl and Rmvpl, and [10] for CSLs and CFLs. Closure under union and
intersection for all classes can be shown with standard constructions (union and
intersection are defined for languages over a same call-return alphabet).

Closure under complementation for Smvpl follows from determinizability
which is shown in Section 3, and for Omvpl is shown in in Section 4.

The membership problem can be solved in nondeterministic polynomial time
for both Smvpl and Omvpl by simply guessing the transitions on each symbol
and then checking that they form an accepting run. A matching lower bound
for Omvpl can be obtained with the reduction given in [13]. For Smvpl, we can
give a reduction from the satisfiability of 3-CNF Boolean formulas: for a formula
with k variables, we construct a k-stack Mvpa that nondeterministically guesses
a valuation by storing the value of each variable in a separate stack, then starts
evaluating the clauses (when evaluating a literal the guessed value is popped and
then pushed into the stack to be used for next evaluations); partial evaluations
are kept in the finite control (each clause has just three literals and we evaluate
one at each time; for the whole formula we only need to store if we have already
witnessed that it is false or that all the clauses evaluated so far are all true);
thus each stack is only used to store the variable evaluation, and since for each
stack h, each pushed symbol is either popped in the next stack-h context or is
not popped at all, the input word is 2-scoped.

Checking emptiness is known to be Pspace-complete for Smvpl [14] and
2Etime-complete for Omvpl [3] (2Etime is the class of all decision prob-

lems solvable by a deterministic Turing machine in time 22
O(n)

). Decidability of
universality, inclusion and equivalence follows from the closure under comple-
mentation and intersection, and the decidability of emptiness. This yields the

upper bounds given in the table. For the classes for which a matching lower
bound is not known, the best known lower bound is derived either from that of
Vpls or the emptiness problem.

References

1. Aho, A.V., Ullman, J.D.: Translations on a context-free grammar. Information and
Control 19(5), 439–475 (1971)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In STOC. pp. 202–211.
ACM (2004)

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2Etime-complete. In DLT. LNCS, vol. 5257, pp. 121–133. Springer (2008)

4. Atig, M.F., Bouajjani, A., Kumar, K.N., Saivasan, P.: Linear-time model-checking
for multithreaded programs under scope-bounding. In ATVA. LNCS, vol. 7561, pp.
152–166. Springer (2012)

5. Atig, M.F., Kumar, K.N., Saivasan, P.: Adjacent ordered multi-pushdown systems.
In DLT. LNCS, vol. 7907, pp. 58–69. Springer (2013)

6. Bollig, B.: On the expressive power of 2-stack visibly pushdown automata. Logical
Methods in Computer Science 4(4) (2008)

7. Bollig, B., Kuske, D., Mennicke, R.: The complexity of model checking multi-stack
systems. In: LICS. pp. 163–172. IEEE Computer Society (2013)

8. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down
languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)

9. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In DLT.
LNCS, vol. 4588, pp. 132–144. Springer (2007)

10. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley (1979)

11. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization
of double exponential time. In CSL. LNCS, vol. 5213, pp. 33–48. Springer (2008)

12. La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In LATIN. LNCS, vol. 6034, pp. 96–107. Springer (2010)

13. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In LICS. pp. 161–170. IEEE Computer Society (2007)

14. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In CONCUR. LNCS, vol. 6901, pp. 203–218. (2011)

15. La Torre, S., Napoli, M.: A temporal logic for multi-threaded programs. In IFIP
TCS. LNCS, vol. 7604, pp. 225–239. Springer (2012)

16. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: Fixed-
point, sequentialization, and tree-width. In FSTTCS. LIPIcs, vol. 18, pp. 173–184.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

17. Lal,A., Kidd,N., Reps,T.W., Touili,T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In TACAS. LNCS, vol. 4963, pp. 282–298. (2008)

18. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In POPL. pp.
283–294. ACM (2011)

19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In
TACAS. LNCS, vol. 3440, pp. 93–107. Springer (2005)

20. Seth, A.: Global reachability in bounded phase multi-stack pushdown systems. In
Science, vol. 6174, pp. 615–628. Springer (2010)

21. Thomas, W.: Languages, automata, and logic. In Handbook of Formal Languages,
vol. 3, pp. 389–455. Springer (1997)

A Proofs of Lemma 2 and Lemma 3

Fix a path-tree T = (T, λ). Let v1, . . . , v`, and d1, . . . , d`, and i1, . . . , i` be defined
as in the definition of tp(T), that is, as the maximal sequences such that (1) v1
is the root and λ(v1)[1] = (d1, i1), and (2) for j ∈ [2, `], vj = vj−1.dj−1 and
λ(vj)[ij−1] = (dj , ij).

Denote with labels(T) the sequence (v1, d1, i1), . . . , (v`, d`, i`). In the following
lemma, we show that for each node v of T and for each (d, i) ∈ λdir (v), there is
exactly a j ∈ [`] such that (v, d, i) = (vj , dj , ij), that is, along tp(T), the pairs
in the labels of T form a chain that starts from the first pair of the root, and
ends at (X,X), after visiting exactly once each pair in the labeling of each node
of T .

Lemma 7. For any path-tree T = (T, λ), v ∈ T and (d, i) ∈ λdir (v), by de-
noting labels(T) = (v1, d1, i1), . . . , (v`, d`, i`), there is exactly a j ∈ [`] such that
(v, d, i) = (vj , dj , ij). Moreover, v1 is the root of T , (d1, i1) is the first pair of
the root, and (d`, i`) = (X,X).

Proof. Let V be the set of all triples (v, d, i) where v is a node of T and (d, i) is
a pair in the label λ(v). Let t = (v, d, i) and t′ = (v′, d′, i′) be two triples in V .
We define a successor predicate succ on the pairs (t, t′) in which succ(t, t′) holds
true if v′ = v.d and (d′, i′) is the i-th pair in λ(v′).

Denote tj = (vj , dj , ij) for j ∈ [`]. Note that from the definition of labels(T),
we have that succ(tj , tj+1) holds for any j ∈ [`− 1].

From properties 2 and 3 of Def. 2, every triple in V has a unique successor
and a unique predecessor, except for (1) (ε, d, i) where (d, i) is the first pair in
λ(ε) which does not have a predecessor, and (2) (v,X,X) where v is the unique
node of T (the existence of such a node is assured by property 1 of Def. 2) with
λ(v) = (X,X) which does not have a successor.

Therefore, all the triples in V form one chain, and possibly one or more
disjoint loops. Now, denote with t′1, . . . , t

′
N any sequence of triples such that

succ(t′j , t
′
j+1 for j ∈ [N − 1]. Denote t′j = (v′j , d

′
j , i
′
j) for j ∈ [N]. By property 6

of Def. 2, for each selection of two triples t′r and t′s s.t. r < s, v′r = v′s = v, and
v′j 6= v for j ∈ [r+ 1, s− 1], we get that i′s = i′r + 1. Therefore none of the triples
can repeat in any such sequence, and thus all the triples of V form exactly one
chain that is labels(T) and the lemma is shown. ut

We prove first Lemma 2.
Lemma 2. For a path-tree T = (T, λ), the first occurrence of each node u in
tp(T) is the one that is pointed at the first pair of u.

Proof. We observe that for the left children in T this is a direct consequence of
property (5) of Def. 2 and the definition of tp(T). In general, from Lemma 7, we
get that all the pairs in the labeling of T are used to construct tp(T). Moreover,
as shown in the proof of Lemma 7, by property (6) of Def. 2, all the pairs in the
labeling of any node must be visited by increasing indexes. Therefore, the first
time a node v is visited along tp(T), this is done by pointing to its first pair. ut

Now, we can show Lemma 3.
Lemma 3. For any path-tree T = (T, λ), tp(T) is a T -path.

Proof. Denote tp(T) = v1, v2, . . . , v`. Directly from the definition of tp(T) we
get that v1 is the root and vj+1 is adjacent to vj (i.e., it is either the parent or a
child of vj) for j ∈ [`−1]. Thus, properties (1) and (2) of the definition of T -path
hold. Directly from Lemma 7, we get that the last node of tp(T) is labeled with
only the pair (X,X) and hence property (3) of the T -path definition holds. Since
each node of T has at least a pair labeling it, again from Lemma 7 we get that
tp(T) contains at least one occurrence of each node in T , that entails property
(4) of the T -path definition. By Lemma 2 and property (5) of Def. 2, we get that
also property (5) of the T -path definition holds for tp(T), that ends the proof.

ut

B Proof of Lemma 4

Before proving Lemma 4, we show the following property of path-trees.

Lemma 8. For any two distinct path-trees T1 = (T, λ1) and T2 = (T, λ2),
tp(T1) 6= tp(T2).

Proof. Let V1 and V2 be the sets of triples as defined in the proof of Lemma 3
for T1 and T2, respectively. Similarly, we define the successor relations succ1 and
succ2 fir V1 and V2. We now prove that if λ1 and λ2 are different, it must be the
case that π1 = tp(T1) 6= tp(T2) = π2.

Let t11t
1
2 . . . t

1
`1

be the sequence of all triples in V1 such that succ1(t1j , t
1
j+1)

holds, for any j ∈ [`1−1]. Similarly, we define t21t
2
2 . . . t

2
`2

for the set V2. If λ1 6= λ2
then either `1 6= `2, hence π1 6= π2, or `1 = `2 = ` and the sequences t11t

1
2 . . . t

1
`

and t21t
2
2 . . . t

2
` are different. Let `1 = `2 and j be the least index in which the two

sequences differ, with t1j = (v1j , d
1
j , i

1
j) and t2j = (v2j , d

2
j , i

2
j). Note that, v1j and v2j

must necessarily be the same otherwise j would not be the least index. Instead,
d1j and d2j must necessarily be distinct. In fact, if d1j = d2j it must be the case

that i1j = i2j . Thus, we have that v1j+1 6= v2j+1 which make π1 different from π2
at position j + 1. ut

Lemma 4. For any T -path π and path-tree T , tp(pt(π)) = π and pt(tp(T)) = T .

Proof. We first show that if π is a T -path then tp(pt(π)) = π. Let π = v1, v2, . . . , v`
and πj = v1, v2, . . . , vj , for every j ∈ [`]. We prove by induction on j ∈ [`] that
tp(pt(πj)) = πj where v1, . . . , vj , d1, . . . , dj and i1, . . . , ij are the witnessing
sequences of tp(pt(πj)).

The case for i = 1 is straightforward. Consider i ∈ [2, `]. The labelling map λπj
defining pt(πj) is obtained from λπi−1 leaving unchanged the labels of all nodes
but vj which gets the label λπj (vj) = λπj−1(vj).(dj , ij) where vj+1 = vj .dj . Since
the concatenated pair of λπj (vj) is at position ij−1, and v1, . . . , vj−1, d1, . . . , dj−1
and i1, . . . , ij−1 are the witnessing sequences of tp(pt(πj−1)) (by inductive hy-
pothesis), we can straightforwardly derive that v1, . . . , vj , d1, . . . , dj and i1, . . . , ij
are the only maximal sequences defining tp(pt(πj)).

We conclude the proof of the first statement by noticing that tp(pt(π)) =
tp(pt(π`)) = π` = π.

Let T be a path-tree. We now prove that pt(tp(T)) = T . From Lemma 3,
we know that tp(T) is a unique T -path, say π. Since tp(pt(π)) = π we have that
tp(pt(tp(T))) = tp(T). From Lemma 8, we can conclude that pt(tp(T)) = tp(T).

ut

C Construction of the automaton Ā

In this section we give a central lemma that allows to prove that ordered Mvpas
are closed under complement.

We first introduce some definitions. A (top-down) tree-automaton on Υ -
labeled trees is a tuple A = (P, PI , ∆) where P is a finite set of states, PI ⊆ P
is the set of initial states, and ∆ = 〈∆{↙,↘}, ∆{↙}, ∆{↘}, ∆∅〉 is a set of four
transition relations, with:

– ∆{↙,↘} ⊆ P × Υ × P × P ;
– for d ∈ {↙,↘}, ∆{d} ⊆ P × Υ × P ;
– ∆∅ ⊆ P × Υ .

A run of A over a Υ -labeled tree (T, λ) is a P -labeled tree (T ′, λ′) where
λ′(ε) ∈ PI , and for every node v ∈ T :

– if v has both children, then (λ′(v), λ(v), λ′(v.↙), λ′(v.↘)) ∈ ∆{↙,↘};
– if v has only the d-child, with d ∈ {↙,↘}, then (λ′(v), λ(v), λ′(v.d)) ∈ ∆{d};
– if v is a leaf, then (λ′(v), λ(v)) ∈ ∆∅.

Tree automata are usually defined using a set of final states; this has been
absorbed into the ∆∅ component of the transition relation. A labelled tree (T, λ)
is accepted by a tree automaton A iff there exists a run of A over T . The set of
trees accepted by A is the language of A, denoted L(A).

Now we prove the main result of this section. The lemma below completes
the proof of Theorem 2.

Lemma 9. For any tree automaton A over Υ -labeled trees with L(A) ⊆ PathTreek(Σ̃n),

there is an effectively constructible ordered Mvpa A over Σ̃n such that L(A) is
the set of all ordered words wordT such that T ∈ L(A). Moreover, the size of A
is polynomial in the size of A and exponential in n.

Proof. Let A = (P, PI , ∆) and ∆ = 〈∆{↙,↘}, ∆{↙}, ∆{↘}, ∆∅〉.
The main idea of the construction is the following. While A reads a word w

it mimics a run of A on wt(w), and w is accepted iff wt(w) is accepted by A.
We recall that there is a 1-to-1 map between the positions in w and the nodes
of wt(w). Thus, reading w all nodes of wt(w) are visited exactly once. From
the definition of wt , it is easy to see that every node is discovered only after its
parent has already been visited.

The automaton A is defined such that the following invariant is maintained
during the simulation. For each unmatched call symbol that has been read so
far there is a symbol in the appropriate stack. This property derives from the
visibility of the alphabet. On the other hand, each element in the stacks corre-
sponds to a distinct unmatched position in w in the part of w that has been read
so far. For each of these unmatched positions, say i, and denoting with u the
right child of the node of wt(w) corresponding to position i, the symbol stored in
the stack is either (1) the state assigned to u by the tree automaton A, or (2) a
special symbol ∗ in case u does not exist. Furthermore, if v is the left child of the
node associated with the last read position in w, then A stores in its control the
A state qv assigned to v, otherwise it stores the special symbol ∗ in its control
meaning that v does not exist.

We now define the moves of A, and we show by induction on the length of
w (as we go defining them) that the above property is maintained.

The initial state of A has an initial state of PI stored in its control which
corresponds to the state associated to the root of wt(w). Let σ be the first
unread symbol, and v be the node of wt(w) associated to this occurrence of σ.
We distinguish the following cases:

Internal: If σ ∈ Σint , then the state associated with v is stored in the control
of A (by inductive hypothesis). Now, A guesses the label of v and whether
v has a left child or not. Notice that, because σ ∈ Σint , the node v cannot
have a right child (by definition of wt). If v does not have a left child, A will
pick a move from ∆∅ to be simulated on v. If an A move exists, A will store
∗ in its control. Instead, if v has a left child, it will nondeterministically pick
a move from ∆{↙} that will be simulated at v and stores in its control the
state assigned to the left child of v. It is clear that in this case the above
property is maintained.

Call: If σ ∈ Σi
c, similarly to the previous case, the state associated to v is

stored in the control of A. Now, A guesses the label of v and whether v
has or not a left and a right child, respectively. Based on this, A picks
nondeterministically a move from ∆. If v has a left child, the state associated
with it through the tree automaton move will be stored in the control of A,
otherwise it stores ∗. If v has a right child the state associated with it will be
stored on the top of stack i, otherwise ∗ is pushed onto stack i. Thus, also
in this case the invariant is maintained.

Return: If σ ∈ Σi
r, the node associated with the position right before the

current read position will correspond to a node that does not have a left
child, and thus from the invariant, ∗ is stored in the control state of A. Now,
A recovers the state associated to v by popping the state stored on the top
of stack i, and it will proceed in the same way it handles an internal symbol
of the alphabet. Again this shows that this maintains the invariant.

The automaton A accepts an ordered word if all stored elements in the stacks
are ∗ symbols and also the symbol maintained in the control is a ∗. This reflects
the fact that no more nodes in wt(w) exists and all those nodes have been

correctly labelled by the run and all leaves are accepting. To implement this
mechanism A will maintain in its control also a tuple of bits, one for each stack,
to remember whether each stack has still an A state in its content. To update
those bits correctly it will also store in each position of the stack an additional
bit that tells whether below that position in the stack there is an A state stored.
It easy to see that this information can be easily maintained during the execution
of A moves.

The size of A is thus polynomial in |A| · 2n. ut

