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The paper describes a systematic approach to the model reduction of large dimen-
sion fluid-structure-flight models, and the subsequent flight control design of very flexible
aircraft. System nonlinearities may be due to the large wing deformations, the coupling be-
tween flexible and rigid body dynamics and/or flow separation at large angles of incidence.
A nonlinear reduced order model is used to reduce the computational cost and dimension
of the large-order nonlinear system for a practical control law design. The approach uses
information on the eigenspectrum of the coupled system Jacobian matrix and projects the
system through a series expansion onto a small basis of eigenvectors representative of the
full-order dynamics. For a pitch-plunge aerofoil with structural nonlinearities, a controller
based on reduced models was designed to alleviate gust loads. The approach to model re-
duction was also demonstrated for a two-dimensional problem with aerodynamics modelled
using the computational fluid dynamics equations, and a flexible wing modelled using the
geometrically-exact nonlinear beam equations. In all cases, the model reduction was found
adequate to predict the large order system dynamics at a neglegible cost compared to that
incurred by solving the nonlinear full-order system.

Nomenclature

A = Jacobian matrix of R with respect to w
B, C = second and third Jacobian operators
b = semichord
Cξ, Cα = viscous damping in plunge and pitch, respectively
Cc

ξ = critical damping in plunge, 2
√

mKξ

Cc
α = critical damping in pitch, 2

√
Iα Kα

Kξ, Kα = plunge stiffness and torsional stiffness about elastic axis
Iα = second moment of inertia of aerofoil about elastic axis
CL, Cm = lift and pitch moment coefficients
hg = gust gradient
L, M = lift and pitch moment
m = aerofoil sectional mass
Sα = first moment of inertia of aerofoil about elastic axis
t = physical time
xα = aerofoil static unbalance, Sα/m b
R = residual vector
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ra = radius of gyration of aerofoil about elastic axis, r2a = Iα/m b2

U = freestream velocity
UL = linear flutter speed
U∗ = reduced velocity, U/b ωα

w = vector of unknowns
Wg = gust vertical velocity
W0 = intensity of gust vertical velocity

Greek

α = angle of attack
βξ, βξ5 , βα, βα5

= nonlinear spring constants
λi = i-th eigenvalue of A
τ = nondimensional time, t U/b

ωξ = uncoupled plunging mode natural frequency,
√

Kξ/m

ωα = uncoupled pitching mode natural frequency about elastic axis,
√

Kα/Iα
φi, ψi = i-th right and left eigenvectors of A
ω̄ = ratio of ωξ/ωα

ζξ = damping ratio in plunge, Cξ/C
c
ξ

ζα = damping ratio in pitch, Cα/C
c
α

ξ = nondimensional displacement in plunge, h/b
µ = mass ratio, m/π ρ b2

ρ = freestream density

Symbol

˙( ) = differentiation with respect to t, d( )/dt
( )′ = differentiation with respect to τ , d( )/dτ
(̄ ) = complex conjugation

I. Introduction

The work detailed in this paper is part of the development of a systematic approach to flight control system
(FCS) design for very flexible or very large aircraft. Examples of vehicles in this class are those considered
for low-environmental impact air transport and for long-endurance unmanned operations. Improved aircraft
performance is generally achieved through lightweight solutions with high aspect ratio wings for maximum
aerodynamic efficiency. The combination of low structural weight fraction and high aerodynamic efficiency
yields inherently flexible wings with a nonlinear structural and flight dynamics behaviour. The traditional
separation of aeroelasticity and flight dynamics is therefore not appropriate for flight control when low
structural frequencies, which are often associated with large amplitude motions, are present. The mishap
of NASA’s Helios aircraft demonstrated that (linear) traditional design methods are no longer adequate for
the analysis of the next-generation aircraft.1 Modelling and design methods based on a fully coupled system
analysis are therefore necessary.2

A consideration is that model reduction methods assume linearity or, at most, weak nonlinearities.3 The
development of nonlinear ROMs is an area that urgently needs advances, in general, and is necessary for
control applications of flexible aircraft, in particular. There are two approaches to model reduction. System
identification methods take the response of the system to known inputs, and use this information to build
a low-order model.4, 5 The disadvantages of these methods are the lack of a general robust parametrization
of the model and the inability to predict any physics that is not included in the training data. However,
these methods have been applied successfully.6 The second approach is to manipulate the full-order nonlinear
residual to reduce the cost of calculations. The advantage in doing this is that the predictive capability of the
full-order model (FOM) is retained. The disadvantage is the added technical complication of manipulating
the system. An example is the harmonic balance method, which has been exploited for dynamic derivative
predictions avoiding costly time-accurate CFD runs.7 This second approach is considered in the current
paper.
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For limit-cycle oscillation (LCO) prediction, the system responds in the critical mode close to the bifurca-
tion point. One approach presented in Refs.8, 9 is to project the full-order model onto the critical mode and
expand the residual in Taylor series, retaining quadratic and cubic terms. The influence of the noncritical
space on the critical mode is included through a center manifold approximation. The method has been
successfully applied to various testcases, including the LCO prediction dominated by the motion of a shock
wave8 and a prototype flight dynamics instability of a delta wing.9

Control of a two-dimensional aeroelastic system with structural nonlinearities has been reported by
several researchers. For example, Ref.10 used a nonlinear feedback control law based on the state-dependent
Riccati equation, and Ref.11 applied a partial feedback linearization to control LCO of a wind tunnel model.
However, standard linear control design methods may be inadequate for highly flexible aircraft because the
dynamic behaviour is intrinsically nonlinear. New approaches to nonlinear FCS design are required to control
these systems in a provably robust manner. The contribution of this paper is to develop an approach to
model reduction that is capable of producing a nonlinear reduced order model for the dynamics of a flexible
aircraft.

The paper continues with an overview of the nonlinear coupled system of equations. The model reduction
and the control formulation are then considered, followed by a description of the algorithm used in calculating
the Jacobian operators. A pitch-plunge aerofoil with structural nonlinearity, an aerofoil with aerodynamics
governed by the Euler equations, and a flexible wing modelled using the geometrically-exact nonlinear beam
equations are the testcases.

II. Large-Order Nonlinear Model

The fully coupled nonlinear model for the description of the flight dynamics of a very flexible aircraft can
be represented in a state-space form. Denote byw the n-dimensional state-space vector which is conveniently
partitioned into fluid, structural and rigid body degrees of freedom

w =
[

wT
f , w

T
s , w

T
r

]T
(1)

In the case that CFD is used as the source of the aerodynamic predictions, the vector wf may contain
millions of unknowns. The state-space equations in the general vector form are

dw

dt
= R (w, uc, ud) (2)

where R is the (nonlinear) residual, uc is the input vector, and ud is the exogenous vector for the description
of some form of disturbance acting on the system. The homogeneous system has an equilibrium point, w0,
for given constant uc 0 and ud 0 corresponding to a constant solution in the state space and satisfying

dw0

dt
= R (w0, uc 0, ud 0) = 0 (3)

The residual form in Eq. (2) forms the basis for the model reduction described below. The system is often
parametrized in terms of an independent parameter (freestream speed, air density, altitude, etc.) for stability
analysis.

III. Nonlinear Model Reduction

Denote ∆w = w −w0 the increment in the state-space vector with respect to an equilibrium solution.
The large-order nonlinear residual formulated in Eq. (2) is expanded in a Taylor series around the equilibrium
point

R (w) ≈A∆w +
∂R

∂uc

∆uc +
∂R

∂ud

∆ud +
1

2
B (∆w, ∆w) +

1

6
C (∆w, ∆w, ∆w) + O

(

|∆w|4
)

(4)

retaining terms up to third order in the perturbation variable. The Jacobian matrix of the system is denoted
as A and the vectors B and C indicate, respectively, the second and third order Jacobian operators. The
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elements are calculated as

Aij =
∂ Ri (w0)

∂ wj

Bi (x, y) =
∑

j, k

∂2Ri (w0)

∂ wj ∂ wk

xj yk (5)

Ci (x, y, z) =
∑

j, k, l

∂3 Ri (w0)

∂ wj ∂ wk ∂ wl

xj yk zl

The full-order system is projected onto a basis formed by a small number (denoted by m) of eigenvectors
of the Jacobian matrix evaluated at the equilibrium position. A rational choice would be to retain only the
slow modes since they are likely to dominate the system dynamics, with the exception of unstable fast modes
leading to flutter. The right and left eigenvalues and eigenvectors are complex in general. The eigenvalues of
A are the same as the eigenvalues of AT , whereas the eigenvectors of A are different from the eigenvectors
of AT . The set of right eigenvectors φi are obtained by solving

Aφi = λi φi for i = 1, . . . , n (6)

The set of left eigenvectors, ψi, are obtained by solving the adjoint eigenvalue problem

AT ψi = λ̄iψi for i = 1, . . . , n (7)

Details on how the eigenvalue problem is solved for large-order aeroelastic systems are given in § VI. If
all the eigenvalues are distinct, the right and left eigenvectors corresponding to different eigenvalues are
biorthogonal. It is then convenient to normalize the eigenvectors so as to satisfy the biorthonormality
conditions, expressed by

< φi, φi >= 1, < ψj , φi >= δij , < ψj , φ̄i >= 0 for i, j = 1, . . . , m (8)

and resulting in

< ψj , Aφi >= λi δij , < ψj , Aφ̄i >= 0 for i, j = 1, . . . , m (9)

where δij is the Kronecker delta. Note that the Hermitian inner product is defined as < x,y >= x̄T y, with
the overbar denoting complex conjugation. The (n×m) right and left modal matrices, respectively, Φ and
Ψ, are formed as

Φ = [φ1, . . . , φm] , Ψ = [ψ1, . . . , ψm] (10)

The full order model is projected onto a small basis of m representative eigenvectors using a transforma-
tion of coordinates

∆w = Φ z + Φ̄ z̄ (11)

where z ∈ Cm is the state-space vector governing the dynamics of the reduced-order nonlinear system.
When nonlinear terms in the Taylor series expansion of the large-order nonlinear residual are neglected, a

linear reduced model can be derived. Substituting the transformation of coordinates in Eq. (11) into Eq. (4)
and premultiplying each term by the conjugate transpose of the left modal matrix yields

ψ̄T
j

(

φi z
′

i + φ̄i z̄
′

i

)

= ψ̄T
j

(

Aφi zi + Aφ̄i z̄i +
∂R

∂uc

∆uc +
∂R

∂ud

∆ud

)

for i, j = 1, . . . , m (12)

If the eigenvalues are distinct, which is not always the case, the properties in Eqs. (8) and (9) yield the
formulation of a linear ROM

z′i = λi zi + ψ̄T
i

(

∂R

∂uc

∆uc +
∂R

∂ud

∆ud

)

for i = 1, . . . , m (13)

The set of equations in Eq. (13) consists of m uncoupled ordinary differential equations (ODEs). The
terms of the reduced model are calculated once and for all after the eigenvalues, eigenvectors, and equilibrium
are known.
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Manipulation of the higher-order terms in Eq. (4) yields the formulation of a nonlinear ROM. In addition
to the linear terms in Eq. (12), the two contributions from the second and third Jacobian operators are

ψ̄T
j

(

1

2
Bi (∆w, ∆w) +

1

6
Ci (∆w, ∆w, ∆w)

)

(14)

The terms B and C are, respectively, bilinear and trilinear functions in the argument variables. This
property implies that, after substitution of the transformation of coordinates, the additional terms may be
written as

Bi (∆w, ∆w) =

m
∑

r=1

m
∑

s=1

(

Bi (φr, φs) zr zs + Bi

(

φr, φ̄s

)

zr z̄s +

Bi

(

φ̄r, φs

)

z̄r zs + Bi

(

φ̄r, φ̄s

)

z̄r z̄s

)

(15)

and

Ci (∆w, ∆w, ∆w) =

m
∑

r=1

m
∑

s=1

m
∑

t=1

(

Ci (φr, φs, φt) zr zs zt + Ci

(

φr, φs, φ̄t

)

zr zs z̄t +

Ci

(

φr, φ̄s, φt

)

zr z̄s zt + Ci

(

φr, φ̄s, φ̄t

)

zr z̄s z̄t+

Ci

(

φ̄r, φs, φt

)

z̄r zs zt + Ci

(

φ̄r, φs, φ̄t

)

z̄r zs z̄t+

Ci

(

φ̄r, φ̄s, φt

)

z̄r z̄s zt + Ci

(

φ̄r, φ̄s, φ̄t

)

z̄r z̄s z̄t

)

(16)

The second and third order Jacobians consist, in general, of 4m2 and 8m3 contributions. However, it is
possible to exploit the symmetry of the Jacobians with respect to the arguments a, which reduces the total
number of evaluations to 2m2+m in the case of the bilinear function. Equation (15) can then be rearranged
as

Bi (∆w, ∆w) =
m
∑

r=1

(

Bi (φr, φr) z
2
r + 2Bi

(

φr, φ̄r

)

zr z̄r + Bi

(

φ̄r, φ̄r

)

z̄2r +

2

m
∑

s= r+1

(

Bi (φr, φs) zr zs + Bi

(

φr, φ̄s

)

zr z̄s +

Bi

(

φ̄r, φs

)

z̄r zs + Bi

(

φ̄r, φ̄s

)

z̄r z̄s
)

)

(17)

For the third order Jacobian term, the total number of evaluations may be reduced to 2/3
(

2m3 + 3m2 + m
)

.
For conciseness, the corresponding formulation of C is omitted.

The high-order Jacobian terms required in the model reduction are represented by the bilinear and
trilinear functionals formulated in Eq. (5). It is possible to calculate all the contributions without having to
resort to complex arithmetic, or to calculating all the second and third order partial derivatives analytically.8

Because it is only their action on vectors that is required, matrix-free products are used.
For the first order Jacobian-vector product and for the second and third Jacobian operators, the direc-

tional derivatives on any set of coinciding real vectors, x ∈ Rn, can be approximated using finite differences

Ax =
R1 − R−1

2 ǫ
+ O

(

ǫ2
)

(18)

B (x, x) =
R1 − 2R0 + R−1

ǫ2
+ O

(

ǫ3
)

(19)

C (x, x, x) =
−R3 + 8R2 − 13R1 + 13R−1 − 8R−2 + R−3

8 ǫ3
+ O

(

ǫ4
)

(20)

where Rl = R (x0 + l ǫ∆x). Note that the system Jacobian matrix is in general available in analytic form.
To calculate all the terms in Eqs. (15) and (16), a set of identities for the manipulation of terms like B (x, y)

aNote that Bi (x, y) = Bi (y, x) and similar properties hold for the third order Jacobian.
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and C (x, y, z) can be derived. The following two identities

B (x + y, x + y) = B (x, x) + 2B (x, y) + B (y, y) (21)

B (x − y, x − y) = B (x, x) − 2B (x, y) + B (y, y) (22)

yield the desired result for the second Jacobian term

B (x, y) =
1

4

(

B (x + y, x + y) − B (x − y, x − y)
)

(23)

A similar set of identities is readily derived for C which combined together results in the following general
formulation for a third order Jacobian term

C (x, y, z) =
1

6

(

C (x+ y + z, x+ y + z, x+ y + z) − C (x+ y, x+ y, x+ y) −

C (x+ z, x+ z, x+ z) − C (y + z, y + z, y + z) +

C (x, x, x) + C (y, y, y) + C (z, z, z)
)

(24)

Because eigenvalues are complex in general, the formulations in Eqs. (23) and (24) derived for any real
vector, x,y, z ∈ Rn, can be applied to any complex vector when the real and imaginary parts are treated
separately. Denoting

p = p1 + ip2, p ∈ Cn, p1, p2 ∈ Rn (25)

it follows that, for example,

B (p, p) = B (p1, p1) − B (p2, p2) + 2 iB (p1, p2) (26)

and

C (p, p, p) = C (p1, p1, p1) − 3C (p1, p2, p2) + i
(

3C (p1, p1, p2) − C (p2, p2, p2)
)

(27)

The evaluation of the finite differences suffers from the truncation error for values of the step size ǫ which
are too large, and from the rounding error for values which are too small. The latter effect is more significant
for the coefficients that include a third Jacobian product. References8, 9 conducted convergence studies and
obtained a reliable set of coefficients for the reduced model over a significant range of ǫ.

IV. Robust Control Design

To formulate a control problem, Eq. (13) is written in matrix form

z′ = Λ z + MB uc + ME ud (28)

Here, z is a vector containing the states zi, Λ is the diagonal matrix containing the eigenvalues λi, MB

contains coefficients for the control input, and ME is the coefficient matrix for the gust disturbance.
For two-degree-of-freedom aerofoil control problems with a single control input, as in Section V, uc

consists of the value of the input and its two derivatives with time

uc = [δ, δ′, δ′′]
T

(29)

Since the three functions are mutually dependent, it is convenient to incorporate δ and δ′ into an extended
state vector

x =
[

zT , δ, δ′
]T

(30)

Defining u = δ′′ to be the control input, Eq. (28) now has the form

x′ =







z

δ

δ′







′

=







Λ MB 0 MB 1

0 0 1

0 0 0













z

δ

δ′






+







MB 2

0

1






δ′′ +







ME

0

0






ud (31)

= M̂A x + M̂B u + M̂E ud
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The controlled and measured outputs are taken to be linear combinations of elements of ∆w, that gives,

ymeas = MC x (32)

As the output is linear only with the real and imaginary parts of the states separately, a linear controller
formulation requires splitting the complex states into their real and imaginary parts

x̃ =

(

Re (x)

Im (x)

)

, yctrl =

(

α

yu

)

, w̃ =

(

ud

wd

)

(33)

where the outputs are distinguished by what the controller is aiming to control, yctrl, and what the controller
actually has information about, ymeas. Constants yu and wd are artificial output and disturbance included to
provide tuning variables for the H∞ controller. The state-space system can now be written in the standard
form for H∞ control







x̃′

yctrl

ymeas






=







M̃A M̃E M̃B

C1 D11 D12

C2 D21 D22













x̃

w̃

u






(34)

where the matrices are expanded in the same way

M̃A =





Re
(

M̂A

)

−Im
(

M̂A

)

Im
(

M̂A

)

Re
(

M̂A

)



 , M̃B =





Re
(

M̂B

)

Im
(

M̂B

)



 , M̃E =





Re
(

M̂E

)

0

Im
(

M̂E

)

0





C1 =

[

MC

0

]

, C2 = MC (35)

D11 = 0, D12 =

[

0

kc

]

, D21 =
[

0 kd

]

, D22 = 0

Here, kc and kd are the tuning parameters for the H∞ controller. The parameter kc is a weighting function
that feeds the controlled output via yu = kcu, so that the magnitude of the control input is itself penalised.
Similarly kd is a weighting function on a virtual disturbance wd and is used to simulate the degree of
uncertainty in the controller measurements ymeas.

The resulting controller has the form

u (s) = K (s) ymeas (s) (36)

where K (s) is the transfer function of the H∞ controller in the Laplace domain. This controller is the
one that minimises the H∞-norm of the transfer function taking the disturbance signal w̃ to the controlled
output yctrl, by creating a controller that uses information from ymeas to change the input u. By varying the
tuning parameters, the H∞ controller can be synthesised with variable weights on states (how much should
the states be stabilised) relative to the input (effectively limiting the range of inputs) and measurement noise
(reflecting confidence in the measured output).

Having designed the controller using the linearized system in Eq. (28), the control law in Eq. (36) can
be applied to the nonlinear reduced order model via

x′ = M̂Ax+
[

f(z)T 0 0
]T

+ M̂Bu+ M̂Eud

ymeas =MCx (37)

u(s) =K(s)ymeas

Here the additional f(z) term describes the nonlinear part of the open-loop dynamics. The controller
dynamics are still linear and remain the same as Eq. (36). It will be shown later that the linear controller
still performs well when faced with this particular nonlinear system, for realistic amplitudes of disturbances.
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V. Pitch-Plunge Aerofoil with Structural Nonlinearity

The aerofoil shown in Fig. 1 has two degrees of freedom that define the motion about a reference elastic
axis (e.a.). The plunge deflection is denoted by h, positive downward, and α is the angle of attack about the
elastic axis, positive with nose up. The aerofoil is equipped with a massless trailing-edge flap with hinge at
a distance c b from the midchord. The flap deflection, δ, is defined relative to the undeflected position and
not relative to the wind direction. The motion is restrained by two springs, Kξ and Kα, and is assumed to
have a horizontal equilibrium position at h = α = δ = 0. The system also contains structural damping in
both degrees of freedom.

Undeformed Position

e.a. c.g.

ah b xα b

α

Kξ

Kα

δ

c b

bb

h

Figure 1. Schematic of an aerofoil section with trailing-edge flap; the wind velocity is to the right and horizontal

The equations of motion in dimensional form with nonlinear restoring forces in pitch and plunge can be
derived, for example, using the Lagrange equations12

mḧ + Sα α̈ + Cξ ḣ + Kξ

(

h + βξ h
3 + βξ5 h

5
)

= −L (38)

Sα ḧ + Iα α̈ + Cα α̇ + Kα

(

α + βα α3 + βα5
α5
)

= M (39)

with the structural nonlinearity approximated in a polynomial form.13 The lift, L, is defined positive upward
according to the usual sign convention in aerodynamics. The plunge displacement, h, is positive downward,
as it is conventionally done in aeroelasticity. In nondimensional form, the equations of motion become

ξ′′ + xα α′′ + 2 ζξ
ω̄

U∗
ξ′ +

( ω̄

U∗

)2
(

ξ + βξ ξ
3 + βξ5 ξ

5
)

= − 1

π µ
CL (τ) (40)

xα

r2a
ξ′′ + α′′ + 2 ζα

1

U∗
α′ +

(

1

U∗

)2
(

α + βα α3 + βα5
α5
)

=
2

π µ r2a
Cm (τ) (41)

where nondimensional parameters are defined in the nomenclature. Differentiation with respect to t, indi-
cated by (̇ ), is replaced by a differentiation with respect to τ , ˙( ) = U/b ( )′.

The aerodynamics is given by modelling an incompressible two-dimensional flow as in Theodorsen.14

The total aerodynamic loads consist of contributions arising from the aerofoil motion, flap deflection and
the penetration into a gusty field

CL (τ) = Ca
L (τ) + Cδ

L (τ) + Cg
L (τ) , Cm (τ) = Ca

m (τ) + Cδ
m (τ) + Cg

m (τ) (42)

The generalization of the aerodynamic loads to an arbitrary input time-history is obtained through convolu-
tion or Duhamel integral. For a practical evaluation of the Duhamel integral, an exponential approximation
is used for the Wagner15 and Küssner16 functions which describe, respectively, the indicial build-up of the
circulatory part of the lift and the lift build-up for the penetration into a sharp-edged gust. This implies
that the governing equations in Eqs. (38) and (39) are a set of integro-differential equations (IDEs) for which
analytical solutions are difficult to obtain. In addition, most of the methods to study nonlinear systems
are developed for ODEs. The mathematical procedure based on defining additional variables and equations
describing their evolution is used to convert the set of IDEs into a set of ODEs. The procedure in Lee et
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al.17 is similarly applied to the manipulation of the contributions associated with the flap rotation and the
gust perturbation. Then, the equations of motion are written in the form of Eq. (2), where

w = [α, ξ, α′, ξ′, w5, w6, w7, w8, w9, w10, w11, w12]
T
, uc = [δ, δ′, δ′′]

T
, ud = Wg (43)

By defining 8 auxiliary variables for the aerodynamic states, the state-space vector has dimension 12. The
zeroth and first order control input derivatives are dependent upon the flap rotational acceleration, and thus
incorporated into the state-space vector in the control problem formulation. The residual vector, R, is a
nonlinear function of w when structural nonlinearities are modelled.

The system derived from coupling the pitch-plunge aerofoil structural model with two-dimensional po-
tential flow is a model problem to test the methods. The generation of linear and nonlinear ROMs and their
use to design a control law are now presented.

A. Linear Stability Analysis

Methods for locating the bifurcation point can be divided into two classes. For indirect methods, a bifurcation
point is calculated solving Eq. (2) repeatedly for different values of the bifurcation parameter and detecting a
change of sign of a test function which classifies the bifurcation point. For the Hopf bifurcation, one possible
test is to calculate all the eigenvalues of the large-order system and see when one pair crosses the real axis.
When the crossing has been detected, the secant method can be used to solve for a zero real part of the
eigenvalue. The direct methods solve the system of equations in Eq. (2) augmented by additional equations
that characterize the bifurcation point. In this study, the indirect method was used. The small size of the
model problem allows to use standard routines to solve the eigenvalue problem.

To validate the prediction of the linear instability point with data available in the literature, the aeroelastic
parameters shown in Table 1 were used. The nonlinear spring constants are nil. The traces of the critical

Parameter Value

ω̄ 0.2

µ 100.0

ah -0.5

xα 0.25

rα 0.5

ζα 0.0

ζξ 0.0

Table 1. Reference values of the pitch-plunge aerofoil model for linear stability analysis

complex eigenvalue as the reduced velocity U∗ is changed are shown in Fig. 2(a). The crossing happens
for U∗

L = 6.285, which is the same value reported by Liu et al.18 For the dynamic aeroelastic results
presented in the following sections, the freestream speed is U∗ = 0.95U∗

L and the corresponding root locus
is illustrated in Fig. 2(b). There are two pairs of complex conjugate eigenvalues and eight real eigenvalues
with negative real part. Repeated eigenvalues (λ = −0.0455 and −0.3) correspond to the constants in the
exponential approximation of the Wagner function. Two eigenvalues, λ = −0.1393 and −1.802, correspond
to the constants in the exponential approximation of the Küssner function.

B. Open-Loop Dynamic Aeroelastic Response to Gust

Several tests were made to assess the accuracy of the ROM in the prediction of the dynamic response to
a gust perturbation. Approaches to represent gust perturbations include discrete and continuous models.19

Examples of the former are the ”one-minus-cosine” and sinus functions, and examples of the latter are the
power spectra density of Dryden and Von Karman models. However, to focus attention on a particular case,
a deterministic sinusoidal gust of the form

Wg (τ) = W0 sin

(

2 π

hg

(τ − τ0)

)

for τ0 ≤ τ ≤ τ0 + hg nc (44)
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Figure 2. Pitch-plunge aerofoil using incompressible two-dimensional aerodynamics; (a) critical mode traces;
(b) root locus at U∗/U∗

L = 0.95, real eigenvalue λ = −1.802 is not included in the plot

was used. The choice of a discrete gust reflects a practical question, but it does not represent a fundamental
problem in the phase of model reduction. In fact, the gust is an external excitation and its particular form is
irrelevant when reducing the dynamics of the full-order model. More realistic gust models will be considered
in verifying the control law. One sinusoidal cycle was simulated, nc = 1. Several gusts of different wavelength
were selected with the corresponding reduced frequency spanning the spectrum of the system eigenvalues.

It is possible to compare the open-loop dynamic aeroelastic response obtained integrating the FOM with
the response predicted using ROMs. This allows to investigate the convergence of the reduced model for
increasing number of modes in approximating the full system dynamics. Results are presented for an aerofoil
section with and without structural nonlinearities.

Figure 3 shows the time-history of the angle of attack and plunge displacement in response to a gust of
wavelength hg = 20 and intensity W0 = 0.001. In this first case, the structural nonlinearities are neglected.
Note that the gust shape is shown in the lower part of the same figure for a comparison with the dominant
wavelength of the response. The ROM was enhanced by adding the least damped eigenvalue and the
corresponding eigenvector not already included in the existing ROM. The inclusion of the first structural
mode is not sufficient to get a response representative of the FOM. An improvement in the ROM solution
is achieved when including the second structural mode. This ROM predicts well the free response of the
system after the gust moves away from the aerofoil but differences between ROM and FOM are observed
when the aerofoil penetrates into the gust. No improvement in the ROM response was found by adding the
subsequent three modes, and these are not plotted. The ROM with the sixth mode (λ = −0.1393) reproduces
the FOM response for all times, suggesting that the sixth mode couples the structural response with the
gust input. The reason is that the eigenvalue corresponds to the slower time constant in the approximation
used for the Küssner function. Based on these results, unwanted effects may be experienced when a control
law formulated on the basis of the one-mode ROM is applied to control the FOM.

Tests were made comparing the time-response of the FOM with and without cubic stiffness in pitch. For
increasing intensity of the gust perturbation, increasing effects of the structural nonlinearities in the dynamic
response were found. In the case of the nonlinear structural model here considered, βα = 3.0. Results in
Fig. 4 are for a sinusoidal gust of hg = 40.0 and W0 = 0.10. Note that the gust vertical velocity is one
hundred times larger than in the linear case above. As the aerofoil travels into the gusty field, the dynamic
responses of the FOM with and without nonlinearities are identical. The motion variables are the largest
in magnitude some time after the gust has left the aerofoil, but large differences between FOM and NFOM
are also observed in the free-response. The reason for a large overshoot in the response of the linear system
is that the nonlinearity is representative of an hardening spring (βα > 0). The point here is to illustrate a
test case in which the time-response of the FOM is affected by the degree of structural nonlinearity and to
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Figure 3. Dynamic aeroelastic response to a sinusoidal gust (hg = 20.0, W0 = 0.001) at U∗/U∗
L = 0.95 with linear

stiffness parameters

demonstrate the nonlinear model reduction in this case.
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Figure 4. Dynamic aeroelastic response of the FOM to a sinusoidal gust (hg = 40.0, W0 = 0.10) at U∗/U∗
L = 0.95

with linear and nonlinear (βα = 3.0) stiffness parameters

Next, a NROM was created with nonlinear terms up to third order. Several modes were recursively
included as described above, and results are shown in Fig. 5. The one-mode NROM response diverged as the
gust moves away from the aerofoil with a continuously decreasing angle of attack, and is not plotted. The
two-mode prediction provides a reasonable approximation of the reference solution, with a larger deviation
occurring when travelling into the gust. The tree-mode NROM prediction is identical to the reference
solution by adding the real-valued eigenvalue λ = −0.1393. A consideration is that the NROM proved
adequate to predict the nonlinear response in a case in which a linear FOM has shown large deviations from
the nonlinear counterpart (recall Fig. 4). It also demonstrates the improvement achieved in the ROM when
including higher-order terms.
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Figure 5. Dynamic aeroelastic response to a sinusoidal gust (hg = 40.0, W0 = 0.10) at U∗/U∗
L = 0.95 with

nonlinear (βα = 3.0) stiffness parameters

C. Closed-Loop Dynamic Aeroelastic Response to Gust

Tests were made to observe the effect of a linear H∞ controller on the closed-loop dynamic response to a
gust perturbation. The controller designed on the basis of a linear ROM is applied, by Eq. (37), to the
nonlinear ROM with the aim of achieving gust rejection. The disturbance input to the nonlinear system
dynamics is taken as the sinusoidal gust load in Eq. (44) with hg = 20.0 and W0 = 0.10.

Figure 6(a) shows the closed loop response of the nonlinear reduced-order model, for varying control
weights kc, plotted against the open loop responses. It can be seen that a small control weight kc produces
a controller that is better at suppressing the sinusoidal gust. Conversely, a more significant weight placed
on the input kc slows down the variation of δ, as shown in Fig. 6(b), since a stronger weight is placed on
u = δ′′ relative to the system output. Varying the measurement noise weight kd also has an effect on the
controller dynamics. A less confident measurement significantly reduces the control input, as illustrated in
Figs. 6(c) and 6(d).

We note that the difference between the closed-loop response of linear ROM and the closed loop response
of the nonlinear ROM is minimal. This suggests that theH∞ controller, which was designed on the linearised
system dynamics, is able to effectively suppress gust disturbances to the nonlinear reduced order model. A
possible explanation for this desirable behaviour is that the nonlinearity has a cubic hardening effect, which
itself serves to stabilise the system.

VI. Pitch-Plunge Aerofoil using Computational Fluid Dynamics

The coupled system is derived from coupling the structural model for an aerofoil free to move in pitch
and plunge with a CFD solver. The CFD solver used is the Parallel Meshless (PML) solver of the University
of Liverpool which solves the Euler, laminar and Reynolds-averaged Navier-Stokes equations on clouds of
points, as opposed to cells of a finite volume grid. The basic approach of the solver is summarised in Ref.,20

the main features of which are the use of an implicit meshless scheme to simulate complex flows around multi-
body configurations in relative motion, a preconditioned Krylov subspace method to perform the integration
in time, and the use of a combination of approximate, analytical Jacobian matrices and an inexact linear
system solver to improve the computational efficiency of the scheme.

Two challenges arise when using CFD as the source of the aerodynamic predictions. The solution of a
large sparse linear system arising from an eigenvalue problem is needed for model generation. Then, the
ability to simulate a gust encounter is a prerequisite to calculate the gust influence coefficients for model
generation.
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Figure 6. Dependencies of angle of attack and flap deflection time-histories on control weights; (a)-(b) varying
kc with kd = 0.1; (c)-(d) varying kd with kc = 1
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To overcome the first problem, the Schur complement eigenvalue formulation is used. The method leads
to a small nonlinear eigenvalue problem that can be solved rapidly by removing the need to solve large sparse
linear systems that are almost singular. The coupled system Jacobian matrix of Eq. (2) is most conveniently
done by partitioning the matrix as

A =

[

∂ Rf

∂wf

∂ Rf

∂ws

∂ Rs

∂wf

∂ Rs

∂ws

]

=

[

Aff Afs

Asf Ass

]

(45)

The block Aff represents the influence of the fluid unknowns on the fluid residual and has by far the largest
number of nonzeros for the pitch-plunge aerofoil. The term Afs arises from the dependence of the CFD
residual on the mesh motion and speeds, which depend in turn on the structural solution, and is evaluated
by finite difference. The term Asf is due to the dependence of the generalized forces on the surface pressures.
Finally, the block Ass is the Jacobian of the structural equations with respect to the structural unknowns.

Write the coupled system eigenvalue problem as
[

Aff Afs

Asf Ass

]

p = λp (46)

where p and λ are the complex eigenvector and eigenvalue, respectively. Partition the eigenvector as

p =
[

pTf , p
T
s

]T
(47)

By substituting pf from the first set of equations into the second set of equations in Eq. (46), it can be found
that the eigenvalue λ, assuming it is not an eigenvalue of Aff , satisfies the nonlinear eigenvalue problem

S (λ) ps = λps (48)

where S (λ) = Ass −Asf (Aff − λI)
−1
Afs. The matrix S (λ) is the sum of the structural matrix and a

second term arising from the coupling of the fluid and structure. The nonlinear Eq. (48) is solved using
Newton’s method. To overcome the cost of forming the residual and its Jacobian matrix at each iteration, a
Taylor expansion of (Aff − λI)

−1
is used. More details on the Schur complement eigenvalue solver and its

application to realistically sized aeroelastic models can be found in Ref.21

The second problem to address is the simulation of gust loads using a CFD solver. Based on previous
work,22 the approach in Ref.23 referred to as the field-velocity approach is used. The gust is introduced
into an existing CFD solver by modification of the velocity of grid points during the unsteady motion of the
aerofoil. A disadvantage of the field-velocity approach is that the gust is assumed frozen, and the influence
of the structural response on the gust is neglected. Thus, the generality of CFD is not fully exploited. The
approach has received widespread use because of the lack of alternative methods.

To form the gust influence coefficients in the ROM state-space formulation, the last term in Eq. (13)
needs to be computed. Denote by ug, z the vertical component of gust velocity. Two methods have been
tested. The first consists of perturbing the velocity of all grid points at the same time, and the term ∂ R

∂ug, z
is

computed by finite difference with two residual evaluations. An alternative method is to perturb the velocity
of each grid point in turn, and calculate by finite difference the columns of a large sparse matrix, Bg. The
columns are calculated as

Bg, i =
∂R

∂u
(i)
g, z

for i = 1, . . . , np (49)

where np is the total number of grid points and u
(i)
g, z the perturbation of the vertical velocity applied to the

i-th grid point. The action of this matrix on a time-dependent vector, which depends on the shape of the
gust and location of the grid points, is needed. Finally, the last term in Eq. (13) is rewritten as

ψ̄T
i Bg

∂ ug, z

∂Wg

(50)

The first two terms on the left involve a matrix-vector multiplication, and this can be done when forming
the ROM. At every time step iteration, the vector on the right has to be updated and the scalar product of
two vectors evaluated.
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The test problem considered herein is for the NACA 0012 aerofoil at zero incidence. The parameters for
the structural model are given in Table 2. The testcase corresponds to the heavy case described in Ref.24

The point distribution used for the Euler calculations is shown in Fig. 7 and consists of 7974 grid points. A
refinement study can be found in Ref.20

Parameter Value

ω̄ 0.343

µ 100.0

ah -0.2

xα 0.2

rα 0.539

ζα 0.0

ζξ 0.0

Table 2. Reference values of the pitch-plunge aerofoil model

Figure 7. Point distribution for NACA 0012 aerofoil

A. Free-Response to Initial Conditions

At Mach M = 0.6, the aerofoil in the heavy configuration becomes unstable for a reduced velocity larger
than 4. For the results presented, U∗ = 2.0 and the system is asymptotically stable. A linear reduced model
was formed using the Schur complement tracking the two structural normal modes. Hence, the ROM has
dimension 2.

The free-response to an initial angle of attack α0 = 1 deg is illustrated in Fig. 8. The time-accurate
simulation of the coupled system was performed over 2000 time steps, and is denoted in figure by ”FOM”.
The predictions obtained using a linear ROM are in excellent agreement. The cost for ROM generation was
a fraction of the cost incurred by the time-accurate simulation.

B. Open-Loop Dynamic Aeroelastic Response to Gust

Fundamental to this work is the simulation of a gust encounter. To test the model reduction, two testcases
are presented for various gust shapes. The first case features a step-change in angle of attack, which is
representative of a gust of constant intensity instantaneously affecting the entire flow domain. The second
case is for a discrete ”1-cos” gust which is convected downstream at freestream speed. To allow a comparison
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Figure 8. Free-response of pitch-plunge aerofoil for initial condition α0 = 1 deg, Mach number M = 0.6 and
reduced velocity U∗ = 2.0; the term ”FOM” indicates the fully coupled system using CFD

of CFD-based results with those based on potential flow, the Mach number was set to 0.3. As before, the
ROM was generated with 2 modes.

Figure 9 shows the time-history of the angle of attack and plunge displacement in response to a step-
change in angle of attack. For a gust intensity of W0 = 0.01, the steady-state increment in angle of attack is
∆α = 0.57 deg. Results obtained using CFD and potential theory are reported, respectively, on the upper
and lower part of the figure. Because of the benign flow conditions, the similarity in the dynamic response
of FOMs is not unexpected. The ROM predictions are qualitatively similar to their FOM counterparts. The
reason for a constant offset between each pair of results is that 2 modes are inadequate to recover steady-state
effects. To overcome this, more modes are needed. An alternative is to use the mode acceleration method,
which consists in complementing the solution with the missing terms from the modal expansion of the static
response. Note that any realistic gust has a finite duration, and this case served for the purpose of testing
the model reduction.

The response to a discrete ”1-cos” gust is examined in Fig. 10. The point here is to illustrate the effect
of the approximations introduced when calculating the gust terms in the ROM state-space formulation. The
gust has the form

Wg (τ) =
W0

2

(

1 − cos

(

2 π

hg

(τ − τ0)

))

for τ0 ≤ τ ≤ τ0 + hg nc (51)

where hg = 12.5, W0 = 0.01, and nc = 1. The gust perturbation is restricted to within 6.25 aerofoil chords,
and the remaining domain is unaffected by the gust. At the initial time, the gust front is located at the
leading edge of the aerofoil. The gust travels downstream at freestream speed and at τ = 2 the gust front
is at the trailing edge of the aerofoil. Two ROM predictions are compared in figure and differ only in the
computation of gust influence coefficients. For the first, referred to as ”ROM (vector)” in figure, the gust
terms were obtained by perturbing the velocity of all grid points at the same time. For the curve denoted by
”ROM (matrix)”, the sparse matrixBg, with columns defining the dependence of the residual on the velocity
of each grid point in turn, was generated. In the case of a gust varying in space and time, the approximation
introduced using the first approach leads to poor results compared to the FOM. On the opposite, the matrix
approach agrees well with the FOM. Note that the small deviations for small times are attributable to using
two modes only, and a similar feature was observed in Fig. 3. The cost of model generation was neglegible
with respect to the cost incurred by the time-accurate simulation. Once created, the ROM can be used at
no additional cost in a parametric study, for example, in determining the worst-case gust loads.
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Figure 9. Response of pitch-plunge aerofoil section to a step-change in angle of attack (∆α = 0.57 deg), Mach
number M = 0.3, and reduced frequency U∗ = 2; (a)-(b) the term ”FOM” indicates the fully coupled system
using CFD; (c)-(d) the term ”FOM” indicates the fully coupled system using potential two-dimensional theory
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Figure 10. Response of pitch-plunge aerofoil section to a ”1-cos” gust (W0 = 0.01 and hg = 12.5), Mach number
M = 0.3, and reduced frequency U∗ = 2; the term ”FOM” indicates the fully coupled system using CFD

VII. Geometrically-Exact Nonlinear Beam

For the structural model, the geometrically-exact nonlinear beam equations are used.25 Results are
obtained using two-noded displacement-based elements. In a displacement-based formulation, nonlinearities
arising from large deformations are cubic terms, as opposed to an intrinsic description where they appear
up to second order. The finite element beam code used in this study has been tested extensively, and more
details can be found, for example, in Ref.2

For the aerodynamic model, the unsteady potential two-dimensional theory is used (see § V). For each
aerofoil section, aerodynamic forces are treated as follower forces that depend on the local instantaneous
angle of attack of the wing aerofoil.

The problem considered is a wing representative of a flexible HALE aircraft. The wing is modelled as
clamped at one side and free at the other. The wing has an aspect ratio of 16, and the root chord is 1 m.
The reference system adopted has the x-axis running along the beam span from the root to the tip, the
y-axis along the chord, and the z-axis directed upward.

Data for the geometry, mass and stiffness distribution are available in Ref.26 Tests were made to ensure
results were independent of the number of elements used, and it was decided that 16 elements were adequate.
Results for the structural dynamic model are examined first, and then results for the coupled nonlinear
aeroelastic system are presented.

A. On the Significance of Nonlinear Terms

The nonlinear model reduction in this work is based on a Taylor series expansion around the equilibrium
point, w0. A consideration is that the series may not converge, or converge to a wrong solution, for a large
perturbation, ∆w. The evaluation of higher-order Jacobians may also suffer from truncation and rounding
errors, and a range in the step size is needed to ensure the computations are independent of the step size
used.

Results presented in Fig. 11 address these two problematics. The equilibrium point is assumed to be
the undeformed initial geometry, and the aerodynamics is switched off. A perturbation proportional to the
first bending mode was chosen, ∆w = φ1 · η, where η is the amplification factor. Denote by R (w0 +∆w)
the nonlinear residual evaluated at the current perturbed configuration. The nonlinear residual was Taylor
expanded up to third order using matrix-free products which involve terms like R (w0 + ε ·∆w), where ε is
the step size of the finite difference. The L2 norm of the error between the nonlinear residual evaluation and
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the Taylor expansion was calculated for a range of ε. The notation used in Fig. 11 is as follows

L2 [1st Order] = ‖R (w0 +∆w) − A∆w‖2 (52)

L2 [1st Order FD] = ‖R (w0 +∆w) − (A∆w)FD ‖2 (53)

L2 [2nd Order] = ‖R (w0 +∆w) − A∆w − 1/2B‖2 (54)

L2 [3rd Order] = ‖R (w0 +∆w) − A∆w − 1/2B − 1/6C‖2 (55)

Note that the system Jacobian matrix is available analytically, and tests were made to approximate the
matrix-vector product by using finite difference, Eq. (53). It was found that the error reduces drastically
when nonlinear terms are included in the Taylor expansion, and that matrix-free products can be calculated
accurately over a wide range in the step size.
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Figure 11. L2 norm of the error in Taylor series truncation for several perturbation values, ∆w = φ1 ·η, around
initial undeformed geometry; Φ1 is the first bending mode, and ε is the step size used in the finite difference

B. Forced-Response to a Harmonic Follower Force

Forced-vibrations of the beam are driven by a harmonic follower force applied at the wing tip in the ver-
tical direction (z-axis in the beam reference system). The force is applied at the elastic axis avoiding any
bending/torsion coupling. The force has the form

F (t) = F0 + FA sin (ω t) (56)

where F0 is the static force and FA is the force amplitude with angular frequency ω. These terms act here as
free parameters so as the beam undergoes small/large deformations around small/large static deflections. In
addition to the geometrically-exact nonlinear beam equations, the linearised equations are also available in
analytic form. The approach used here and in the remaining sections is to perform first a linearised/nonlinear
static solution, followed by the time-integration of the linearised/nonlinear dynamic equations. The inte-
gration in time of the large-order system uses the Newmark method.27 For ROM generation, two modes
corresponding to the lowest bending modes were used.

The case for small deformations is examined first, FA = 10 N. Figure 12 shows the time history of the wing
tip vertical displacement for two values of the applied static force. For F0 = 0 N, the beam vibrates around
its undeformed configuration, the response is linear and ROM predictions agree with the FOM responses.
With a larger static deformation, Fig. 12(b), the linearized solution (labelled by ”FOM”) differs moderately
from the nonlinear solution (labelled by ”NFOM”). Two ROMs were generated. The curve ”ROM” is the
linear reduced model created at the static deformed position, which is assumed the reference geometry for
model projection. The curve ”NROM - 1st” was projected using the nonlinear beam equations and accounts
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for all applied forces that deform the beam from its undeformed geometry to the deformed position. Reduced
models are in good agreement with the corresponding FOM responses.

t [s]

P
z [

m
]

0 1 2 3 4 5

-0.1

-0.05

0

0.05

0.1

FOM
NFOM
ROM
NROM - 1st

(a) F0 = 0 N

t [s]

P
z [

m
]

0 1 2 3 4 5
5.7

5.8

5.9

6

6.1

6.2

6.3

FOM
NFOM
ROM
NROM - 1st

(b) F0 = 900 N

Figure 12. Wing tip vertical displacement time response, Pz (t), to a harmonic follower force (ω = 2 rad/s and
FA = 10 N); (b) beam deformations are large compared to the span of 16 m

Results for large deformations around a large static deflection are shown in Fig. 13, with the beam
undergoing deflections of the order of 50% of its span. The beam deflection at every 0.5 s for the first 3
s is shown in Fig. 13(b) in scale 1:1 for the horizontal and vertical axes. The linearized solution differs
substantially from the fully nonlinear solution. The curve labelled by ”ROM” predicts well the response
of the linearized system, referred to as ”FOM”. However, the interest here is on the performance of the
nonlinear ROMs. Note that the curve ”NROM - 1st” follows closely the nonlinear solution, and that the
nonlinear ROM with quadratic terms is identical to the reference curve.
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Figure 13. Wing tip vertical displacement time response, Pz (t), to a harmonic follower force (ω = 2 rad/s and
FA = 200 N); (b) deformations obtained using nonlinear beam equations, the bold line is the static deformed
position
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C. Open-Loop Dynamic Aeroelastic Response to Gust

The system derived from coupling the nonlinear beam code with two-dimensional potential flow is finally
considered. To allow comparison with independent results, the freestream density ρ∞ = 0.0899 kg/m3

corresponding to an altitude of 20000 m is used. Tests were run to assess convergence of the results presented
for increasing number of beam elements, and 16 elements were found adequate in all cases. Aerofoil sections
are located at the position of structural nodes, and the coupled system comprises 20 degrees of freedom for
each node, 12 arising from the structural model and 8 from the aerodynamic model.

The instability point of the coupled system can be identified rapidly using standard routines, as in the
case of § V. The linear flutter speed and frequency are summarized in Table 3. For the reference data,26 an
unsteady vortex-lattice method which accounts for three-dimensional effects at the wing tip was used. The
favourable comparison shows that, for high-aspect ratio wings and high enough frequencies, two-dimensional
aerodynamic models may be more cost-effective than 3-D methods.

UL [m/s] ω [rad/s]

Present 102 69.7

Ref.26 104 72.4

Table 3. Linear flutter speed and frequency of the HALE wing (h = 20000 m and ρ∞ = 0.0899 kg/m3)

The vertical displacement of the wing tip in response to gust perturbations of the form ”1-cos” is shown
in Fig. 14. Two cases are considered. The first is for U∞ = 10 m/s and the initial angle of attack before the
gust encounter is α∞ = 10 deg. Because of the low dynamic pressure, loads acting on the wing are small and
deflections remain linear. Following the penetration into the gust, the beam vibrates but the flow around
it extracts energy and the response is damped. The basis for model generation includes several modes, of
which two defining the lowest wing modeshapes. The second case is for a higher speed, U∞ = 60 m/s.
Differences between the linearized and nonlinear analyses increase for increasing dynamic pressure. For the
linearized solution, the ROM prediction is virtually identical to the full-order solution. Nonlinear reduced
models including up to quadratic terms follow closely the nonlinear solution.
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Figure 14. Wing tip vertical displacement time response, Pz (t), to a ”1-cos” gust shape of intensity W0 = 0.01;
(a) α∞ = 10 deg, U∞ = 10 m/s, and hg = 1 m; (b) α∞ = 2.5 deg, U∞ = 60 m/s, and hg = 2 m
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VIII. Conclusions

A systematic approach to the model reduction of large dimension fluid-structure-flight models is outlined.
The approach uses information on the eigenspectrum of the coupled system Jacobian matrix and projects
the system through a series expansion onto a small basis of eigenvectors representative of the full-order
dynamics. Results presented include:

• an aerofoil free to move in pitch and plunge with structural nonlinearities; the testcase is assumed as
model problem to test the methods; cases with significant nonlinear structural effects were identified,
and linear and nonlinear reduced models were generated to accurately predict the full-order dynamics;
the design of a controller based on reduced models generated was shown to alleviate the gust loads;

• an aerofoil free to move in pitch and plunge with the flow modelled using the Euler equations; for
large-order systems, the Schur complement was used to rapidly provide the information needed for
model reduction, and various approximations to calculate the gust influence coefficient terms in the
reduced model dynamics were examined;

• a flexible wing modelled using the geometrically-exact nonlinear beam equations; the coupled system
was driven into small/large deformations around small/large static deflections, and reduced models
were found to achieve a good agreement in all cases.

Future work will be addressed at exploiting the model reduction to control and alleviate the gust loads on
the flexible wing and at testing the nonlinear model reduction when the flow is modelled using computational
fluid dynamics equations. Then, the model reduction will be applied to nonlinear large order systems
augmented with the rigid body dynamics.
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