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Acoustic liners remain a key technology for reducing community noise from aircraft

engines. The choice of optimal impedance relies heavily on the modeling of sound

include a small but finite boundary layer thickness. This paper presents a comparison of

these impedance conditions against an exact solution for a simple benchmark problem

and for parameters representative of inlet and bypass ducts on turbofan engines.

The boundary layer thickness can have a significant impact on sound absorption,

although its actual influence depends strongly on the details of the incident sound field.

The impedance condition proposed by Brambley seems to provide some improvements

in predicting sound absorption compared to the Myers condition. The boundary layer

profile is found to have little influence on sound absorption.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic liners are the most common technology used to reduce noise emissions from aircraft engines. Yet further
improvements in their design will be required to support future evolutions of turbofans such as ultra-high bypass ratios
and shorter nacelles. When predicting the efficiency of acoustic treatments for such applications, one has to model not
only the interaction of the liner with the sound field but also the effects of the boundary layer of the grazing flow. This
modifies the propagation of sound and can induce hydrodynamic oscillations and instabilities that interact with the liner
and the sound field.

The impedance condition derived by Ingard [1] and generalized by Myers [2] has been the standard model to describe
the effects of an infinitely thin boundary layer (BL) on sound absorption. But several limitations have become apparent.
In parallel with experimental observations of instabilities developing over liners with grazing flows [3,4], the properties
and stability of surface waves described by the Myers condition were also studied [5,6]. This led to the observation that the
Myers condition is in fact ill-posed in the time domain due to the unbounded growth rate of the instability at
high frequencies [7]. In addition, comparison with solutions with a finite boundary layer thickness has shown that this
parameter can be significant [8–10]. Indeed, measurable discrepancies have been observed between experimental data
and theoretical predictions (for instance in the context of impedance eduction methods [11]), suggesting that the accuracy
of the Myers condition might not be sufficient for some practical applications.

In response to these findings, modified Myers conditions have recently been proposed to address the well-posedness
issue. The model proposed by Rienstra and Darau [12,13] includes a small but finite boundary layer thickness d and is
derived by neglecting compressibility. Independently Brambley [14] derived a different impedance condition by using
. All rights reserved.
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matched asymptotic expansions based on the small parameter d. These two models are well posed in the time domain and
provide improved descriptions of the hydrodynamic stability of the boundary layer (see also the recent discussion by Marx
[15]). The introduction of the boundary layer thickness d as an additional parameter offers the potential for more accurate
predictions of the sound absorption. This is the topic of the present paper which aims to compare the Myers and modified
Myers conditions against an exact solution to discuss the importance of the boundary layer thickness in practical
applications and to assess how well the modified impedance conditions can capture these effects.

The next section describes the benchmark problem used for this comparison. Section 3 introduces some special cases to
assess the consistency of the impedance conditions. Section 4 presents and discusses the results of the comparison.
2. Plane wave reflection by a lined surface

We consider a three-dimensional problem in the half-space y40 with a uniform, subsonic mean flow, with Mach
number M in the x direction, as illustrated in Fig. 1a. The sound field has an eþ iot time dependence. A boundary with
uniform impedance Z is located at y¼0. All variables are non-dimensionalized using the sound speed c1, the mean flow
density r1 and a length scale L. The velocity potential f satisfies the convected Helmholtz equation

d2
0f

dt2
�=2f¼ 0, (1)

where d0=dt¼ ioþMq=qx is the material derivative in the mean flow. We consider an incident plane wave reflected by the
lined surface, so we assume a solution of the form

f¼ A expð�ikhi � xÞþB expð�ikhr � xÞ,

where the directions of the incident and reflected plane waves are given by

hi ¼ ðsin W cos j, �cos W, sin W sin jÞT , hr ¼ ðsin W cos j, cos W, sin W sin jÞT ,

where the angles W and j are defined in Fig. 1a. The acoustic wavenumber is k¼o=D where D¼ 1þM sin W cos j is the
Doppler factor associated with the effect of the mean flow on the acoustic wavelength. From the velocity potential f we
can obtain the acoustic pressure p¼�d0f=dt and the velocity components u¼ qf=qx, v¼ qf=qy and w¼ qf=qz.

With an appropriate boundary condition at y¼0 we can calculate the reflection coefficient R¼B/A. It is also convenient
to consider the absorption coefficient a which is defined as the ratio between the acoustic power absorbed by the liner and
the incident acoustic power. They are given by

Iabs ¼
o2 cos W

2D
ð9A92
�9B92

Þ, Iinc ¼
o2 cos W

2D
9A92

:

So the absorption coefficient is simply a¼ 1�9R92
.

For all the boundary conditions considered here the reflection coefficient will be of the form

R¼
ZðD cos Wþ iT1Þ�1þ iT0

ZðD cos W�iT1Þþ1þ iT0
, (2)

where T0 and T1 are real-valued parameters.
We will also consider the two-dimensional case when the waves propagate along the x-axis (that is j¼ 0 or p). In this

case we introduce the angle of incidence y, as shown in Fig. 1b, and we have

R¼
ZðD sin yþ iT1Þ�1þ iT0

ZðD sin y�iT1Þþ1þ iT0
, (3)

with D¼ 1þM cos y.
Fig. 1. Diagram of the incident and reflected wave in (a) three dimensions and (b) two dimensions.
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2.1. Myers

The Myers condition [2] assumes an infinitely thin boundary layer above the liner (continuity of pressure and normal
displacement is imposed across this vortex sheet). The boundary condition reads

�v¼
d0

dt

p

ioZ
: (4)

The corresponding reflection coefficient is given by (2) with T0 ¼ T1 ¼ 0.
2.2. Brambley

The boundary condition proposed by Brambley [14] includes a boundary layer 0ryrd above the impedance surface
(the flow remains uniform above the boundary layer). The boundary layer thickness d is assumed to be small but finite.
Using matched asymptotic expansions and retaining leading-order terms in d yields the following boundary condition (see
Eq. (9) in Ref. [14]):

�v Z�
i

o ðo�MkxÞ
2dI0

� �
¼

o�Mkx

o �Z
dI1k2 sin2 W
iðo�MkxÞ

" #
p, (5)

where kx ¼ k sin W cos j is the streamwise wavenumber. It represents a boundary condition that is applied at y¼0 to
account for the effects of the boundary layer that are not modeled explicitly by (1). The coefficients dI0 and dI1 are given by

dI0 ¼

Z d

0
1�
½o�u0ðyÞkx�

2r0ðyÞ

ðo�MkxÞ
2

dy, dI1 ¼

Z d

0
1�

ðo�MkxÞ
2

½o�u0ðyÞkx�
2r0ðyÞ

dy, (6)

where u0ðyÞ and r0ðyÞ denote the mean velocity and density profiles inside the boundary layer. The corresponding
reflection coefficient is also of the form (2) with

T0 ¼�kdI0 cos W, T1 ¼�kdI1D sin2 W:

As a special case, we consider a boundary layer with a uniform mean density and a mean velocity profile which is linear
u0ðyÞ ¼My=d for 0ryrd and then constant u0ðyÞ ¼M for yZd. In this case we have

T0 ¼
1
3kdðD�1ÞðDþ2Þ cos W, T1 ¼�kdðD�1Þ sin2 W:

2.3. Rienstra–Darau

The boundary condition proposed by Rienstra and Darau [12,13] assumes a boundary layer with a small thickness
d, a linear velocity profile and a uniform mean density. This two-dimensional boundary condition was derived in the
incompressible limit and was devised to provide a good approximation of the hydrodynamic oscillations of the boundary
layer (see also [15]). It reads

�iovþd
q2p

qx2
�iosd qv

qy

 !
Z ¼

d0p

dt
þ iod ioð1�sÞvþð1�2sÞM qv

qx

� �
þ

1

3
�s

� �
dM2 q

2v

qx2
: (7)

This defines a family of boundary conditions characterized by the parameter s. Originally, s was set to zero [12], but
subsequently it was suggested to use s¼ 1=3 to remove the second-order derivative in v [13]. The case s¼ 1 is also
considered here since it is more consistent with the special cases discussed in Section 3. The corresponding reflection
coefficient is of the form (3) with

T0 ¼ kd sin y½D�sþ1
3ðD�1Þ2�, T1 ¼ kd½1þðsD�1Þ sin2 y�: (8)

The generalization of Eq. (7) to three dimensions follows that in [13], and the derivation is outlined in Appendix A.
However, it was found that the last step of the derivation differs from [13], and the following version of the boundary
condition is proposed here:

�iov�d
q2p

qy2
�iosd qv

qy

 !
Z ¼

d0p

dt
þ iod ioð1�sÞvþð1�2sÞM qv

qx

� �
þ

1

3
�s

� �
dM2 q

2v

qx2
: (9)

The fundamental difference with (7) is the substitution of the term dq2p=qx2 on the left-hand side of (7) by �dq2p=qy2. The
two alternatives are equivalent only when one considers a two-dimensional problem in the incompressible limit (in which
case we have q2p=qx2þq2p=qy2 ¼ 0). This is not an issue as far as modeling the hydrodynamic oscillations of the boundary
layer is concerned. However, differences should be expected if Eqs. (7) and (9) are used to describe absorption of sound
waves which obviously involves compressibility. Indeed, the two boundary conditions yield different results when used
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with the convected wave equation, and it will be shown in Section 4 that Eq. (9) can lead to more consistent predictions of
sound absorption compared to (7). With the three-dimensional impedance condition (9), the reflection coefficient R is of
the form (2) with

T0 ¼ kd cos W½D�sþ1
3ðD�1Þ2�, T1 ¼ kdðsD�1Þ cos2 W:

3. Special cases

Several special cases are now considered to provide some insight into the impedance boundary conditions and to assess
their consistency.

3.1. No flow

We should obviously expect the boundary conditions (4), (5), (7) and (9) to reduce to the standard impedance condition
p¼�Zv in the absence of mean flow (M¼0, which also implies D¼1). This is indeed the case with the Myers condition (4).
With the boundary condition (5) the terms dI0 and dI1 vanish when u0 ¼ 0 and r0 ¼ 1, and one recovers the standard
impedance condition.

With Eq. (7) the terms T0 and T1 defined by (8) remain non-zero in the no flow case for any s. As a consequence the
standard impedance condition is not directly recovered, unless d is explicitly set to zero. This is rather surprising since the
parameter d is only relevant for the cases with flow, and one would expect the boundary condition to be independent of d
in the no flow case. This is also the case with the modified boundary condition (9), except that the no flow case can be
recovered if we set s¼ 1 so as to get T0 ¼ T1 ¼ 0 when D¼1.

3.2. Waves propagating perpendicular to the mean flow

The propagation of sound waves through the boundary layer is governed by the Pridmore-Brown equation:

q2p

qy2
þ

2u00kx

o�u0kx
�
r00
r0

� �
qp

qy
þ

o�u0kx

c0

� �2

�k2 sin2 W

" #
p¼ 0: (10)

If we assume a uniform mean density profile (r0 ¼ 1) and an incoming plane wave propagating perpendicular to the mean
flow (that is j¼ 7p=2 which implies kx ¼ 0 and D¼1), then all mean flow effects vanish and Eq. (10) reduces to the
standard wave equation. This holds irrespective of the boundary layer thickness and profile. In these special cases the
mean flow and the boundary layer have no effect on the solution and the corresponding boundary condition is the same as
with no flow: p¼�Zv.

From the generic expression (2) for the reflection coefficient one can derive

�v¼
1�iZT1

Z cos Wþ iT0
p cos W,

when D¼1. For the Myers condition (4) we have T0 ¼ T1 ¼ 0 so the condition p¼�Zv is recovered. The boundary condition
(5) proposed by Brambley does capture this special case for an arbitrary velocity profile u0ðyÞ since dI0 ¼ dI1 ¼ 0
when kx ¼ 0 and r0 is uniform. With Eq. (9) we get T0 ¼ 0 and T1 ¼ kdðs�1Þ so again this impedance condition is only
consistent when s¼ 1. The boundary condition (7) applies in two dimensions, in which case we are restricted to W¼ 0 and
y¼ p=2. We have T0 ¼ kdð1�sÞ and T1 ¼ kds so the standard impedance condition cannot be recovered, irrespective of the
choice of s.

3.3. Hard wall

Considering the case of a hard wall might not seem relevant to discuss impedance conditions but it does provide some
insight into some of these conditions. For a hard wall (Z-1) the Myers condition imposes a zero normal velocity. The
situation is different for the alternatives proposed by Brambley and Rienstra & Darau. Taking Z-1 in (2) we find

R¼
D cos Wþ iT1

D cos W�iT1
and �v¼

�iT1

D
p: (11)

For instance for the boundary condition (5) we get �v¼ ikdI1 sin2 W. This means that if T1a0 the incoming acoustic wave
is able to induce oscillations of the boundary layer. This is not an issue with the boundary conditions (5), (7) or (9), but
rather a consequence of the finite boundary layer thickness d described by these models. A possible interpretation of the
terms T1 and dI1 is therefore that they represent the effective impedance of the boundary layer in isolation, as seen by the
incident sound field. In fact inspection of Eq. (11) suggests that the effect of the boundary layer over a hard wall is
equivalent to using a purely reactive admittance 1=Z ¼�iT1 in the Myers condition (4). For typical frequencies of interest
this admittance will be small compared to the admittance of the liner. But for high frequencies, the admittance of the liner



Table 1
Test cases considered in the comparison of the impedance conditions.

Case Helmholtz number o BL thickness d (%) Mach number M Impedance Z od

A 28 1.4 0.55 5�i 0.39

B 28 0.7 0.55 5�i 0.2

C 56 1.4 0.55 5�i 0.78

D 28 1.4 0.3 5�i 0.39

E 28 3 0.55 3�0:5i 0.84
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decreases and the impedance of the boundary layer alone will become significant. Finally, note that we have 9R9¼ 1 and
a¼ 0 so the effect of the boundary layer is not to absorb sound but only to change the phase of the reflected wave.

4. Results

4.1. Two-dimensional analysis

The impedance boundary conditions are now compared using a series of two-dimensional test cases (j¼ 01 or 901)
with parameters representative of turbofan engines. These parameters are listed in Table 1. Case A corresponds to the inlet
of a typical turbofan engine at the blade passing frequency (BPF) and with Mach number M¼0.55 and impedance Z ¼ 5�i
(the curvature of the duct is neglected). The boundary layer thickness d is 1.4 percent of the fan radius which is similar to
what would be observed close to the fan. Several variants of this situation are also defined by considering a thinner
boundary layer found further upstream of the fan (case B), by doubling the frequency (case C), or by considering a lower
Mach number (case D). Finally case E corresponds to a bypass duct where the boundary layer can be much thicker and the
impedance is different. In all cases we assume a linear boundary layer profile.

Also shown in Table 1 is the Helmholtz number od based on the boundary layer thickness. All the impedance conditions
presented above assume that od51. Table 1 shows that in practice this is not always true (especially cases C and E where
the frequency or the boundary layer thickness are large). So it is not guaranteed that the impedance conditions will yield
consistent results, and the present comparison will help gauge how accurate and robust these conditions are when applied to
cases of practical interest. To that end the exact solution with a boundary layer with finite thickness and linear velocity
profile is also obtained by solving numerically the Pridmore–Brown equation (10).

Results are presented in Figs. 2 and 3 by plotting the magnitude of the reflection coefficient R and the absorption
coefficient a as functions of the angle of incidence y. For the conditions (7) and (9) we consider the choices of parameter
s¼ 1 and 1/3 (other values of s have also been tested but these do not change the overall conclusions). Also, the results
presented in Figs. 2 and 3 involve only the magnitude of the reflection coefficient, but the error on the phase was also
investigated and the same conclusions can be drawn.

As a consistency check, we note that when od is small (case B) all impedance conditions tend to collapse onto the exact
results, especially for downstream waves. As expected the boundary conditions (4), (5) and (9) with s¼ 1 yield the same
results as the exact solution for normal incidence (y¼ 901) for all cases. Eq. (7) with either s¼ 1 or s¼ 1=3 tends to
introduce significant differences at 901. Eq. (9) with s¼ 1=3 is also different from the exact solution at normal incidence,
although the difference appears quite small. The main conclusions are as follows:

Firstly, we discuss the effect of a finite boundary layer thickness (for lower frequencies similar assessments have been
reported by Eversman [8] and Nayfeh et al. [9]). We see that the Myers condition tends to deviate significantly from
the exact solution (particularly for cases A, C and E, but less so for cases B and D). This is mainly the case at the peaks of
absorption, where the Myers condition overestimates the reflection coefficient. A general trend is that the effect of the
boundary layer is stronger for upstream waves (901oyo1801). Note also that for more complex sound fields composed of
a variety of plane waves with different directions, amplitudes and phases, the precise amount of absorption will depend to
a large extent on the details of the incident sound field.

Secondly, the impedance condition (5) proposed by Brambley represents an improvement over the Myers condition in
terms of predicting sound absorption. This has been observed for a wide range of configurations, and especially between 01
and 1301, or for low Mach numbers (case D), where there is in fact very little difference with the exact solution. For angles
greater than 1301, the differences are more significant but Eq. (5) still improves on the Myers condition. Also it seems to
provide consistent results even when od is not very small (at high frequencies or for thick boundary layers), suggesting
that this approximation for small od is relatively robust. Typical situations where the impedance condition (5) could
improve the accuracy of current predictions based on the Myers condition is that of case A (an inlet where sound is
propagating mostly upstream) and case E (a bypass duct where sound is propagating mostly downstream and the
boundary layer can be relatively thick).

Thirdly, the boundary condition (7) proposed by Rienstra and Darau provides results quite different from the other
solutions. The reflection coefficient is strongly overestimated for the complete range of angles of incidence. The most
notable feature is that for upstream waves in cases C and E, the boundary generates rather than absorbs acoustic energy.
This leads to differences with the exact solution of 15 or 20 dB for the reflection coefficient. The modified version of the
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Fig. 2. Reflection coefficient R (in dB) for each case listed in Table 1. Solid black line: exact solution; dashed black line: Eq. (4); blue: Eq. (5); solid red line:

Eq. (7) with s¼ 1; solid green line: Eq. (7) with s¼ 1=3; dashed red line: Eq. (9) with s¼ 1; and dashed green line: Eq. (9) with s¼ 1=3. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

G. Gabard / Journal of Sound and Vibration 332 (2013) 714–724 719



0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 15 30 45 60 75 90 105 120 135 150 165 180
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 15 30 45 60 75 90 105 120 135 150 165 180
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Absorption coefficient a for each case listed in Table 1. Solid black line: exact solution; dashed black line: Eq. (4); blue: Eq. (5); solid red line: Eq.

(7) with s¼ 1; solid green line: Eq. (7) with s¼ 1=3; dashed red line: Eq. (9) with s¼ 1; and dashed green line: Eq. (9) with s¼ 1=3. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)
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Rienstra–Darau condition (9) does not suffer from this issue. But compared to the Myers condition it does not provide a
significant improvement (in fact for downstream waves it tends to follow very closely the Myers results). This discrepancy
can be explained by the fact that od is not necessarily small in the cases considered here, and the range of applicability of
Eqs. (7) and (9) appears to be limited to very small values of od. Also the effect of compressibility is neglected from the
outset in the derivation of Eqs. (7) and (9). While this assumption is acceptable when modeling the hydrodynamic
oscillations of the boundary layer (as shown in Ref. [13,15]), it is an issue if this boundary condition is used to model sound
absorption by a lined surface.
4.2. Three-dimensional effects

To provide a more complete picture of the significance of the boundary layer thickness and of the accuracy of the
impedance conditions, we now consider three-dimensional effects by varying both W and j. The absorption coefficient is
shown in Fig. 4 for case A, for the exact solution and for the impedance conditions (4), (5) and (9) with s¼ 1.

The exact solution in Fig. 4 shows that the combined effects of the mean flow and the direction of the incident wave
result in a complex pattern. The Myers condition is unable to capture these effects, and overall tends to overestimate the
absorption. Of all the impedance conditions considered here only Eq. (5) seems able to follow the overall trends observed
in the exact solution.

As explained in Section 3.2 the mean flow and the boundary layer have no effect when j¼ 7901. This is indeed the
case in Fig. 4 for the exact solution and the impedance conditions (4) and (5). Therefore, Fig. 4 also illustrates that the
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Fig. 5. Absorption coefficient a for case A with the linear profile (black), parabolic profile (red) and sinusoidal profile (blue). Solid lines: exact solutions;

dashed lines: solutions obtained with Brambley’s boundary condition. Left: the boundary layer thickness d is the same for all profiles. Right: the
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web version of this article.)
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influence of the boundary layer on sound absorption is strongest when the wave and the mean flow are parallel, and is
non-existent when the two are perpendicular.
4.3. Boundary layer profiles

Finally we assess the significance of the boundary layer profile. Nayfeh et al. [9] conducted a comparison of the Myers
condition against an exact solution for a finite boundary layer thickness. We present here a similar comparison but for
cases more representative of modern turbofan engines – especially with higher frequencies – and we also consider the
impedance condition derived by Brambley which is able to deal with arbitrary boundary layer profiles. So far we have used
a linear profile, and we now introduce a parabolic profile

u0ðyÞ ¼M�Mð1�y=dÞ2 for yod, (12)

and a sinusoidal profile

u0ðyÞ ¼M sinðpy=2dÞ for yod: (13)

For all three profiles we use a uniform mean density (r0 ¼ 1).
For the impedance condition (5) we can write the term dI0 as follows:

dI0 ¼
1

ðo�MkxÞ
2
½o2d0�2okxMd1þM2k2

x ðd1þd2Þ�,

where we have introduced the mass, displacement and momentum thickness of the boundary layer1:

d0 ¼

Z d

0
1�r0 dy, d1 ¼

Z d

0
1�

r0u0

M
dy, d2 ¼

Z d

0

r0u0

M
1�

u0

M

� �
dy:

The term dI1 has also to be calculated separately for each boundary layer profile.
Results are presented in Fig. 5 for the test case A. When the same boundary layer thickness d is used for all profiles, it

can be seen that some differences are visible, especially for upstream waves. Following the suggestion in [9], if we adjust d
in Eqs. (12) and (13) so that the displacement thickness d1 is the same for all three profiles, then the results are almost
identical and the actual boundary layer profile has in fact very little impact on sound absorption. This conclusion was also
observed with the other test cases listed in Table 1. From a practical point of view, this indicates that the details of the
boundary layer profile are not critical to obtain accurate predictions, and one can rely on macroscopic parameters such as
the displacement thickness d1. Results in Fig. 5 indicate also that the impedance condition (5) captures this feature quite
well. As a consequence it is preferable to use the linear velocity profile since a simple expression for dI1 ¼ dMkx=o is
available in this case.
1 We use here the usual definitions of the displacement and momentum thickness [16]. A different notation was used in [14].
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5. Conclusions

Two modified impedance conditions have been compared to the standard Myers condition and to an exact solution for
the test case of a plane wave reflected off a flat lined surface, in two and three dimensions. The main observations are as
follows:
�
 The effect of a finite thickness boundary layer can be significant, and the standard Myers condition can lead to
significant errors when predicting sound absorption.

�
 The impedance condition proposed by Rienstra–Darau yields results that can be quite different from the exact

solutions. This is due to the assumption of incompressibility that is used in the derivation of this condition. A variant of
this impedance condition was proposed in three dimensions but it also suffers from the same issue.

�
 The impedance condition proposed by Brambley is able to improve on the predictions obtained with the Myers

condition, even when the boundary layer is not very small compared to the acoustic wavelength.

�
 The details of the boundary layer profile have little effect on sound absorption, and it is sufficient to rely on parameters

such as the displacement thickness to characterize the boundary layer.

Another modified Myers condition was proposed by Aurégan et al. [17] where an additional parameter is introduced to
account for the effects of the viscous boundary layer. This impedance condition has not been considered here since the
other impedance conditions and the exact solution do not include viscous effects. This could indeed represent an extension
of the present comparison.

The results presented here are for a flat lined surface, but they can be carried across to a cylindrical duct since each duct
mode has a ray direction that corresponds to specific values of j and W. As mentioned above the precise amount of
absorption achieved by a given liner will depend on the modal content of the noise source.

Appendix A. Derivation of Eq. (9)

The same procedure as in Ref. [13] is followed here to obtain the three-dimensional version of Eq. (7), except for the last step
which differs from Ref. [13]. We assume a uniform mean density and a sound field of the form p¼ p̂ðyÞexpðiot�ikxx�ikzzÞ.
The propagation of the sound field inside and outside the boundary layer is described by

p̂
00
þ

2kxu00
o�kxu0

p̂
0
þ

o�kxu0

c0

� �2

�k2
x�k2

z

" #
p̂ ¼ 0: (A.1)

The derivation is based on the assumption that compressibility is negligible so the term ðo�u0kxÞ=c0 can be neglected.

Above the boundary layer (yZd) the mean velocity u0 is constant and Eq. (A.1) reduces to the Laplace equation. It

follows that the solution for yZd is p̂ðyÞ ¼ C1e�kyy with ky ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xþk2
z

q
.

Inside the boundary layer (0ryrd) the mean velocity is varying linearly, u0ðyÞ ¼My=d, and the following solution can
be obtained:

p̂ðyÞ ¼ C2½Mkxðkyy�1Þ�doky�e
kyyþC3½Mkxðkyyþ1Þ�doky�e

�kyy:

The constants C2 and C3 are then eliminated by matching pressure and velocity at y¼ d. Finally we impose the standard
impedance condition p¼�Zv at y¼0 to obtain a dispersion relation:

Z ¼
r0

id
doMkxky½ð2kydþ1Þekyd�e�kyd��M2k2

x ½ð2kyd�1Þekydþe�kyd��2d2o2k2
yekyd

k2
yfMkx½ð2kyd�1Þekydþe�kyd��2dokyekydg

: (A.2)

To obtain an approximate boundary condition we can multiply both the numerator and denominator by e�kyds where s
is a free parameter, and then expand each one independently in powers of kyd:

ZC
r0

i

ðo�MkxÞ
2
þkyd 1

3�s
	 


M2k2
xþMkxoð2s�1Þþð1�sÞo2

h i
kyoþk2

yd½ð1�sÞo�Mkx�
:

Finally, the last step is to multiply both the numerator and denominator by p̂ðkx,ky,kzÞ and then convert the terms with kx

and ky into spatial derivatives of pðx,y,zÞ. This leads to Eq. (9) where we have also used the linearized momentum equation
to rewrite some derivatives of pressure in terms of velocity. This is where the difference with Eq. (7) originates from. In
two dimensions, the dispersion relation for the solution is k2

xþk2
y ¼ 0 so we can substitute q2p=qx2 by �q2p=qy2. This is

however not possible in three dimensions.
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