Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals

John W. 'Mac' McDonald & Alessandro Rosina

Quantitative Methods in the Social Sciences Seminar - Analysis of Longitudinal Data

Hutterite data

- natural high fertility population
- no use of contraception
- first birth interval
 - 432 closed birth intervals
 - 18 open birth intervals
- 2+ birth intervals
 - 2,544 closed birth intervals
 - 301 open birth intervals

Analysis of Hutterite birth intervals

- use complete birth histories
 - simultaneously analyse all intervals
 - including open intervals
- simultaneously model
 - waiting time to conception
 - primary sterility
 - secondary sterility

New estimation approach

- Bayesian approach
- Gibbs sampling
 - flexible
 - but computationally demanding

Why mixture models for survival data?

problem of long-term survivors

- time to event of interest equals infinity
- e.g. sterile never close birth interval
- bias if problem ignored

use mixture model

- proper inference
- few demographic applications to date

Mixture model for two populations

- 1: those eventually having the event
- 0: those at zero risk of having the event

$$Y = \begin{cases} 1 & \text{if eventually having the event} \\ 0 & \text{if zero risk, i.e., long-term survivor} \end{cases}$$

Mixture model for two populations . . .

- ullet Y is partially observable
 - known for uncensored observation
 - missing for right-censored observation
- ullet logistic model for distribution of Y

$$logit(pr(Y = 1)) = X'\beta$$

Generic survival model

- individual with vector of covariates X
- uncensored observation at time t: likelihood term is the probability of experiencing the event at time t,

$$pr(Y = 1 \mid X) f(t \mid Y = 1, X)$$
 (1)

Generic survival model . . .

censored observation at time t:

likelihood term is the probability of being a long-term survivor plus the probability of experiencing the event after time t

$$pr(Y = 0 | X) + pr(Y = 1 | X) S(t | Y = 1, X)$$
 (2)

likelihood is product of (1) & (2) terms

Alternative models for a single event

Weibull

- Farewell (1982)
- accelerated failure time
 - Yamaguchi (1992)
 - Yamaguchi and Ferguson (1995)
- piecewise constant hazard
 - Li and Choe (1997)
 - Wang and Murphy (1998)

Logistic-normal-geometric model

- discrete-time survival model
- model for a single event or recurrent events
- including unobserved heterogeneity
- can be extended to account for long-term survivors
- McDonald and Rosina (2001)

Mixture modelling of recurrent events

- simultaneous estimation of logistic model for long-term survivors
 - estimates effects of covariates on the probability of the event occurring
- simultaneous estimation of survival model
 - estimates effects of covariates on the timing of the event, given that it will occur

Algorithms for model fitting

- Expectation-Maximization algorithm
 - commonly used
 - simple, but slow
 - standard errors not obtained
- Markov chain Monte Carlo methods, e.g.
 Gibbs sampling

Discrete-time event history model

- individual event history is a series of Bernoulli or success/failure trials at each discrete time point, e.g., month
- let T = waiting time to conception (success) in months, $t=1,2,3,\ldots$
- discrete hazard is $h_t \equiv pr(T = t \mid T \geq t)$

Discrete-time event history model . . .

ullet probability of conception at time t is

$$\mathbf{pr}(T=t) = (1-h_1)(1-h_2)\cdots(1-h_{t-1})h_t$$

geometric distribution has constant

hazard, i.e., $h_t = p$, and

$$pr(T=t)=q^{t-1}p$$
 where $q\equiv 1-p$

Geometric distributed waiting times

uncensored observation at time t:

likelihood term is

$$\mathbf{pr}(T=t) = q^{t-1} \, p$$

or 1 success out of t trials

censored observation at time t:

likelihood term is

$$\mathbf{pr}(T \ge t) = q^{t-1}$$

Geometric distributed waiting times . . .

• trick: software for fitting logistic models can be used to fit geometric distributed waiting times and allow for covariates!

logit(hazard) =
$$X'\beta$$

 observed heterogeneity in risk is modelled by a geometric regression model

Logistic-normal-geometric model

 unobserved heterogeneity in risk is modelled by a mixed-geometric regression model for waiting times

logit(hazard) =
$$X'\beta + Z\sigma$$

 $Z \sim N(0,1)$

- Z unobserved covariate value
- $m{\bullet}$ standard deviation parameter
- $Z\sigma$ random effect

Logistic-normal-geometric model . . .

• trick: software for fitting random effects logistic models can be used to fit mixed-geometric distributed waiting times and allow for observed and unobserved heterogeneity!

Constant hazard: recurrent events

• T_k = time between k-1 & k th conception

$$T = T_1 + \cdots + T_k$$

ullet probability of kth conception at time t is

$$pr(T = t) = q^{t_1-1} p \times q^{t_2-1} p \times \cdots \times q^{t_k-1} p$$

- uncensored observation at time t:
 - likelihood term is

$$pr(T=t) = q^{t-k} p^k$$

1st birth interval/primary sterility

1st birth interval

- ullet covariates F and effects γ
- logit(hazard | fecund) = $F' \gamma + Z \sigma$

primary sterility

- covariates P and effects α
- logit(primary sterility) = $P' \alpha$

2+ birth intervals/secondary sterility

2+ birth intervals

- covariates H and effects δ
- logit(hazard | fecund) = $H' \delta + Z \sigma$

secondary sterility

- ullet covariates S and effects eta
- logit(secondary sterility) = $S' \beta$

All birth intervals

1st birth interval

- logit(hazard | fecund) = $F' \gamma + Z \sigma$
- 2+ birth intervals
 - logit(hazard | fecund) = $H' \delta + Z \sigma$
- common unobserved $Z \sim N(0,1)$
- ullet common effect σ
- common normal random effect

Logistic-normal-geometric model . . .

- logit(hazard) = $F' \gamma + Z \sigma$
- have joint likelihood $l(\gamma, \sigma, Z)$
 - but each Z is unknown
- ullet obtain marginal likelihood $l(\gamma,\sigma)$
 - by integrating out Z over its prior N(0,1)
 - exact integration impossible as logistic is a nonlinear model

Estimation methods

quadrature

approximate using numerical integration

quasi-likelihood

- Taylor series approximation
- nonlinear model becomes linear
- Bayesian inference via Gibbs sampling
 - samples $[\gamma, \sigma, Z]$ from **joint** likelihood for inference on each parameter

Bayesian Inference

- parameters random with distributions
 - prior to data
 - posterior given data
- apply Bayes Theorem
- ullet posterior \propto likelihood imes prior
- 'uninformative' locally uniform priors \Longrightarrow posterior \simeq standardized likelihood

Estimation by Gibbs sampling

 sample from joint posterior by sampling univariately from full conditionals

- sample $\gamma^1 \sim [\gamma \mid \sigma^0, Z^0]$
- sample $\sigma^1 \sim [\sigma \mid \gamma^1, Z^0]$
- sample $Z^1 \sim [Z \mid \gamma^1, \sigma^1]$
- generate a joint sample (γ^1 , σ^1 , Z^1) and so on 2, 3, \cdots
- discard early 'burn-in' phase

Estimation by Gibbs sampling . . .

- fitting mixed-geometric survival model with long-term survivors is straightforward extension
- WinBUGS for fitting Bayesian model
- can use the univariate sample average for inference on each parameter

Hutterite data

- 724 unions
- exclusions for incomplete information
- dataset for analysis
 - 450 families
 - 2,976 births
 - 3,295 birth intervals

Hutterite data . . .

- first birth interval
 - 432 closed birth intervals
 - 18 open birth intervals
- 2+ birth intervals
 - 2,544 closed birth intervals
 - 301 open birth intervals

Effective conditional fecundability

- effective = conception leads to live birth
- conditional on being fecund (not sterile)
- bias if open intervals excluded
 - some women may not be sterile throughout open interval

Model waiting time to conception

- waiting time to conception
 - **= birth interval 8 months**

$$= 1, 2, 3, \cdots$$

discrete-time survival model

Effects on primary sterility

	mean	2.5%	97.5%
constant	-2.92	-4.18	-1.82
cohort 1910-19	-1.30	-3.29	0.33
>1919	-0.97	-2.18	0.27
age at < 21	-0.17	-1.50	1.17
marriage > 23	0.70	-0.77	2.11

cohort & age at marriage not significant

Effects on secondary sterility

	mean	2.5%	97.5%
constant	-6.25	-8.26	-6.14
cohort 1910-19	0.10	-0.44	0.64
>1919	1.06	0.11	1.96
<21	-79.63	-221.80	-2.29
24–26	0.56	-1.57	2.87
age at 27-29	0.64	-2.00	3.18
start of 30-32	0.84	-1.99	3.53
birth 33-35	1.35	-1.69	4.05
interval 36–38	1.70	-1.36	4.51
39–41	3.35	0.27	6.29
>41	5.99	2.95	8.88
previous child died	0.46	-0.61	1.41
<u>_</u>	1		

- previous child died not significant
- but one cohort & late age at start significant

Effects on secondary sterility . . .

	mean	2.5%	97.5%
3–5	-0.32	-2.22	1.53
6–8	80.0	-1.91	2.32
duration 9-11	0.82	-1.17	3.26
of 12–14	1.15	-0.85	3.81
marriage 15-17	0.94	-1.17	3.67
18–20	1.45	-0.63	4.15
>20	1.76	-0.35	4.50

duration of marriage not significant,
 but positive trend

Effects on 2+ birth spacing

	mean	2.5%	97.5%
3–5	-0.21	-0.35	-0.06
6–8	-0.34	-0.52	-0.15
duration 9-11	-0.33	-0.55	-0.12
of 12–14	-0.34	-0.61	-0.08
marriage 15-17	-0.42	-0.72	-0.11
18–20	-0.39	-0.76	-0.02
>20	-0.59	-1.13	-0.04
sigma	0.104	0.005	0.256

duration of marriage significant with negative trend mss-p.36/45

Effects on 2+ birth spacing

	mean	2.5%	97.5%
constant	-2.37	-2.51	-2.23
cohort 1910-19	0.18	80.0	0.29
>1919	0.18	0.07	0.29
<21	-0.11	-0.38	0.15
24–26	0.02	-0.13	0.17
age at 27-29	-0.02	-0.21	0.16
start of 30-32	-0.01	-0.23	0.20
birth 33–35	-0.07	-0.33	0.20
interval 36–38	-0.08	-0.37	0.21
39–41	-0.24	-0.61	0.11
>41	0.05	-0.58	0.66
previous child died	0.40	0.18	0.61

previous child died significant, cohort
 significant & age at start not significant

Effects on first birth interval spacing

	mean	2.5%	97.5%
constant	-1.21	-1.50	-0.92
cohort 1910-19	-0.10	-0.43	0.24
>1919	0.02	-0.26	0.31
age at <21	-0.16	-0.40	0.08
marriage >23	-0.37	-0.70	-0.05

- cohort not significant
- last age at start significant

Results

- effects on primary sterility
 - cohort not significant
 - age at marrige not significant

- effects on secondary sterility
 - age at start of interval
 - positive trend
 - 39-41, 41+ significant
 - duration of marrige not significant, but positive trend
 - cohort: 1919+ significant
 - previous child died not significant

- effects on first birth spacing
 - last age at start of interval significant
 - cohort not significant

- effects on 2+ birth spacing
 - duration of marrige significant, negative trend
 - age at start of interval not significant,
 no trend
 - cohort: 1910-19, 1919+ significant
 - previous child died significant, positive

- ullet unobserved heterogeneity σ
- mean .1042
- median .0955
- s.d. .0692
- 95% CI [.0048, .2560]

New birth interval/sterility model

- uses complete birth histories
 - simultaneously analyse all intervals
- simultaneously models determinants of
 - waiting time to conception
 - primary sterility
 - secondary sterility
- allows for zero risk subpopulations
- estimates fecundability for those fecund

Posterior probability of sterility

• posterior probability that an individual with vector of explanatory variables x comes from population Y=0, given that no event has occurred by time t

$$pr(Y = 0 \mid X, T > t) = \\ \frac{pr(Y = 0 \mid X)}{pr(Y = 0 \mid X) + pr(Y = 1 \mid X) \ S(t \mid Y = 1, X)}$$