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SIMULATING THE COLOUR OF PORT WINE STAIN SKIN 

by Thomas Stephen Lister 

 

Currently, laser treatments for Port Wine Stain (PWS) lesions are considered the choice 

therapy, but response is poor or treatments are ineffective for around half of patients.  

It is proposed in this thesis that improvements to the effectiveness of laser treatment 

can be achieved through the acquisition of estimated PWS vessel number density, 

depths and diameters for each individual lesion. 

  Information regarding PWS vessel architecture is found to be contained within the 

colour of the lesion.  Presented in this thesis is a method of extracting this information 

through colour measurements and the inverse application of a skin model. 

  Colour measurements are performed on 14 participants using a Konica-Minolta 

CM2600d spectrophotometer employing a xenon flashlamp illumination source and 

an integrating sphere.  Light transport is simulated through an 8 layer mathematical 

skin model inclusive of horizontal, pseudo-cylindrical PWS blood vessels using a new 

Monte Carlo programme.  Within the programme, model parameters were adjusted in 

an iterative process and skin colour was reproduced with a mean discrepancy of 1.9% 

reflection for clinically normal skin (24 datasets) and 2.4% for PWS skin (25 datasets). 

  The programme estimated anatomical properties of the measured regions of skin, 

yielding epidermal melanin volume fractions from 0.4% to 3.3% and mean 

melanosome diameters from 41 nm to 384 nm across the participant group.  The 

response to laser treatment was assessed for 10 participants through colour 

measurements taken immediately before and at least 6 weeks after treatment and 



through expert analysis of photographs for 9 participants taken at these times.  

Treatment response was not found to correlate directly with the pre-treatment 

melanin parameters estimated by the programme. 

  Mean depths, diameters and number densities of PWS vessels were also estimated by 

the programme before and after treatment.  These parameters were compared to data 

obtained from Optical Coherence Tomography (OCT) images for 5 participants.  

Number densities and diameters predicted by the simulation varied by no more than 

10% from the values determined by OCT for 4 and 5 out of 7 regions respectively.  

Mean depths predicted by the simulation did not correspond with those determined 

by OCT however.  This may be a result of the limited contribution of deeper vessels to 

the colour of PWS skin. 

  Predicted PWS parameters were compared to treatment response assessed by colour 

measurement for 10 participants and by photographic analysis for 9 of these.  

Predicted vessel number densities were not found to correspond with treatment 

response.  Vessel diameters predicted by the simulation correlated with treatment 

response when compared with the pulse lengths selected for treatment.  Optical 

coefficients derived from the skin model were used to estimate appropriate laser 

treatment radiant exposures at the predicted mean vessel depths and these radiant 

exposures corresponded strongly with the treatment response. 

  Suggestions for improvements in the predictions of melanosome diameters through 

changes in the adjacent skin minimisation procedure within the programme are 

discussed.  The apparent underestimation of PWS blood vessel number densities and 

mean depths (compared to biopsy studies) may be a result of the reduced influence of 

deeper PWS vessels upon skin colour.  Further investigation, including modifications 

to the PWS vessel minimisation procedure within the programme, would be necessary 

to determine whether improvements in these predictions may be achievable. 

  The results of the study show that the new Monte Carlo programme is capable of 

extracting, from measurements of skin colour, realistic estimates of PWS skin 

characteristics which can be used to predict treatment response and therefore inform 

treatment parameters on an individual PWS. 

  



  
 

List of Terms 

 

Chromophore A pigment which provides a significant contribution to the 

colour of skin or to the absorption of light during laser 

therapy 

 

Haemoglobin Red pigment in blood.  Haemoglobin is responsible for the 

difference in colour between normal and PWS skin.  The 

target chromophore for PDL therapy. 

 

Implicit Capture A statistical approximation which considers a large number of 

photons travelling along the same path at once, intended to 

save time (computational cost) in Monte Carlo simulations 

 

Melanin Brown pigment found in the epidermis and in hair, 

considered a competing chromophore to haemoglobin in PDL 

therapy 

 

PDL Flashlamp-pumped Pulsed Dye Laser, the treatment of choice 

for PWS 

 

Pulse length/ 

Pulse Length 

The length in time of a single laser pulse 

 

 

PWS Port Wine Stain: a congenital vascular malformation usually 

presenting as a red lesion on the skin 

 

Spectrophotometer A device used for measuring light within the visible region 

 

WSLC Wessex Specialist Laser Centre, Salisbury District Hospital, 

UK.  This is a specialist skin laser centre in an NHS hospital 

 

RTT Radiative Transfer Theory, a mathematical technique of 

modelling energy transfer in straight lines (rays or beams) 
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1.  Introduction 
1.1 Motivation 

Port Wine Stains (PWS) are the most common of all congenital vascular 

malformations.  They are caused by a permanent swelling of blood vessels within the 

dermis and present as a red lesion on the skin.  PWS often constitute a significant 

disfigurement and can result in major psychological problems.  Thus, many people 

who suffer with PWS seek treatment. 

Laser treatment is currently considered the therapy of choice for PWS.  The object of 

treatment is to selectively heat the swollen blood vessels which constitute the lesion, 

resulting in irreversible damage and subsequent removal of these vessels.  Selectivity 

may be achieved through careful selection of treatment parameters including 

wavelength, pulse length and energy per pulse to match the depths, diameters and 

number density of vessels within a lesion. 

Approximately half of patients who undergo laser treatment for PWS respond poorly 

or not at all.  One reason for this poor response is that the laser parameters used are 

virtually identical for all PWS patients despite the availability of laser systems with 

user specific settings [1, 2].  In order to optimise laser settings for each individual 

patient, the practitioner must be provided with information regarding the vascular 

architecture from each patient, such as the depths, diameters and number density of 

PWS vessels. 

Historically, such information has been made available from some patients through 

punch biopsies.  However, such a technique is subject to distortion in the sample and 

is likely to result in a scar, which would contribute further to the disfigurement of the 

lesion.  Imaging methods designed to provide 'virtual biopsies', such as ultrasound 

imaging or Optical Coherence Tomography may one day provide a non-invasive 

alternative but, due to the need for high resolution and imaging depths of 3-4 mm, the 

devices currently available to the practitioner are not able to provide adequate 

information. 

In this thesis, it is proposed that colour measurement is a practical method for the 

clinic which may be able to provide the practitioner with information regarding the 
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depths, diameters and numbers of vessels in an individual PWS lesion using 

technology currently available. 

1.2 Contributions 

An expansive survey of the literature has been carried out covering the following 

topics: 

 Anatomy of PWS skin 

 Colour measurement of PWS 

 Mathematical modelling of PWS skin colour 

Further to this, a Monte Carlo simulation of light transport through PWS skin has been 

created and verified as part of the thesis.  The principle original contributions which 

have emanated from this work are: 

 The use of two separate layers with the living epidermis of the skin model to 

accommodate variations in melanin properties across the epidermis 

 The consideration of mean melanosome sizes in the skin model and their 

contributions to light scatter 

 A minimisation procedure which adjusts the melanin volume fractions and 

mean melanosome sizes in the skin model in order to reproduce the spectral 

reflectance of clinically normal skin 

 A minimisation procedure which introduces horizontal, pseudo-cylindrical 

blood vessels with random orientation into the skin model and adjusts their 

depths, diameters and numbers in order to reproduce the spectral reflectance 

of PWS skin. 

 The contribution of PWS blood vessels walls to the absorption and scatter of 

light within the skin model. 

The work from this thesis has also been presented in the following publications: 

Journal Papers 

Lister TS, Wright PA, and Chappell PH, Spectrophotometers for the Clinical Assessment of 

Port Wine Stain Skin Lesions: A Review. Lasers in Medical Science, 2010. 25(3): p. 449. 

Lister TS, Wright PA, and Chappell PH, The Optical Properties of Human Skin. Journal of 

Biomedical Optics, 2012. 17(9): p. 90901-1. 
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Lister TS, Wright PA, and Chappell PH, Simulating Light Transport through Skin for 

Color Prediction of Port Wine Stain Lesions: A Review. Journal of Biomedical Optics, 2012. 

17(11): p. 110901. 

Oral Presentations 

Lister TS, Wright PA, and Chappell PH, Why use Spectrophotometry to Asses Port Wine 

Stains? 27th Annual Conference of the British Medical Laser Association, Salisbury, 

UK, May 2009.  

Lister TS, Wright PA, and Chappell PH, Light Transport Through Skin. 29th Annual 

Conference of the British Medical Laser Association, Woburn, UK, May 2011.  

Lister TS, Wright PA, and Chappell PH, A New Monte Carlo Simulation. Annual 

Conference of the European Laser Association, London, UK, May 2012.  

1.3 Organisation 

This thesis aims to answer the question: Can the information contained within the 

colour of an individual PWS lesion be used to estimate the characteristics of its 

constituent vessels (such as depth diameter and number density) and therefore predict 

the likely efficacy of laser treatment?   If this is possible, the ability to predict the 

effectiveness of laser treatment may be applied inversely to determine whether one 

combination of treatment settings would be likely to provide a better result than 

another combination, thus informing the most appropriate settings for an individual 

laser treatment. 

Chapter 2 contains an introduction into the background of the topic, including a brief 

overview of skin anatomy focussing on the features which contribute towards its 

colour.  A survey of the literature regarding PWS skin and the features which 

constitute its colour is also presented.  This is followed by a description of laser 

treatments for PWS skin. 

Chapter 3 comprises a literature survey regarding colour measurements of PWS skin 

and determines the appropriate tools required for carrying out such measurements.  

Chapters 4 and 5 include further reviews of the scientific literature with the aim of 

determining an appropriate mathematical approach to interpreting skin colour 

measurements as well as appropriate skin optical coefficients. 
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The methods of data collection are described in Chapter 6 as well as a description of 

the Monte Carlo programme developed for this thesis.  The performance of these 

methods, including reproducibility of colour measurements and appropriateness of 

skin optical coefficients are then verified in Chapter 7. 

The main results from the thesis are presented in Chapter 8 and analysed in detail in 

Chapter 9.  A summary of the findings and potential directions of future work are 

presented in Chapter 10.



 

 
 
 
 
 

2.  Background 
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2.1  The Colour of Skin 

This section contains a brief overview of the main features of human skin which give 

rise to its colour, and the variations in these which may be expected in both normal 

and Port Wine Stain (PWS) skin.  For a more general discussion of current opinions 

regarding general human skin anatomy, the reader is directed towards some excellent 

textbooks [3, 4]. 

Skin Features 

It is convenient to describe the structure of skin as a series of layers.  These are not 

always entirely distinct but can be classified by their structure and content [4].  The 

colour of skin is almost entirely derived from the two outermost layers, the epidermis 

and dermis (Figure 1), as light penetrating beyond these is unlikely to return to the 

surface. 

 

Figure 1: Histological vertical section of clinically normal skin demonstrating clear 
differences in structural components between layers on H&E staining.  Courtesy of Dr. I 
Cook, Consultant Histopathologist, Salisbury District Hospital. 

Epidermis 

The epidermis is the outermost layer of skin and serves to protect the underlying 

dermis.  It consists primarily of keratinocytes.  These cells proliferate in the deepest 

(basal) layer of the epidermis as polygonal cells containing keratin filament bundles 

and large nuclei (Figure 2).  Keratin filaments form this layer's major constituent [3] 

and are the primary contributors to light scatter within the epidermis [5].  

Epidermis 

Dermis 
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Figure 2: Histological vertical section of clinically normal epidermis showing the 
graduation of keratinocytes as they progress towards the surface.  Basal layer (a), prickle 
cell layer (b), granular layer (c) and cornified layer (d) are identified.  Courtesy of Dr. I 
Cook, Consultant Histopathologist, Salisbury District Hospital.  

As they progress towards the outer surface of the skin, keratinocytes are thought to 

form a series of columns, with a central basal stem cell surrounded by six to eight 

amplifying proliferative cells over which a column of progeny cells extends through 

the superficial layers.  The keratinocytes undergo a progressive change in shape and 

content during this migration (a process known as cornification [4]).  The keratin 

bundles contained within the cell become more prominent as they progress into the 

prickle cell layer and then become more compact as the cells become flatter in the 

granular layer.  The nuclei and other organelles degrade during cornification, and are 

no longer present by the time the keratinocytes reach the outermost (cornified) layer.  

The cornified layer may be only a few cells deep, and these cells appear flat, consisting 

almost entirely of a dense array of keratin filaments [4].  Thus, light scattering may 

vary with depth across the epidermis. 

Melanin pigments are the primary absorbers of visible light in the epidermis.  They are 

high molecular weight polymers known as eumelanins (brown-black in colour) and 

phaeomelanins (red-yellow), which attach to a structural protein and form large, 

complex molecules.  Melanin producing cells are known as melanocytes and are 

a 

b 

c 

d 
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situated in the basal layer of the epidermis.  Here, melanin is packaged within 

organelles called melanosomes, which travel along the dendrites of melanocytes to be 

engulfed and internalised by adjacent keratinocytes.  The quantity of melanosomes 

produced is influenced by ethnic background and sun exposure, with sun exposed 

dark African and Indian skin types demonstrating a mean epidermal melanosome 

volume fraction of up to 10%, compared to a typical 1.2%-3% for type 2-3 European 

skin or as low as 1% for light European skin types where minimal sun exposure has 

occurred [6-11].  Melanosome diameter also varies across these groups.  Melanosomes 

have been shown to accumulate in a crescent shaped cap over the distal part of the 

nucleus in basal keratinocytes and degrade during cornification as they migrate 

towards the surface of the skin, to form dust like remnants  in cornified keratinocytes 

[4, 10].  This process results in a variation in melanin concentration, and therefore light 

absorption, across the epidermis, with a maximum concentrations and melanosome 

sizes in the basal layer [10].  Sun-exposed and darker African skin types have been 

found to contain the largest melanosomes, up to 400 nm in diameter.  Paler, sun-

protected European skin types have the smallest, with diameters between 30 nm and 

200 nm across the living epidermis [7, 8, 12, 13].  This variation in melanin quantity 

and distribution between individuals and across the epidermis further contributes to 

variations in the absorption and scattering of light. 

Lipids are arranged in a lamellar pattern through the epidermis, with phospholipids 

and glycolipids accumulating just above the basal layer and cholesterol and its esters 

(fatty acids, ceramides) accumulating towards the surface.  These lipids play a 

function in absorbing light [14], as do other constituents of the epidermis such as 

urocanic acid, which is present in sweat and is thought to act as a sunscreen to protect 

the skin from UV light [14, 15].  The proportion of visible light absorbed by these 

constituents is negligible when compared to melanin.  However, such oils have been 

reported to enhance optical coupling between air and the superficial layers of the skin, 

improving the transmission of light [16].  

Dermis 

The epidermal-dermal junction is convoluted, forming papillae or ridges which are 

most apparent in the thick skin of the palm and sole, and fewer and smaller in so-

called thin skin (which covers the rest of the body), especially at regions of low 
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mechanical stress and minimal sensitivity.  Each dermal papilla contains a capillary 

loop which provides metabolic support to the epidermis [17] along with densely 

interwoven fine bundles of collagen fibres (approx 2 µm in diameter [18]).  Collagen 

fibres are the main structures responsible for light scattering in the dermis and are 

present throughout the dermis, increasing in thickness towards the deeper reticular 

layer (up to 15 µm in diameter [18]).  The thickness and number density of these fibres 

also vary with anatomical region, age and sex, occupying approximately 18-30% of the 

volume of the dermis on average [3]. 

The blood supply to the dermis also has a substantial effect on light absorption and 

scattering.  Blood normally occupies around 0.2%-0.6% of the physical volume of the 

dermis [19-24] depending upon anatomical location.  It is commonly described as 

being contained within horizontal networks of interconnected blood vessels [17].  At 

the deepest part of the dermis is the deep dermal plexus.  This does not significantly 

affect the apparent colour of most skin [25].  The deep dermal plexus gives rise to 

vertical branches whose calibers reduce from approximately 26 µm to 15 µm in 

diameter, with wall thicknesses of 1.0-3.5 µm, as they extend into the dermis [17].  

These may divide further at the mid-dermal plexus but go on to supply the most 

superficial network of vessels, the subpapillary plexus.  Within the subpapillary 

plexus, these vessels (now categorised as arterioles) are around 17-26 µm in diameter 

with wall thicknesses of 1.0-3.5 µm [26].  Subpapillary arterioles give rise to capillary 

loops (10-12 µm in outside diameter and wall thicknesses of 2-3 µm [26]), which are 

directed towards the epidermal/dermal junction and may branch before undergoing 

u-turns in the dermal papillae.  These capillary loops drain into postcapillary venules 

which are approximately 18-23 µm in outside diameter with wall thicknesses of 3.5-5.0 

µm and are the predominant vessel in the papillary dermis [17].  These in turn pass to 

the mid-dermal plexus, a primarily venous layer consisting of venules up to 30 µm in 

outside diameter [4, 20], and eventually to the deep-dermal plexus [4]. 

Port Wine Stain Skin 

PWS are the most common of all congenital vascular malformations, affecting around 

250,000 people in the UK and approximately 25 million people worldwide [27-30].  

They are characterised by a clearly visible red-to-purple lesion on the skin (Figure 3).  

Two thirds of PWS are thought to occur on the face, with further disfigurement 
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resulting from hypertrophy of underlying bone and soft tissue in many cases [31].  

This constitutes a significant cosmetic problem and can result in major psychological 

problems, in part due to the negative reactions of other people [2, 28]. 

PWS are typically present at birth and do not resolve spontaneously but usually 

progress from a lighter pink to a darker purple colour with age.  The abnormal colour 

of PWS skin is derived from an increase in the dermal blood content, with blood 

composing around 2%-8% by volume of the average PWS dermis [19, 20, 32-34] 

compared to approximately 0.2%-0.6% in normal skin [19-24].   

 

 

Figure 3: Examples of individuals with PWS to the face, showing variations in coverage 
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and colour. 

PWS are thought to involve the subpapillary plexus in all cases, with most extending 

down into the deeper dermal layers [32, 35-38] .  However, inconsistencies exist in the 

literature around the type of blood vessels involved in PWS skin.  For example, 

Braverman et al [39] found that dilation was confined to the post capillary venules, but 

others have stated involvement of dermal capillaries [28, 38, 40, 41].  This confusion 

may have arisen from the change in vessel structure caused by long term ectasia, 

resulting in a thickening of vessel walls [37, 38].  Furthermore, differentiation between 

normal and diseased vessels may not always be clear [42].  Thus, rather than 

specifying the type of vessel affected, many authors have chosen to use more general 

terminology, stating that PWS skin consists of dilated blood vessels in the dermis [20, 36, 

42-48]. 

Although PWS is a vascular lesion, observations have been made in the literature 

regarding changes in the intervascular dermis of PWS skin.  Schneider et al [38] 

reported inconsistent and variable intervascular alterations in their histological and 

electron microscopy study of 12 PWS patients.  Notably, they reported oedema 

(deposition of fluid outside of the vessels) resulting in an eventual splitting up of 

collagen bundles.  In support of tissue oedema, Nagore et al [44] found a general trend 

to thicker skin in PWS lesions when using high-resolution ultrasound imaging to 

investigate 21 children with facial PWS.  Schneider et al also found lesions with an 

accumulation of loosely arranged or densely packed collagen fibrils of small diameter 

and some with a reduction in the total collagen proximal to dilated vessels.  Such 

changes in the fibrous make-up of dermal tissues may cause a change in its light 

scattering properties, although, to date, this has not been investigated directly. 

The Colour of PWS Skin 

The colour of PWS skin has long been used as a clinical identifier and much work has 

been carried out to determine the factors which influence PWS skin colour.  As well as 

the differences between patients and body sites associated with normal variations of 

skin colour,  it is the quantity and distribution of dermal blood which contributes most 

to the variations in PWS skin colour. 

A comprehensive study of PWS anatomy was carried out by Barsky et al on 100 facial 

PWS lesions [32].  They took a 3 mm punch biopsy from a representative area of each 
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lesion and the "best oriented and prepared" section was chosen subjectively from this.  

Barsky et al recorded a mean ectatic vessel depth of 460 ± 170 µm in PWS skin, but 

observed that the depth of PWS lesion correlated poorly with colour using a visual 

comparison of the skin against a Pantone colour chart.  Instead, the mean vessel area 

and total vascular area within each section of PWS skin was found by Barsky et al to 

correlate strongly with colour.  Thus, Barsky's results suggest than skin colour is 

derived from the quantity of blood in PWS skin, independent its distribution through 

the dermis. 

Fiskerstrand et al [42] recorded a more superficial mean ectatic vessel depth of 240 ± 80 

µm, using the same method of 3 mm punch biopsies on 30 patients.  A significant 

factor in this difference may have resulted from Fiskerstrand et al's technique 

excluding vessels below 800 µm, whereas Barsky et al reported an average biopsy 

depth of 1800 µm.  However, Fiskerstrand et al found that "pink and purple lesions 

were significantly deeper located than were the red lesions" using the same method as 

Barsky of comparing skin colour against a Pantone colour chart.  Fiskerstrand et al also 

concluded that larger diameter vessels corresponded with a darkening of PWS colour, 

from pink to purple [37, 42].   

Nishidate et al performed colour measurements on a physical skin model consisting 3 

vessels filled with stationary de-oxygenated horse blood [49].  The vessels were 0.45 

mm, 0.92 mm and 1.3 mm in diameter and were embedded in a 10% solution of 

intralipid.  The appearance of the vessels at the surface of the model was reported to 

correspond subjectively with the appearance of similar diameter vessels within skin.  

Using a CIExyz analysis of spectral data measured obtained using a fibre setup, 

Nishidate et al found that the larger diameter vessels appeared more blue and that an 

increase in depth changed the measured colour from 'blue' to 'bluish-green'.  They also 

found that oxygenating the blood gave a more red appearance.  Although there are 

clear differences between flowing blood in human skin and the physical model used in 

Nishidate et al's study, these results appear to be consistent with the aforementioned in 

vivo studies. 

Theoretical work has also suggested a correlation between the depth of ectatic vessels 

and the colour of PWS skin.  Svaasand et al [50] modelled the colour of PWS skin using 

a simple diffusion theory technique.  They concluded that "shallow, thin PWS lesions... 
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have a more well-defined red colour than thick lesions; the additional reduction in 

backscattered red light in thicker lesions will result in a more dark red/blackish 

colour".  Verkruysse et al [23] used a Monte Carlo simulation of five different skin 

models, involving an approximation of the paths of light beams through a simple 

computer model of human skin.  They predicted that PWS with larger diameter 

vessels and the same blood volume fraction would appear 'less red'.  Also, Findlay [51] 

described the changes of perceived colour with depth of melanin pigmentation within 

the skin.  Without melanin, the epidermis was described as grey in appearance, due to 

forward scatter and absorption which is nearly uniform across the visible spectrum.  

When studying the dermis, Findlay commented that blue light is backscattered from a 

thin layer of dermis and red, from a thick layer.  Thus, melanin in the epidermis 

appears brown due to its absorption across the entire visible spectrum, which 

increases moderately with decreasing wavelength.  When situated in the dermis, red 

to green light is still absorbed, but blue light is backscattered before reaching the 

melanin, giving the Nevus of Ota (a condition where melanin is deposited in the 

dermis) a blue appearance.  If these findings are instead applied to regions of high 

blood concentration, the normal absorption of blue and green light by red blood cells 

will be less influential with increasing depth in the dermis, as will the absorption of 

green light, causing a change in lesion colour from red in the superficial papillary 

loops to a more purple colour deeper within the dermis. 

Barsky et al found the mean vessel wall thickness in the affected vessels of PWS skin to 

be between 4 µm and 6 µm [32].  This is in agreement with Fiskerstrand et al's 

observations [42] and suggests little change from vessel wall thicknesses in normal 

skin [17].  However, Schneider et al observed an increase in vessel wall thickness up to 

13.5 µm when investigating the lesions of 12 patients using an electron microscope 

[38].  Barsky et al were not able to determine a correlation between vessel wall 

thickness and lesion colour [32].  

Summary 

Skin can be conveniently described as a series of layers.  Its colour is primarily 

determined from the absorbing pigments melanin and haemoglobin and the scattering 

properties of filamentous proteins. 
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Variation in dermal blood volume fraction is the primary contributor to differences in 

PWS skin colour.  The literature shows significant correlations between vessel size and 

lesion colour, although vessel wall thickness has not been shown to contribute to this 

variation in colour.  Despite Barsky et al's conclusions, it is also likely that the depth of 

ectatic vessels in PWS skin has a significant effect on the perceived colour, with deeper 

lesions being less red and more purple or pink. 

Reducing the number or mean diameter of PWS blood vessels, and therefore the 

quantity of dermal blood, will act to reduce the perceptibility of PWS skin.  This is the 

primary mechanism employed for the treatment of PWS. 
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2.2  Laser Treatments for Port Wine Stains 

Laser therapy is well established for the treatment of PWS skin [52-56] and is widely 

considered the treatment of choice [57-68].  The objective of laser therapy is to reduce 

the colour difference between PWS and clinically normal adjacent skin by selective 

damage of ectatic vessels.  This is achieved through selective absorption of light by 

haemoglobin [69].  The absorbed light causes heating of the haemoglobin which is 

subsequently transmitted to the vessel wall by thermal conduction [70, 71].  If the 

vessel wall is raised to a sufficient temperature, then irreversible damage is incurred.  

If the temperature of the blood within the vessel increases fast enough to cause rapid 

expansion, then vessel rupture occurs.  In each case, if irreversible damage is inflicted 

over a large enough proportion of the vessel wall, it is thought that normal repair 

mechanisms result in the removal of the ectatic vessel [70, 72] and thus a reduction in 

the redness of PWS skin (Figure 4).  

 

a b c 

Figure 4: Diagrams illustrating the effects of laser treatment during irradiation (a) where 
heating of vessels and indirect heating of surrounding tissue occurs; immediately after 
irradiation (b) where vessel wall necrosis and hemorrhaging have taken place and long term 
(c), where PWS vessels have been eradicated. 

Treatments are routinely carried out over multiple sessions, each involving short (0.45-

10 ms) pulses of laser light fired onto the surface of the skin.  A single pulse covers a 

circular target area approximately 1 cm in diameter.  Thus, treatments may consist of 

tens or hundreds of laser shots per session, delivered at  a repetition rate of around 1-2 

Hz, to cover the entire treatment area (often the entire lesion). 

Along with their ease of use, non-invasive delivery and localised targeting of PWS 

lesions, lasers are considered the preferential form of treatment due to their capability 

of selective damage to ectatic PWS vessels and therefore their ability to spare the 

remaining skin.  This is achieved through careful selection of wavelength, pulse length 

(the length in time of a single pulse) and energy per pulse. 
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Wavelength Selection 

Both the degree of light absorption by chromophores within the skin and the degree of 

scattering are highly dependent upon the wavelength of light.  Within the visible and 

infrared regions of the electromagnetic spectrum, scattering is greater at shorter 

wavelengths, limiting the penetration depth (and therefore the effectiveness of laser 

treatment for deeper vessels) of blue wavelengths relative to red and infrared 

wavelengths (Figure 5). 

 

Figure 5: Variation in reduced scattering coefficient (a representation of the mean 
distance between isotropic scattering events)  over the visible wavelength range, data 
from [73]. 

Blood is not a strong scatterer of visible light [74, 75], and so scattering within blood 

vessels is not routinely considered when selecting appropriate wavelengths for the 

treatment of PWS skin. 

Absorption of light within the epidermis is dominated by melanin.  This acts as a 

shield to the underlying PWS vessels, preventing much of the light from reaching 

them.  Absorption by melanin is greatest towards the blue end of the visible spectrum 

and decreases uniformly with increasing wavelength, with around five times as much 

light absorbed at 360 nm compared to 720 nm.  Thus, to maximise efficient 

transmission of light to the PWS vessels and also minimise collateral damage 

secondary to absorption of light within the epidermis, longer wavelengths are 

preferred. 
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Figure 6: Variation of melanin absorption coefficient with wavelength, from [7]. 

Haemoglobin is the target structure for PWS laser therapy and is contained both 

within normal vessels of the dermis and within enlarged PWS vessels.  Haemoglobin, 

in its various ligand states, has a more complex absorption spectrum, showing 

absorption peaks in the blue and green regions. 

 

Figure 7: Absorption spectra of deoxyhaemoglobin (Hb), oxyhaemoglobin (HbO 2), 
carboxyhaemoglobin (HbCO) and methaemoglobin (MetHb) in the visible region, from 
[76]. 

A wavelength which is highly absorbed by blood is preferable to ensure efficient 

targeting of PWS blood vessels whilst minimising absorption by other structures in the 

skin.  However, if absorption by haemoglobin is too efficient, light is not able to 

penetrate beyond overlying vessels (such as the capillary loops at the dermal 
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epidermal junction) or sufficiently through an enlarged PWS vessel to cause damage 

to the lower parts of the vessel wall.  Accordingly, as damage around the majority of a 

vessel wall is thought to be necessary to ensure subsequent clearance of that vessel [50, 

72, 77-79], minimal reduction in vasculature (and therefore colour) is likely to be 

inflicted. 

A wavelength of 595 nm is currently considered the preferred choice for the selective 

damage of blood vessels for skin types I to III [67, 80, 81].  For skin types IV-VI, which 

contain more melanin in the epidermis, 1064 nm is the preferred choice in clinical 

practice, where absorption by melanin is approximately 10 times less than at 595 nm.  

Pulsewidth Selection 

A further means by which lasers selectively damage target tissues is by careful 

selection of pulse length, the theory of which is described as selective photothermolysis 

[56].  Selective photothermolysis considers the cooling rate for structures within the 

skin.  The theory is characterised by the calculated thermal relaxation time τ, described 

as "the time required for the central temperature of a Gaussian temperature 

distribution with a width equal to the target's diameter to decrease by 50 percent" [56].  

Equation 1 has been used to describe the thermal relaxation time of a blood vessel 

with radius R and thermal diffusivity χ [53, 56]: 

  
  

  
 Equation 1 

Anderson and Parrish [56] proposed that selective damage is achieved when the entire 

pulse of laser light is delivered within the time, τ.  To target ectatic PWS vessels, pulse 

lengths need to be long enough to minimise damage to melanosomes, which are very 

small structures (average diameters ranging from approximately 40-80 nm [8] and 

thermal relaxation times from around 250 ns [15]) and normal blood vessels 

(diameters ranging from 6-30 μm [20]) whilst being short enough to heat the PWS 

vessels sufficiently (diameters ranging from 25-280 μm [20]) (see Table 1).   
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Table 1: Summary of thermal relaxation times for various vessel sizes, calculated from 
Equation 1[56] using a fixed value of thermal diffusivity             m2s-1[72]. 

Vessel Diameter (um) Thermal Relaxation Time (ms) 

25 0.3 

50 1.1 

100 4.5 

200 18 

300 41 
 

 

In practice, vascular laser treatments are usually performed between 0.45 ms and 1.5 

ms [82].  Longer pulsewidths are available, although these comprise multiple 

'pulselets' rather than a single pulse.  For example, the Cynosure Cynergy PDL is 

capable of producing nominal pulse lengths between 0.5 ms and 40 ms.  However, a 

study carried out by the author using a simple photodiode detector placed adjacent to 

the laser beam to measure indirect illumination produced by the laser (unpublished) 

demonstrated that such pulses contain between 3 and 6 pulselets of varying 

characteristics spaced out over the nominal pulse length (Figure 8). 

 

Figure 8: Temporal profile from a nominal 2 ms pulse (top) and 40 ms pulse 
(bottom) of the Cynosure Cynergy Pulsed Dye Laser determined from diffuse 
reflectance, measured using a photodiode.  

As shown in Figure 8, the length in time and proportionate ditrubution of energy 

across the pulselets varies for each nominal pulse width.  An approximation of these 

Temporal Output of the Cynosure Cynergy Pulsed Dye Laser 
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parameters in provided in Table 2.  More details of the methodology used can be 

found in Appendix G. 

Table 2: Estimated pulselet train characteritics derived from the work described in Appendix 
G. 

Nominal pulse 
length (ms) 

Number of 
pulselets 

Pulselet pulse lengths 
(ms) 

Proportional 
distribution of energy 

0.5 1 0.84 n/a 

2 3 0.57, 0.62, 0.99 0.28, 0.29, 0.42 

6 3 0.63, 0.63, 110 0.20, 0.22, 0.58 

10 4 0.77, 0.77, 0.83, 1.3 0.14, 0.17, 0.20, 0.49 

20 6 
0.68, 0.78, 0.89, 0.89, 

0.89, 0.89 
0.12, 0.15, 0.18, 0.19, 

0.18, 0.18 

40 6 
0.78, 1.15, 1.15, 1.15, 

1.15, 1.15 
0.10, 0.14, 0.17, 0.19, 

0.18, 0.21 
 

 

These pulse trains are delivered at intervals of 0.75 or 1.0 seconds as the laser 

handpiece is moved the cover the entire treatment area.  The effects of such a pulselet 

train relative to an ideal 'top hat' temporal energy distribution are complex, but are 

likely to result in poorer responses from large blood vessels.  This is partcularly 

apparent for the longest nominal pulse lengths, where the interval between individual 

pulselets is greatest, probably allowing for substantial cooling of the target vessels 

between pulselets. 

Although work has been carried out elsewhere to describe in detail the effects of a 

pulselet distribution [80], due to the uncertainty in size distribution of vessels within 

an individual PWS, such work is not routinely applied in the clinical setting. 

Pulse Energy 

The quantity of energy (i.e. dose) delivered per pulse of laser light is of great 

importance when selecting treatment parameters.  A dose per pulse which is too low 

will result in little or no treatment effect, as temperatures within the vessel lumina 

cannot be raised to a sufficient temperature for a sufficient time to cause irreversible 

damage to the vessel walls.  At the WSLC, purpura (bruising resulting from 

haemorrhaging of blood from the targeted vessels and occurring immediately) is 



2.  Background  29 

 
 

  
 

currently considered a normal (and expected) response to laser therapy of PWS 

lesions.  Higher energies per pulse can result in: 

 blistering and/or scabbing. 

 hyperpigmentation: brown staining caused by darkening of melanin.  This is a 

transient effect, although it may last several months. 

 hypopigmentation: localised skin lightening caused by damage to melanocytes.  

Such damage leaves the melanocytes unable to produce further melanin.  This 

may be transient but is often permanent. 

 scarring: excessive energies or poor wavelength/pulse length selection can result 

in significant damage to the dermis whereby the body is no longer able to 

replenish damaged tissue, resulting in scar formation. 

The choice of energy per pulse has historically been established using empirical 

techniques.  Laser manufacturers test their devices at a range of settings and sell the 

model of laser along with recommended optimal dose per pulse values for a range of 

indications.  Upon receipt, clinical centres collate information from the manufacturer, 

case studies in the scientific literature and advice from other centres.  Further to this, 

adjustments may be made on an individual patient basis,  in response to adverse 

effects (overtreatment) or inadequate fading (undertreatment), either immediately 

following their first few laser pulses or when returning for their next treatment. 

The author was not able to find any recommendations regarding typical energy per 

pulse values at 595 nm derived from theoretical studies.  This may be because the 

radiant exposure value depends very much on the wavelength and pulse length 

selected, as well as individual patient and laser characteristics, some of which are not 

routinely available to the clinician.  For reference, typical nominal PDL (595 nm) 

radiant exposures used at the WSLC range from 7 Jcm-2 to 12 Jcm-2 for 0.5 ms pulse 

lengths, and 13 Jcm-2 to 20 Jcm-2 for 6.0 ms pulse lengths. 

Summary 

Laser therapy is the treatment of choice for PWS skin.  Reduction in PWS colour is 

achieved by selective heating of ectatic vessels, which in turn causes damage to the 

vessel walls.  
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Selection of ectatic PWS vessels, and sparing of the remaining skin, can be achieved 

through careful selection of wavelength, pulse length and energy per pulse.  Longer 

wavelengths generally penetrate deeper into the skin and are less well absorbed by 

melanin within the epidermis.  Optimal absorption by PWS vessels is thought to be at 

around 595 nm.  This allows adequate penetration of light through the blood vessels to 

induce damage around the entire vessel walls whilst providing sufficient absorption to 

produce the required localised heating. 

Pulse length selection is usually based upon a simple mathematical relationship which 

considers both the thermal diffusivity and size of structures within the skin.  Optimal 

values of pulse length for ectatic PWS vessels vary from approximately 0.3 ms to 10 

ms.  This reflects the variation in vessel diameters expected from PWS skin. 

Careful selection of energy per pulse is important to achieve adequate heating of PWS 

vessels whilst minimising collateral damage, however the choice of this parameter is 

highly dependent upon wavelength, pulse length and the individual characteristics of 

the patient. 

Although general assumptions can be made of PWS characteristics, effective selection 

of laser parameters for the treatment of PWS skin requires individual information 

regarding the depth and size of ectatic vessels, along with estimates of the scattering 

properties of surrounding skin and the quantity of melanin in the epidermis.  

Although a number of techniques have been used to perform such estimates, visual 

observation is the only method which is currently used in widespread clinical practice.  

This involves an estimate of PWS colour and henceforth an inference of the structure 

of ectatic vessels within the PWS.  There are a number of drawbacks associated with 

such a method, many of which may be overcome with an objective measurement of 

skin colour.  This is the topic of the next chapter.



 
 
 
 
 
 

3.  The Objective Measurement of 
Port Wine Stain Skin Colour 
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3.1  Spectrophotometry for the 
Measurement of Port Wine Stain Skin 
Colour 

Based upon the published work by Lister et al [27] 

Introduction 

The clinical presentation of a PWS lesion is principally determined from its colour.  

This colour is representative of the size and depth of abnormal vessels within the 

lesion and of the overlying epidermis.  These, in turn, are indicative of the response of 

the lesion to laser therapy.  Thus, a considerable portion of research into PWS skin 

involves the assessment of colour for the prediction of its response to laser therapy. 

The earliest and most commonly performed assessment of PWS colour is visual 

assessment, sometimes called clinical assessment, involving a direct viewing of the 

lesion by clinical staff or members of the research team.  This is a subjective method 

which is made unreliable by a number of influencing factors, including the ambient 

lighting conditions, colours surrounding the subject, eye adaptation prior to viewing 

and viewing geometry [30, 83].  Even if these factors are accounted for, the sensitivity 

to light of the human eye is variable, with around 10% of the population not 

considered as "colour normal" observers [25].  Furthermore, the communication of 

perceived colour is difficult, with no universal cut-off between pink, red and purple, 

the three colours used almost exclusively to describe PWS lesions across the literature, 

so that even when an identical colour is perceived by two observers, discrepancies 

may occur.  Such discrepancies are further confounded when using photographs.  

Viewing geometries and ambient lighting during image acquisition and subsequent 

viewing, quality of the print-out or visual display of the image, magnification and 

camera sensitivity are amongst those factors which contribute further to the 

uncertainty in photographic assessments [84]. 

Both direct and photographic assessments do however appear to be inexpensive 

methods of assessing PWS lesions.  But, when considering the cost of extended 

treatment programmes resulting from a lack of ability to accurately judge and 

communicate the level of improvement and therefore the point at which the treatment 

has stopped working, coupled with the clinical risk of undergoing general anaesthetic 
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where this is used in young children, the overall costs may be considered high [30].  

Furthermore, perhaps due to the uncertainty in individual PWS anatomy, the laser 

parameters used are virtually identical for all PWS patients despite the commercial 

availability of laser systems with user specific settings, suggesting that sub-optimal 

parameters are applied in many cases [1, 2]. 

In order that laser treatment may be optimised on an individual basis, objective 

methods of assessment are required which are practical in the clinical setting: i.e. non-

invasive, fast and simple to perform.  Such methods could be used to track the 

progress of treatments [67, 85, 86], predict treatment outcome [30, 35, 86-88], 

recommend a required number of treatments [88] and even select appropriate 

treatment strategies for the individual patient [2, 89]. 

The literature contains a wide variety of non-invasive diagnostic techniques used in 

assessing PWS, including videomicroscopy and other Charge-Coupled Device (CCD) 

based imaging techniques [84, 86, 90], perfusion imaging techniques such as laser 

Doppler flowmetry [30, 58] and optical coherence tomography [2, 91, 92], pulsed 

photothermal radiometry [93, 94], photoacoustic imaging [95-98] and infrared 

tomography [2, 30].  However, reflectance spectrophotometry is the most established 

and widely used technique for the objective assessment of PWS skin [30, 65, 99] and 

has developed significantly since its introduction into dermatological applications 

nearly a century ago [100]. 

Spectrophotometry 

A spectrophotometer is a specific type of spectrometer, designed to measure light over 

the visible and near visible portion of the electromagnetic spectrum.  At its most basic 

level, a reflectance spectrophotometer consists of a diffuse light source to illuminate 

the skin, a means of collecting the reflected and/or backscattered light from the 

surface, a spectral analyser and a means of measuring light intensity [101] (Figure 9).  

From this, the quantity of reflected light can be determined at specific wavelengths.  

The visual appearance of skin is derived almost entirely from diffuse, backscattered 

light from within the tissue.  Therefore, when measuring skin colour, it is preferable to 

avoid detecting surface spectral reflectance and instead measure the quantity of 

diffuse photon flux of reflected light.  This can be achieved by occluding the surface of 
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the skin from the primary light source, leaving the irradiance* at the skin consisting 

entirely of diffuse photons.   

 

Figure 9:  Schematic diagram showing a basic spectrophotometer setup.  The integrating 
sphere acts both as a means of producing a diffuse light source, and for collection of light 
from the patient surface.  

The proportions of different chromophores in the skin may be approximated from 

knowledge of their distinctive optical absorption characteristics, taking into account 

the scattering effects of tissue [21].  Such approximations are usually based upon 

relatively simple models of skin structure, typically consisting of optically 

homogeneous layers.  The chosen model is then applied inversely, such that optical 

properties of the given layers are adjusted until the calculated reflectance spectrum 

matches the measured spectrum [102].  From these optical properties, concentrations 

of specific chromophores in each layer, such as haemoglobin, may be estimated. 

In general, spectrophotometers can be divided into three categories: scanning, narrow 

band and tristimulus [27]. 

Scanning Spectrophotometry 

Scanning reflectance spectrophotometry is the most established quantitative method 

of measuring skin colour [100], although it was not until the early 1980’s that the 

method was first applied to PWS skin [55, 89].  At this time, work carried out by 

authors such as Ohmori and Huang [55] and Tang et al [89] highlighted the potential 

for accurately predicting individual treatment response to laser therapy of PWS 

                                                      

 

* The power of light incident on the surface of the skin per unit area.  Units Wcm-2 
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lesions.  As previously mentioned, such a diagnostic method could be used to select 

appropriate treatment strategies on an individual patient basis. 

 

Figure 10: An example of a modern scanning spectrophotometer, the Konica-Minolta 
CM2600-d. 

Modern devices (such as those produced commercially by Spectral Research, Minolta 

and Zeiss) are contained completely within a hand held unit and can calculate 

absorbance spectra within seconds (Figure 10).  For example, Sheehan-Dare and 

Coterill [103] used a scanning spectrophotometer (Spectral Research, UK) on 43 

Caucasian patients to determine a statistically significant improvement in skin 

blanching achieved using the conventional PDL compared to the newly proposed 

Copper Vapour Laser (578 nm).  Their method involved the comparison of an index 

calculated from the logarithm of the inverse reflectance (for a detailed explanation, see 

Appendix B).  Although this index limited the ability to identify individual 

contributions from haemoglobin, melanin and other skin chromophores, it did allow 

for a simple and objective comparison of overall light absorbance. 

Tomson et al [67] reported a statistically significant increase in skin blanching for 2-

week intervals between PDL treatment sessions when compared to 6-week intervals, 

assessed using an overall reflectance measurement.  The results were taken from a 

selection of only 13 PWS patients however, and no follow up study has been 

performed on a larger set of patients to the author's knowledge. 

In order to provide a more detailed analysis of spectral reflectance data, a technique 

involving the inverse application of skin reflectance models is employed.  Usually, 

these estimations involve either a solution to the diffusion approximation or Monte 

Carlo simulations. 
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The diffusion approximation is by far the most widely used approximation in 

biomedical optics, with Farrell et al’s method [104] accumulating over 400 citations 

alone [105].  This is due to its relative simplicity and low demand on computing 

power.  Studies by Verkruysse et al [106], Zhang et al [107] and Lakmaker et al [25] 

show that the diffusion approximation is capable of producing fast results but may 

overestimate values of blood volume fraction, oxygenation levels and melanin 

concentration in PWS skin. 

Monte Carlo methods are widely regarded as the most accurate simulations [107] and 

have become increasingly popular in recent times due to advances in computing 

power.  Kienle and Hibst [81] are amongst those who used Monte Carlo simulations to 

estimate the optimal laser wavelength for achieving selective photothermolysis, based 

upon their reflectance measurements.  Verkruysse et al [23] also chose to use a Monte 

Carlo simulation when analysing the influence of skin anatomy on perceived PWS 

skin colour, claiming superior accuracy to the diffusion approximation in the blue 

region, below 450 nm†.  

Irrespective of the simulation used, the choice of skin model employed can greatly 

affect the overall accuracy of data interpretation.  For instance, layers containing 

homogeneous distributions of blood and melanin are often approximated.  There is 

strong evidence, however, that vessel diameter influences the perceived colour of the 

lesion and therefore the spectral reflectance characteristics [23, 40, 107] and the 

effectiveness of laser therapy [36, 42, 86].  Also the presence of melanin in the skin 

causes significant changes in the quantity of absorbed and reflected light over the 

entire visible spectrum.  An increase in melanin will reduce the radiant exposure‡ at 

the epidermal/dermal junction and therefore the effectiveness of laser therapy.  This 

may also increase the estimated dermal blood content if care is not taken to account for 

this when constructing the skin model.  Despite these challenges, simulations have 

proven a powerful tool in the assessment of PWS lesions. 

                                                      

 

† Further investigations involving the Monte Carlo technique are discussed from page 60. 
‡ The quantity of light incident upon a given area.  Units Jcm-2. 
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In summary, scanning spectrophotometers have been used successfully to determine 

favourable treatment regimes and to predict accurately treatment outcome on an 

individual patient basis.  Further work is required in refining a skin model that can 

relate accurately and repeatably the spectral properties of PWS skin to anatomical 

properties which may be used in the diagnosis of PWS lesions. 

Narrow Band Spectrophotometry 

In the mid 1990s, portable optoelectronic devices designed specifically for 

measurements of the skin pigments melanin and haemoglobin became available.  

These relatively simple devices only necessitate measurements over two or more 

specifically selected wavelengths and so could be contained within a single hand-held 

unit, allowing for greater convenience in clinical measurements, at a lower cost than 

competing devices. 

Narrow band spectrophotometers use a model based upon the work of Diffey et al 

[108] which illustrates that the sum of absorbencies from the skin’s constituent 

pigments can be approximated from the decimal logarithm of the inverse reflectance 

from the skin (see Appendix ).  From this, an Erythema Index (EI), relating to the 

dermal blood content, has been constructed: 

        (
  

  
⁄ ) Equation 2 

where IR is the intensity of the red component of backscattered light (660-690 nm) and 

IG is the intensity of the green component of backscattered light (530-560 nm). 

Lanigan and Cotterill [43] used narrow band spectrophotometry alongside laser 

Doppler to objectively evaluate the response of PWS skin to a vasodilator cream, 

supporting the theory of reduced neural control in the pathogenesis of PWS.  A 

comparison between three spectrophotometers by Clarys et al [109] included the 

Mexameter (Courage-Khazaka Electronic, Köln, Germany), a device which emits light 

at 568 nm, 660 nm and 880 nm using a circular arrangement of 16 LEDs.  They 

reported good repeatability of measurements both in vivo and in vitro but found that 

the sensitivity of the device was inferior to that of a more popular unit, the 

DermaSpect (Cortex Technology, Hadsund, Denmark).  The DermaSpect is the most 

widely used narrow band spectrophotometer for the assessment of PWS skin and 

emits light at 568 nm (green) and 655 nm (red) using LEDs.  Troilius and Ljunggren 
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[57] investigated the possible use of the DermaSpect as a tool to predict and monitor 

PDL treatment of PWS on sixty six patients of Scandinavian descent.  To take into 

account variation in normal skin (such as seasonal, temperature or other changes), 

they used ∆EI values, where: 

                              Equation 3 

The results were simple to interpret, based on a scale of 0 – 100% where 0% 

represented no blanching and 100%, total blanching of PWS skin relative to normal 

skin.  Results clinically assigned to the “fair” category may have had blanching 

between 0 and 80% whereas those from the “good” category may have had blanching 

anywhere between 20 and 100%, showing a noticeable overlap.  However, there was a 

good correlation (r = 0.844) between ∆EI results and clinical assessment.  Troilius and 

Ljunggren commented that this method could be used diagnostically, to predict 

outcomes of therapy by the time of the second treatment. 

In most cases, the quality of information available from narrow band 

spectrophotometry is bound to the definition of EI used.  However, the SIAscope 

(Astron Clinica, Cambridge) matches information over 8 wavebands of light against a 

model of spectral properties of chromophores in the skin over a 2 dimensional array of 

points [110].  The result is a series of two-dimensional maps named SIAgraphs, 

detailing the distribution of collagen, melanin and haemoglobin over the interrogated 

volume of skin.  Laube et al [61] used this device alongside another narrow band 

device (Dermatronics, Cardiff) in the evaluation of a long pulse-duration PDL 

treatment for resistant PWS lesions.  They described “considerable variations” 

between sets of three measurements in a single session when using both instruments.  

Furthermore, their methods resulted in disagreements between clinical assessments 

and SIAscope indications.  However, the SIAgraph demonstrated subjectively a 

change in vessel diameter between treatments, information that is not available from 

the “point” measurement of other spectrophotometers. 

When compared to spectral devices, narrow band spectrophotometers provide less 

detailed information and are thus limited in their applications.  Furthermore, the value 

of EI has been found to increase with skin pigmentation due to the absorption of green 

light by melanin, resulting in an overestimation of the dermal blood content [111].  

However, the recorded data is considerably easier to handle and devices are much 
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cheaper.  These factors have helped maintain their popularity in dermatological 

studies.  In the future, it is likely that other narrow band devices like the SIAscope will 

continue to emerge alongside the development of sophisticated PWS skin models used 

in scanning spectroscopic methods. 

Tristimulus Colourimetry 

Tristimulus colourimetry is widely used in chemistry and in dermatology, and 

provides an easy to operate and portable method for use in assessing PWS lesions.  In 

general, a Tristimulus device illuminates the skin with a xenon arc lamp, which 

provides almost continuous bands across the visible spectrum.  Reflected light is 

filtered and subsequently analysed using high sensitivity photodetectors.  Results are 

commonly displayed using the CIEL*a*b* colour convention (see Appendix C) but 

often a number of output options are available. 

The Minolta Chroma-Meter CR-200 and the newer CR-300 version (Osaka, Japan) are 

considered as standard instruments for CIEL*a*b* data acquisition in dermatology due 

to their proven reliability, accuracy and sensitivity [109].  Excellent inter- and intra- 

user repeatability has been reported for skin measurements using both the CR-200 and 

CR-300 [112, 113], and when compared to the DermaSpect narrow band 

spectrophotometer, the a* value was found to have a strong linear correlation with EI 

[30, 111], meaning that CIEL*a*b* may be meaningful in the context of dermal blood 

content.  Koster et al [88] used the CR-300 to obtain ∆E and ∆a* values (colour 

differences between PWS and normal, adjacent skin; defined in Appendix ) from facial 

PWS lesions on 70 Caucasian patients.  These were used to determine retrospectively 

an exponential fit to PWS clearance over a series of treatments.  They suggested that 

such a fit could be used to predict the best possible clearance and the required number 

of treatment sessions for an individual patient by obtaining information over two or 

three treatments.  The use of ∆E and ∆a* takes into account differences in skin melanin 

content, based on the assumption that such differences are equivalent for both PWS 

and normal adjacent skin [114].  The methods used by Koster et al however did not 

relate skin melanin content to the predicted treatment outcome.  They also ignored the 

association between anatomical location of the lesion and its clinical response to laser 

therapy [65].  This study does nevertheless highlight the potential for predicting 

prospectively the progress of a specific treatment. 
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When compared to Doppler flowmetry, Serup and Agner [115] found that the CR-200 

and the Dr Lange Micro Color (Dr Bruno Lange GmbH, Dusseldorf, Germany) 

tristimulus spectrophotometers had superior technical reproducibility and were both 

better suited to the busy laboratory environment.  This must hold true for the busy 

clinical environment too.  Kim et al [116] also found that the CR-200 was better suited 

to clinical assessments of PWS skin when compared to a cross-polarised CCD based 

imaging system. 

Many tristimulus devices are produced for the manufacturing industry and are thus 

designed to perform surface measurements.  Therefore, errors pertaining from lateral 

diffusion and specular surface reflection within the skin are often not accounted for, 

resulting in a measurement which is greyer than the perceived colour of the skin [51].  

Spectral surface reflection consists approximately 4-7% of the incident beam [15, 117] 

and can be effectively reduced by the design of the integrating sphere setup.  The 

introduction of a light trap to avoid the detection of spectral surface reflection and an 

absorber to avoid direct illuminance from the light source are methods which are 

commonly employed (for example, see Figure 9). 

 

Figure 11: Illustration of lateral diffusion error.  Backscattered red light is more likely to 
escape the aperture of the spectrophotometer due to a greater mean distance between 
scattering events.  

Lateral diffusion error arises from the variation in scattering lengths of light with 

wavelength.  As demonstrated in Figure 11, this results in a greater loss of red light vs. 

blue light for example.  Takiwaki et al [118] demonstrated the influence of lateral 

diffusion error by measuring skin colour with two equivalent devices, each with a 

different sized aperture.  They found that a statistically significant difference in 

measured skin colour between the two devices, with the larger aperture device 

producing a brighter, redder (in a red-green scale) and more yellow (in a yellow-blue 

scale) measurement of colour.  This is in agreement with the lateral diffusion error 

 

Skin 
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hypothesis, although other differences between the two devices cannot be completely 

ruled out without further investigation.  

There have been a number of investigations comparing the performance of tristimulus 

spectrophotometers to the DermaSpect narrow band device.  Both Takiwaki et al [111] 

and Clarys et al [109] commented that tristimulus measurements provide more direct 

information on overall skin colour rather than estimates of erythema provided by 

narrow band devices.  Thus, tristimulus measurements may be considered of greater 

relevance to the cosmetic significance of a given lesion, although the interpretation of 

these data may be more complex.  Furthermore, Clarys et al [109] found that a* was 

more sensitive to induced changes in redness of the skin when comparing maximum 

relative changes in value, a conclusion also supported by Shriver and Parra’s 

observations [119].   

Tristimulus devices offer reliable and repeatable information regarding relative 

changes in dermal blood content, which can be understood more readily than spectral 

data.  This has led to promising results in the treatment planning of PWS patients.  

However, the potential of determining complex effects of diverse skin chromophores, 

including different types of melanin, is limited in both tristimulus and narrow band 

devices when compared to scanning spectrophotometers.  Thus, further 

understanding of the effects of chromophores other than haemoglobin on tristimulus 

a* and L* values must be obtained to allow for a detailed diagnosis of PWS lesions on 

an individual basis.   

When compared to both tristimulus and narrow band devices, scanning 

spectrophotometers boast greater versatility as they measure data from which 

CIEL*a*b* and EI, along with many other colour notations, can be calculated and will 

provide more detailed information over the entire visible and near visible spectrum.  

However, the greater cost of such devices (currently 2-3 times that of both tristimulus 

and narrow band [120]) continue to limit their popularity in dermatological research. 
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Conclusions 

There are currently a range of spectrophotometric devices that are specifically 

designed for, and well established in, dermatology and in the study of PWS lesions.  

Scanning devices are the most substantial and versatile, and consequently the most 

expensive spectrophotometers used in dermatology.  They are able to provide data 

which may be used to determine the complex effects of various skin chromophores on 

the overall perceived colour of both normal and PWS skin and have been used in the 

detailed analysis of PWS anatomy and subsequent treatment implications.  However, 

unlike narrow band and tristimulus spectrophotometers, considerable expertise is 

required to interpret the complete data set.  Narrow band devices are the most simple 

to use and interpret, but provide limited information that does not account for the 

complex effects of melanin and other chromophores.  This is also true for tristimulus 

devices, although they are more sensitive to changes in redness and have the 

advantage of presenting results related directly to human visual perception.  

Tristimulus spectrophotometers produce a more direct measurement of skin colour, 

although interpretation of this may be limited due to errors incurred by lateral 

diffusion, spectral surface reflection and the effects of skin chromophores other than 

haemoglobin, not accounted for with the devices currently used. 

Overall, scanning spectrophotometers are the most diverse spectrophotometers 

available and provide a more thorough interpretation of skin colour, making them the 

preferred choice for the majority of investigators.  However, other devices offer 

cheaper, simpler and quicker results, which have proven reliability.  They have been 

adequate for use in a number of clinical investigations and may better suit the needs of 

some research projects.  For this particular project, the Minolta CM-2600d scanning 

spectrophotometer has been selected as the most appropriate tool for the objective 

assessment of PWS skin (see Figure 10).  This is a commercially available device and so 

has the potential for immediate introduction as a routine clinical assessment tool.  It 

was chosen above other devices due to the quality of the white light source and the 

additional options of selecting aperture size (which may be used to approximate 

lateral diffusion error) and estimating the proportion of specular reflectance (by using 

2 separate light sources, see Appendix D). 
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The following chapter discusses in detail the techniques and methods by which colour 

measurements can be used to infer information regarding the composition of PWS 

vessels on an individual basis.



 

  



 
 
 
 
 

4.  The Optical Properties of 
Human Skin 

 

Based upon the published work by Lister et al [5] 
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Introduction  

The colour of human skin has long been used as a subjective adjunct to the detection 

and diagnosis of disease.  More recently, the introduction of skin colour measurements 

has extended this to include the potential for objective determination of skin features 

[27], including melanin and haemoglobin concentrations [21, 23, 121-123], the depth 

and diameter of blood vessels [124-126], the depth of pigmented skin lesions [127, 

128], the maturity and depth of bruises [127-130] and keratin fibre arrangements [131].  

Such advances have proved invaluable for the advancement of skin laser treatments 

[2] and photodynamic therapy [132-134], and have contributed to further advances in 

the diagnosis of cancerous and non-cancerous skin lesions [128, 135-137]. 

However, the success of these methods depends entirely upon adequate knowledge of 

the behavior of light as it impinges upon, and travels through the skin.  A description 

of the major interactions of visible light with skin and the principal skin features 

which contribute to these is presented.  This is followed by an analysis of published 

optical coefficients used in simulations of light transport through skin. 
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Background 

Absorption 

Absorption describes a reduction in light energy.  Within the visible region, there are 

two substances are generally considered to dominate the absorption of light in skin: 

haemoglobin and melanin. 

Haemoglobin is the dominant absorber of light in the dermis.  Normal adult 

haemoglobin (Hb A) is a protein consisting four polypeptide chains, each of which is 

bound to a heme [138].  The heme in Hb A is named iron-photoporphyrin IX [139, 140] 

and is responsible for the majority of light absorption in blood.  The free-electron 

molecular-orbital model describes this absorption as an excitation of loosely bound 

'unsaturation electrons' or 'π-electrons' of the heme [141].  Within the visible region, 

Hb A contains 3 distinctive peaks.  The dominant peak is in the blue region of the 

spectrum and is thus referred to as the Soret peak or Soret band.  Two further peaks 

can be distinguished in the green-yellow region, between 500 nm and 600 nm which, 

in combination with the Soret band, cause Hb A to appear red.  These are known as 

the α and β bands, or collectively as the Q-band, and have intensities of around 1-2% 

of the Soret band [142].  The excitation levels of π-electrons vary, and therefore the 

positions and intensities of these bands vary with the ligand state of the heme (Figure 

7). 

 

Figure 7: Absorption spectra of deoxyhaemoglobin (Hb), oxyhaemoglobin (HbO 2), 
carboxyhaemoglobin (HbCO) and methaemoglobin (MetHb) in the visible region, from [76]. 
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Melanins are ordinarily contained within the epidermis and produce an absorption 

spectrum which gradually decreases from the UV to the IR regions.  In contrast to 

haemoglobin, the variation and complexity of melanins means that their detailed 

structures are not yet fully understood, despite intense research over the last 5 

decades, and this broadband absorbance spectrum is still a topic of scientific debate 

[143-145].  At present, the scientific consensus appears to gravitate towards a 'chemical 

disorder model' [13, 123, 143-147].  This model proposes that melanins consist of a 

collection of oligomers or polymers in various forms arranged in a disordered manner.  

This results in a number of absorption peaks which combine to create a broadband 

absorbance effect [144, 146] (Figure 13). 

 

Figure 12: Coloured lines show individual absorption spectra of tetramer subunits within melanin 
extracted from human epidermis.  The average absorption spectrum of these is shown by thick black 
line, shifted up 1.5 units for clarity.  Thin black lines shifted down by 1 unit represent absorption 
spectra from monomer subunits.  a.u. = arbitrary units.  Reprinted figure with permission from [146]. 

 

Further absorption of light may be attributed to chromophores such as bilirubin and 

carotene [148], lipids [149] and other structures, including cell nuclei and filamentous 

proteins [101, 150].  Although the individual contributions from these secondary 

chromophores may be considered separately [130, 151, 152], most simulations group 

them into a single overarching value [33, 106]. 

Despite its abundance in all tissues, water is not a significant absorber of light in the 

visible region, although its contribution has been considered when simulating skin 

colour [153]. 
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Scattering 

As well as absorption, scattering contributes significantly to the appearance of skin.  

Scattering describes a change in the direction, polarisation or phase of light and is 

commonly portrayed as either a surface effect (such as reflection or refraction) or as an 

interaction with a small region whose optical properties differ from its surroundings 

(particulate scatter). 

It has been estimated that 4-7% of visible light is reflected from the surface of the skin, 

independent of wavelength and skin colour [15, 117].  The remaining light is refracted 

as it passes from air into the skin. 

The primary sources of particulate scatter within the skin are filamentous proteins.  

Keratins are the filamentous proteins of the epidermis and form this layer's major 

constituent, whereas collagen is the principal filamentous protein of the dermis and 

occupies approximately 18-30% of its volume [3].  Further scatter is attributed to 

melanosomes in the epidermis, cell nuclei, cell walls and many other structures in the 

skin which occur in smaller numbers [154]. 

Scatter from filamentous proteins has been approximated using a Mie solution to 

Maxwell's equations applied to data from in vitro skin samples [155, 156].  This 

approach provides an increase in simulated scattering probability with increasing fibre 

diameter and also with decreasing wavelength.  The dependence of scatter on fibre 

diameter suggests that the protein structures of the dermis, which may be 10 times as 

large as those in the epidermis [3, 10] possess a greater scattering cross-section.  This in 

part compensates for the lower number densities of filamentous proteins in the 

dermis.  The scattering events which occur are mainly in the forward direction, 

meaning  that, on average, light which returns to the surface will have undergone a 

large number of scattering events [157].  One implication of the wavelength 

dependence of scatter is that blue and green light which has returned to the surface of 

the skin will have, on average, travelled less deeply than red light.  This is considered 

the primary reason why blood vessels and pigmented nevi which are situated deeper 

within the skin are only able to absorb light from the red end of the spectrum and 

therefore appear bluer than their superficial equivalents [51, 158].   
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The volume fraction of melanosomes in the epidermis varies typically from 1% in pale 

skin to 5% in darker skin [6], although one group has suggested greater values [22, 

159].  However, despite their low numbers relative to keratins, melanosomes are 

approximately ten times the diameter of the largest keratin structures in the epidermis 

[160] and possess a greater refractive index [161] (and therefore a greater difference in 

refractive index at their interface with skin).  Melanin has been shown to contribute 

significantly to the degree of scatter within the epidermis [7, 136].  As well as the 

volume fraction, the distribution and size of melanin structures in the epidermis also 

vary with skin type.  Thus, the total amount of scatter which occurs as a result of 

melanin in the epidermis can vary substantially between individuals [162, 163], 

although this is not always taken into account when simulating the effects of varying 

melanin concentration on skin colour [153, 164], or when simulating laser treatments 

[2, 77] for example. 

Blood normally occupies around 0.2%-0.6% of the physical volume of the dermis [19-

24] depending upon anatomical location.  The vessel walls surrounding this blood, in 

addition to the walls of vessels which remain vacant, may occupy a similar volume.  

Dermal vessels vary in thickness and structure from capillaries of around 10-12 µm 

diameter at the epidermal junction to terminal arterioles and post-capillary venules 

(approximately 25 µm in diameter) in the papillary dermis and venules 

(approximately 30 µm) in the mid-dermis [17].  Furthermore, blood vessels occur in 

higher densities at particular depths, giving rise to so-called blood vessel plexi [17].  

The contribution to light scatter by these structures, inclusive of refraction effects, may 

be significant4 [165-167] and varies with location and depth, as well as between 

individuals.  Larger, deeper vessels may also contribute to the colour of skin.   

Scattering from the remaining structures of the skin, including cell walls, nuclei and 

organelles [150], hairs and glands, is rarely of central interest to a study of skin optics.  

As a result, the contributions from these structures to the total measured scattering 

coefficients are not routinely considered separately [168]. 

                                                      

 

4 Assuming a reduced scattering coefficient of 0.5 mm-1 for blood and 3 mm-1 for vessel walls at 633 nm [210], a 0.5% 

volume fraction of each contributes approximately 0.02 mm-1 to the dermal reduced scattering coefficient, measured at 
around 1-5 mm-1 (See page 58).  The contribution will be larger within blood vessel plexi. 
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Simulating Light Transport through Skin 

Optical simulations involving mathematical models of healthy human skin generally 

approximate the surface as perfectly smooth, although some computer graphics 

models have applied calculations of directional reflectance from rough surfaces [169].  

Surface scattering effects (reflection and refraction) can be calculated for smooth 

surfaces using Fresnel's equations and Snell's law respectively: 
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Fresnel reflection (R) of unpolarised light from air to skin, where c = cos(θi), θi is the angle of 
incidence, a = n2 + c2 - 1 and n is the refractive index of skin. 
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Angle of refraction (θt) at the skin's surface calculated using Snell's law. 

Within the skin, both absorption and scatter must be considered simultaneously.  

These may be described in the classical approach by Maxwell's equations, which 

consider the interactions between the electric and magnetic fields of light with matter.  

However, an exact solution to Maxwell's equations requires precise knowledge of each 

structure within the medium and becomes prohibitively complex for the case of 

human skin.   

The most commonly used approximation to Maxwell's equations in the field of skin 

optics is Radiative Transfer Theory (RTT) [170].  This considers the transport of light in 

straight lines (beams).  Absorption is simulated as a reduction in the radiance of a 

beam and is dependent upon the absorption coefficient (µa).  The degree of scattering 

is described by the scattering coefficient (µs), which considers both a loss of radiance in 

the direction of the beam and a gain from beams in other directions, and the phase 

function (p), the probability that an individual beam will scatter in any particular 

direction.  The reduced scattering coefficient (µs') combines these variables, i.e. µs' = 

µs(1 - g), where g is the anisotropy factor, the average cosine of the scattering angle θ:  
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4
coscos dpg  Equation 6 

where dω is a differential solid angle.   

In order for RTT to be valid, it must be assumed that any cause for increasing or 

decreasing the radiance of a beam other than that described by the absorption and 

scattering coefficients, including inelastic scatter (fluorescence or phosphorescence) 

and interactions between beams (interference), is negligible.  The skin model must also 

consist of volumes which are homogeneous with regards to µs, µa and p, and which do 

not change over time.   
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Optical Coefficients of Skin 

A considerable amount of work has been carried out to determine appropriate values 

of the RTT coefficients.  Cheong et al [171] described both direct (in vitro) and indirect 

(in vivo) methods of measuring absorption and scatter.  A comprehensive analysis of 

the literature involving each method is presented here. 

Absorption Coefficients 

 

 

Figure 13: Summary of absorption coefficients available in the literature.  In vitro data 
represents absorption coefficients from exsanguinated skin whereas dermal in vivo data is 
inclusive of blood absorption.  *data obtained from graphical presentation. †data presented 
was not complete and required input of haemoglobin or water optical properties obtained from 
[149].  The raw data is provided in Appendix E (Table 17). 
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In Vitro 

Direct measurements have the potential to produce repeat measurements of a 

predetermined volume or section of skin and, unlike in vivo measurements, can 

include transmission data.  However, the processes necessary to extract and prepare a 

skin sample cannot be carried out without altering its optical properties. 

The in vitro studies presented in Figure 14 vary significantly in tissue processing 

methodologies, measurement setup and the interpretation of data.  For example, 

Jacques et al's work [172] included three methods of tissue preparation.  The epidermis 

was separated from the dermis using a microcryotome for one set of skin samples, 

after mild thermal treatment in a water bath in another set, and was not separated in a 

third set.  The same mild thermal treatment was used to separate the dermis and 

epidermis in Prahl's work [159] and a microcryotome was also applied in Salomatina 

et al's study [136].  No separation of the epidermis was reported by Chan et al [173] or 

Simpson et al [174].  Although Salomatina's work shows greater absorption from the in 

vitro epidermis when compared to the dermis, the studies analysed here do not 

demonstrate a clear distinction in absorption coefficients reported between the 

methods of separation described, nor between those which separated the epidermis 

and those which did not.  

The level of hydration is likely to have varied considerably between the studies 

analysed.  Prahl [159] and Jacques et al [172] soaked samples in saline for at least 30 

minutes before carrying out measurements, during which the samples were placed in 

a tank of saline.  Salomatina et al [136] also soaked their skin samples prior to 

measurement and sealed them between glass slides to maintain hydration.  Chan et al 

[173] and Simpson et al [174] did not soak their samples prior to or during 

measurement.  Jacques et al reported that soaking the sample increases backscattered 

reflectance, although the effects on the calculated absorption are not described.  Chan 

et al commented that dehydration may elevate the measured absorption coefficient.  

However, the greatest reported absorption coefficients are those from rehydrated 

tissue samples.  From the information available, the effect of tissue hydration on the 

measured absorption coefficients is not clear. 

Data was interpreted using Monte Carlo simulations by Salomatina et al [136], 

Simpson et al [174] and Graaf et al [175], an adding-doubling technique by Prahl et al 

[159], and by direct interpretation in Chan et al's [173] and Jacques et al's [172] studies.  
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Both the methods described in the Monte Carlo simulations and Prahl's adding-

doubling technique are based upon assumptions of optically homogeneous tissue 

layers, uniform illumination and no time dependence, and both are essentially discrete 

solutions to the radiative transport equation.  The methods described contrast in their 

approach to internal reflection for beams exiting the skin model and the adding-

doubling method relies upon accurate representation of the angular distribution of 

beams exiting the thin layer upon which the model is built.  It is not directly clear if, or 

how, these differences may have contributed to the higher absorption coefficients 

reported by Prahl et al. 

It is also of interest that Prahl et al's [159], Chan et al's [173] and Salomatina et al's [136] 

studies, whose samples varied in thickness between 60 and 780 µm, did not 

demonstrate a clear correlation between sample thickness and published absorption 

coefficients but  Simpson et al's published absorption coefficients, which are an order 

of magnitude smaller than the other values analysed here, involved much thicker 

samples (1,500 to 2000 µm thick).  Thus, differences between the published absorption 

coefficients across these studies may have resulted from variations in the regions of 

skin investigated or the ability of the simulations to correctly account for boundary 

effects at the lower boundary. 

In Vivo 

Indirect measurements do not suffer from such changes in the properties of the 

interrogated skin volume, although care must be taken to consider variations in blood 

perfusion for example, which may result from sudden changes in ambient 

temperature, the use of some drugs and even contact between the skin and the 

measurement device [176]. 

In general, absorption coefficients measured in vivo may be expected to be higher than 

in vitro values where the highly absorbing pigments from blood are removed from the 

samples.  This is particularly true in the blue-green regions of the visible spectrum.  

Assuming a value of 0.5% blood volume in the dermis, this would contribute 

approximately 8 cm-1 at 410 nm (Soret band), 0.6 cm-1 at 500 nm and 1.4 cm-1 at 560 nm 

(Q-band), but only around 0.05 cm-1 at 700 nm (values calculated from [149]).  This 

contribution is not reflected in the literature.  Absorption coefficients obtained from in 



56  Optical Coefficients of Skin 

vivo work show greater variation, but are not consistently higher than those obtained 

from in vitro work (Figure 14).   

Absorption coefficients from Svaasand et al [177], Zonios et al [73] and Meglinski and 

Matcher [153] clearly demonstrate the effect of blood on the measured absorption 

coefficients.  Each study shows an absorption peak between 400 and 450 nm 

corresponding to the Soret band and a double peak at approximately 540 nm and 575 

nm corresponding to the α and β bands of oxyhaemoglobin (see Figure 7).  There are, 

however, notable differences between the absorption coefficients produced from the 

three studies.  Meglinski and Matcher and Svaasand et al considered epidermal 

absorption coefficients separately to dermal values.  The reported values from 

Svaasand et al are greater, and show a different spectral curve to those from Meglinski 

and Matcher.  This is a direct result of Svaasand et al's inclusion of 0.2% blood by 

volume in the calculation of epidermal absorption coefficients, representing blood 

infiltrating the modelled epidermal layer from the papillae.  Compared to Meglinski 

and Matcher's dermal values and Zonios et al's absorption coefficients for their skin 

model consisting a single layer, both of which also included the influence of blood, 

Svaasand et al's reported dermal absorption coefficients were consistently high.  This is 

despite using a dermal blood volume fraction of 2%, compared to an average of 4.6% 

from Meglinski and Matcher's study and a value of 2.6% in Zonios et al's work.  The 

cause of this discrepancy is the variation in magnitude of the blood absorption 

coefficients applied across the three studies (Figure 112, Appendix E).  Bosschaart et al 

[178] employed a diffusion approximation technique to their data collected from 

neonates, effectively applying a single value of absorption across the skin volume.  

Their data is in close agreement to Meglinski and Matcher's dermal absorption 

coefficients in the 530-600 nm range, but the contribution of melanin produces a 

relative increase in Bosschaart et al's values at shorter wavelengths. 

Data selected for analysis in this work involved 'Caucasian' skin types only.  Where 

stated, these studies involved skin types described as Northern European.  Where not 

stated, it was assumed that such skin types were used except for the studies carried 

out by Zonios et al  [73] and Torricelli et al [179] which were conducted in Southern 

Europe.  The latter two studies did not however report higher absorption coefficients, 

as may be expected from measurements on darker skin types.  In Zonios et al's work, 

this is primarily a result of the low values of blood absorption coefficient applied.  
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Torricelli et al [179] was the only group to apply time-resolved reflectance 

spectroscopy.  This involves a prediction of the temporal spread of a laser pulse using 

a diffusion model.  The values presented can only be as good as the diffusion model, 

and rely upon a wavelength dependence determined from phantom measurements 

[180]. 

The absorption coefficients from both Graaf et al's [175] and Doornbos et al's [181] 

studies were lower than those from the remaining studies.  Graaf et al's and Doornbos 

et al's studies involved an integrating sphere and multifibre probe respectively, as did 

the higher values from Svaasand et al [33] and Meglinski and Matcher [153].  Graaf et 

al and Doornbos et al applied a Monte Carlo Simulation and diffusion approximation 

respectively, as did Meglinski and Matcher and Svaasand et al.  The multiple layered 

mathematical skin models which Svaasand et al and Meglinski and Matcher applied 

when considering separately the effects of the epidermis and dermis may be a more 

accurate approach than the single homogeneous layer used in Graaf et al's and 

Doornbos et al's work.  Although the cause of lower values is not clear, Graaf et al 

commented that their absorption coefficient at 633 nm was 'much smaller than 

expected from in vivo' results.  Doornbos et al did not comment directly on the cause of 

their low values, but mentioned that their 'results resemble those of Graaf et al'. 
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Scattering Coefficients  

 

 

Figure 14: Summary of reduced scattering coefficients available in the literature.  In vitro data represents 
absorption coefficients from exsanguinated skin whereas dermal in vivo data is inclusive of blood 
absorption.  *data obtained from graphical presentation. †data presented was not complete and required 
input of haemoglobin or water optical properties obtained from [149].  Raw data is provided in 
Appendix E (Table 18). 

In Vitro Studies 

 Of the studies analysed here, both Prahl's [159] and Jacques et al's [172] studies 

describe a number of processes between tissue extraction and measurement which are 

likely to have had an effect on the measured reduced scattering coefficient, including: 

exposure to a 55˚C water bath for 2 minutes to aid with separating the epidermis from 

the dermis; freezing, cutting and stacking of 20 µm thick slices of the dermis; and 
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soaking in saline to rehydrate and wash away any blood.  The bloodless samples were 

then held between glass slides in a saline filled tank and illuminated using a 633 nm 

laser.  Freezing and drying, heating to remove the epidermis and deformation of skin 

samples have all been reported to change the measured values of scattering and 

absorption coefficients [172, 174, 175].  In particular, experimental work by Pickering et 

al [182] suggested that heating tissue to 55 degrees may increase the value of µs'.  Also, 

Jacques et al [172] commented that soaking the dermis (in saline) will increase the 

backscattered reflectance, and thus may increase the calculated scattering coefficient.  

In contrast, Chan et al [173] and Simpson et al [174], whose reduced scattering 

coefficients were substantially lower,  reported minimal tissue processing (although 

Chan et al's specimens had previously been frozen).  

A further source of disparity between in vivo data from earlier studies [159, 172, 175], 

which involved more tissue processing than the more recent in vivo data presented in 

Figure 15 [136, 173, 174], may have arisen from the choice of measurement setup.  For 

example, Graaf et al [175] reported that discrepancies may arise when internal 

reflectance is not taken into consideration.  Due to a larger difference in refractive 

indices, this will have a greater effect for samples in air compared to samples in water 

or saline solution.  All samples were placed between glass slides.  However, only the 

earlier studies analysed here, those which produced higher values of reduced 

scattering coefficient, submerged the sample in water or saline [159, 172].  

Salomatina et al's study [136] determined separately the reduced scattering coefficients 

of the epidermis and dermis.  Their data show that the epidermal reduced scattering 

coefficient was consistently 2-3 mm-1 higher than the dermal reduced scattering 

coefficient over the visible spectrum.  This suggests that studies which excluded the 

epidermis, such Chan et al's [173] and Simpson et al 's [174], should provide lower 

values of reduced scattering coefficient than data obtained from studies in which the 

epidermis remained, such as Graaf et al's [175] and Prahl's [159].  However, most 

probably due to a prevailing effect from the aforementioned influences, this is not the 

case. 

  



60  Optical Coefficients of Skin 

In Vivo Studies 

In addition to their interpretation of Prahl's in vitro data [159], Graaf et al [175] 

performed measurements of reflection on 5 male subjects with 'white' skin at 660 nm 

using an LED source.  Despite using a similar wavelength light source to Prahl's 633 

nm, reduced scattering coefficients from Graaf et al's in vivo measurements were 

appreciably lower than their interpretation of in vitro data (Figure 15).  This is likely to 

be a result of the posthumous tissue processing performed in Prahl's study as 

previously described.  However, this effect is not reflected across the literature as, in 

general, reduced scattering coefficients from in vivo studies were not substantially 

lower than those evaluated from in vitro studies, nor did they demonstrate an 

appreciable difference when considering the variation in reduced scattering 

coefficients across the visible spectrum. 

Any solution involving two independent variables (such as µs' and µa) can suffer from 

non-uniqueness, where equivalent results can be obtained from two or more sets of 

input values (local minima).  When applying RTT to skin, a simulated increase or 

reduction in reflection can be attributed to a change in either µa or µs'.  The reduced 

scattering coefficients from Svaasand et al's study [33] were considerably higher than 

any of the other in vivo studies assessed.  This is in addition to their high values of 

absorption coefficient discussed in the previous section.  The paper stated that 'the fact 

that the calculated [skin reflectance] values tend to be higher than the measured ones 

might indicate that the used values for the epidermal and dermal [reduced] scattering 

coefficients are somewhat too high'.  The reduced scattering coefficient from Svaasand 

et al's work was derived from a single data point at 577 nm measured by Wan et al 

[183] fitted to a simple                  relationship and therefore may not be as 

reliable as data derived from a series of direct measurements.  It should also be noted 

that the remaining studies which produced the highest reduced scattering coefficients 

analysed here also provided the highest absorption coefficients, including both in vivo 

and in vitro data.  Similarly, those studies presenting the lowest reduced scattering 

coefficients produced the lowest absorption coefficients (Figure 14).  Furthermore, 

when applying high values of dermal scattering to a minimisation procedure, 

Verkruysse et al demonstrated the effect of non-uniqueness errors on derived skin 

properties, resulting in a clear overestimation of dermal blood volume fractions [106]. 
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Dognitz et al [184] used a spatial frequency domain reflectometry (SFDR) method 

alongside a simulation constructed using the Wang and Jacques Monte Carlo 

programme [102] to calculate reduced scattering coefficients from the forearms of 6 

subjects with Caucasian skin.  Dognitz et al commented that due to the differences in 

measurement techniques their method interrogates a more superficial region of tissue 

than reflectance spectroscopy (as used in the work by Graaf et al [175], Svaasand et al 

[33] and Doornbos et al [181]) as there is no separation between source and detector.  

Salomatina et al's in vitro results demonstrate epidermal reduced scattering coefficients 

which are greater than dermal values [136], suggesting that studies involving SFDR 

may expect an increase in measured reduced scattering coefficients compared to 

studies involving reflectance spectroscopy.  Dognitz et al further commented that 

discrepancies due to surface reflection may cause their method to overestimate the 

reduced scattering coefficient.  These comments are supported elsewhere in the 

literature [185] and by the remaining datasets which (with the exception of Svaasand 

et al's work) demonstrate good agreement. 

Other techniques used to assess reduced scattering coefficients include Torricelli et al's 

time-resolved reflectance spectroscopy [179], Bosschaart et al's diffusion 

approximation technique [178] and a Mie theory calculation by Zonios et al which 

included spherical scatterers with Gaussian distribution in size [73, 186].  The results 

from these studies are consistent with the majority of in vivo studies and with those in 

vitro studies which reported minimal tissue processing. 

Further Causes of Discrepancy in the Absorption and Scattering Coefficients 

It may be the case that the primary cause of discrepancy between the studies analysed 

here is a result of true differences between the skin samples selected.  The degree to 

which such differences influence the measured coefficients is difficult to extract as, to 

the authors' knowledge, there are no studies which involve the measurement of 

optical properties from large numbers of skin samples, and none which determines the 

expected variation between samples with any one method of data acquisition or 

interpretation.  Of the studies reviewed, the largest datasets involving a single 

measurement technique involved 6 subjects (one involved a range of skin types [33], 

the other used 3 male and 3 female subjects [184]).  Only the former study commented 
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on the variation between individuals, with darker skin types demonstrating greater 

absorption across the visible spectrum.  However, measurements were carried out on 

only one or two subjects from each skin type and the difference in epidermal 

scattering due to variations in melanin content was not considered.   

Further variations between published absorption and scattering coefficients may have 

been caused by differences in the interpretation of data. Perhaps the most widely 

referenced set of absorption and scattering data for human skin is that published by 

Jacques et al [172].  Interpretation of the acquired data was carried out using the 

diffusion approximation.  Prahl, who was an author of this paper, presented an almost 

identical process for determining the optical properties of abdominal skin samples in 

his PhD thesis [159] but applied a technique described as an 'adding-doubling' 

method.  This is a 1 dimensional iterative technique that uses RTT to estimate the 

transport of light through skin from the reflection and transmission of two or more 

mathematical 'slabs' [159, 187].  Graaf et al [175] provided a further analysis of Prahl's 

data [159] using a Monte Carlo technique.  The absorption coefficients calculated 

across these studies varied from 0.12 to 0.27 mm-1 and the reduced scattering 

coefficients from 5.3 to 18.7 mm-1 at 633 nm.  This demonstrates that an alternative 

analysis of the same data can lead to a wide range in estimates of optical coefficients. 

Van Gemert et al [188] used a diffusion theory model to compare absorption and 

scattering coefficients from a compilation of in vitro measurements including Jacques 

et al's study [172] and papers published elsewhere [157, 183, 189].  Despite applying 

the same method of interpretation for each dataset, dermal absorption and scattering 

coefficients varied at 633 nm by a factor of nearly 2.5 (approximately 0.18 - 0.43 mm-1 

and 1.8 - 4.1 mm-1 respectively).  Hence, not only do alternative analyses provide 

noticeable differences in reported coefficients, but the same analysis of data from 

similar studies shows that there is a considerable difference in calculated coefficients 

across the published data. 

Phase Functions 

By far the most widely used approximation to the phase function of human skin is that 

first used by Henyey and Greenstein when trying to model diffuse radiation in the 

Milky Way galaxy [190].  The principal benefit of applying the Henyey-Greenstein 

(HG) phase function is that it can be described using only a single parameter, the 

modified anisotropy factor, gHG.  
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A number of investigations have been conducted to determine the validity of the HG 

phase function when applied to human skin.  For example, Mourant et al [154] used a 

goniometer setup to measure the phase function of cell suspensions in vitro and Dunn 

and Richards-Kortum [191] simulated scattering from an individual cell using a finite 

difference time domain simulation5.  Both studies found that the HG function was a 

poor approximation to the scattering from individual cells as it underestimates 

scattering at large angles, although Mourant et al commented that the HG phase 

function reproduces the experimentally measured phase function "reasonably well for 

angles less than 75˚".  This is in agreement with other work [192-195]. 

In order to compensate for the weaknesses in non-forward scattering, Jacques et al 

[172] introduced an additional empirical term representing the proportion of isotropic 

scattering.  They performed goniometric measurement of scattered light through 

tissue samples and fitted the data to the modified HG function (Equation 8).  
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where   


4
mod 'coscos dpg  and where b is the proportion of isotropic 

scattering.  Applying a value of b = 0.1, they calculated gmod = 0.82 at 633 nm.  Van 

Gemert et al [188] and Sharma and Banerjee [196] supported the use of this modified 

HG phase function when comparing results to in vitro goniometer measurements and 

Monte Carlo simulations respectively.  Furthermore, Graaf et al [155] reported that the 

value of the anisotropy factor used in Jacques et al's study was in agreement with a 

Mie scattering model of a set of spherical scattering particles with radius of 0.37 µm.   

The Henyey-Greenstein expression is purely empirical, however the Mie phase 

function is derived from a mechanistic theory of light transport and can be used to 

                                                      

 

5
 a direct solution of Maxwell's equations in the time domain 
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accurately determine the phase function from a single spherical particle.  Several 

authors have attempted to justify the use of Mie theory calculation for the phase 

function within specified volumes of a skin model [162, 197, 198].  However, 

calculations require adequate knowledge of the sizes and refractive indices of 

scattering particles within the skin and are complex when considering a distribution of 

these parameters.  Although such calculations are possible [199], they have not been 

shown to offer significant advantages over the conventional HG phase function. 

The FDTD method used by Dunn and Richards-Kortum [191] and Mourant [154] was 

capable of predicting the effects of cell structures on the scattering phase function for a 

single cell, including nuclei and melanin, but did not offer a comparison with 

measured skin data.  Liu [200] introduced a new phase function in an attempt to 

improve upon the HG phase function.  This study concluded that the new phase 

function showed better agreement to a Mie calculation when compared to a HG phase 

function.  Again, no direct comparison to measured skin data was presented.   

Refractive Indices 

The surface of the skin is usually approximated as perfectly smooth and thus 

simulations of surface scatter depend entirely upon an input of refractive index.  Ding 

et al [201] illuminated the skin in vitro using a number of light sources ranging in 

wavelength from 325 nm to 1557 nm.  By fitting their data to dispersion schemes used 

previously on ocular tissues, they predicted values of refractive index ranging from 

approximately 1.41 to 1.49 in epidermal tissues and 1.36 to 1.41 in dermal tissues over 

the wavelength range.  This is in agreement with other data published using an 

equivalent technique [202, 203].  However, Tearney et al's study [204] applied Optical 

Coherence Tomography to measure refractive indices of in vivo skin at 1300 nm and 

determined values from a single participant of 1.52 for the stratum corneum, 1.34 for 

the living epidermis and 1.41 for the dermis.  Considering the aforementioned 

influence of posthumous tissue processing on measured reduced scattering 

coefficients, it may also be the case that refractive indices are similarly affected.  

Comparing Tearney et al's in vivo refractive indices to Ding et al's in vitro values (1.46 

for the combined epidermis and stratum corneum and 1.36 for the dermis at 1300 nm), 

there is a suggestion that in vitro methods may result in an increase in the measured 

refractive indices.  
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Blood and Blood Vessels 

The optical properties of blood differ from those of other tissues within skin as blood 

does not contain significant intercellular scatterers.  Thus, the optical properties of 

blood are primarily determined from the concentration and distribution of 

erythrocytes.  Although a number of investigations have been carried out on human 

blood, many have used agitated vials containing randomly distributed and oriented 

erythrocytes which are not representative of blood as it appears in the dermis [205, 

206].  Changes in erythrocyte organisation, shape and orientation have all been shown 

to influence the optical properties of blood flowing within vessels [205].  Only two 

studies were found which have attempted to measure the optical properties of flowing 

blood [74, 75].  Although the results from these two studies are not in complete 

agreement, they both suggest that blood exhibits increased absorption and decreased 

scattering relative to remaining skin, with a reduced scattering coefficient and 

absorption coefficient of flowing blood of around 2.5 mm-1 and 0.5 mm-1 respectively 

at a wavelength of 633 nm. 

 

Figure 15: Refractive indices of human blood [207], vessel wall [208, 209] and dermis [201]. 

To the author's knowledge, the optical properties of dermal blood vessel walls have 

not been investigated directly.  However, studies of scatter from aortic walls suggest a 

scattering coefficient of around 3 mm-1 at 633 nm [210], similar to that of the 

surrounding dermis (Figure 14, page 58).  Surface scattering (as estimated using 
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refractive indices) is also of particular importance when considering blood vessels in 

the skin (Figure 16). 

It can be seen in Figure 16 that the reported refractive indices of the vessel wall, blood 

and surrounding dermis are similar in the yellow to red regions (>550 nm) but differ 

significantly at the blue to violet end.  Thus, greater scattering (reflection and 

refraction) will occur at the vessel wall at shorter wavelengths within the visible 

spectrum.  It may be of interest to note that the scattering effects described here further 

contribute to the green/blue appearance of larger vessels in the skin. 

Although studied, [211, 212] the HG phase function has not been substantially 

supported for the approximation of in vivo blood scattering anisotropy in skin.  At 

present, analytical methods have more success in this case [206, 213]. 

Conclusions 

Light transport through skin is dependent both upon the effects of scattering 

structures such as filamentous proteins, and upon the quantity and distribution of 

highly absorbing chromophores such as melanin and haemoglobin.  Simulations of 

these effects are most commonly achieved using RTT. 

Orders of magnitude variation were found to exist between RTT absorption and 

scattering coefficients across the literature.  Absorption coefficients were found to be 

profoundly affected by the presence of blood, as demonstrated when comparing in 

vitro to in vivo data, and reduced scattering coefficients demonstrated a clear increase 

in magnitude resulting from tissue processing of in vitro samples.  Fewer studies were 

found which analysed anisotropy factors and refractive indices, or which considered 

directly the optical properties of dermal blood vessels. 

Due to the known effects of tissue processing on reduced scattering coefficients and 

the unavoidable coupling between absorption and scatter on measurements on in vivo 

skin, in vitro scattering coefficients which report minimal tissue processing, such as the 

study by Chan et al [173] should be considered foremost in future studies of skin 

optics.  The effect of blood on the reported absorption coefficients, along with the 

observed coupling effects between absorption and scatter, suggest lower values of 

absorption coefficients measured in vivo, such as those reported by Meglinski and 

Matcher [153] or Zonios et al [73], appear to be the most reliable choice.  The HG phase 
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function has a proven track record in skin optics, but published values of anisotropy 

factor and refractive indices are too few to provide a thorough comparison. 

The following chapter provides an analysis of simulations which have applied skin 

optical coefficients to simulate the colour PWS skin.



 

  



 

 

 

 

 

5.  Simulating the Colour of 
Human Skin 

 
Based upon the published work by Lister et al [214] 
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Introduction 

Port Wine Stains (PWS) are progressive vascular lesions of the dermis affecting around 

25 million people worldwide.  They often constitute a significant cosmetic problem 

and, if left untreated, are likely to develop nodular or hypertrophic areas which are 

prone to spontaneous or trauma-induced bleeding and consecutive infection [215, 

216].  The long-term psychological effects of PWS are documented widely but have 

been shown to be mitigated significantly after treatment [217]. 

Although flashlamp-pumped pulsed dye laser (PDL) treatments are widely 

considered the treatment of choice for PWS, fewer than 20% of patients experience 

complete lightening using this method, whereas 20–30% are considered “poor 

responders” [28, 30, 218].  It has been proposed that one reason for inadequate clinical 

results is that the laser parameters used are virtually identical for all PWS patients 

despite the commercial availability of laser systems with user-specific settings [1, 2].  

In order that laser treatment may be optimised on an individual patient basis, the 

practitioner must be aware of the vascular architecture constituting each lesion, 

including the number, distribution and sizes of affected vessels [2].  It is these 

characteristics, as well as the properties of overlying skin (such as epidermal melanin 

content) which constitute the colour of PWS skin [5]. 

The simplest method of assessing PWS colour is through visual observation.  

However, this is both subjective and qualitative.  Perceived colour may be influenced 

by a number of factors such as ambient lighting conditions, colours surrounding the 

subject, eye adaptation prior to viewing and viewing geometry [30, 83].  Although 

photographic images have been applied to determine the efficacy of laser treatment 

for PWS, great care must be taken to minimise the effects of variations in patient 

positioning, camera sensitivity and lighting during acquisition, and the quality of 

printing or visual display of the image [84, 219].  To confound this further, 

communication of perceived colour is difficult as, for example, most PWS skin may 

correctly be described as 'red' in colour.  

Quantitative, reproducible assessments of PWS lesions have been achieved using 

colour measurements (for a full discussion, see [27]).  Colour measurement devices 

consist of one or more optical fibres or integrating spheres which are placed in contact 

with the skin and through which incident and reflected light are passed.  Data 
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available from these devices may include spectral reflectance curves covering a broad 

spectrum (Figure 17), colour co-ordinate values relating to human colour perception or 

indices representing approximations of blood or melanin content.  Once a technique 

restricted to the laboratory, modern hand-held devices are capable of collecting skin 

colour data instantaneously.  Although care must be taken to avoid blanching during 

contact and to replicate the positioning of the device between assessments, colour 

measurements have been shown to produce excellent inter- and intra-user 

repeatability [84, 113] and have been applied successfully in the determination of laser 

treatment efficacy in PWS lesions [220]. 

 

Figure 16: Spectral reflectance of 50 consecutive measurements from the inner forearm of the 
author obtained using a Konica-Minolta 2600d integrating sphere spectrophotometer.  

Clinically relevant, objective information may be determined from skin colour 

measurements through the inverse application of a skin model.  This method begins 

by creating a mathematical skin model through which light transport is simulated.  

Specific features of the model are then adjusted until its simulated colour is in 

adequate agreement with the measured colour of the patient's skin. These adjusted 

features, such as concentrations and distributions of melanins and haemoglobins, can 

be used to inform diagnosis or treatment.  Simulations of skin colour require an 

understanding of the optical properties of skin [5] and must consider the prominent 

interactions of light.  A comprehensive review and analysis of the approaches used to 

simulate light transport through PWS skin is presented, addressing the latter. 
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Skin Colour  

When skin is illuminated with a white light source, its colour is determined by the 

spectral variation in reflected and backscattered light.  The proportion of light 

reflected from the surface of skin has not been shown to vary substantially with 

wavelength or between individuals, and does not contribute appreciably to the colour 

of skin [15, 117].  The remaining light may be absorbed within the skin or scattered 

back to the surface.  The proportion of backscattered light varies considerably with 

wavelength, pigment content and scattering properties of the skin [5].  Thus, it is this 

backscattered light which is predominantly responsible for the colour of skin. 

With regards to PWS skin, vessel number, mean diameter and depth have been shown 

to influence the colour of the lesion [32, 37, 42, 49].  It has been suggested that 

equivalent colours can be obtained through different combinations of these 

parameters.  For example, Barsky et al carried out an investigation involving biopsy 

samples from 100 facial PWS lesions [32].  They observed that the mean vessel area 

and total vascular area correlated strongly with colour assessed using a visual 

comparison of the skin against a Pantone colour chart.  Thus, Barsky's results suggest 

than skin colour is derived from the quantity of blood in PWS skin, independent its 

distribution through the dermis.  Fiskerstrand et al [42] used the same methods of 3 

mm punch biopsies on 30 patients and comparisons against a Pantene colour chart.  

They also reported that skin colour was dependent upon vascular area, but found that 

"pink and purple lesions were significantly deeper located than were the red lesions" 

and larger diameter vessels corresponded with a darkening of PWS colour, from pink 

to purple [37, 42]. Verkruysse et al introduced a correction factor to investigate the 

effect of vessel diameter on PWS colour through Monte Carlo simulations [23].  They 

suggested that several small vessels, close to each other, may be optically equivalent to 

one large vessel over the yellow and blue regions of the visible spectrum.  However, 

their simulated results showed that the proportion of red light reflected from the skin 

was influenced strongly when varying dermal blood fraction but only minimally 

when varying vessel diameter (Figure 17). 
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Figure 17: Change in simulated spectral reflection with varying dermal blood concentration 
(left) and vessel diameter (right). With kind permission from [23]. 

Simulating PWS Skin Colour 

In order to accurately reproduce human skin colour, and variations in colour between 

individuals or regions, over time or as a result of a medical condition such as PWS, a 

simulation must account for the prominent interactions of light within skin.  These 

interactions may be described using classical electromagnetics, based upon Maxwell's 

equations, whereby light is treated as a wave containing an electric component and a 

magnetic component.  When travelling through a medium such as skin, this wave 

causes elements of electric or magnetic charge (e.g. electrons) to oscillate and, in turn, 

the oscillating elements radiate electromagnetic waves.  The observed transmitted or 

scattered wave is a result of the summation of each of these secondary waves.  The 

secondary waves may not have the same phase or magnitude as the incident wave and 

some of the energy will be lost to the charged elements; further energy is lost to the 

medium through destructive interference of secondary waves.   

An exact calculation of the resultant wave is exceedingly complex, as it relies not only 

on the precise position of each charged element in the medium, but also upon the local 

electromagnetic environment, which is continually altered by the interaction of the 

wave with the medium.  Instead, specific solutions to Maxwell's equations have been 

developed for simplified situations.  

At the Skin Surface 

The effects of surface topology on skin appearance are of considerable interest to the 

cosmetic [221] and computed animation [165, 222] industries, as well as medicine [59, 

223].  These investigations are primarily concerned with differences in appearance as a 
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result of varying viewpoints or angles of illumination.  However, the majority of 

studies into PWS skin colour consider a simple approach to approximating surface 

reflection.  By modelling the skin surface as a perfectly smooth interface, and by 

assuming the superficial region of the skin can be assigned a single value of refractive 

index for the wavelength or wavelength range considered, the Fresnel equation may 

be used to estimate the relative quantities of reflected (R) and transmitted (1-R) light: 
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Fresnel reflection (R) of unpolarised light from air (refractive index = 1) to skin, where c = 
cos(θi), θi is the angle of incidence, a = n2 + c2 - 1 and n is the refractive index of skin. 
 

Refraction occurs as light passes from air to skin, or between regions of the skin whose 

refractive indices differ.  Simulations of skin optics which account for the effects of 

refraction generally do so through the application of Snell's law: 
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Angle of refraction (θt) at the skin's surface calculated using Snell's law. 

Both Fresnel's equation and Snell's law require knowledge of the refractive indices of 

skin and the incident angle of light.  Angles of incidence and transmission may be 

calculated simply for a skin model consisting smooth or flat interfaces.  Refractive 

indices are generally obtained from direct measurements [5]. 

Light Transport through Skin 

The behavior of the remaining (transmitted) light is commonly simulated using 

Radiative Transfer Theory (RTT) [170].  This considers the transport of light in straight 

lines (beams).  Absorption is modelled as a reduction in the radiance of a beam and is 

dependent upon the absorption coefficient (µa).  The degree of scattering is described 

by both the scattering coefficient (µs), which considers both a loss of radiance in the 

direction of the beam and a gain from beams in other directions, and the phase 

function (p), which describes the distribution of scattering angles.  

Due to the complex nature of skin, a general solution to the application of RTT is not 

available [188].  Thus, a further approximation is required.  There are two main 

approaches to approximating the application of RTT: those which use a deterministic 
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approach and those which employ a stochastic 'ray tracing' technique.  In addition, 

Prahl described an 'adding-doubling' method in his PhD thesis and associated 

publications [159, 170, 187].  This is a 1 dimensional iterative technique that uses RTT 

to estimate the transport of light through skin from the reflection and transmission of 

two or more mathematical 'slabs'.  Although relatively simple in principle, it has not 

been used greatly outside of Prahl's work. 

Beer-Lambert Law 

The Beer-Lambert law is a simple deterministic technique which has been applied to 

estimate the reflectance (R) from a skin model.  Although empirically derived [224], 

this is essentially a solution to the application of RTT to the interaction of light with a 

static homogeneous absorbing (non-scattering) medium. 

The Beer-Lambert law uses an estimate of the attenuation of light (A) obtained by 

measurements of on-axis transmission through thin samples of skin, and the optical 

path length (l): 

AleR   Equation 11 

Modified versions of the Beer-Lambert law have been applied to estimate the 

quantities of melanin and haemoglobin in the skin [121, 133, 225].  These generally 

involve an additional exponential term to describe loss due to scattering and use an 

approximation of the mean optical path length ‹l›, for example: 
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where µa is the absorption coefficient and A0 is the attenuation caused by scatter.  This 

technique is only applicable in a medium where absorption and scattering are 

relatively homogeneous [36].  In skin, where areas of high scattering (e.g. deep 

epidermis) and high absorption (such as those found in PWS skin) exist, the Beer-

Lambert Law is not appropriate.  Furthermore, it is not possible to account for the 

effects of vascular architecture in PWS skin using this method alone.  When compared 

to an alternative simulation method, Shimada et al [121] confirmed that the Beer-

Lambert law is not sufficiently accurate for investigating human skin. 
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The Diffusion Approximation 

The Diffusion Approximation to RTT is by far the most widely used deterministic 

approach in biomedical optics, with Farrell et al’s method [104] accumulating over 500 

citations alone [38].  

The Diffusion Approximation is described in detail elsewhere [170, 171].  In summary, 

it has a low demand for computing power and thus provides fast convergence for a 

wide range of applications.  For example, it has been applied successfully to real-time 

light dosimetry during photodynamic therapy (PDT) of superficial skin cancers [226, 

227], differentiation between pigmented skin lesions (including malignant melanoma) 

[137] and to determine blood oxygen saturation levels faster, and over a larger area 

than existing methods with equivalent reliability [228].  However, it suffers from a 

number of limitations, in part because it relies upon approximate solutions to an 

equation that itself represents an approximation to the equation of radiative transfer 

[229].  For example, there is a requirement that scattering is dominant over absorption.  

This may be appropriate in clinically normal pale skin types, as the probability of 

scattering within the skin may be as high as twenty times that of absorption [5, 35].  

However, absorption is much greater in the epidermis of darker skin types, the blood 

vessel plexi of the normal dermis, and within PWS lesions.  Thus, the validity of this 

approximation is limited in such cases [106, 229-232].  

These drawbacks have limited the application of the Diffusion Approximation to 

investigations of PWS skin.  For example,  Verkruysse et al. [106] reported that data 

obtained from their 2 layered skin model could be obtained quickly but compared 

poorly to measured spectra, resulting in an overestimation of blood volume fraction, 

oxygenation levels and melanin concentration in Port Wine Stain (PWS) skin.  Zhang 

et al [107] found similar problems when applying a genetic algorithm minimisation 

procedure to their Diffusion Approximation results, as did Lakmaker et al [25] when 

investigating a method of predicting the maximal treatment depth response required 

for complete clearance of PWS lesions.  Svaasand et al [33] applied a diffusion 

approximation to their model, predicting the effects on skin colour resulting from 

changes in the depth and thickness of a PWS lesion.  However, simulated spectral 

reflectance curves compared poorly to their single example of a measured dataset, 

suggesting that these predictions of skin colour may not be applicable on an 

individual basis.   
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The Monte Carlo Method  

Monte Carlo simulations used in biomedical optics are simply ray-tracing procedures, 

where a statistical analysis is used to calculate, step-by-step, the movements of 

simulated photons or light beams through a mathematical skin model [81] (see Figure 

18).  This has been described as a discrete version of the radiative transport equation 

[200].  The Monte Carlo method was first introduced to the field of skin optics by 

Wilson and Adam in 1983 [233] and was developed further by a number of groups 

over the next decade [208, 234-237].  Although its use at this time was limited due to 

high demands in computing power, Monte Carlo methods are widely regarded as the 

most accurate simulations of light transport through skin [107] and, as a result of 

recent advances in computing hardware, they are now routinely used for the 

interpretation of spectral data [27]. 

 

Figure 18: Example of ray traces from 100 beams at a wavelength of 590 nm, simulated usi ng 
a Monte Carlo programme developed by the first author (T. Lister).  Beams are initiated on 
the x-y plane (bottom of image).  Reduction in beam 'weight' along each path is represented 
as a transition from light to dark green (color online).  Dimensions in mm. 

In 1989, Keijzer et al published their Monte Carlo simulation, analysing the 

effectiveness of vascular laser treatments [238].  This programme employs a two layer 

skin model and was developed for investigating PWS skin, in particular for 

determining the energy deposition within a single vessel during laser treatment.  A 

pencil beam directed perpendicular to the surface of the skin model is initiated at a 

position randomly allocated within a circular region.  The beam propagates through 
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the skin model, undergoing absorption and scatter at events separated by a distance 

(s), calculated as follows: 
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where ε  is a random number generated from a uniform distribution between 0 and 1, 

μa is the absorption coefficient and μs is the scattering coefficient.  At the end of each 

'step', a reduction in the beam weight (W, representing the total beam total energy of 

the beam) is calculated in accordance with Equation 14: 
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Keijzer et al's programme has the advantage of easy insertion of a sphere, ellipsoid or 

cylinder into the skin model, to simulate blood vessels for example, but lacks 

versatility as it uses a pre-determined set of optical parameters determined from 

phantom measurements.   

Keijzer et al's programme was used by Lucassen et al [239] to study the effects of laser 

wavelength on the response of PWS skin to laser therapy.  The simulation calculated 

the absorbed energy within a single straight blood vessel of varying diameters, a 

curved blood vessel and multiple straight blood vessels.  A 585 nm laser beam was 

predicted to be more effective than a 577 nm beam.  This is in agreement with the 

results found in clinical practice, as a transition of standard practice between these two 

wavelengths followed worldwide (prior to the shift from 585 nm to 595 nm), as did the 

introduction of epidermal cooling during laser therapy, also recommended in 

Lucassen et al's study. Verkruysse et al [23] also used Keijzer et al's simulation to study 

the influence of PWS anatomy on skin colour. They created five models consisting of 

varying blood layers containing homogenous distributions of blood, with a correction 

factor to account for reduced light absorption when blood is contained within vessels.  

Verkruysse et al commented that their simple skin model failed to take into account 

the effects of high epidermal scattering, even though they were able to model a diffuse 

irradiance of photons.  Predicted changes of skin colour with the removal of 

superficial vessels did not correspond with the reported clinical response.  
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In 1992, Wang and Jacques (the latter of which was listed as an author on the 

previously discussed paper by Keizer et al) published a Monte Carlo simulation of 

steady-state light transport in multi-layered tissue using the ANSI Standard C 

computing language  [102, 237].  This programme is freely available on the internet 

[237] and allows users to create a two-dimensional skin model by inputting custom 

values of absorption coefficients, scattering coefficients, refractive indices and 

(Henyey-Greenstein) anisotropy factors for any number of layers.  Like the 

programme produced by Keijzer et al, the simulation begins with an infinitely narrow 

beam incident normal to the skin surface whose path through the skin is governed by 

Equation 13 and Equation 14.  A convolution algorithm may then be applied 

retrospectively to simulate a light source of finite size, such as a laser beam.  This 

effectively repeats the results from the infinitely narrow beam over a finite area 

without performing any further simulations. 

Mantis and Zonios [240] developed a two layer mathematical skin model to estimate 

the thickness and absorption coefficient of a superficial absorbing layer using Wang 

and Jacques' Monte Carlo programme.  They inputted reflectance values obtained 

from a fibre optic spectrophotometer setup and compared them to the results 

simulated from an infinitesimally narrow incident laser beam.  Nishidate et al [126] 

applied the same programme to a skin model consisting of an epidermis, dermis and 

local blood region.  The depth and thickness of the simulated local blood region was 

adjusted until the simulated reflectance was in adequate agreement with a measured 

spectrum, forming an estimate of these parameters in the measured sample.  They 

inputted measurements from a tissue phantom using a diffuse illuminant and a CCD 

camera setup.  Both studies reported absorption and reduced scattering coefficients 

with errors of around 10% compared to values expected from their skin phantoms.  

Considering the addition of uncertainty and optical inhomogeniety in a genuine skin 

sample, these errors are considerable.  In fact, the study by Nishidate et al [126] used 

the same method to estimate the depth of in vivo human veins. They reported  errors 

of up to 0.6 mm for the depth and 0.2 mm for the thickness of veins when compared to 

ultrasound measurements.  Again, these errors are large when considering normal 

skin thickness [241]. 
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Other research groups have developed Monte Carlo simulations for use in biomedical 

optics.  Graaf et al produced a condensed Monte Carlo simulation based upon the 

same governing  equations (Equation 13 and Equation 14) but utilising the derived 

relationship between simulated reflectance and albedo.  In detail, the same simulated 

diffuse reflectance may be obtained by increasing the scattering coefficient and 

simultaneously decreasing the absorption coefficient, maintaining a fixed value of 

albedo (a dimensionless coefficient defined as the ratio of scattering coefficient to the 

sum of absorption and scattering coefficients) [242].  To demonstrate the effects of 

varying absorption and scattering coefficients whilst maintaining a fixed albedo, the 

following parameters to a simulation of 1 million photon packets were applied using 

Wang and Jacques' programme [237].  The skin model consisted of a single layer with 

an effectively infinite depth (1x108 cm) (Table 3): 

Absorption 
Coefficient 

Scattering 
Coefficient 

Albedo Calculated Diffuse 
Reflectance (MCML) 

1.0 cm
-1
 50 cm

-1
 0.980 18.4% 

1.0 cm
-1
 100 cm

-1
 0.990 28.7% 

0.5 cm
-1
 50 cm

-1
 0.990 28.7% 

 

Table 3: Results from a simulation of 1 million photons.  Values are presented for a 
simulation carried out using the Wang and Jacques Monte Carlo programme (MCML) [102] 
with a simple single layered skin model of 1x108 cm depth; values of g=0.9, refractive index 
=1.3 and pencil beam irradiation were used throughout (simulated by the first author, T. 
Lister). 

This technique vastly improved simulation time for a uniform skin model and was 

shown to determine skin optical coefficients consistent with other studies [5, 175].  

This work was later extended by Wang et al [243] who considered the effects of 

varying the diameter of the source.  Wang et al also demonstrated superior calculation 

times whilst maintaining good agreement with a standard Monte Carlo simulation. 

Meglinski and Matcher's programme [153, 230] involved a seven layered skin model to 

simulate the reflectance spectrum of human skin, as measured using a fibre optic 

probe setup.  Path lengths were calculated according to Equation 15 and absorption 

coefficients applied separately (Equation 16): 
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The programme has undergone a number of developmental steps since its first 

publication in 2001 and is currently available online as an interactive object oriented 

programme with a multitude of potential outputs [244, 245]. 

Meglinski and Matcher found good agreement between their calculated reflectance 

and a single example of measured reflectance between 450 and 600 nm wavelengths, 

although the skin properties used outside of this wavelength range did not appear to 

provide a good agreement.  This shortcoming may have been as a result of the 

constant scattering properties applied to the skin model over the entire wavelength 

range investigated.  When applying the coefficients used by Meglinski and Matcher to 

Wang and Jacques' Monte Carlo programme, Maeda et al [246] reported a "rather 

strange spectral curve that had much worse agreement with measured results than 

[another set of coefficients]", demonstrating a clear discrepancy between the two 

programmes. 

In summary, Monte Carlo simulations have contributed substantially to the field of 

skin optics since their introduction in 1983 [233].  Initial development by Keijzer et al 

[238] and later by Wang and Jacques [237] facilitated a number of studies into the 

colour of PWS skin.  More recent work has demonstrated gradual development in 

Monte Carlo techniques for the simulation of PWS skin colour and with continuing 

advancements in computing power available to the researcher, and an ever increasing 

interest in skin optics, such advances are likely to continue into the foreseeable future. 
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Conclusions 

The colour of PWS skin depends primarily upon the number, depth and sizes of 

affected vessels.  Thus, by measuring skin colour, it may be possible to inform a better 

knowledge of these characteristics for an individual lesion, providing essential 

information for the optimisation of laser treatment.  The most common approach to 

extracting information from a measurement of skin colour is through the inverse 

application of a skin model, whereby a simulation of light transport based upon RTT 

is performed. 

Due to its low demand for computing power, the Diffusion Approximation has been 

applied widely in the field of skin optics.  However, its limitations, along with the 

availability of increased computing power, have resulted in an increase in popularity 

of Monte Carlo simulations.  Keijzer et al's and Wang and Jacques' Monte Carlo 

programmes employed implicit capture to increase the speed of their simulations.  

These simulations have contributed significantly to the field of biomedical optics.  

However, recent developments have improved upon these, to provide more accurate 

simulations of light transport through skin.  As the scope for applying such techniques 

continues to broaden, with the possibility of introducing such a technique into routine 

clinical practice and with the continuing increase in computing power available to the 

researcher, further developments should be investigated to overcome the 

shortcomings of the studies presented here.
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5.1  Data Collection 

Recruitment 

The degree of fading achieved by laser therapy has been shown to be influenced by 

the anatomical location of a PWS lesion [47, 65].  Approximately two thirds of PWS 

lesions are thought to occur on the face [31].  Furthermore, facial PWS are more likely 

to receive treatment  (over the period March 2008 to March 2009, the Wessex Specialist 

Laser Centre at Salisbury District Hospital, UK (WSLC) treated 127 patients, of which 

91 involved treatments to the face).  Therefore, it was decided to restrict the study to 

individuals receiving treatment for facial PWS. 

PWS lesions are thought to thicken and darken with age [247].  The WSLC treated 68 

new facial PWS patients over the period March 2008 to March 2009, of which 63 were 

children (less than 18 years old at the start of treatment).  Thus, in order to reduce 

variation in the participant group, ethical approval was initially sought for carrying 

out assessments on 40 children. 

Based on an estimated 85% uptake, it was assumed that 40 participants under the age 

of 18 could be obtained in approximately 9 months.  Patient numbers over the 

following months unexpectedly declined6, with a total of 5 new patients (2 of which 

were under 18 years) over the period 1st July 2010 to 1st December 2010.  Neither of 

these eligible patients were invited to take part in the study.   

In order to improve uptake into the study, an amendment was made (and approved 

by the appropriate committees) to include patients over 18 years of age.  As part of this 

amendment,  the way in which the study information was provided to eligible patients 

was also changed such that the author was able to present the information directly. 

Due to a continued lack of patients attending the WSLC for treatment, a second 

amendment was made and approved by the appropriate committees.  This further 

widened the potential participant group to include current patients who had already 

                                                      

 

6 This appears to have been caused by the 2008 global financial crisis, which caused a 
tightening in NHS spending and changes in funding criteria. 
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undergone laser treatment at the WSLC.  This is supported by previous studies, which 

show a consistent reduction in PWS colour after each treatment [88, 248]. 

Exclusion Criteria 

 Patients with dark skin types (Fitzpatrick scale IV-VI) as skin laser treatment is 

known to carry greater risks of adverse effects in this population.  This is 

acknowledged to be a contra−indication to Pulsed Dye Laser treatment at the 

WSLC. 

 Patients with co−morbidity of diabetes or other disease that may impair 

healing. 

 Participants who have previously undergone any alternative treatments on the 

site of interest (not involving the 595 nm Pulsed Dye Laser that is employed in 

the department), as the effect of these treatments to the PWS may be 

unpredictable. 

 Patients with medical conditions or injuries (e.g. purpura, burns) that affect the 

perfusion of the skin or other determinants of skin colour in the anatomical 

regions being investigated were excluded due to the unknown and unreliable 

effects on measurements of skin colour. 

 Cosmetics and topical products affect the measurement of skin colour and were 

removed at least 10 minutes before the assessment.  If this was not possible 

(e.g.in the case of some self tanning products), then the participant was 

excluded from the study. 

 A number of drugs are known to affect skin perfusion and other factors which 

influence skin colour (40).  Exclusion based upon the use of drugs was 

considered on an individual basis, as listing the possible drugs that may affect 

the measurement would be an exhaustive task. 

Interview and Measurements 

Throughout the time of the study, a PWS patient's first appointment at the WSLC 

involved a  "test patch" treatment, a treatment to a small area to determine the 

effectiveness of the laser settings used and to identify any adverse effects.  The first 

definitive treatment was then carried out at around four months after the test patch 

appointment and treatments repeated at approximately 4 month intervals. 
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Each new patient recruited for the study was provided with an information sheet 

during their test patch appointment.  Existing patients were provided with the same 

information during the first available appointment.  Planned assessments were 

performed immediately before the participants' next two definitive laser treatments.   

A short interview was undertaken before each assessment to establish whether the 

participant continued to meet the study criteria.  During this time, participants were 

allowed to rest and acclimatise to the ambient temperature of the room (for a 

minimum of 10 minutes).  This ensured that perfusion of the skin (and therefore skin 

colour) could be stabilised [85, 176].  The regions to be assessed remained uncovered 

and free from cosmetics during this time, as recommended by Pierard et al [176]. 

The temperatures of the rooms in which assessments were carried out were controlled 

by a heat exchange system.  Two of the three rooms were monitored over a 3 month 

period prior to any assessments using an Omega OM-62 temperature data logger.  

During this time, the temperature was found to be consistently 22.5 ºC (± 1 ºC) in both 

rooms.  It was assumed that the third room (used for one participant) also retained a 

stable temperature.  Although one study [85] suggests that the colour of PWS skin (as 

measured by reflectance spectrophotometry) does not change significantly with 

ambient temperature, room temperature was recorded during acclimatisation as a 

precaution.  This was done using the same Omega OM-62 temperature data logger 

and uploaded to a PC. 

Spectrophotometry 

Skin colour was measured using the Minolta CM-2600d spectrophotometer.  A 

suitable site was chosen for the measurement of colour on the PWS lesion.  This site 

was consistent in colour over the measurement area with no blemishes (e.g. moles or 

blebs) and minimal hair.  It was also situated on a smoothly contoured area of skin to 

ensure skin contact over the full aperture and therefore no loss of light.  A 

contralateral site on the normal skin was also chosen, subject to the same criteria.  

With the participant seated in one of the temperature controlled rooms, 5 

measurements were carried out in series on both the PWS and contralateral ('normal 

skin') sites.  To reduce the possible effects on the colour measurement from skin 

blanching resulting from contact with the spectrophotometer, minimal pressure was 

applied and the spectrophotometer was removed and replaced between each 
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measurement.  Posture is known to affect the supply of blood to different body areas 

[176].  For this reason, all participants were asked to remain seated whilst 

acclimatising and during the colour measurements. 

Assessing the Repeatability and Reproducibility of Spectrophotometry Measurements 

The repeatability of skin spectrophotometry measurements is primarily dependent 

upon the inherent properties of the device employed as well as variations in 

measurement technique.  Reproducibility may be further affected by physiological or 

environmental changes (such as variations in ambient temperature or humidity).  Both 

the repeatability and reproducibility have the potential to influence the colour 

measurements carried out in this study. 

The principle sources of error affecting the repeatability of any spectrophotometric 

measurement include dark-current (electronic noise within the CCD array and 

associated components) and variations in the output of the illumination source.  

Saturation may also be a considerable cause of error when measuring samples with 

regions of high reflectivity, although this is not usually applicable to human skin 

samples. 

The effect of dark-current from the Konica-Minolta CM2600d was assessed through a 

set of 50 measurements performed with an open aperture (no sample) in a dark room.  

The room selected was situated next door to the room in which the majority of 

participant data was taken, and whose temperature is mediated by the same system.  

The room was chosen as it contains a blackout blind on the window and so-called fire 

resistant doors. Combined, these allow very little light to infiltrate the room.   

Further sources of error in measured reflectance may result from variations in output 

of the source.  This is corrected automatically during measurement by the CM2600d 

using a direct measurement of the source output performed simultaneously with 

spectral reflectance measurements.  The consistency of the source output and the 

performance of this method of correction were assessed separately through 50 

consecutive measurements of a fixed sample.  The sample selected was a faux wood 

desk surface, chosen for its convenience and its relative similarity in colour to human 

skin.  This similarity ensured that the assessment was not likely to be biased through 

saturation effects.   
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The remaining sources of error corresponding to the repeatability of skin colour 

measurements result primarily from variations in the measurement technique, 

although physiological changes such as erythema or blanching caused by gentle but 

repetitive contact with the skin are also possible.  The overall repeatability of skin 

colour measurements was assessed by performing measurements upon the inner 

forearm of the author (region overlying the flexor carpi).  Repeatability was 

determined from a single session where 50 consecutive measurements were carried 

out at approximately the same region of skin. 

Melanin content does not only vary over the small region covering consecutive skin 

colour measurements, but may vary over time, in particular due to sun exposure.  

This, along with changes in ambient conditions and a combination of other, less 

significant factors can result in further sources of error when comparing measurement 

sets taken weeks or months apart.  The reproducibility of skin colour measurements 

was assessed through 2 sets of single measurements carried out at 1 week intervals; 

one set was taken in winter (19th January-16th February 2009) and another taken in 

summer (20th July-17th August 2009).  A photograph marked with the measured 

region of skin was used to help reduce repeatability errors. 

Optical Coherence Tomography 

Optical Coherence Tomography (OCT) is a non-invasive imaging modality which 

produces cross sectional images analogous to ultrasound b-mode scans.  OCT requires 

a coherent light source, which is split into an object beam and a reference beam.  The 

object beam interrogates the region of interest whilst the reference beam is reflected 

from a reference mirror.  Singularly scattered light returning from the region of 

interest interferes constructively with the reference beam.  The depth of this region of 

interest can be altered by moving the reference mirror and the lateral position is 

adjusted by moving the beam, creating an image from regions of varying 

backscattering strength. 

OCT has been used extensively in ophthalmology, where the low scattering within the 

vitreous region of the eye allows for good penetration depth.  Its introduction into skin 

imaging is more recent [249-251], perhaps due to the challenges associated with the 

highly forward scattering nature of skin, which limits the signal to noise ratio and the 

imaging depth which can be achieved.  Despite having a penetration depth of 
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approximately 0.5 mm, work has been carried out elsewhere in applying OCT to PWS 

skin [91]. 

During the study, an opportunity arose to trial two separate OCT devices designed for 

cutaneous applications (for one day each).  Two patients were assessed using a 

Thorlabs OCS1300SS (Thorlabs Imaging Systems, Sterling, VA, USA) and three further 

patients were assessed using a VivoSight (Michelson Diagnostics Ltd. Maidstone, UK).  

Both devices employ a broadband swept source with a centre wavelength of 1300 nm.  

The devices differ primarily in the software used to interpret and display the data. 

OCT imaging was performed alongside spectrophotometry.  The area scanned using 

the OCT device was left with a conspicuous (although temporary) ring which clearly 

demarcated the region for spectrophotometric data to be collected (Figure 20). 

 

 

 

 

Figure 19: Temporary demarcation of scanned area following OCT image acquisition  (top) 
and an example image from an OCT acquisition (bottom). 
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A visual analysis of the OCT datasets was performed to obtain estimates of vessel 

numbers, diameters and a subjective evaluation of PWS depth.  This was achieved by 

looking at 20 tomographic images spread equally throughout the volume acquired.  

Measurements were performed on each identified vessel to determine its depth and 

diameter on the image.  Vessel depth was measured from the centre of the region of 

high reflectance at the skin surface (see Figure 20) to the centre of the vessel area, as 

determined visually.  Diameter was simple to measure for those vessels imaged in 

axial section but was more difficult to determine accurately for vessels, or part vessels, 

imaged in transverse section or those oriented otherwise with respect to the imaging 

geometry.  In all cases, the measurement of vessel diameter was aided by viewing 

images obtained from adjacent sections of skin to help determine the orientation of the 

vessel in question.  Where vessels imaged in transverse section were present, 

measurements from adjacent images were used to establish an estimate of the true 

diameter of these vessels (using the largest value obtained over the image investigated 

and the two images adjacent to this). 

Photographic Assessment 

Photographs of the lesion were taken by the author during each assessment.  

Assessments of these photographs were carried out individually and remotely on 

screen by 5 individuals considered experts in PWS lesions.  This technique avoided 

variations in the reproduction of the images caused by producing printed copies, 

although some variation in the display setups would have been present.  However, the 

use of non-professional photography is likely to have decreased the reproducibility of 

photographs due to greater relative changes in ambient lighting, geometries and 

quality. 

The before-treatment and after-treatment images were presented simultaneously for 

each participant.  Both the order in which the participants were presented and the left-

right arrangement of the before treatment and after treatment photographs were 

assigned using the MATLAB rand command. 

Scores ranging from 1-7 were recorded by hand on printed sheets for the following 

categories: 
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 The skin type of the adjacent skin for each photograph.  The briefing explained 

that there were  "7 points on the scale, much like the Fitzpatrick scale, with 1 

being the fairest skin type and 7 being the darkest." 7 

 The severity of the PWS (a general sense for each image).   

 Comparisons between the two images, i.e. the change in the darkness of the 

PWS skin, and its hue (red, pink and purple). 

 A copy of the record sheet can be found in Appendix F. 

The regions from which colour measurements were taken were marked on the digital 

copy for reference, to ensure good repeatability of skin colour measurements over the 

two sessions. 

To ensure the best possible repeatability and reproducibility across the study, the 

same individual (the author) undertook all interviews, photographs, colour 

measurements and OCT image acquisitions for each participant. 

Ethical Issues 

Approval for this study, including the subsequent amendments, was given by the 

Wiltshire NHS Ethics Committee (Ref no: 09/H0104/63), University of Southampton 

School of Electronics and Computer Science Ethics committee, University of 

Southampton Research Governance and Salisbury Hospital Research and 

Development Unit. 

One important ethical consideration was the use of participant time.  This was kept to 

a minimum by performing assessments on the days of definitive treatments, avoiding 

the necessity to arrange separate appointments.  Acclimatisation time was also kept to 

a practical minimum.   

                                                      

 

7 A 7 point scale was used to allow for consistency with the other assessments made during the 
photgraphic analysis.  Odd numbered scales are preferred when comparing before and after 
images to allow for a 'no change' option. 
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Participant confidentiality was also considered in detail.  A digital copy of the clinical 

photographs was stored on a password protected PC accessible only to Mr. T Lister 

and the PhD supervisory team.  Data from the interview and colour measurements 

were stored on the PC.  All digitally stored data were encrypted on the hard drive of 

the PC.  A copy of the encrypted data (including photographs) was also stored on an 

external hard drive to insure against possible loss or corruption of the original copy.  

The external hard drive remained password protected and accessible only to the 

author.  Signed consent forms were stored in a locked drawer.   

Consent was obtained from all participants to use the collated data, photographs and 

quotations from interviews in scientific publications and presentations regarding the 

pilot study and any resultant work. 

Consent was obtained separately for the 5 individuals assessed using OCT. 

Summary 

This study was approved by the relevant ethical and research governance committees 

to collect and use colour measurement data and photographic images immediately 

prior to two consecutive treatments. A number of measures were put in place to 

ensure the repeatability of the assessments. 

Although ethical approval was obtained for 40 participants in the first instance, 

unforeseeable changes in the numbers of patients available for the study prompted a 

change in the approach to this project.  The primary focus of this work evolved into 

the creation and development of a Monte Carlo programme for simulating light 

transport through skin, such that the influence of PWS vessel characteristics upon skin 

colour and treatment efficacy may be predicted. 
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5.2  A New Monte Carlo Simulation 

Introduction 

A new Monte Carlo programme was produced for simulating light transport through 

clinically normal and PWS skin.  The programme consists of an eight layer 

mathematical skin model constructed from optical coefficients described in the 

literature.  The absorption and scattering coefficients of the epidermis are dependent 

upon the simulated concentrations and mean diameters of epidermal melanosomes.  

Pseudo-cylindrical horizontal vessels are added to the skin model to simulate a PWS 

lesion.  A simulation including diffuse illumination at the surface of and subsequent 

light transport through the model is carried out using a Radiative Transfer Theory 

(RTT) ray-tracing technique.  Total reflectance over 39 wavelength values are scored 

by the addition of simulated light returning to the surface within a specified region 

and surface reflections (calculated using Fresnel's equations).  These reflectance values 

are compared to measurements from individual participants and characteristics of the 

model are adjusted until adequate agreement is produced between simulated and 

measured skin reflectance curves. 

Skin Model 

An eight layer skin model was created in 3 dimensional Cartesian space.  The 

dimensions and chromophore concentrations of the model layers were based upon the 

work of Meglinski and Matcher [153] whose parameters are in agreement with 

experimental studies (see page 53 and [9, 17, 252] for example).  The overal mean 

dermal blood volume fraction used in Meglinski and Mather's work (4.6%) is greater 

than used in other studies.  This is thought to be a result of the difference in blood 

absorption coefficients used (see page 56), but may also be a result of the difference in 

distribution of blood through the dermis.   

 The layer representing the living epidermis in Meglinski and Matcher's work was 

divided into two layers here, to facilitate differences in melanin properties (Table 4). 
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Table 4: Summary of layer dimensions and initial chromophore content;  values derived from 
*[153] and +[10]. 

 

The initial optical coefficients applied in this model were based upon an analysis of 

the literature (see page 45 and the published article [5]).  Absorption coefficients from 

Meglinski and Matcher's work [153] were applied alongside reduced scattering 

coefficients from Zonios et al [164].  Published reduced scattering coefficients (μs' mm-1) 

were converted to scattering coefficients (μs mm-1) using the following relationship: 

g

S

s



1

'
  Equation 17 

where g is the anisotropy factor.  The anisotropy factors applied in this model were 

those introduced by van Gemert et al [188], and which have been used widely [22, 33, 

77, 126, 153, 189].  Refractive indices from Ding et al [201] were applied separately to 

the stratum corneum, living epidermis and dermis. 

The effect of melanosome diameter and number density upon the absorption and 

scattering coefficients of skin were considered in the mathematical model.  The 

influence on absorption was simulated by adding a proportionate value of melanin 

absorption to a base epidermal absorption coefficient (Equation 18). 

mel

amelaa C   0  Equation 18 

where Cmel is the concentration (%) of melanin within the epidermal layer, µamel is the 

absorption coefficient of melanin and µa0 is the absorption coefficient of the remaining 

epidermal layer.  This is consistent with techniques applied elsewhere (for example, 

[153, 169, 246, 253]).  The degree of scatter caused by melanosomes within the skin is 

primarily dependent upon their size.  The relationship between mean melanosome 

size and scattering strength has been investigated previously (Equation 19) [144]: 

Layer Thickness 
(µm)* 

Melanin Volume 
Fraction (%)

+
 

Mean Melanin Granule 
Diameter (nm)

+
 

Blood Volume 
Fraction (%)* 

Stratum Corneum 20 0.1 10 0 

Superficial Epidermis 30 1.0 50 0 

Deep Epidermis 50 2.0 100 0 

Papillary Dermis 150 0 n/a 4 

Upper Vascular Plexus 80 0 n/a 30 

Reticular Dermis 1500 0 n/a 4 

Deep Vascular Plexus 80 0 n/a 10 

Deep Dermis 1890 0 n/a 4 
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where NA is Avagadro's number (6.02x1023 mol-1), C is the concentration of melanin 

(mol), Vm = 1.2x10-28 m3 is described as the 'volume of a single monomer', a is the mean 

melanosome size (m), and ε and εs are the dielectric constants of melanin (2.72 Fm-1) 

and water (1.81 Fm-1) respectively.  The model considers Equation 19 in a simulation of 

skin optics for the first time.  Estimations of representative melanosome concentrations 

and sizes were based upon an analysis of the literature [7-10, 12, 13] (see also, page 14). 

A single layer of the skin model, whose superficial and deep extents were freely 

moveable, was adopted to accommodate a simulated PWS lesion.  Vessels, each 

consisting a wall and lumen, were created using the MATLAB cylinder command.  

This was used to produce a set of flat surfaces joined together to form a n sided open 

ended prism of 110 mm length (extending beyond the model boundaries), oriented 

horizontally in the model (parallel to the skin surface).  A larger number of sides 

provides a truer approximation to a cylindrical vessel, but requires greater 

programming resources.  A 10 sided prism was selected.  The rand command was used 

to position and orientate the vessels with a uniform distribution throughout the layer.  

The maximum deviation in the x and y directions from the centre of the model was 

fixed at 3.5 mm, ensuring that each vessel remained within the region of interest 

defined by the circular aperture. 

Optical properties of the vessel wall and lumen, as well as an appropriate range of 

vessel sizes and wall thicknesses, were derived from an analysis of the literature (see 

page 16).  This conceptually simple introduction of horizontal, pseudo-cylindrical 

blood vessels into the skin model was applied to allow for easy interpretation of mean 

vessel parameers, including depths, diameters and numbers.  The flexibility of the 

programme is desgined to allow for more complex vessel shapes, which may be used 

to provide more accurate replications of skin colour.  Such an introduction would 

vastly increase the running time per beam of the programme, and would therefore 

only be possible at the present time if coupled with a convolution technique, for 

example. 
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Ray Tracing 

Light transport through the skin model was simulated using a RTT ray-tracing 

technique, described previously (see page 51).  Figure 21 shows the basic layout of the 

programme: 

Beam Initialisation 

 

 

 

 

 

 

Figure 21: Illustration of a representative beam position and direction upon 
initiation. 

Each ray, or beam, is initiated at the surface of the skin model within a circle of radius 

4 mm.  This represents the aperture of the Konica-Minolta CM2600-d 

spectrophotometer.  Beam position is allocated using the MATLAB rand command, 

 

Figure 20: Flow chart showing basic structure of the programme.  
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which results in a uniform distribution across the aperture.  This represents 

homogeneous illumination of the skin surface across the aperture. 

Each beam is initiated with a direction in Cartesian space (Figure 22).  The MATLAB 

rand command is again used to provide a uniform distribution of beam directions 

between -1 and 1 along the x and y direction vectors (ex and ey) and between 0 and 1 

(into the skin) along the z direction vector (ez).  These values are subsequently 

normalised such that: 

1222  zyx eee  Equation 20 

This uniform distribution of random beam directions represents a perfectly diffuse 

illuminant.  Finally, each beam is attributed a weight of 1.0.  The beam weight is used 

for comparison between the total quantity of incident light energy and the total 

quantity of reflected and backscattered light energy at each wavelength. 

Interactions at the Skin Surface 

The first interaction of the beam with the skin model is at the surface.  The skin model 

assumes a perfectly smooth interface between the surface of skin and air.  Reflection is 

thus approximated using the Fresnel equations for an unpolarised source (Equation 

21). 
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Equation 21 

(Fresnel's Equations) 

where Rs is the proportion of s-polarised (perpendicular, or senkrecht polarised) light 

reflected and Rp is the proportion of p-polarised (parrallel polarised) light reflected 

(thus R, being the mean of these, is the proportion of unpolarised light reflected8), θi 

and θt are respectively the incident and transmitted angles of the photon packet and 

ns(λ) is the refractive index of the skin.  Surface reflection is simulated as a reduction in 

                                                      

 

8 It is assumed that unpolarised light, as expected from a xenon flashlamp light source, does 
not have a greater amount of either s-polarised or p-polarised light. 
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the beam weight by the proportion R (Equation 21) and the total recorded reflectance 

is increased accordingly (Figure 23a).  The remaining beam is refracted as it enters the 

skin model.  The degree of refraction is calculated using Snell's law (Equation 22). 

         (
 

     
        ) Equation 22 

After propagating through the skin model, the beam may return to the skin surface.  A 

proportion of the beam is reflected back into the skin model as determined by the 

Fresnel equation (Equation 23) and the remaining (transmitted) beam is terminated 

(Figure 23b).   
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Equation 23  

 

 

 

 

 

 

 

Figure 22: Illustration showing the concept of beam splitting simulated at the skin surface for a 
beam entering the skin (a) upon initiation, and for a beam exiting the skin (b).  

If this occurs within the 8 mm diameter aperture of the simulated acceptance window, 

then the transmitted beam weight is recorded as part of the total reflectance.  The 

direction of the transmitted (terminated) beam is of no consequence and so refraction 

is not simulated for a beam exiting the skin. 

Calculating Path Length 

Progression of the beam within the skin model occurs in stages or steps.  At the end of 

each step a scattering event occurs during which the direction of the beam is altered.  

The mean distance between scattering events, i.e. the mean length of these steps, is 

determined using the RTT scattering coefficient (µs).  The scattering coefficient may be 

defined as the proportion of energy lost from the direction of the beam per unit length.  

b) a) 

Terminated 
Recorded 

Reflected Transmitted 
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Thus, the inverse of the scattering coefficient represents the mean distance between 

scattering events (ŝ): 

s

s


1
ˆ   Equation 24 

The path length can assume any positive value, as described by the probability 

distribution function [153]: 

asas ss

a
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s eeeesp
  )(  Equation 25 

Absorption is considered separately in this simulation.  Thus, for the effects of scatter 

only (µa=0) the probability density function for the photon path length is: 

ss

sesp
)(  Equation 26 

Thus, the path length for a beam at any one step is simulated as: 

s

e rand
s



)(log
  Equation 27 

where rand is taken from a set uniformly distributed random numbers between 0 and 

1, created using the MATLAB rand command.  The mean of -loge(rand) for a large 

dataset approaches unity.  This is consistent with Equation 24 and is identical to the 

path length calculation described in [153]. 

Simulating Scatter 

Scatter within the skin model is simulated as a change in the direction vectors 

(ex,ey,ez).  Apart from at boundaries, scattering occurs at the end of each step, alongside 

the calculation of a new step length (Equation 27).  Non-boundary scattering is 

simulated in two stages: 

1. The elevation angle (φ) is adjusted in accordance with the modified Henyey-

Greenstein equation 

2. The rotation angle (θ) is adjusted isotropically 
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Figure 23: Illustration of the change in direction vector resulting f rom a scattering 
event in 3 dimensional Cartesian space.  

The angle of rotation (θ) is defined as the angle between the x axis and a projection of 

the beam along the x-y plane.  At each scattering event, isotropic scatter is simulated 

by the addition of an angle selected from a uniform distribution between 0 and 2π 

(created using the MATLAB rand function):  

rand  2'  Equation 28 

where θ is the incident angle of rotation of the incident beam and θ' is the altered angle 

of rotation. 

The angle of elevation (φ) is defined as the angle between the beam and the x-y plane 

and may be positive (going deeper into the skin) or negative (going toward the 

surface).  Scattering of φ is simulated through the modified Henyey-Greenstein 

equation [172].  This is executed programmatically as follows: 

phi=asin(ez);  %elevation angle calculated from the direction vector 

'ez'  
if rand>b 
    if rand>0.5, phi=phi+HG; %addition of HG angle in half of cases 
    else         phi=phi-HG; %subtraction of HG angle in half of 

cases 
else 
    phi=phi+2*pi*rand; %isotropic scatter 

end 
eznew=sin(phi);  

 

where rand is the MATLAB rand function described previously and HG is a function 

which produces a value according to Equation 29. 
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where g is the anisotropy factor for the layer and wavelength in question.  After the 

new values of θ and φ have been determined, the direction vector is subsequently 

recalculated from these two angles and normalised to correct for floating point errors. 

φ 

θ 
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Simulating Absorption 

The RTT absorption coefficient defines the proportion of energy lost per unit path 

length through absorption effects.  Absorption is simulated as a reduction in the beam 

weight, W: 

xaWeW


  Equation 30 

where x is the path length.  Equation 30 is applied at the end of each step, as well as at 

each interaction with a boundary (either layer boundaries, including the skin surface, 

or boundaries associated with simulated blood vessels).   

Layer Transitions 

When a beam transfers between layers of the skin model, or to or from a vessel wall or 

lumen, the following calculations are performed.  At first, the reduction in beam 

weight is calculated between the previous interaction or transition and the current 

transitional point.  A proportion of beams will be terminated at this point, in 

accordance with the roulette procedure.  For those beams which are not terminated, the 

remaining path length (snew) is adjusted in accordance with the scattering coefficient of 

the new layer or structure (µsnew), as follows: 

 
new

s

old

s
oldnew pss




  Equation 31 

where p is the distance along the beam path between the previous interaction or 

transition and the current transitional point.  

Further to this, the direction of the beam may be adjusted where a change in refractive 

index occurs. The new direction is calculated using Snell's Law. 

Terminating a Beam 

A proportion of beams whose weight drop below a predetermined value (0.001) are 

terminated using the previously reported roulette technique [102, 126, 208, 236, 254-

256].  This is a computational time saving stochastic function which terminates a 

proportion of the beams whilst amplifying the remaining beams to conserve beam 

weight on average.  In this programme, 90% of roulette procedures result in the 

termination of a beam (selected using the rand function).  The remaining 10% of beams 
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undergo a 10 fold increase in weight.  The remaining properties of the beam, including 

direction and position, are not altered during the roulette procedure. 

Termination may occur independently of the roulette procedure if a beam exits the 

skin model.  This reduces the computational time of the simulation by ignoring those 

beam trajectories which are unlikely to return to the measurement aperture and 

therefore do not contribute appreciably to the simulated reflectance.  Termination of a 

beam occurs at the skin surface as described previously, and at the remaining 

boundaries of the skin model.  These extend to 100 mm in the x and y (horizontal) 

directions and 20 mm in the z (depth) direction. 

Upon termination of a beam, the next beam is initiated until the desired number of 

iterations has been carried out. 

Output  

Spectral Reflectance 

The simulated spectral reflection is the primary output from this simulation.  It 

consists of 39 points over the visible spectrum from 360 nm to 740 nm (in 10 nm steps).  

Each point represents the sum of simulated beam weight reflected from the surface 

and returning from the model volume within the 8 mm diameter aperture.  These data 

points are presented as a proportion of the total beam weight entering the model, and 

thus represent the measured reflectance as determined using the Konica-Minolta CM-

2600d spectrophotometer. 
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Figure 24: Example output of spectral reflectance produced by the programme. 

In order to quantify the difference between measured and simulated data sets, an 

array comprising the difference values at each of the 39 wavelength steps (Q) is 

created.  The absolute sum of these values (q) is presented alongside the spectral 

reflectance curves (Figure 25). 

Beam Trajectories 

The programme is capable of displaying an output of beam trajectories through the 

skin model for a single wavelength (Figure 26).  These are depicted in 3 dimensional 

space and consist of straight lines between scattering events or boundary transitions.  

Each of these lines is assigned a colour according to the current beam weight, from 

light green (beam weight→1) to dark green (weight→0).  The final image therefore 

consists of a single continuous path for every simulated beam which begins light green 

in colour and becomes darker as it is absorbed.  

Vessel walls (depicted as yellow-grey in colour) and lumina (red) from the simulated 

lesion are also represented on the same axes (Figure 26).  Each face of the wall or 
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lumina has transparent properties to ensure that beam trajectories remain visible 

through the layer.  

This output was developed for easy visualisation of processes within the simulation 

and served primarily for verification and checking of the simulation during 

development. 
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Figure 25: 3 dimensional plots of beam trajectories through the skin model with z -axis 
(depth) in the vertical direction.  Upper figure demonstrates change in colour with reduction 
in beam weight.  Lower plot shows positioning of simulated vessels.  Dimensio ns in mm. 

Minimisation 

Two new minimisation procedures were developed for the interpretation of colour 

measurement data within the simulation.  The first procedure adjusts the melanin 

properties within the skin model such that the measured spectral reflectance of non-

PWS skin can be reproduced for an individual participant.  The second procedure 

builds upon this, adding blood vessels and adjusting their properties in order that the 

simulated curve may be minimised to a colour measurement of PWS skin from the 

same individual (Figure 27). 
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Figure 26: Outline of the minimisation procedure developed in the New Monte Carlo 
programme. 

 

Melanin Adjustment 

The range of quantities and diameters of melanosomes for each of the three epidermal 

layers was limited in accordance with the findings of a literature survey (see page 14).  

Stratum corneum granule diameter was limited to a minimum of 1 nm and a 

maximum of 20 nm [10, 13] whilst melanosome size in the living epidermis was 

allowed to vary from 30 nm to 400 nm [7, 8, 10, 12]. 

Due to the broadband absorption characteristics of melanin, it was expected that 

increasing the quantity of melanin in the epidermal layers of the skin model would 

reduce the simulated reflectance across the entire visible spectrum (and conversely, 

decreasing the quantity of melanin would increase the simulated reflectance).  The 

characteristics of the melanin absorption spectrum also suggest that this effect would 

be greater towards the blue end of the light spectrum (Figure 28, repeated overleaf). 
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Figure 27: Variation of absorption coefficient with wavelength, from [7]. 

Epidermal scattering is also influenced by the quantity of melanin within the model, 

although the resultant effect of this on the simulated reflection spectra were expected 

to be minimal compared to the change in absorption coefficient.  Changing the mean 

diameter of melanosomes within the skin model is performed independently of the 

total quantity of melanin.  In this case, only the epidermal scattering coefficient of the 

skin model is adjusted, and the effects on absorption coefficient are ignored.  An 

increase in mean melanosome diameter in each epidermal layer was expected to result 

in an increase in measured reflectance in the blue region of the visible spectrum but, 

due to the wavelength-4 dependence of scatter on melanosome diameter in the model, 

the effect on simulated reflection was expected to be negligible at the red end of the 

spectrum. 

In order to achieve robust minimisation when adjusting melanin diameter and 

concentration parameters, the total difference between the measured and simulated 

spectra was divided into two sections.  The parameter qmel1 represents the total 

difference at the blue end of the spectrum and qmel2, the total difference at the red end.  

If both parameters showed a simulated curve sufficiently greater than the measured 

curve, then the melanin concentration was increased.  Similarly, if both parameters 

showed a simulated curve sufficiently less than the measured curve, then the melanin 

concentration was decreased.  However, if qmel1 showed that the simulated curve was 

sufficiently greater or less than the measured curve but qmel2 was not, then the 

melanin diameter was decreased or increased respectively. 
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To improve the speed at which the procedure converged whilst maintaining precision, 

limits were set for these parameters whereby large deviations in melanin 

concentration or diameter were instigated if the difference between simulated and 

measured reflectance curves were great, and smaller deviations were carried out for 

small differences. 

If the magnitude of qmel1 or qmel2 were not sufficiently large enough to require further 

adjustment to the melanin parameters (i.e. if there was adequate agreement between 

measured and simulated spectra) then the second minimisation procedure was 

instigated. 

Blood Vessel Adjustment 

The range of PWS vessel diameters was limited in accordance with the literature from 

a minimum of 20 μm to a maximum of 500 μm (page 16).  Comparisons between 

dermal vessel characteristics and perceived skin colour from other work (see page 19) 

has suggested than an increase in PWS depth decreases the amount of light absorbed 

by the lesion at shorter wavelengths.  Thus, it was expected that changing lesion depth 

would have its greatest effect in the blue-green regions of the visible spectrum, with 

deeper lesions resulting in greater values of reflectance in this region.  Increasing 

vessel diameter with a fixed blood volume fraction has been shown to reduce the 

amount of red light absorbed (due to shadowing of erythrocytes within the vessel 

lumina [80]) and so was expected to have its greatest effect at the red end of the 

spectrum.  Although the author was not able to find any direct commentary in the 

literature on the effect of increasing vessel number for a lesion of fixed depth and 

mean vessel diameter, it was expected that this would result in a broad decrease in the 

simulated reflectance over the majority of the spectrum.  Variations in vessel wall 

thickness have not been shown to substantially affect PWS colour.   

In accordance with the anticipated effects of adjusting PWS lesion depth, vessel 

diameter and vessel number, the spectrum was split into three regions (qves1-qves3) 

according to the aforementioned regions of greatest influence.  Parameter adjustment 

was carried out as follows: 

 If the simulated reflection differed greatly from the measured PWS skin 

sample over the majority of the spectrum (qves1) then the number of vessels 

was adjusted.   
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 Otherwise, if the simulated reflectance was less than the measured reflectance 

over the majority of the spectrum (qves1) then the depth of the simulated 

vessels was reduced, and vice-versa. 

 Or if the simulated spectrum was very much greater than the measured 

spectrum at the red end of the spectrum (qves3) relative to the blue/green end 

(qves2), then vessel diameter was increased.  Conversely, if qves2 was much 

larger than qves3, then vessel diameter was decreased. 

 Otherwise, if qves1 or qves2 still showed enough of a discrepancy, the vessel 

number was adjusted accordingly. 

This minimisation technique was designed to ensure fast convergence whilst 

maximising the probably of obtaining a realistic, unique and repeatable solution for 

any individual measurement of PWS skin. 

Summary 

A new Monte Carlo programme has been introduced for simulating light transport 

through PWS skin.  A stochastic ray tracing technique is used to simulate the transport 

of light through an eight layer skin model.   

The effects of varying melanin concentration and, for the first time, melanosome size 

were included in the model and a minimisation procedure developed with the aim of 

manipulating these parameters to reproduce clinically normal skin colour. 

Horizontal, pseudo-cylindrical vessels, inclusive of vessel walls, may be added to the 

skin model with random positions and orientations to simulate PWS skin.  The 

number, diameter and mean depth of vessels is manipulated within a second 

minimisation procedure with the aim of reproducing PWS skin colour. 

The simulation was configured to output a plethora of data, including the optical 

properties of the skin model, the parameters used during minimisation and the 

accuracy of which measured skin colours were reproduced.  Included within this 

output is a spectral reflectance graph equivalent to that available from the Konica-

Minolta CM2600d.  A further option exists to output a 3 dimensional representation of 

beam trajectories to aid with conceptualisation of the simulation. 
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6.1 Repeatability and Reproducibility of 
Spectrophotometry Measurements 

The assessment of dark-current error found that over a sample of 50 consecutive 

measurements, the maximum measured value of reflectance (dark-current error) was 

0.02% (to a precision of 0.01%).  This value is minimal and is unlikely to have had a 

considerable effect upon the assessments made. 

When performing assessments of repeatability through measurements of a fixed 

object, any concerns about saturation effects could be ignored as measured reflection 

was sufficiently below 100% across the spectrum (Figure 29). 

 

Figure 28: Graphical representation of 50 datasets taken consecutively from a fixed object of 
similar colour to skin.  

The absolute maximum deviation from the mean across the measured spectrum for 50 

consecutive measurements of a fixed object was 0.08% measured reflection.  These 

results show that sources of error inherent to the device result in minimal deviation, 

and therefore the device has the potential to facilitate a high level of repeatability 

(Figure 29). 
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Figure 29: Graphical representation of 50 datasets taken consecutively from the inner 
forearm of the author. 

It is clear from Figure 30 that measurements performed upon skin show greater 

variability than from a fixed source over the entire spectrum (Figure 29).  The largest 

deviation from the mean across the measured spectrum was 1.4%.  The coefficient of 

variation was also greater for the skin measurements compared to a fixed sample 

(0.020 compared to 0.0012).  The broadband variations in measurements suggest that 

variation in the melanin content of the measured regions was the primary cause of this 

discrepancy, rather than changes in haemoglobin absorption (peaks at 400-450 nm and 

530-600 nm regions) resulting from erythema or blanching.  Thus, variation in the 

repositioning of the measurement aperture appears to be the primary cause of error in 

the context of repeatability, rather than blanching or erythema, or the inherent 

variations within the device. 
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Figure 30: Graphical representation of 50 datasets taken from the inner forearm of the 
author. 

Figure 31 shows a high value of reproducibility for measurements taken 1 week apart 

but a clear discrepancy between measurements taken in the winter compared to those 

taken in the summer.  The maximum deviations for each of the winter and summer 

datasets were 1.2% and 1.3% measured reflectance respectively, which is comparable 

to the repeatability score.  Their coefficients of variation were larger than those found 

whilst testing repeatability (0.43 and 0.41 respectively), although this is influenced by 

the smaller size of the dataset.  When comparing the winter and summer data 

together, there is noticeably poorer reproducibility.  The maximum overall deviation 

from the mean across the spectrum is greater, at 2.2% measured reflectance, although 

the overall coefficient of variation was similar, at 0.42.  It is expected that the primary 

cause of variation between the datasets analysed here is a true change in skin colour 

resulting from sun exposure.  This is despite choosing a region of skin which receives 

relatively little sun exposure (inner forearm, region overlying the flexor carpi).
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6.2  Verifying Skin Optical Coefficients 

An initial simulation of spectral reflectance was produced from the new Monte Carlo 

programme using the parameters derived from the literature (Table 4, page 94).  

Figure 32 shows the simulated spectral reflectance alongside the mean of measured 

values from 10 participants. 

 

Figure 31: Comparison of simulated reflectance obtained from published data and measured 
skin reflectance from the participants of this study.  

The general curve shape shown across the participant group appears to be derived 

primarily through the melanin absorption spectrum, causing a gradual decrease in 

absorption from 740 nm to 360 nm, onto which is superimposed the oxyhaemoglobin 

absorption spectrum, with peaks at around 440 nm, 540 nm and 570 nm (see Figure 7 

on page 25).  As scattering is greatest at the shorter wavelengths considered, the is 

likely to have reduced the relative difference in simulated reflectance between 360 nm 

and 740 nm. 

Overall, the simulated spectrum shows similar characteristics to the average measured 

curve and all of the data points sit within the range of measured spectra.  In 

comparison to the mean measured data, the simulated curve demonstrates less 

reflectance over the entire spectrum.  This may be due to differences in skin type 
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between the participant group measured and those informing published data.  The 

population demographic of the participant group in this study is typical of Salisbury 

and its surrounding areas and consists mainly of individuals with pale, Northern 

European skin types.  The published data used to inform the simulation presented in 

Figure 32 is sourced from institutions based in the UK [153], Greece [164] and The 

Netherlands [188] and, although not explicitly stated, it is likely that these may include 

slightly darker skin types on average. 

In detail, Figure 32 shows that the haemoglobin absorption peak at around 585 nm 

appears to be more prominent in affecting the measured reflectance for each of the 

participants than is shown on the simulated curve, reducing the difference between 

simulated and measured reflectance in this region and causing the curve to appear 

flatter.  This may be a result of a more superficial effect from blood within the skin 

model than is seen in the participant population (perhaps caused by the assumed 

homogeneous spread of blood in the skin model).  However, the blood absorption 

peak towards the blue end of the spectrum does not demonstrate this effect, 

suggesting that a smaller proportion of blue light returning to the surface is affected 

by dermal blood within the model compared to green light. 

Adjusting Melanin Content 

Increasing the quantity of epidermal melanin was expected to result in a universal 

decrease in simulated reflectance, with the greatest effect towards the blue and of the 

spectrum where the melanin absorption coefficient is greatest.  
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Figure 32: The effect of varying melanosome volume fractions upon the simulated 
reflectance spectrum.   

The simulated effect of epidermal melanin within the skin model was assessed by 

increasing the mean epidermal content in 1% steps (weighted across the three layers 

according to volume, Figure 33).  Increasing from a mean of 1% to 2% epidermal 

melanin volume resulted in a near uniform decrease in simulated reflection.  Further 

increases in melanin content had a greater effect towards the red end of the spectrum 

and also resulted in a flatter simulated reflectance curve.  Also, with each 1% increase 

in epidermal melanin volume, the overall decrease in simulated reflectance was less.  

Approximately 5% of incident light is reflected from the surface of the model, as 

simulated using the Fresnel relations.  Even at the shortest wavelengths and highest 

melanin concentrations considered here, simulated reflection is approximately 3-4% 

greater than this value (Figure 33).  This is partly due to the distribution of melanin 

across the epidermis.  For example, a skin model with a mean melanin volume fraction 

of 6% contains just 2.6% melanin volume fraction in the most superficial layer.  This 

layer has an absorption coefficient of 5.76 mm-1 and an albedo (ratio of scattering 

coefficient to the sum of absorption and scattering coefficients) of 0.28 at 360 nm.  

Thus, although an albedo <0.5 shows that absorption is dominant in this case, a 

substantial amount of light scattering still occurs.  The increase in flatness (decrease in 
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mean gradient) of the simulated spectra with increasing melanin content is likely to be 

a result of a reduction in the penetration of simulated light through the skin model 

and thus a decrease in the effect of blood absorption. 

The literature survey (Chapter 4, page 49) suggests that increasing the mean diameter 

of melanosomes is expected to increase reflectance at the blue end of the spectrum but 

has negligible effect at the red end. 

 

Figure 33: The effect of varying melanosome diameter upon the simulated reflectance 
spectrum.  Lighter coloured lines represent larger  simulated melanosome diameters (mean 
diameters given in nm for [stratum corneum, superficial living epidermis, deep living 
epidermis]).  

As expected, increasing the diameter of melanosomes within the skin model had 

minimal effect in the region from 600 nm to 750 nm.  The most noticeable increase in 

simulated reflectance occurred in the region from 360 nm to 450 nm.  The overall effect 

of increasing melanin diameter was not as pronounced as changes in melanin volume 

fraction. 

Minimisation Procedure - Melanin Adjustment 

Section 5.2 describes two spectral regions used to inform melanin adjustment during 

minimisation.  Based upon the preliminary results presented earlier in this chapter 

(see Figure 33 and Figure 34), the following regions were selected: 360-540 nm for 
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qmel1, used to inform melanosome diameter and 640-740 nm for qmel2, which is used 

to inform the quantity of epidermal melanin.  10 iterations of the melanin 

minimisation procedure were used for each participant assessment. 

Verification of this minimisation procedure was carried out.  The procedure began by 

producing a simulated spectrum from skin model optical coefficients derived from the 

literature, considered to be representative of type II Northern European skin (1.5 % 

epidermal melanin volume, melanosome diameters of 30 nm in the deep living 

epidermis, 15 nm in the superficial living epidermis and 1 nm in the stratum 

corneum).  The melanin characteristics within the skin model were adjusted within the 

programme, and the output minimised to the mean spectrum from the first 10 

participants enrolled into the study (Figure 35). 

 

Figure 34: Simulated spectral reflection outputs obtained during verification of the melanin 
minimisation procedure.  

The initial simulated data showed a close resemblance to the mean measured dataset.  

The minimisation procedure was successful in improving this fit over the majority of 

the spectrum, although the final fit was not improved at wavelengths greater than 600 

nm (Figure 35).  This is due to the smoothly varying spectral absorption and scattering 

properties of melanin, which do not allow for independent variation of simulated 

reflectance in this region using the current minimisation procedure. 
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To obtain a better understanding of the rate of convergence and the repeatability of the 

procedure, a further simulation was carried out using a different initial dataset.  In this 

case, the procedure began with a skin model considered to be representative of dark 

Afro-Caribbean skin (5% epidermal melanin volume, melanosome diameters of 300 

nm in the deep living epidermis, 150 nm in the superficial living epidermis and 10 nm 

in the stratum corneum, Figure 36).  

 

Figure 35: Simulated spectral reflection outputs obtained during further verification of the 
melanin minimisation procedure.  

It can be seen from Figure 36 that the initial simulated reflectance differed 

substantially from the measured dataset.  Convergence was fast, resulting in good 

agreement between simulated and measured spectra after only 3 iterations of the 

minimisation procedure (Figure 37).  The procedure, involving 11 simulations in total, 

took an average of 28 hours to perform over the two validation experiments, using a 

quad-core processer with 16 Gb of RAM and a nominal clock rate of 2.66 GHz. 
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Figure 36: Convergence rates for two different initial skin models, where 1st data points 
correspond to initial simulated data.  

The predicted melanin characteristics were relatively consistent from the two skin 

models (Table 5), although the technique of adjusting melanin content in all three 

layers of the skin model simultaneously does not allow for the exact same 

characteristics to be derived from any particular initial characteristics.  For example, 

although the overall melanin content was very similar in the two predictions made 

here, the distribution mirrored that of the initial datasets in both cases.  However, 

although the values of melanosome diameter varied across the two initial datasets, the 

distributions did not, allowing for the exact same predictions to be made. 

Table 5: Final prediction of melanin characteristics for the mean participant dataset 
determined from two different initial skin models.  

Estimated epidermal melanin characteristics Type II Type V 

melanosome volume 
fraction 

stratum corneum 0.5% 0.2% 

superficial living epidermis 1.0% 1.0% 

deep living epidermis 2.0% 2.4% 

mean melanosome 
diameter 

stratum corneum 11 nm 11 nm 

superficial living epidermis 165 nm 165 nm 

deep living epidermis 330 nm 330 nm 

 

The predicted melanin volume fractions are consistent with values published 

elsewhere for Caucasian skin types [9].  The melanosome diameters, however, are 
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greater than those found in the literature for Caucasian skin types [7, 8, 10, 12, 13].  

This suggests that either the relationships and parameters applied underestimate the 

degree of scattering caused by smaller diameter melanosomes, or the degree of 

scattering by the remaining epidermis is low at the blue end of the spectrum. 

Adjusting PWS Vessel Properties 

The anticipated effects of changing PWS vessel parameters upon the colour of PWS 

skin are discussed previously (Section 5.2, page 108).  It was expected that changes in 

simulated lesion depth would have their greatest effect in the blue-green regions of the 

visible spectrum, with deeper lesions resulting in greater values of reflectance in this 

region.  The effect of changing lesion depth was assessed in the simulation by 

introducing 10 vessels of 20 μm diameter and varying their mean depth within the 

model. 

 

Figure 37: Simulated reflectance for vascular lesions of fixed vessel number, mean diameter 
and layer thickness, but mean depth varying from 150 μm to 1150 μm.  

Increasing the depth of the lesion within the skin model was shown to cause a 

broadband increase in simulated reflectance.  The increase in reflectance was less with 

each 100 μm step, as the proportion of light reaching the vessels decreased.  This effect 

is particularly evident between 400 nm and 450 nm, where scattering is high 

(penetration depth is low) but absorption by blood is lower than neighboring 
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wavelength regions.  It is also apparent from both Figure 38 and Figure 39 that the 

relationship between simulation reflection and depth is not consistent.  This may be 

due to the stochastic nature of the programme, as the distribution of the vessels in the 

skin model both in terms of depth and lateral positioning may also have influenced 

the effect of the vessels upon simulated reflectance.  

 

Figure 38: Total simulated reflectance for vascular lesions of fixed vessel number, mean 
diameter and layer thickness, but mean depth varying from 150 μm to 1150 μm.  

Increasing vessel diameter within the skin model was expected to reduce the 

proportion of simulated reflection across the spectrum, with a greater effect at the red 

end.   
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Figure 39: Simulated reflectance for vascular lesions consisting of 10 vessels at a mean 
depth of 500 μm, and vessel diameters varying from 0.03-0.27 μm. 

Increasing the diameter of vessels was shown to increase simulated reflection across 

the spectrum.  As expected, this effect is greatest at longer wavelengths, in particular 

at wavelengths longer than 630 nm (Figure 40).  The effect is less pronounced at the 

haemoglobin absorption peaks (where the effective path length within the vessel is 

shortest and the albedo is smallest), in particular near 420 nm. 

The effect of increasing vessel number upon skin colour is not well documented in the 

literature.  The new Monte Carlo programme found that varying vessel number had a 

broad effect, but was most prominent in the regions from 450-530 nm and 630-740 nm 

(Figure 41). 
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Figure 40: Simulated reflectance for vascular lesions of fixed mean vessel diameter (0.03 
mm), lesion depth and layer thickness, but number of simulated PWS vessels varying  from 0 
to 12. 

 

Figure 41: Absolute change in simulated reflectance resulting from a change in vessel 
number from 1-10 (blue), with a fixed diameter of 30 μm, and from a change in vessel 
diameter from 30 μm-270μm with a fixed number of 10 vessels.  

On first inspection, the characteristics of varying vessel number appear to mirror those 

of vessel diameter.  However, the effect of varying each parameter independently is 

shown in more detail in Figure 42 and Figure 43.  
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Figure 42 shows that a similar change in simulated reflectance can be achieved in the 

region 450-500 nm by adjusting either vessel number from 1-10 at a fixed diameter of 

30 μm, or vessel diameter between 30 μm and 270 μm at a fixed number of 10.  It also 

shows that the same adjustment results in a stronger response when adjusting vessel 

number at wavelengths greater than 590 nm, but a less strong response at wavelengths 

shorter than 460 nm and in the region from 510-580 nm. 

 

Figure 42: Absolute change in simulated reflectance resulting from a change in vessel 
number from 1-20 (blue), with a fixed diameter of 30 μm, and from a change in vessel 
diameter from 30 μm-270μm with a fixed number of 10 vessels.  

Figure 43 shows that a similar change in simulated reflectance can be achieved in the 

regions 360-460 nm and 540-570 nm by adjusting either vessel number from 1-20 at a 

fixed diameter of 30 μm, or vessel diameter between 30 μm and 270 μm at a fixed 

number of 10.  A much stronger response results from adjusting vessel number 

relative to vessel diameter in the remaining wavelength regions.   

The work presented here has shown that, for a fixed epidermis, due to the difference 

in their contribution to spectral changes in simulated reflectance, any combination of 

vessel number, diameter and depths will result in a unique simulated output using the 

new Monte Carlo programme. 
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Minimisation Procedure - Vessel Adjustment 

Section 5.2 (page 108) includes a description of the three spectral regions used to 

inform vessel parameter adjustment during minimisation.  Based upon the 

preliminary results presented in this chapter (see Figure 38, Figure 40, Figure 41, 

Figure 42 and Figure 43), the following regions were selected:  

 For the adjustment of vessel number, qves1 covered the regions 450-530 nm 

and 630-740 nm. 

 For the adjustment of vessel depth, qves2 covered the entire wavelength 

region, from 340-740 nm. 

 For the adjustment of vessel diameter, qves3 covered the region 530-590 nm. 

Due to overlap of the region qves2 with qves1 and qves3, adjustment of lesion depth was 

performed independently of vessel number and diameter.  This required an iterative 

technique, whereby vessel number and diameter were adjusted initially followed by 

lesion depth, before vessel number and diameter were again considered. 

Verification of the PWS vessel minimisation procedure was carried out in a similar 

manner to the melanin minimisation procedure validation.  The simulated spectrum 

was minimised to the mean measured spectral reflectance of PWS skin from the first 

10 participants.  The initial dataset was produced without introducing any PWS 

vessels to the model and with melanin properties obtained during verification of the 

melanin minimisation procedure (column 2, 'Type II' in Table 5). Twelve iterations of 

the vessel minimisation procedure were then carried out (Figure 44). 
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Figure 43: Simulated spectral reflection outputs obtained during verification of the 
blood vessel minimisation procedure.  

Convergence was slower for the blood vessel minimisation procedure compared to the 

melanin minimisation procedure.  This was expected due to the relative increase in 

complexity of the procedure.   

 

Figure 44: Convergence rate of vessel minimisation procedure, where 1st data point 
corresponds to initial simulated data. 

Figure 45 shows that the blood vessel minimisation procedure provided fast 

convergence for the first two iterations, followed by steady (although not consistent) 
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improvement in closeness of fit for the remaining 10 iterations. Iteration numbers 4, 10 

and 12 show an increase in the mean difference between measured and simulated 

datasets.  These are as a result of changes in vessel number, which have substantial 

effect on the simulated spectrum.  The results presented here suggest that greater than 

twelve iterations of the procedure may be necessary to confidently obtain close to the 

best fit possible using this minimisation technique.  However, the procedure took a 

mean time of approximately 4.5 days using a quad-core processer with 16 GB of RAM 

and a nominal clock rate of 2.66 GHz.  Participant 11 and the first session from 

participant 1 used 12 iterations of the PWS vessel minimisation procedure; the 

remaining assessments used 15 iterations. 

The final simulated reflection shown in Figure 45 provided a close fit to the measured 

spectrum, with a mean deviation of less than 2% reflection.  An excellent fit was 

produced in the region 540-740 nm (mean 1.3% deviation), although there was greater 

deviation from the measured dataset in the region from 460 nm-540 nm (mean 3.3% 

deviation).  This was obtained using a skin model containing 7 vessels with an outside 

vessel diameter of 70 μm and a mean depth of 160 μm.  The procedure was repeated 

on two occasions with the same input parameters and produced comparable results 

after 12 iterations (8 vessels of 70 μm diameter at a mean depth of 210 μm, and 7 

vessels of 80 μm diameter at a mean depth of 180 μm, see Figure 45).  
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Figure 45: Repeated outputs from blood vessel minimisation procedure showing consistency 
of minimisation procedure after 12 iterations.  

Inconsistencies in the final parameters, particularly the mean vessel depth, suggest 

that further iterations of the programme are necessary, and may result in a closer final 

fit.  Comparing the final simulated data to the measured spectrum, the preliminary 

work presented in  Figure 38, Figure 40, Figure 41, Figure 42 and Figure 43 suggest 

that a closer fit may have been produced using a skin model with slightly larger, more 

superficial (and therefore fewer) vessels.   

Conclusions 

These initial results show a good fit between measured and simulation spectral 

reflection and an acceptable total computation time (mean 12.5 days).  The accuracy of 

the predicted vessel characteristics cannot be verified directly as the true vessel 

characteristics are not known, although they are in line with the range of parameters 

expected following a comprehensive survey of the literature.  The primary standard 

for determining PWS vessel anatomy is through biopsy of the affected area.  This 

method was considered unethical for the participants involved in this study.  Instead, 

two alternative methods were used to estimate the characteristics of PWS vessels.  The 

first method, OCT imaging, used an imaging technique to determine directly the 

depths, diameters and numbers of vessels in the skin.  The second technique involved 
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inference of the vessel characteristics based upon their response to laser treatment.  

The results from these analyses are presented in the following chapter.
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7.1  Participants Assessed by 
Spectrophotometry 

Spectrophotometric data was acquired before and after a single session of laser 

treatment for a total of 10 participants.  Room temperatures were recorded and found 

to have remained steady at 22.5°C (±1 °C) across the assessments made.  This section 

comprises a case-by-case analysis of the accuracy of skin colour reproduction, the 

properties of epidermal melanin and PWS vessel properties predicted by the new 

Monte Carlo programme and how these properties relate to treatment effectiveness 

determined through color measurements. 

Participant 1 

The simulation reproduced adjacent skin colour with a mean difference from the 

measured spectrum of 2.3% reflection.  The final skin model contained 1.5% epidermal 

melanin and a mean melanosome diameter of 250 nm.  The simulated spectrum 

reproduced measured data well over the majority of the spectrum.  Predicted 

reflection at wavelengths longer than 660 nm was greater than measured, but less 

between 500 nm and 620 nm (Figure 47).  Due to the smoothly varying optical 

coefficients of melanin, it is not possible to improve the agreement between the 

simulated and measured spectra considerably in only these two regions using the 

current minimisation procedure.  Simulated reflection was also greater in the region 

360-380 nm, suggesting smaller melanosomes in the skin model would have resulted 

in a better reproduction of the measured colour of adjacent skin for this participant.  
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Figure 46: Pre-treatment measured spectra and simulation results for participant 1. 

PWS skin colour was reproduced with a mean difference of 4.5% reflection after 12 

iterations (16.5 days).  The final PWS skin model contained 18 vessels of 180 μm 

diameter and a mean depth of 262 μm.  Simulated reflection was greater than 

measured at wavelengths less than 600 nm, suggesting that a skin model containing 

more superficial vessels would have provided a closer fit between simulated and 

measured curves in this region (Figure 47, see also Figure 38 on page 121).  However, 

decreasing the mean vessel depth would further contribute to the discrepancy 

between measured and simulated data points at wavelengths greater than 600 nm.  

Decreasing the vessel number or diameter would have reduced this latter discrepancy. 

Thus, it is likely that further iterations of the PWS minimisation procedure would have 

resulted in a closer fit between measured and simulated PWS spectra with fewer or 

thinner, more superficial vessels. 

Post treatment adjacent skin was reproduced with a mean discrepancy of 2.3% 

reflection after 10 iterations of the melanin minimisation procedure.  The simulated 

model contained a mean epidermal melanin volume of 1.7% and mean melanosome 

diameter of 252 nm. Again ,adjacent skin colour was reproduced well over the 

majority of the spectrum.  Figure 48 shows that the predicted reflectance spectrum of 

post-treatment adjacent skin is greater than measured values in the region 660 nm to 

740 nm but less in the region 500 nm to 640 nm.  A change in the quantity of melanin 

used in the skin model may, using the current minimisation technique, improve the fit 
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in either one of these regions, but would result in a poorer fit in the remaining region.  

Predicted reflectance in the region 360 to 400 nm was substantially greater than 

measured reflectance, again suggesting that the use of smaller melanosome diameters 

in the skin model would have produced a closer fit overall. 

 

Figure 47: Simulation results for post-treatment skin of participant 1. 

Post treatment PWS skin was reproduced well by the simulation at wavelengths 

greater than 450 nm, with a mean deviation between measured and simulated 

reflectance of 1.7% across the entire spectrum (12 iterations, 11 days).  The skin model 

contained 8 vessels of 100 µm diameter with a mean depth of 215 µm.  The primary 

area of discrepancy between simulated and measured data was in the region below 

450 nm.  It is expected that a decrease in the melanosome diameters used in the skin 

model would have improved the fit in this region. 
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Figure 48: Colour measurement data for participant 1 taken before and after 1 session of 
laser treatment. 

A treatment was performed using the Pulsed Dye Laser at a wavelength of 595 nm, 

radiant exposure of 14 Jcm-2 and pulse length of 6 ms.  Figure 49 shows very little 

change in adjacent skin colour between treatment sessions.  The slight reduction in 

reflectance towards the red end of the spectrum was attributed in the simulation to a 

small increase in epidermal melanin concentration. 

Measurements of PWS skin colour show a substantial increase in reflectance over the 

majority of the spectrum, demonstrating a substantial reduction in PWS colour 

(difference in reflection between PWS and adjacent skin) after one treatment.  The 

simulation results suggest that this was caused primarily by a reduction in vessel 

number.  The predicted mean vessel diameter was also reduced following treatment, 

and the mean vessel depth increased, suggesting that the treatment was most effective 

at destroying larger, more superficial vessels. 

Participant 2 

Pre-treatment adjacent skin colour was reproduced with a mean discrepancy of 1.6% 

reflection from the measured spectrum after 10 iterations of the melanin minimisation 

procedure, using a skin model containing an epidermal melanin volume fraction of 

3.3% and a mean melanosome diameter of 208 nm. 
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The greatest discrepancy between simulated and measured reflection of pre-treatment 

adjacent skin is evident in the region 520-600 nm.  This suggests that absorption by 

blood had a greater influence in the measured skin sample than in the simulation.  

Due to the age of the participant (67 years at the time of the assessment), it is possible 

that the region assessed may have been influenced by age related ectasia of superficial 

vessels in the normal dermis, a prospect not considered in the simulation.  The region 

below 450 nm wavelength was slightly underestimated by the simulation, suggesting 

the use of larger melanosomes in the skin model may have improved the fit between 

the measured and simulated datasets.  Reflection between 600 nm and 700 nm was 

also underestimated by the simulation.  Although the fit in this region may have been 

improved by reducing the epidermal melanin concentration, this would have resulted 

in a poorer fit outside of this region. 

 

Figure 49: Pre-treatment measured and simulated spectral curves from participant 2. 

Pre-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 2.2% reflection after 15 iterations (8.5 days).  The final pre-treatment PWS 

skin model contained 6 vessels of 160 μm diameter with a mean depth of 250 μm.  The 

fit between measured and simulated curves in the region 360 nm to 600 nm was 

generally close.  Between 600 and 700 nm, the simulation produced a lower proportion 

of simulated light than measured for this region.  This discrepancy appears to 

0%

10%

20%

30%

40%

50%

60%

350 400 450 500 550 600 650 700 750

re
fl
e

c
ti
o

n
 

wavelength (nm) 

Participant 2 pre-treatment 

Measured pre-treatment adjacent skin

Simulated pre-treatment adjacent skin

Measured pre-treatment PWS skin

Simulated pre-treatment PWS skin



138  7.1  Participants Assessed by Spectrophotometry 

primarily have been inherited from the melanin characteristics derived in the adjacent 

skin minimisation procedure. 

 

Figure 50: Post-treatment measured and simulated spectral curves from participant 2. 

Post treatment adjacent skin was reproduced by the simulation with a mean deviation 

from the measured dataset of 1.1% reflection after 10 iterations of the melanin 

minimisation procedure.  This was achieved with a skin model containing the same 

melanin parameters as pre-treatment adjacent skin.  The overall fit between simulated 

and measured post-treatment adjacent skin was closer than for pre-treatment adjacent 

skin, although a slight overestimate in reflection was still present in the region 530 nm 

to 590 nm and a slight underestimate was still present in the region 610 nm to 690 nm. 

Post treatment PWS skin was reproduced with a mean deviation of 1.6% reflectance (9 

days) using a skin model containing 7 vessels of 170 μm diameter and a mean depth of 

270 μm.  The primary region of discrepancy between simulated and measured datasets 

was again an underestimate of the proportion of reflectance in the region 630 nm to 

700 nm.  Again, this appears to have been inherited from the melanin minimisation 

procedure. 
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Figure 51: Colour measurement data of participant 2 taken before and after laser 
treatment. 

Pulsed Dye Laser treatment was carried out using a radiant exposure of 14 Jcm-2 and a 

pulse length of 6 ms. Colour measurement data of adjacent skin shows that there was 

a slight increase in measured reflectance in the region 500 nm to 580 nm.  This is most 

likely a result of a reduction in pigmentation, but may also be due to a reduction in the 

quantity of blood in the superficial epidermis of the adjacent skin sample. This subtle 

difference was not recognized by the melanin minimisation procedure, which 

predicted no change in the melanin properties between assessments.  PWS skin 

showed very similar characteristics throughout, with a slight increase in measured 

reflection at wavelengths greater than 650 nm. It is therefore apparent that the laser 

treatment had little, if any, effect on the colour of the PWS lesion.   

As a result of the small changes in measured reflection between sessions, the vessel 

minimisation procedure predicted similar vessel characteristics for both pre-treated 

and post-treated PWS datasets, with a slight increase in vessel number and depth, and 

a slight decrease in vessel diameter. 

Participant 3 
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Pre-treatment adjacent skin was reproduced with a mean deviation from the measured 

dataset of 1.3% reflection.  The skin model contained a melanin volume fraction of 

0.7% and a mean melanosome diameter of 156 nm.  The simulated spectral curve 

shape matched closely to the measured curve over the entire spectrum (Figure 53).   

Pre-treatment PWS skin was reproduced with a mean deviation of 1.8% reflectance 

(4.5 days) using a skin model containing 4 vessels of 10 μm diameter and a mean 

depth of 218 μm.  The simulated reflectance of PWS skin matched closely to that of 

simulated adjacent skin (much like their measured equivalents).  Thus, discrepancies 

between simulated and measured pre-treatment PWS skin are likely to have been 

inherited primarily from the melanin minimisation procedure.  It is of interest to note 

that measured reflection of PWS skin was greater that adjacent skin in the region 370-

450 nm, although this was not reproduced by the simulation. 

 

Figure 52: Pre-treatment measured and simulated spectral curves from participant 3. 

Post-treatment adjacent skin colour was reproduced with a mean difference of 5.3% 

reflection from the measured spectrum.  This employed a skin model containing an 

epidermal melanin volume of 2.2% and a mean melanosome diameter of 156 nm.   

Unlike pre-treatment adjacent skin, the spectral curve shape was not matched closely 

by the simulation (Figure 52).  This led to overestimates in reflection below 400 nm, in 

the region 460 nm to 510 nm and at wavelengths greater than 610 nm.  A reduction in 
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the melanin volume applied to the skin model may have improved the fit in these 

regions (at the sacrifice of the remaining regions) and reduced the mean difference 

between measured and simulated reflection.  A reduction in melanosome diameter is 

also likely to have improved the fit between measured and simulated spectra below 

500 nm.   

 

Figure 53: Post-treatment measured and simulated spectral curves from participant 3. 

Post-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 3.8% reflection after 15 iterations (4.5 days).  The final post-treatment PWS 

skin model contained 4 vessels of 10 μm diameter with a mean depth of 265 μm.  The 

difference in shape between measured and simulated curves appears to have been 

inherited from the melanin minimisation procedure.  In particular, the simulation 

predicted greater reflectance than the measured data below 410 nm, between 460 nm 

and 520 nm and above 610 nm. 
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Figure 54: Colour measurement data of participant 3 taken before and after laser 
treatment. 

Laser treatment was carried out using a radiant exposure of 14.5 Jcm-2 and a pulse 

length of 6 ms.  Colour measurement data of adjacent skin shows a decrease in 

measured reflectance across the entire spectrum, in particular within the region 500 

nm to 610 nm.  This is likely to be as a result of increased pigmentation. As a result, the 

melanin minimisation procedure predicted that the epidermal melanin quantity 

increased from 0.7% to 2.2% between treatments, with no change in the mean 

melanosome diameter. 

PWS skin measurements also showed a decrease in reflection with a greater emphasis 

in this region.  Overall, the difference between PWS and adjacent skin was shown to 

be reduced between sessions, particularly in the region 500 nm to 600 nm. The PWS 

vessel minimisation procedure predicted the same number and diameter of vessels in 

the region measured, with a slight increase in the mean vessel depth.  Thus, the 

simulation attributed the measured change in PWS colour between sessions primarily 

to a change in the melanin content of the overlying epidermis.  

Participant 4 

Pre-treatment adjacent skin colour was reproduced with a mean difference of 3.3% 

reflection from the measured spectrum.  The final skin model contained an epidermal 

melanin volume fraction of 1.3% and a mean melanosome diameter of 291 nm. 
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Simulated reflection was greater than measured at wavelengths longer than 660 nm 

and shorter than 410 nm.  The former region would have provided a closer fit if the 

epidermal melanin content had been lower, although this would have increased the 

difference between measured and simulated spectra in the region 500 nm to 610 nm, 

where simulated reflection was substantially lower than measured data.  Reducing the 

mean melanosome diameter used in the skin model is likely to have improved the 

overall fit of the simulated spectrum by reducing the discrepancy below 410 nm. 

 

Figure 55: Pre-treatment measured and simulated spectral curves from participant 4. 

Simulated pre-treatment PWS skin differed from the measured dataset by a mean 

value of 3.3% reflection after 15 iterations (13.5 days).  The final pre-treatment PWS 

skin model contained 17 vessels of 100 μm diameter with a mean depth of 194 μm.  

The simulated spectrum demonstrated greater reflectance than the measured values 

below 450 nm, with the discrepancy between the two spectra increasing at smaller 

wavelengths. The discrepancy in this region, along with another at 740 nm, appears to 

have been inherited (in part, at least) from the melanin minimisation procedure. 

Post treatment adjacent skin was reproduced with a mean deviation from the 

measured dataset of 3.0% reflection after 10 iterations of the melanin minimisation 

procedure.  This was produced using a skin model containing 1.4 % melanin and a 
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mean melanosome diameter of 284 nm.  As with pre-treatment adjacent skin, 

simulated reflection was less than the measured skin values in the region 500 nm to 

610 nm (and further, up to 650 nm), suggesting that a slightly lower epidermal 

melanin volume fraction would have provided a closer fit between simulated and 

measured spectra overall. The discrepancy between measured and simulated data 

towards the blue end of the spectrum was smaller for post-treatment adjacent skin, but 

the use of smaller melanosomes may again have provided an improved fit in this 

region. 

 

Figure 56: Post-treatment measured and simulated spectral curves from participant 4. 

Post treatment PWS skin was reproduced closely over the majority of the spectrum, 

with a mean deviation of 2.5% reflectance (8.5 days).  The final skin model contained 7 

vessels of 180 μm diameter and a mean depth of 214 μm.  As with the pre-treated PWS 

skin, the main region of discrepancy was below 450 nm, where simulated reflectance 

was increasingly higher than measured reflectance, mimicking the pattern from 

simulated adjacent skin.  
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Figure 57: Colour measurement data of participant 4 taken before and after laser treatment . 

Laser treatment was carried out using a radiant exposure of 16 Jcm-2 and a pulse 

length of 6 ms.  Figure 58 shows that colour measurement data demonstrates very 

little change in either the assessed regions of adjacent or PWS skin between sessions. 

As a result, the simulation predicted very little change in the melanin and PWS vessel 

properties for this participant.  

 Participant 5 

Pre-treatment adjacent skin colour was reproduced with a mean difference of 2.5% 

reflection from the measured spectrum.  The final a skin model contained an 

epidermal melanin volume of 0.4% and a mean melanosome diameter of 194 nm. 

Spectral reflection of adjacent skin was overestimated at 360 nm, in the region 460 nm 

to 510 nm and at wavelengths greater than 670 nm (Figure 59).  A reduction in the 

(already low) melanin volume applied to the skin model may have improved the fit in 

these regions, but not in the remaining regions where reflectance was underestimated 

(400-450 nm and 540-630 nm).  A reduction in melanosome diameter may also have 

improved the fit between measured and simulated spectra at 360 nm, but would have 

resulted in a larger discrepancy in the region 400 nm to 450 nm.  Thus, although there 

are regions of noticeable discrepancy between the minimised and simulated spectra, it 
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is unlikely that further improvement could have been achieved using the current 

melanin minimisation procedure.   

 

Figure 58: Pre-treatment measured and simulated spectral curves from participant 5. 

Pre-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 2.2% reflection after 15 iterations (9 days).  The final pre-treatment PWS skin 

model contained 7 vessels of 40 μm diameter with a mean depth of 220 μm.  The 

difference in shape between measured and simulated curves appears to have been 

inherited from the melanin minimisation procedure.  The greatest discrepancy 

between measured and simulated data was at wavelengths greater than 650 nm, 

where the simulation overestimated the proportion of reflected light by a greater 

degree than the adjacent skin model.  This suggests that a slight increase in vessel 

number or diameter could have improved the fit in this region, although it would 

have resulted in a poorer fit between 500 nm and 620 nm. 
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Figure 59: Post-treatment measured and simulated spectral curves from participant 5. 

Post treatment adjacent skin was reproduced with a mean deviation from the 

measured dataset of 1.8% reflection after 10 iterations of the melanin minimisation 

procedure.  This was produced using a skin model containing 0.8% melanin with a 

mean melanosome diameter of 318 nm.  The simulated spectral curve shape matched 

more closely to the measured spectral curve than their pre-treatment equivalents, 

although there were similar discrepancies between the two curves throughout.  It is 

notable that the simulated reflection was substantially overestimated at 360 nm, 

suggesting that the use of smaller melanosomes in the skin model would have 

improved the fit.   

Post treatment PWS skin was reproduced with a mean deviation of 2.2% reflectance 

from the measured spectrum (12 days), using a skin model containing 13 vessels of 40 

μm diameter and a mean depth of 360 μm.  Spectral reflectance was overestimated by 

the simulation in the region 360 nm to 450 nm (Figure 60), further supporting the 

suggestion that the use of smaller melanosome diameters in the skin model would 

have been more suitable for this participant.  The remaining simulated curve matched 

closely to the measured spectrum, with most regions of discrepancy apparently 

inherited from the melanin minimisation procedure. 
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Figure 60: Colour measurement data of participant 5 taken before and after laser treatment . 

Laser treatment was carried out using a radiant exposure of 14.5 Jcm-2 and a pulse 

length of 6 ms.  Colour measurement data of adjacent skin shows a decrease in 

measured reflectance across the entire spectrum, in particular at wavelengths greater 

than 600 nm (Figure 59).  This is likely to be as a result of increased pigmentation.  The 

simulation predicts both an increase in melanin volume fraction from 0.4% to 0.8% 

and an increase in mean melanosome diameter, although the latter did not provide a 

good fit between measured and simulated spectra at shorter wavelengths. 

PWS skin showed very similar characteristics throughout, with a slight reduction in 

measured reflection across the spectrum. The difference between PWS and adjacent 

skin colour was reduced overall, and in particular at wavelengths greater than 590 nm.  

This suggests that the laser treatment successfully reduced the colour of this 

participant's PWS lesion.  The simulation attributed the small change in PWS skin 

colour to an increase in mean vessel depth and vessel number, suggesting that laser 

treatment successfully targeted superficial vessels. 

Participant 6 

Pre-treatment adjacent skin colour was reproduced with a mean difference of 1.5% 

reflection from the measured spectrum.  The final skin model contained an epidermal 

melanin volume of 3.4% and a mean melanosome diameter of 269 nm. 
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The simulated spectrum demonstrated a greater degree of reflectance than the 

measured dataset in the region 520 nm to 580 nm, but less reflectance between 610 nm 

and 730 nm.  It is unlikely that both of these discrepancies could be reduced with the 

current melanin minimisation procedure. 

 

Figure 61: Pre-treatment measured and simulated spectral curves from participant 6. 

Pre-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 2.5% reflection after 15 iterations (8 days).  The final pre-treatment PWS skin 

model contained 7 vessels of 60 μm diameter with a mean depth of 178 μm.  The 

simulated spectrum demonstrated slightly greater reflectance than the measured data 

in the region 530 nm to 580 nm and less reflectance in the region 610 nm to 710 nm.  In 

both regions, the discrepancies appear to have been inherited from the melanin 

minimisation procedure. 

Post treatment adjacent skin was reproduced well over the majority of the spectrum 

with a mean deviation from the measured dataset of 2.5% reflection.  This was 

produced using a skin model containing 2.0 % melanin and a mean melanosome 

diameter of 264 nm. Although there was a slight overestimate in the simulated 

reflection at wavelengths greater than 650 nm, the primary discrepancy between the 

two datasets was at the other end of the spectrum, below 400 nm.  Although a 
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reduction in the mean melanosome diameter may have improved the fit at 360 nm, the 

difference between simulated and reflected curves between 400 nm and 450 nm would 

have increased.  It is not likely that the current melanin minimisation procedure could 

have resulted in a close fit to the measured data below 400 nm.  Again, it is of note that 

measured reflectance of this participant’s PWS skin was greater than adjacent skin 

below 400 nm, although this was not reproduced by the simulation. 

 

Figure 62: Post-treatment measured and simulated spectral curves from participant 6. 

Post treatment PWS skin was reproduced with a mean deviation of 1.2% reflectance 

(6.5 days) using a skin model containing 5 vessels of 60 μm diameter and a mean 

depth of 224 μm.  The simulated spectrum produced a close fit to the measured data 

over the majority of the spectrum, with the only region of notable discrepancy 

inherited from the melanin minimisation procedure below 400 nm.  
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Figure 63: Colour measurement data of participant 6 taken before and after laser treatment . 

Pulsed Dye Laser treatment was carried using 0.5 ms pulses with a radiant exposure of 

10 Jcm-2.  Colour measurement data of adjacent skin shows a substantial reduction in 

the proportion of reflected light between sessions, the only exception to this being in 

the region below 400 nm.  This was interpreted by the simulation as a decrease in 

melanin volume fraction from 3.4% to 2.0% with a negligible decrease in the mean 

melanosome diameter. 

Measured PWS data shows a strong increase in reflection after treatment, except for in 

the region below 400 nm.  The difference between adjacent and measured PWS skin 

was reduced at wavelengths greater than 620 nm but increased in the region 500-600 

nm.  The simulation predicted that these changes resulted from both a decrease in 

vessel number and an increase in the mean vessel depth, suggesting that laser 

treatment was successful at targeting the more superficial PWS vessels.  Simulated 

vessel diameter remained unchanged.  These combined results also suggest that the 

increase in measured contrast between adjacent and PWS skin in the region 500-600 

nm was caused primarily by changes in epidermal melanin volume fraction. 

Participant 7 

Pre-treatment adjacent skin colour was reproduced with a mean difference of 1.8% 

reflection from the measured spectrum.  The final skin model contained an epidermal 
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melanin volume of 1.9% and a mean melanosome diameter of 41 nm.  The simulation 

produced a good overall match to the measured spectrum (Figure 65).  There was a 

slight discrepancy in the region 450 nm to 600 nm, where simulated reflectance was 

greater than measured below 500 nm and less than measured above 500 nm.  The 

match between measured and simulated datasets is not likely to be improved using 

the current melanin minimisation procedure. 

 

Figure 64: Pre-treatment measured and simulated spectral curves from participant 7. 

Pre-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 1.0% reflection (7 days) using a skin model containing 5 vessels of 90 µm 

diameter and with a mean depth of 225 µm.  The fit between the measured and 

simulated spectra was close throughout, with the only noticeable discrepancies at the 

longest and shortest wavelengths considered, both of which appear to have been 

inherited from the melanin minimisation procedure. 

Post-treatment adjacent skin colour was reproduced with a mean difference of 1.6% 

reflection from the measured spectrum from a skin model containing an epidermal 

melanin volume of 1.3% and a mean melanosome diameter of 41 nm.  The simulation 

again produced a good overall match to the measured spectrum for post-treatment 

adjacent skin.  The primary discrepancy was in the region 450 nm to 520 nm, where 

simulated reflectance was greater than measured.  The match between measured and 
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simulated datasets cannot be improved for this single region without altering the fit in 

the remaining regions using the current melanin minimisation procedure. 

 

Figure 65: Post-treatment measured and simulated spectral curves from participant 7. 

Post-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 2.1% reflection after 15 iterations (5.5 days) using a skin model containing 4 

vessels of 70 μm diameter and a mean depth of 245 μm.  The simulated spectrum 

demonstrated slightly greater reflectance than the measured data in the region 460 nm 

to 510 nm, which appears to be inherited from the melanin minimisation procedure.  

The primary region of discrepancy was at wavelengths greater than 600 nm, where the 

simulation produced less reflection than measured.  This appears to have been only 

partly inherited from the melanin minimisation procedure and, thus, it is likely that a 

skin model with slightly fewer or thinner vessels would have provided a closer fit in 

this region. 
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Figure 66: Colour measurement data of participant 1 taken before and after the first 
laser treatment for which assessments were carried out. 

Laser treatment was carried using 0.5 ms pulses and a radiant exposure of 8.5 Jcm-2.  

The measured adjacent skin data demonstrates an increase in reflectance between the 

first two measurement sessions in the region below 510 nm and at wavelengths 

greater than 590 nm (Figure 67).  The simulation attributed this to a reduction in 

epidermal melanin concentration from 1.9% to 1.3%. 

PWS skin colour showed very little change below 580 nm, but the proportion of 

reflected light increased considerably at wavelengths beyond 600 nm.  The difference 

between measured reflectance in this region was reduced, indicating that the 

treatment was successful.  The simulation attributed this to a reduction in both the 

number and diameter of PWS vessels.   

A further session of laser treatment was carried using 0.5 ms pulses and a radiant 

exposure of 9.5 Jcm-2.   
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Figure 67: Measured and simulated spectral curves from participant 7 after the second 
treatment. 

Adjacent skin colour after the second treatment was reproduced with a mean 

difference of 1.7% reflection from the measured spectrum.  The final skin model 

contained an epidermal melanin volume of 1.7% and a mean melanosome diameter of 

23 nm.  The simulation produced a good overall match to the measured spectrum.  

The primary discrepancy was again in the region 450 nm to 520 nm, where simulated 

reflectance was greater than measured. 

Simulated post-second-treatment PWS skin reproduced the measured data well, with 

a mean difference from the measured dataset of 1.1% reflection after 15 iterations (4.5 

days) using a skin model containing 5 vessels of 70 μm diameter with a mean depth of 

450 μm. 
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Figure 68: Colour measurement data of participant 7 taken before and after a second 
session of laser treatment. 

The measured adjacent skin data (Figure 69) demonstrates a decrease in reflectance 

between measurement sessions in the region below 520 nm and at wavelengths 

greater than 590 nm.   The simulation attributed this change to an increase in melanin 

content as well as a decrease in the mean melanosome diameter.  PWS skin colour 

showed an increase in reflection below 600 nm and a decrease in reflectance at 

wavelengths greater than 600 nm.  The difference between measured reflectance was 

reduced below 600 nm, but not at wavelengths greater than 600 nm.  This indicates 

that the treatment was again successful.  The simulation attributed this change to an 

increase in the mean vessel depth. 

The results from this participant suggest different mechanisms for the reduction in 

apparent PWS colour for each treatment, despite employing similar laser settings on 

each occasion. 

Participant 8 

Pre-treatment adjacent skin colour was reproduced with a mean difference of 1.8% 

reflection from the measured spectrum.  The final skin model contained an epidermal 

melanin volume of 1.4% and a mean melanosome diameter of 281 nm. 

Agreement between simulated and measured reflectance was good throughout, with 

the primary region of discrepancy in the region 600 nm to 720 nm, where both 
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underestimation and overestimation of measured reflectance are present.  A further 

region of underestimated reflection is noticeable at around 420 nm. These regions 

cannot be independently compensated for using the current minimisation procedure. 

 

Figure 69: Pre-treatment measured and simulated spectral curves from participant 8. 

Pre-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 1.7% reflection after 15 iterations (8 days).  The final pre-treatment PWS skin 

model contained 6 vessels of 20 μm diameter with a mean depth of 67 μm.  The fit 

between simulated and measured reflectance was excellent in the region 450 to 600 

nm.  Between 600 nm and 700 nm, the simulated reflectance was less than the 

measured reflectance.  This, as well as the overestimated reflectance at around 420 nm, 

appears to be inherited from the melanin minimisation procedure. 

Post treatment adjacent skin was reproduced with a mean deviation from the 

measured spectrum of 2.1% reflection.  This was produced using a skin model 

containing 1.2 % melanin and a mean melanosome diameter of 281 nm.  The fit overall 

was poorer than that produced for pre-treatment skin, with a noticeable reduction in 

predicted reflectance, relative to measured data, in the region 500 nm to 650 nm. 
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Figure 70: Post-treatment measured and simulated spectral curves from participant 8. 

Post treatment PWS skin was reproduced with a mean deviation of 2.7% reflectance 

(6.5 days) using a skin model containing 4 vessels of 50 μm diameter and a mean 

depth of 215 μm.  Simulated reflectance was greater than measured below 600 nm, 

suggesting that a reduction in the mean depth of vessels may have provided a better 

fit.  The reduction in simulated reflection relative to measured values in the region 610 

nm to 700 nm appears to be partly inherited from the melanin minimisation procedure 

but also suggest that the use of fewer or thinner vessels in the skin model could have 

improved the fit between measured and simulated data. 
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Figure 71: Colour measurement data of participant 8 taken before and after laser treatment . 

Pulsed Dye Laser treatment was carried out using a radiant exposure of 14 Jcm-2 and a 

pulse length of 2 ms. The measured adjacent skin data (Figure 72) shows an increase in 

reflectance between measurement sessions over the majority of the spectrum, in 

particular across region 400 nm to 590 nm.  PWS skin colour demonstrated very little 

change between sessions.  The difference between PWS and adjacent skin was greater 

following treatment at wavelengths less than 690 nm. 

The simulation predicted a decrease in melanin content, but no change in the mean 

melanosome diameter to account for the increase in reflection of adjacent skin between 

sessions.  The simulation of post-treatment PWS skin used a model containing fewer 

vessels, although these were both wider and deeper, suggesting that laser treatment 

was successful in removing more superficial, thin vessels despite no apparent 

improvement in the contrast between PWS and adjacent skin colours. 

Participant 9 

Pre-treatment adjacent skin colour was reproduced with a mean difference of 2.2% 

reflection from the measured spectrum.  The final model skin model contained an 

epidermal melanin volume fraction of 0.9% and a mean melanosome diameter of 331 

nm. 
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Simulated reflection was greater than measured at wavelengths longer than 660 nm 

and at wavelengths shorter than 440 nm.  The former region would have provided a 

closer fit if the epidermal melanin content had been lower, although this would have 

increased the difference between measured and simulated spectra in the middle 

wavelengths.  Reducing the mean melanosome diameter would have improved the 

overall fit of the simulated spectrum and would have provided predicted melanosome 

diameters closer to what may be expected for a lighter skinned individual, such as this 

participant. 

 

Figure 72: Pre-treatment measured and simulated spectral curves from participant 9. 

Pre-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 2.9% reflection after 15 iterations (7 days).  The final pre-treatment PWS skin 

model contained 4 vessels of 60 μm diameter with a mean depth of 396 μm.  The 

region of greatest discrepancy between measured and simulated curves was at 

wavelengths below 450 nm, where simulated PWS skin provided the same reflectance 

as simulated adjacent skin.  Simulated reflection at wavelengths greater than 480 nm 

was consistently less than measured reflection, suggesting that a model containing 

deeper, fewer or thinner vessels would have provided a more accurate representation 

of the measured PWS region. 

Post treatment adjacent skin was reproduced with a mean deviation from the 

measured dataset of 1.8% reflection.  This was produced using a skin model 
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containing 1.2 % melanin and a mean melanosome diameter of 269 nm.  These smaller 

melanosomes provided a closer fit than the pre-treatment spectrum below 450 nm.  

Again, simulated adjacent skin reflection was less than the measured skin values at 

wavelengths greater than 500 nm, suggesting that a slightly lower epidermal melanin 

volume fraction would have provided a closer fit. 

 

Figure 73: Post-treatment measured and simulated spectral curves from participant 9. 

Post treatment PWS skin was reproduced closely over the entire spectrum, with a 

mean deviation of 1.5% reflectance (8 days) using a skin model containing 5 vessels of 

50 μm diameter and a mean depth of 460 μm.  Measured spectral reflectance was 

greater for the PWS region than for adjacent skin below 450 nm, and this was 

replicated in the simulation.  Once again, measured PWS reflection was greater than 

adjacent skin below 450 nm. 
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Figure 74: Colour measurement data of participant 9 taken before and after laser 
treatment. 

Laser treatment was carried out using a radiant exposure of 17 Jcm-2 and a pulse 

length of 10 ms.  Colour measurement data of adjacent skin shows a decrease in 

measured reflectance after treatment across the entire spectrum, in particular below 

600 nm.  The simulation predicted an increase in melanin from 0.9% to 1.2%, but a 

decrease in mean melanosome diameter.  Due to the discrepancies between post-

treatment adjacent simulated and measured spectra, the former result appears to be 

erroneous. 

PWS skin showed similar characteristics before and after treatment at wavelengths 

greater than 600 nm, with an increase in relative reflection between PWS and adjacent 

skin at shorter wavelengths.  The overall difference between PWS and adjacent skin 

was reduced following treatment.  This was primarily attributed to an increase in the 

mean depth of PWS vessels by the simulation.  The simulation also predicted a slight 

increase in vessel number and a reduction in mean PWS vessel diameter following 

laser treatment, suggesting that laser treatment successfully targeted larger, more 

superficial vessels. 
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Participant 10 

Pre-treatment adjacent skin colour was reproduced well over the entire spectrum, with 

a mean difference of 1.5% reflection from the measured spectrum.  This was produced 

from a skin model containing an epidermal melanin volume of 1.8% and a mean 

melanosome diameter of 384 nm.   

 

Figure 75: Pre-treatment measured and simulated spectral curves from participant 10. 

Pre-treatment PWS skin was simulated with a mean difference from the measured 

dataset of 4.1% reflection (7.5 days).  The final pre-treatment PWS skin model 

contained 6 vessels of 220 μm diameter with a mean depth of 246 μm.  The simulated 

spectrum demonstrated greater reflectance than the measured values below 600 nm, 

with the discrepancy between the two spectra increasing at smaller wavelengths. It is 

likely than an increase in the mean depth of the vessels would have improved the fit in 

this region.  At wavelengths greater than 600 nm, the simulated reflection was less 

than the measured data, suggesting that the use of fewer or smaller vessels in the skin 

model would have provided a better fit in this region.  It is not certain, however, that 

these changes in the skin model's vessel architecture would have provided a close fit 

overall (particularly below 450 nm). 
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Post treatment adjacent skin was reproduced with a mean deviation from the 

measured dataset of 1.8% reflection.  This was produced using a skin model 

containing 3.3 % melanin and a mean melanosome diameter of 244 nm. Again, 

adjacent skin colour was reproduced well by the simulation.  The only notable 

discrepancies between the two curves were overestimates in the region 460 nm to 500 

nm and near 360 nm.  As a result, it is possible that the use of smaller melanosomes in 

the skin model would have marginally improved the fit overall.  There was also an 

overestimate in the simulated reflection at 740 nm. 

 

Figure 76: Post-treatment measured and simulated spectral curves from participant 10. 

Post treatment PWS skin was reproduced with a mean deviation of 3.6% reflectance 

(11 days) using a skin model containing 9 vessels of 110 μm diameter and a mean 

depth of 294 μm.  PWS skin was reproduced well below 600 nm.  At wavelengths 

greater than 600 nm, where simulated reflectance was substantially lower than 

measured reflectance.  This suggests that the use of fewer or smaller diameter vessels 

may have improved the fit between measured and simulated curves in this region, 

although such a change may have resulted in a poorer fit below 600 nm. 
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Figure 77: Colour measurement data of participant 10 taken before and after laser 
treatment. 

A combined laser treatment was carried out for this participant, employing a 10 ms 

pulse of PDL (595 nm) at 10.5 Jcm-2 followed after a 0.5 s interval by a 15 ms pulse of 

Nd:YAG (1064 nm) at a radiant exposure of 70 Jcm-2.  Spectrophotometry 

measurements of adjacent skin show a reduction in the proportion of reflected light 

below 600 nm between sessions.  The simulation attributed this change to an increase 

in melanin content from 1.8% to 3.3% although there was a reduction in the mean 

melanosome diameter, from 384 nm to 244 nm. 

Although measured PWS skin colour did not change considerably between sessions, 

the difference between PWS and adjacent skin colour was reduced across the entire 

spectrum after treatment.  The reduction in PWS skin colour was interpreted by the 

simulation as an increase in mean vessel depth and a reduction in the mean vessel 

diameter, suggesting that laser treatment targeted larger, more superficial vessels.  

Vessel number was predicted by the simulation to increase between sessions.  
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Summary 

A total of 22 datasets were acquired across the 10 participants studied.  The 

discrepancy between simulated and measured spectra was small throughout, only 

surpassing 5% reflection for one dataset (Table 6).  The predicted melanin volume 

fractions are consistent with those expected for participants with pale, predominantly 

Northern European skin types, although for many of the participants, mean 

melanosome diameters were larger than expected for these skin types. 

Table 6: Summary of the predicted melanin properties across the participant group.  

p’pant 
no. 

Age 
(years) 

Pre-treatment Post-treatment 

% melanin 
volume 
fraction 

mean 
melanosome 
diameter (nm) 

Discrepancy 
(% 

reflection) 

% melanin 
volume 
fraction 

mean 
melanosome 
diameter (nm) 

Discrepancy 
(% 

reflection) 

1 37 1.5% 249 2.3% 1.7% 252 2.3% 

2 68 3.3% 208 1.6% 3.3% 208 1.1% 

3 13 2.2% 156 1.3% 0.7% 156 5.3% 

4 38 1.3% 291 3.3% 1.4% 284 3.0% 

5 3 0.4% 194 2.5% 0.8% 318 1.8% 

6 29 2.4% 269 1.5% 2.0% 264 2.5% 

7 (1) 7 1.9% 41 1.8% 1.3% 41 1.6% 

7 (2) 7 1.3% 41 1.6% 1.7% 23 1.7% 

8 7 1.4% 281 1.8% 1.2% 281 2.1% 

9 19 0.9% 331 2.2% 1.2% 269 1.8% 

10 69 1.8% 384 1.5% 3.3% 322 1.8% 

mean 29 1.7% 222 1.9% 1.7% 210 2.3% 

 

The primary region of discrepancy between simulated and measured adjacent skin 

colour was below 450 nm, where the majority of participants demonstrated a flatter 

curve than that produced by the simulation, therefore resulting in a simulated 

reflectance which was greater than the measured curve at 360 nm but less or equal in 

the region 400-450 nm.  This is consistent with the apparent systematic overestimation 

of melanosome diameters.  It is likely that the consideration of wavelengths below 400 

nm only within the melanin minimisation procedure would have resulted in an 

improved fit between simulated and measured spectra and [predictions of smaller 

melanosome diameters for the majority of participants.  It is also expected that the 

introduction of epidermal thickness or the proportionate distribution of melanin 

throughout the three epidermal layers of the skin model as parameters to be 

considered in the melanin minimisation procedure would increase the flexibility of the 

simulation, and improve the potential for matching simulated and measured spectra, 
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in particular towards the blue and of the visible spectrum where light scattering has 

greatest influence. 

The discrepancy between measured and simulated PWS skin was marginally greater 

on average than for adjacent skin, in part due to the discrepancies inherited from the 

melanin minimisation procedure which could not be adequately compensated for 

within the PWS minimisation procedure.  However, this discrepancy was decreased 

following the PWS minimisation procedure in some participants.   Some compensation 

for discrepancies inherited from the melanin minimisation procedure was possible 

through the manipulation of PWS vessel parameters. These corrections are likely to 

have resulted in less accurate predictions of PWS vessel properties.  Again, only one 

dataset showed a mean difference between measured and simulated spectra of greater 

than 5%. 

The mean melanin properties predicted by the simulation did not vary considerably 

between first and second measurement sessions.  This is consistent with the seasonal 

spread of data collection, for which there is no trend for more initial or follow up 

assessments carried out at any particular time of year for this participant group.  There 

appeared to be a slight positive trend between particpant age and predicted epidermal 

melanin volume fraction (R2=0.30) and mean melanosome diameter (R2=0.23) which is 

consistent with studies published elsewhere [10, 257]. 

Overall, the predicted vessel number densities and diameters were within the range of 

expected values.  Although mean vessel depths were largely within the expected 

range, the overall mean depth was less than would have been expected from previous 

biopsy studies (see page 19).  This is likely to be a result of the low relative 

contribution of deeper PWS vessels to skin colour, as biopsy studies are likely to show 

PWS vessels which may not contribute to the measured colour of skin due to their 

depth within the skin or the presence of overlying vessels. 
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Table 7: Summary of the predicted PWS parameters.  

p'pant 
no. 

age 
(yrs.) 

Pre-treatment Post-treatment 

no. of 
vessels 

vessel 
diamete

r (μm) 

vessel 
depth 

(μm) 

Discrepancy 
(% reflection) 

no. of 
vessel

s 

vessel 
diameter 

(μm) 

vessel 
depth 

(μm) 

Discrepancy 
(% reflection) 

1 37 18 180 262 5.2% 8 100 215 1.7% 

2 68 6 160 250 1.9% 7 140 264 1.8% 

3 13 4 10 218 2.3% 4 10 218 3.8% 

4 38 17 100 194 2.6% 7 100 189 2.5% 

5 3 7 40 222 2.2% 13 40 358 2.2% 

6 29 7 60 178 2.5% 5 60 224 1.2% 

7 (1) 7 5 90 225 1.0% 4 70 245 2.1% 

7 (2) 7 4 70 245 2.1% 5 70 451 1.1% 

8 7 6 20 67 1.7% 4 50 215 2.7% 

9 19 4 60 396 2.9% 5 50 460 1.5% 

10 69 6 220 246 4.1% 9 110 264 3.6% 

mean 29 8 92 228 2.6% 6 73 282 2.2% 

 

The predicted mean vessel number and diameter were reduced following treatment 

for this participant group, whilst the predicted mean vessel depth increased.  These 

results suggest that laser treatment was more effective on superficial and larger PWS 

vessels for this participant group.  This is consistent with experimental findings 

published elsewhere [258, 259]. 
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7.2  Participants Assessed by OCT 

Five participants were assessed by OCT.  Room temperatures remained consistent at 

22.5°C (±1 °C) across the assessments made. 

Whilst analysing OCT data, it was found that determining the total vessel number was 

non-trivial, as some vessels may have been visible in each slice assessed (and therefore 

counted many times) whereas other may have been present in only one or two slices, 

depending on the orientation of the vessels relative to the imaging geometry.  

Furthermore, some vessels were found to divide and others weave in and out of the 

imaging 'slice'.  Thus, the results presented represent an estimate of relative vessel 

number, rather than a measurement of the absolute number of vessels within the 

volume.  Future study into this area may benefit from an automated system capable of 

identifying and tracing individual vessels within an OCT dataset as, to date, it appears 

that no such system has been completed [91]. 

Participant 1 

As described in Section 7.1, a single region of PWS skin was analysed by both OCT 

and spectrophotometry for this participant prior to treatment.  The simulation 

reproduced adjacent skin colour with a mean difference of 2.3% reflection after 10 

iterations of the melanin minimisation procedure using a skin model containing 1.5% 

epidermal melanin and a mean melanosome diameter of 249 nm.  PWS skin colour 

was reproduced with a mean difference of 4.5% reflection after 12 iterations, using a 

skin model containing 18 vessels of 180 μm diameter and a mean depth of 262 μm.  It 

was suggested in the previous section that further iterations may have resulted in a 

closer agreement between measured and simulated reflectance providing that the 

simulated vessels were more superficial, fewer or with a smaller diameter.  
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Figure 78: Photograph showing region analysed (top) and 4 mm wide OCT image of 
participant 1. Dimnesions are approximate. 

A single 4 mm x 4 mm square region was imaged using the Thorlabs OCT system.  A 

mean of 8.7 vessels was identified per slice.  The mean diameter of these vessels was 

70 μm and the mean depth was 300 μm.  The contrast between PWS blood vessel 

lumina and adjacent skin tissue in the images was poor for this device (Figure 79), 

making it difficult to ensure that all vessels were identified and determine accurately 

the boundaries of each vessel (thus compromising the accuracy of vessel number 

estimates and diameter measurements).  In general, very little tissue structure was 

visible below a depth of 500 μm from the skin surface using the Thorlabs device. 

The PWS vessel number density predicted by the Monte Carlo programme was 

greater than that determined by OCT.   This result, along with analysis of the 

simulated spectrum, suggests that the vessel number for participant 1 was 

overestimated by the Monte Carlo simulation.  It is likely that further iterations of the 

blood vessel minimisation procedure would have resulted in either a reduction in 

vessel number, vessel diameter or both.  This would have improved the agreement 

between OCT findings and, it appears, the accuracy of the prediction made by the 

2 mm 



7.  Results and Discussion 171 

 
 

 
 
 

simulation.  The mean vessel depth predicted by the simulation was less than that 

determined by OCT analysis.  This difference would most likely have been greater if 

further iterations of the blood vessel minimisation procedure had been performed. 

Participant 11 

A single 4 mm x 4 mm square region of skin was imaged using the Thorlabs OCT 

system.  A mean of 6.4 vessels was identified per slice, with a mean diameter of 97 μm 

and a mean depth of 240 μm.   

 

Figure 79: OCT image of participant 11 taken using the Thorlabs OCT system. Imaged region is 4 mm 
wide and 2 mm deep.  Dimensions are approximate. 
 

The simulation produced a close fit to the colour measurement of adjacent skin after 10 

iterations of the melanin minimisation procedure, with a mean difference of 1.2% 

reflection per data point.  The only noticeable region of discrepancy between the two 

curves was an underestimate in the regions 380-450 nm (Figure 81).  The final skin 

model contained 1.9% epidermal melanin with a mean melanosome diameter of 150 

nm.  These values are within the expected range for this participant's skin type and the 

anatomical location of the measured area of skin. 

 

2 mm 
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Figure 80: Simulation results for participant 11. 

The simulation of PWS skin colour also demonstrated a close fit to the measured 

spectrum after 12 iterations of the blood vessel minimisation procedure (5.5 days), 

with a mean deviation per data point of 1.5% reflection.  This spectrum was produced 

with a skin model containing 10 vessels of 80 μm diameter at a mean depth of 260 μm. 

Analysing the spectrum in detail, it is likely that the suggested increase in 

melanosome diameter would have slightly improved the fit between the two curves 

below 450 nm, although again this would cause the difference between measured and 

simulated reflection to be greater below 380 nm.  A decrease in vessel number or 

diameter would have improved the fit in the region of greatest discrepancy, at 

wavelengths greater than 620 nm, although either would have resulted in a poorer fit 

between 520 and 590 nm.  Thus, it is possible that further iterations of the blood vessel 

minimisation procedure may have been able to reduce the mean difference in 

reflection per data point between the simulated and measured curves, although it is 

unlikely that the current minimisation procedure could have substantially improved 

the fit to the measured spectrum.  

The number of vessels per 4 mm2 region of skin predicted by the simulation was 

greater than that determined by OCT.  However, the ratio of vessel number 

determined by OCT to that predicted by the simulation was higher for this participant 
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(0.64) than for participant 1 (0.48).  These results suggest that the simulation 

overestimated the number of blood vessels  (although by a smaller degree than for 

participant 1).  Care must be taken in making this comparison due to the difference in 

volumes considered and the difficulties in accurately determining an absolute number 

of vessels by OCT analysis.  It can, however, be concluded that both the diameters and 

the mean depth of PWS vessels predicted by the simulation for this participant are 

close to those determined by OCT analysis.  

Participant 12 

OCT data was acquired using the VivoSight system over two regions of the 

participant's PWS skin, each covering an area of 1x1 mm.  The contrast between PWS 

vessels and surrounding skin tissue using the VivoSight was subjectively superior to 

the Thorlabs device, although the acquisition time was considerably longer, reducing 

the area of skin which could reasonably be imaged.  In general, very little tissue 

structure was visible beyond a depth of 500 μm for this device (Figure 82). 

  

Figure 81: Left: OCT image of participant 12 showing vessels in both transverse and axial 
section.  Image shows a 1mm x 1mm square volume of PWS skin. Right: Photograph of PWS 
skin showing temporary indentations in the two regions analysed.  Dimensions are 
approximate. 

Images were analysed every 50 μm through the volume.  The mean depth of vessels 

identified was 240 μm in both regions imaged, whilst the mean diameters from each 

section were similar at 43 μm within the first volume and 41 μm in the second (total 

mean, 42 μm).  The mean number of vessels per image was approximately 2.0 in the 

1 mm 
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first volume and 2.6 in the second (total mean, 2.3).  It is assumed that 4 mm wide 

images, as obtained for the participants 1 and 11, would have resulted in a mean of 

four times as many (9.2) vessels identified per slice.  This value is greater than either of 

the two previous participants, despite the apparently paler and less thick PWS skin 

determined by visual analysis (Figure 82, right). 

Spectral measurements showed that the first volume of PWS skin assessed was paler 

than the second volume (Figure 83), which is consistent with the lower number of 

vessels identified by OCT.  The Monte Carlo simulation of adjacent (clinically normal) 

skin reproduced the measured spectrum with a mean absolute deviation of 1.5% 

reflection.  The final skin model contained an epidermal melanin volume fraction of 

1.4%, with a mean melanosome diameter of 66 nm.  The low epidermal melanin 

volume and small melanosome diameters predicted by the simulation is indicative of 

pale skin, which is apparent from the photograph of this participant (Figure 82).  The 

region of largest discrepancy between simulated and measured adjacent skin 

reflectance was at wavelengths less than 500 nm, where simulated values were higher 

(450-500 nm) and lower (390-500 nm) than measured values.  The remaining spectrum 

produced a very close fit to the measured spectrum, and it is not likely that further 

iterations of the current procedure would have resulted in an improvement overall. 

 

Figure 82: Simulation results for participant 12. 
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The first region of PWS skin was reproduced with a mean deviation of 2.3% 

reflectance between measured and simulated data points after 15 iterations of the 

blood vessel procedure (10.5 days).  The final skin model contained 8 vessels of 40 μm 

diameter and a mean depth of 175 μm.  The simulated spectrum at wavelengths less 

than 600 nm showed slightly greater reflectance than the measured spectrum, 

suggesting a more superficial mean vessel depth may have produced a closer fit.  The 

remaining simulated spectrum, above 450 nm, was closely matched to the measured 

data, although a reduced amount of reflection in the region 610-670 nm was mirrored 

from the adjacent skin model. 

The vessel number density and mean vessel diameter predicted by the simulation 

matched closely to those determined through OCT analysis.  The predicted mean 

vessel depth was much less however. 

Spectral reflectance from the second region of PWS skin was reproduced with a mean 

deviation of 1.5% reflectance between measured and simulated data points after 

another 15 iterations of the blood vessel procedure (19.5 days).  This spectrum was 

produced from a skin model containing 10 vessels of 40 μm diameter and a mean 

depth of 155 μm.  Overall, the simulated and measured spectra were closely matched, 

although a slight decrease in mean vessel depth may again have improved the fit in 

the region below 600 nm if accompanied by a slight reduction in vessel number or 

diameter to maintain the fit at wavelengths greater than 600 nm.   

Relative to the first PWS region assessed for this participant, the simulation predicted 

that blood vessels in the second region were of the same diameter but were more 

numerous and closer to the surface on average.  Although the OCT analysis also 

demonstrated a greater number of vessels, it did not show that these were closer to the 

surface on average.  Compared to the OCT analysis of region 2, vessel diameter again 

showed very close agreement and mean vessel depth was much less.  The ratio of 

vessel number density predicted by the simulation to that determined by OCT (0.96) 

was greater than either of the participants imaged using the Thorlabs device (0.64 and 

0.48 respectively), but close to that for region 1 (1.0).  Again, this discrepancy may be a 

result of the difference in sensitivity between the two OCT devices but suggests that 

the use of 3 more iterations of the PWS vessel minimisation procedure (compared to 
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participants 1 and 11) was successful in improving the accuracy of the predictions 

made. 

Participant 13 

One area of PWS skin was imaged twice using the VivoSight OCT system.  The first 

image acquisition covered an area of 1x1 mm and the second acquisition covered 2x2 

mm with the probe repositioned in the same place. 

The first acquisition demonstrated a mean of 3.8 vessels per slice, with a mean depth 

of 280 μm and a mean diameter of 81 μm.  The second acquisition contained images of 

the same resolution, but spanning double the area.  Furthermore, the same number of 

images were taken for each acquisition, meaning that the distance between each slice 

doubled (to 100 μm) in the second acquisition.  In the second acquisition, twice as 

many vessels were identified per slice (a mean of 7.7), with a mean depth of 280 μm 

and a slightly larger mean diameter of 91 μm. 

 

 

Figure 83: Photograph and 2 mm wide OCT image (bottom) of participant 13. Dimensions are 
approximate. 
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The Monte Carlo simulation produced a close reproduction of adjacent skin colour 

after 10 iterations, having a mean absolute difference of 1.1% reflection.  The only 

notable region of discrepancy was in the region from 670 nm to 740 nm, where the 

simulated data points were consistently greater than the measured points (Figure 85).  

The final adjacent skin model contained 1.9% epidermal melanin, which is considered 

realistic for this participant's skin type and the anatomical location (Figure 84). The 

mean melanosome diameter of 274 nm is larger than expected for this participant's 

skin type. 

 

Figure 84: Simulation results for participant 13. 

PWS skin colour was reproduced with a mean difference of 4.3% reflection after 15 

iterations (10.5 days).  The final PWS skin model contained 14 vessels of 80 μm 

diameter and a mean depth of 180 μm.  The simulated reflection was greater at 

wavelengths less than 600 nm, suggesting that a skin model containing more 

superficial vessels would have provided a closer fit between simulated and measured 

curves.  The simulated reflection was less at wavelengths greater than 600 nm which 

suggests that a decrease in the vessel number or diameter would also have improved 

the fit between simulated and measured reflection in this region.  Much like 

participant 1, if the mean depth of the vessels was decreased, the need for a reduction 

in vessel number or diameter would be greater.  Again, it is likely that further 
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iterations would have resulted in a closer fit between measured and simulated PWS 

spectra with more superficial but fewer or thinner vessels. 

The ratio of vessel number density predicted by the simulation to that determined by 

OCT (1.10) was again much closer than participants 1 and 11 (0.64 and 0.48 

respectively) and similar to that of participant 12 (1.00 and 0.96).  Again, vessel 

diameter predicted by the simulation corresponded very closely to that determined by 

OCT analysis and the mean vessel depth was less.  It is not likely that further iterations 

of the PWS minimisation procedure would have improved the agreement between 

PWS vessel parameters predicted by the simulation and those determined by OCT. 

Participant 14 

Two regions were imaged using the VivoSight system, each covering an area of 2 mm 

x 2 mm.  In the first region, 5 vessels were identified per slice with a mean depth of 220 

μm and mean diameter of 48 μm.  The second region was identified as a 

haemangioma, or 'bleb' (a small raised, dark purple patch of PWS skin).  In this region, 

there was also a mean of 5 vessels identified per slice, having a similar mean depth of 

210 μm.  However the mean vessel diameter determined by OCT was much larger, at 

195 μm. 

 

 

Figure 85: Left: photograph showing regions of OCT measurements on participant 14. Right: 
OCT image of 'bleb' area showing expansive vascular lakes.  
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After 10 iterations of the melanin minimisation procedure, the mean absolute 

difference between measured and simulated skin was 1.2% measured reflection.  This 

was produced from a skin model containing 1.9% epidermal melanin volume, with a 

mean melanosome diameter of 273 nm.  The simulated spectrum corresponded well 

with the measured spectrum for adjacent skin across almost the entire spectrum, 

differing most at the extreme ends (360 nm and 740 nm).  The epidermal melanin 

concentration corresponds with that which might be expected for this participant's 

skin type and anatomical region (Figure 86).  Predicted melanosome diameters were 

much larger than might be expected for this participant. 

 

Figure 86: Simulation results for participant 14. 

PWS skin colour in the first region was replicated with a mean of 1.8% deviation in 

reflection from the measured data after 15 iterations of the vessel minimisation 

procedure (12.5 days).  This output was produced with a skin model containing 8 

vessels of 50 μm diameter and a mean depth of 190 μm.  The greatest deviation 

between measured and simulated PWS skin colour is apparent between 620 nm and 

660 nm, suggesting that fewer or smaller diameter vessels may have resulted in a 

closer fit.  There is also an increase in simulated reflection relative to measured data in 

the region 520 nm to 590 nm, suggesting that more superficial vessels would have 
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produced a closer fit in this region. In both cases however, the discrepancies between 

measured and simulated reflection are small. 

The vessel parameters of PWS skin predicted by the simulation demonstrate close 

agreement with the values determined by OCT analysis for the first region.  Vessel 

diameter was again very well matched between the two methods, as was mean vessel 

depth in this case.  The PWS vessel number density predicted by the simulation 

relative to the number identified by OCT (1.25) was greater than the other participants 

included in this study. 

The colour of the PWS 'bleb' was replicated by the Monte Carlo programme with a 

mean absolute difference between measured and simulated skin of 2.1% reflection.  

This output was achieved with a skin model containing 10 vessels of 220 μm diameter 

and a mean depth of 180 μm.  The greatest deviation between the two datasets 

occurred at wavelengths greater than 620 nm, suggesting that a smaller diameter or 

number of vessels may have improved the fit between simulated and measured skin 

colour in this region.   

The vessel diameter predicted by the simulation again matched well with that 

determined by OCT.  Importantly, the simulation predicted an increase in the 

diameter of PWS vessels as the principal difference between the two regions assessed.  

This is consistent with the results of the OCT analysis.  The mean depth predicted by 

the simulation also matched well to that determined by OCT analysis, although this 

was the only region analysed by the VivoSight system where the simulation did not 

underestimate the mean vessel depth relative to the OCT analysis.  The ratio of 

simulated vessel number density to that determined by OCT (1.0) was consistent with 

the other participants imaged using the VivoSight and employing 15 iterations of the 

PWS minimisation procedure (1.00 and 0.96, and 1.10 respectively).  It is not clear 

whether further iterations of the PWS minimisation procedure may have improved the 

agreement between PWS vessel parameters predicted by the simulation and those 

determined through OCT analysis. 

Summary 

Across the 5 participants analysed by OCT, the simulation reproduced adjacent skin 

colour well (mean 1.5% deviation between measured and simulated data points).  

Epidermal melanin volume fractions were again consistent with participants with 



7.  Results and Discussion 181 

 
 

 
 
 

mainly pale, Northern European skin types.  This shows agreement with visual 

observation.  In consideration of these results, mean melanosome diameters were 

again larger than expected for this participant group. 
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Table 8: Summary of adjacent skin parameters predicted by the simulation.  

Participant 
number 

% melanin 
volume 
fraction 

mean 
melanosome 
diameter (nm) 

Discrepancy 
(% reflection) 

1 1.5% 249 2.3% 

11 1.9% 150 1.2% 

12 1.4% 66 1.5% 

13 1.9% 274 1.1% 

14 1.9% 273 1.4% 

mean 1.7% 202 1.5% 

 

The primary region of discrepancy between simulated and measured adjacent skin 

colour was below 450 nm.  This is consistent with the aforementioned larger than 

expected melanosome diameters as well as the results presented in Section 7.1, and 

supports the proposed use of shorter wavelength regions during the consideration of 

melanosome diameters within the melanin minimisation procedure. 

Table 9: Summary of results from participants assessed using OCT.  

Participant 
number 

Simulated Values OCT Measured Values 

no. of 
vessels 

mean vessel 
diameter 

(μm) 

mean 
vessel 

depth (μm) 

Discrepancy 
(% reflection) 

number of 
vessels (4 

mm²) 

mean vessel 
diameter 

(μm) 

mean 
vessel 

depth (μm) 

1 18 180 262 5.2% 8.7 70 300 

11 10 80 260 1.5% 6.4 97 240 

12 (1) 8 40 175 2.3% 8.0 43 240 

12 (2) 10 40 155 1.5% 10.4 41 240 

13 (1) 14 80 180 4.3% 15.2 81 280 

13 (2) " " " " 15.4 91 280 

14 (1) 8 50 190 1.8% 10.0 48 220 

14 (bleb) 10 220 180 2.1% 10.0 195 210 

mean 11.1 99 200 2.7% 10.5 83 251 

 

PWS skin colour was reproduced by the simulation with a mean deviation of 2.7% 

between measured and simulated data points over the 5 participants assessed.  In 

general, the simulation showed good flexibility and was able to replicate measured 

reflectance spectra of varying shapes, although measured spectra involving large 

differences in reflection between the regions 360-550 nm and 630-740 nm were not 

reproduced well. The predicted PWS vessel parameters were consistent with those 

found elsewhere in the literature (Table 9). 
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The number and diameter of PWS vessels predicted by the simulation were similar to 

values determined through OCT analysis for the majority of participants.  The greatest 

discrepancy in these parameters predicted by the simulation and determined through 

OCT is from participant 1, whose error in simulated reflection relative to measured 

skin colour is also largest.  The mean vessel depth predicted by the simulation was less 

than that determined by OCT for all except participant 11.  These results are consistent 

with those presented in Section 7.1. 

Despite the similarities between the hardware employed by the two OCT devices used 

in this study (both devices employ a broadband swept source with a centre 

wavelength of 1300 nm, see also section 5.1), their performance appeared to differ 

substantially.  The VivoSight was subjectively found to provide a clearer demarcation 

of vessel boundaries and this may be a factor contributing towards the trend of greater 

PWS vessel number densities identified for participants assessed by this device.  Due 

to limited access to the two devices, a direct comparison was not carried out. 
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7.3  Participants Assessed by Expert 
Analysis of Photographs 

Of the ten participants assessed by spectrophotometry before and after treatment, nine 

were assessed also by expert analysis of photographs.  Photographs of PWS lesions 

were taken alongside each colour measurement for these participants.  In this section, 

the results of the photographic analyses are compared to colour measurements. 

As discussed in Section 2.1, previous work has shown that a reduced number of PWS 

vessels within a lesion causes a reduction in the apparent redness of a PWS lesion, 

whereas PWS lesions with larger diameter vessels appear less pink and more purple.  

Lesions whose vessels are deeper on average were found to appear less red, but with 

increased degrees of pink and purple hue.  These conclusions are drawn upon when 

comparing the changes in skin colour determined through expert analysis of 

photographs following treatment to the predictions of melanin and PWS vessel 

properties made by the Monte Carlo simulation, previously discussed in Section 7.1. 

The quality and reproducibility of photographic images was poor.  This is mainly due 

to variations in geometry and ambient lighting conditions.  This limits the strength of 

any conclusions drawn from this aspect of the study, in particular with regards to 

before and after comparisons.  It is likley that the use of professional photography in a 

studio environment would have improved the reproducibility of photographs, 

although some variation will always be present [260, 261]. 

Participant 2 

The darkness of pre-treatment adjacent skin was given a mean score of 2.75 by 

photographic analysis.  This is the darkest of all the participants assessed through 

photography.  The Monte Carlo programme predicted an epidermal melanin volume 

fraction of 3.3%, corresponding with the photographic analysis as the highest melanin 

content across the participant group.  The predicted mean melanosome diameter of 

208 nm is consistent with the expected value for this skin type. 

Pre-treatment PWS severity had a mean score of 3.0 from the photographic analysis.  

The Monte Carlo programme predicted 6 vessels of 160 µm diameter with a mean 

depth of 250 µm. 
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Figure 87: Photographs of participant 2 before (left) and after (right) a single session of 
laser treatment.   

The mean results of photographic analysis after treatment showed minimal change in 

adjacent skin darkness.  This is in agreement with spectrophotometry, which showed 

minimal change in mean reflection of adjacent skin across the spectrum (from 29.8% to 

30.2%). 

Laser treatment was carried out using a radiant exposure of 14 Jcm-2 and a pulse 

length of 6 ms for this participant.  The mean PWS severity score increased from 3.0 to 

3.5.  Furthermore, red, pink and purple hues were found to increase following 

treatment (by mean scores of 0.8, 0.8 and 0.4 respectively). These results suggest an 

increase in the mean depth and number of PWS vessels. 

As discussed in Section 7.1, colour measurement data showed that the laser treatment 

had little, if any, effect on the colour of the PWS lesion.  This suggests that the 

perceived difference determined through analysis of photographs may have been a 

result of differences in lighting, geometry or processing of the image.  This, for 

example, may result in changes in shadowing, the proportion of red hue in both PWS 

skin and adjacent skin due to differences in illumination and post-processing 

performed by the camera, and differences in background colour.  A noticeable increase 

in PWS severity is not likely to have taken place over this time frame (3 months).  The 
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Monte Carlo programme predicted similar vessel characteristics for both pre-treated 

and post-treated PWS datasets, with a slight increase in vessel number and depth, and 

a slight decrease in vessel diameter.  These changes are in support of the results from 

the analysis of photographs. 

Participant 3 

The darkness of pre-treatment adjacent skin was given a mean score of 1.5 by 

photographic analysis.  This is one of the palest results from this patient group and 

close to the minimum score of 1.0 out of 7.0.  This corresponds with the low epidermal 

melanin volume fraction (0.7%) and mean melanosome diameter of 156 nm predicted 

by the Monte Carlo programme. 

Pre-treatment PWS severity had a mean score of 1.88 from the photographic analysis.  

The Monte Carlo programme predicted 6 vessels of 160 μm diameter with a mean 

depth of 250 μm. 

  

Figure 88: Photographs of participant 3 before (left) and after (right) a single session of 
laser treatment.   

The mean results of photographic analysis showed no change in adjacent skin tone.  

However, colour measurement data of adjacent skin showed an increase in measured 

reflectance across the entire spectrum between sessions (from 33.3% to 36.4%).  

Laser treatment was carried out using a radiant exposure of 14.5 Jcm-2 and a pulse 

length of 6 ms for this participant.  Photographic analysis showed a decrease in the 

PWS severity score (0.5) as well scores of decreasing red (-1.25), pink (-1.19) and 
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purple (-0.56) hues.  These results suggest a decrease in the depth and number of PWS 

vessels.   

Spectrophotometry measurements showed a reduction in the difference between PWS 

and adjacent skin between sessions, particularly in the region 500 nm to 600 nm. The 

PWS vessel minimisation procedure predicted the same number and diameter of 

vessels in the region measured, with a slight increase in the mean vessel depth.  Thus, 

the Monte Carlo programme attributed the measured change in PWS colour between 

sessions primarily to a change in the melanin content of the overlying epidermis, and 

do not support the results of the photographic analysis. 

Participant 4 

The darkness of pre-treatment adjacent skin was given a mean score of 2.25 by 

photographic analysis.  This skin tone is thought to be in general agreement with the 

epidermal melanin volume fraction of 1.3% and a mean melanosome diameter of 291 

nm predicted by the simulation. 

Pre-treatment PWS severity had a mean score of 5.50 from the photographic analysis.  

This is the highest severity score from the participant group and corresponds well 

with the predictions of high vessel number density made by the Monte Carlo 

programme, (17 vessels of 100 μm diameter with a mean depth of 194 μm). 

The mean results of photographic analysis showed no change in adjacent skin tone.  

This is in agreement with spectrophotometry measurements, which show minimal 

change in mean reflection across the spectrum (from 39.4% to 38.5%), and therefore 

with the melanin properties predicted by the simulation. 

Laser treatment was carried out using a radiant exposure of 16 Jcm-2 and a pulse 

length of 6 ms for this participant.  Photographic analysis showed a reduction in PWS 

severity of 0.8, as well as reduction in red and pink hues (scores of -0.6 and -0.5 

respectively).  There was no change in the mean degree of purple hue.  These results 

suggest that the treatment was effective and resulted in an increase in the vessel depth 

and vessel number.   
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Figure 89: Photographs of participant 4 before (left) and after (right) a single session of 
laser treatment.   

Colour measurement data demonstrated very little change in the assessed region of 

PWS skin between sessions and, as a result, the simulation predicted very little change 

in the PWS vessel properties.  Changes in PWS characteristics determined by 

photographic assessment may have therefore been a result of changes in photographic 

conditions or presentation of photographs, or may have been outside of the region 

assessed by spectrophotometry. 

Participant 5 

The darkness of pre-treatment adjacent skin was given a mean score of 1.4 by 

photographic analysis.  This is the palest of the participants assessed and corresponds 

with the lowest epidermal melanin volume fraction of 0.4% and the relatively small 

mean melanosome diameter of 194 nm predicted by the simulation. 

Pre-treatment PWS severity had a mean score of 1.7 from the photographic analysis.  

The Monte Carlo programme predicted 7 vessels of 40 μm diameter with a mean 

depth of 220 μm.  The prediction of thin vessels made by the programme is in 

agreement with the low PWS severity score. 
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Figure 90: Photographs of participant 5 before (left) and after (right) a single session of 
laser treatment.   

The mean results of photographic analysis showed a negligible decrease (0.06) in 

adjacent skin tone.  Colour measurement data gave a mean decrease in reflection of 

2.8% across the spectrum (44.2% to 41.4%), and the Monte Carlo a modest increase in 

melanin volume fraction from 0.4% to 0.8%.  These results support the findings of the 

photographic analysis, although an increase in the predicted mean melanosome 

diameter to 318 nm is not consistent with this participant's skin type.  

Laser treatment was carried out using a radiant exposure of 14.5 Jcm-2 and a pulse 

length of 6 ms.  Mean results from the photographic assessment showed a reduction in 

PWS severity from scores of 1.7 to 1.4.  Scoring also showed a reduction in red (-0.3) 

and pink (-0.4) hues, as well as a small reduction in purple hue (-0.1).  These results 

suggest that the treatment was successful, although the likely changes in PWS vessel 

parameters suggested by the analysis are not clear. 

The spectral reflection of PWS skin was found to decrease for this participant 

following treatment, although the mean difference in spectral reflection between PWS 

and adjacent skin was reduced.  Thus, it appears that the photographic assessment 

attributed the reduced contrast between PWS and adjacent skin colours to a reduction 

in severity, redness and pinkness whereas colour measurements showed instead a 
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darkening of adjacent skin.  The Monte Carlo programme predicted an increase in the 

number density as well as the mean depth of PWS vessels.  This does not support the 

reduction in pink and purple hues determined by photographic analysis. 

Participant 6 

The darkness of pre-treatment adjacent skin was given a mean score of 2.25 by 

photographic analysis.  This relatively high score (with respect to the other 

participants assessed in this study) is supported by a high prediction of epidermal 

melanin volume fraction (3.4%) and mean melanosome diameter (269 nm). 

Pre-treatment PWS severity had a mean score of 1.69 from the photographic analysis.  

The Monte Carlo programme predicted 7 vessels of 60 μm diameter with a mean 

depth of 178 μm.  Again, the small predicted mean vessel diameter corresponds with 

the low severity score from the photographic analysis. 

  

Figure 91: Photographs of participant 6 before (left) and after (right) a single session of 
laser treatment.   

The mean results of photographic analysis showed an increase in the darkness of 

adjacent skin after treatment.   However, spectrophotometry measurements showed a 

substantial lightening of adjacent skin from a mean of 30.6% reflection to 35.0% across 

the spectrum.  As a result, the Monte Carlo programme predicted a decrease in 

melanin volume fraction from 3.4% to 2.0% and a negligible decrease in the mean 

melanosome diameter.  This disagreement suggests that changes in the geometry, 
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lighting or post processing of the image were substantial sources of error in the 

photographic assessment. 

Laser treatment was carried using 0.5 ms pulses with a radiant exposure of 10 Jcm-2.  

Photographic assessments showed a reduction in PWS severity (by a score of 1.1), as 

well as pink (-0.9), red (-0.1) and purple (-1.1) hues.  These results suggest a decrease 

in mean vessel depth and a reduction in the number of PWS vessels.  

Spectrophotometry also demonstrated a lightening of PWS skin from a mean 27.8% to 

31.7% reflection across the spectrum.  The Monte Carlo programme attributed this 

change to an increase in the mean vessel depth and a decrease in vessel number, thus 

supporting the results of the photographic analysis of PWS skin. 

Participant 7 

The darkness of adjacent skin prior to this participant's second treatment was given a 

mean score of 1.7 by photographic analysis.  This relatively pale skin type is in 

agreement with the low prediction of epidermal melanin volume fraction (1.3%) and a 

small mean melanosome diameter (41 nm) made by the Monte Carlo programme. 

Pre-treatment PWS severity had a mean score of 3.2 from the photographic analysis.  

The Monte Carlo programme predicted 5 vessels of 90 µm diameter and with a mean 

depth of 225 µm. 

  

Figure 92: Photographs of participant 7 before (left) and after (right) a single session of 
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laser treatment.   

The mean results of photographic analysis showed an increase in adjacent skin tone of 

0.4.  The darkness of adjacent skin was also found to increase by spectrophotometry 

(from a mean of 36.0% to 33.8% reflection across the spectrum) and the predicted 

melanin volume from (to 1.7%), although a reduction in the mean predicted 

melanosome diameter to 23 nm does not correspond with these results. 

Laser treatment was carried out using a radiant exposure of 8.5 Jcm-2 and a pulse 

length of 0.5 ms.  Photographic assessment showed a decrease in mean severity (by a 

score of 0.3) and pink hue (-0.3), but an increase in the degree of red (0.3) and purple 

(0.1) hues.  These results suggest an increase in the mean vessel diameter and a 

reduction in mean vessel depth. 

Colour measurements showed an increase in reflection below 600 nm and a decrease 

in reflectance at wavelengths greater than 600 nm, and the difference between 

measured reflectance was reduced below 600 nm, but not at wavelengths greater than 

600 nm. This does not support an increase in the degree of redness as determined by 

photographic analysis but does support a decrease in the mean severity.  In contrast to 

the changes suggested by photographic analysis following treatment, the Monte Carlo 

programme attributed this primarily to an increase in the mean vessel depth. 

Participant 8 

The darkness of pre-treatment adjacent skin was given a mean score of 1.8 by 

photographic analysis.  This corresponds with the predictions of 1.4% epidermal 

melanin volume fraction and 281 nm mean melanosome diameter made by the Monte 

Carlo programme. 

Pre-treatment PWS severity had a mean score of 1.8 from the photographic analysis.  

The Monte Carlo programme predicted 6 vessels of 20 μm diameter with a mean 

depth of 67 μm. 
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Figure 93: Photographs of participant 8 before (left) and after (right) a single session of 
laser treatment.   

The mean results of photographic analysis showed no change in adjacent skin tone.  In 

contrast, colour measurements found an increase in reflectance from a mean value of 

39.7% to 42.2% across the spectrum and the simulation attributed this change to a 

reduction in melanin volume fraction. 

Laser treatment was carried out using a radiant exposure of 14 Jcm-2 and a pulse 

length of 2 ms.  Photographic analysis determined an increase in the severity of PWS 

skin following treatment, as well as an increase in red (0.9) and purple (0.2) hues.  The 

mean change in pink hue was negligible. These results suggest an increase in the 

number and diameter of PWS vessels.  However, measured PWS skin colour 

demonstrated very little change between sessions.  The simulation of post-treatment 

PWS skin used a model containing fewer vessels, in contrast to the photographic 

results, although these vessels were wider, supporting the increase in purple hue 

determined by photographic analysis. 

Participant 9 

The darkness of pre-treatment adjacent skin was given a mean score of 2.6 by 

photographic analysis.  This makes participant 9 one of the darker participants 

assessed by photography.  This is supported by the predicted mean melanosome 

diameter of 331 nm but not by the low melanin volume fraction of 0.9%. 
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Pre-treatment PWS severity had a mean score of 3.2 from the photographic analysis.  

Although one of the higher severity scores from this participant group, the Monte 

Carlo programme predicted a low PWS vessel number density (4), small diameter 

vessels (60 μm) and a large mean depth of vessels (396 μm), all of which suggest a 

more subtle PWS. 

  

Figure 94: Photographs of participant 9 before (left) and after (right) a single session of 
laser treatment.   

The mean results of photographic analysis showed a slight decrease (0.25) in adjacent 

skin tone.  This is in contrast to by colour measurements, which showed a slight 

increase in mean reflectance (from 41.4% to 40.0%) and, as a result, the Monte Carlo 

programme, which predicted an increase of 0.3% melanin volume fraction. 

Laser treatment was carried out using a radiant exposure of 17 Jcm-2 and a pulse 

length of 10 ms.  Photographic assessment showed an increase in PWS severity (0.75) 

but a reduction in pink hue (-0.4).  The remaining parameters showed no change.  

Overall, these results suggest a decrease in the diameter of PWS vessels following 

treatment. 

Colour measurement of PWS skin showed lightening of PWS skin at shorter 

wavelengths and therefore a slight reduction in PWS skin colour for this participant.  

This does not support the results of the photographic analysis, although the Monte 

Carlo programme did predict a reduction in diameter following laser treatment. 
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Participant 10 

The darkness of pre-treatment adjacent skin was given a mean score of 2.7 by 

photographic analysis.  This relatively dark skin type (with respect to this participant 

group) is supported by the predicted epidermal melanin volume fraction of 1.8% and 

a mean melanosome diameter of 384 nm. 

Pre-treatment PWS severity had a mean score of 5.1 from the photographic analysis.  

This is one of the highest severity scores across the participant group and, like 

participant 4, the mean predicted vessel diameter was high, supporting this result. 

  

Figure 95: Photographs of participant 10 before (left) and after (right) a single session of 
laser treatment.   

The mean results of photographic analysis showed no change in adjacent skin tone.  In 

contrast, the mean measured reflection was reduced from 37.7% to 35.1% and the 

predicted melanin volume fraction increased by 1.5%.  The predicted mean 

melanosome diameter decreased to 322 nm, a value still higher than expected for this 

participant’s skin type. 

A combined laser treatment was carried out for this participant, employing a 10 ms 

pulse of PDL (595 nm) at 10.5 Jcm-2 followed after a 0.5 s interval by a 15 ms pulse of 

Nd:YAG (1064 nm) at a radiant exposure of 70 Jcm-2.  Photographic assessments 

showed no change in the mean PWS severity following treatment, although the 
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degrees of red (-1.1), pink (-0.6) and purple (-0.4) hues were all reduced.  These results 

suggest a reduction in the number and an increase in the depth of PWS vessels.   

Colour measurement data of PWS skin shows an increase in reflection after treatment, 

in particular above 600 nm. The simulation attributed these changes to an increase in 

mean vessel depth, which is in agreement with the photographic assessment. Vessel 

number was also predicted by the simulation to increase between sessions, in contrast 

to the results suggested by photographic analysis. 
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Summary 

Adjacent Skin 

Skin tone, as determined by photographic analysis, varied from 1.4 to 2.8 out of a 

maximum possible 7.0 across the participant group, suggesting that the group 

consisted entirely of individuals with pale, primarily European skin types.  A two-

tailed Wilcoxon signed rank analysis showed that the participant skin type 

determined by photography varied significantly between each assessor, highlighting 

the subjectivity of the assessment, but did not vary significantly between treatment 

sessions for any individual assessor or for the mean skin types taken over all three 

assessors. 

Table 10: Summary of pre-treatment parameters determined by photographic analysis, 
spectrophotometry and from the predictions made by the simulation. Where m vol is the 
predicted epidermal melanin volume fraction and mdiam is the predicted mean melanosome 
diameter. R2 refers to the coefficient of determination for skin darkness against each 
parameter. 

participant 
number 

skin darkness 
(photography) 

Mean 
reflectance  

mvol mdiam 

2 2.8 30% 3.3% 208 

3 1.5 33% 2.2% 156 

4 2.3 39% 1.3% 291 

5 1.4 44% 0.4% 194 

6 2.3 31% 3.4% 269 

7 1.7 36% 1.3% 41 

8 1.8 40% 1.4% 281 

9 2.6 41% 0.9% 331 

10 2.7 38% 1.8% 384 

 
R

2 
0.09 0.17 0.4 

 

Adjacent skin darkness scores did not correspond with the mean measured reflectance 

across the spectrum (Table 10).  However, this parameter did show some correlation 

with the melanin diameter predicted by the Monte Carlo programme, suggesting that 

changes in skin colour below 450 nm influenced the photographic assessment of skin 

colour (see Figure 34, page 117). 

Melanin volume fractions predicted by the simulation varied from 0.4% to 3.4%.  Two 

participants (2 and 6) were estimated to have melanin volume fractions which are 

suggestive of darker skin types than expected from the results of the photographic 
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analysis.  The remaining participants are within the expected range.  Mean 

melanosome diameters predicted by the programme are larger than expected for 

many of the participants. 

Following treatment, the adjacent skin darkness score was found to decrease in the 

majority of participants.  Coefficients of determination suggest some correlation 

between the change in adjacent skin darkness scores and the measured change in 

adjacent skin reflection, as well as melanin volume fraction and mean melanosome 

diameter predicted by the simulation (Table 11).  However, a larger participant group 

would be necessary to consider whether photographic analysis could be a good 

predictor of the change in skin darkness.   

Table 11: Summary of results from photographic assessment, simulated predictions and mean 
spectral reflectance obtained from colour measurement skin adjacent to PWS lesions. Where 
mvol is the epidermal melanin volume fraction and mdiam is the mean melanosome diameter.  

participant 
number 

Change in skin 
darkness 

(photography) 

Change in mean 
reflectance 

Change in 
mvol 

Change in 
mdiam 

2 -0.1 -0.4% 0.0% 0 

3 -0.1 -3.1% -1.4% 0 

4 0.0 0.9% 0.1% -7 

5 -0.1 2.8% 0.4% 124 

6 -0.4 -4.4% -1.4% -5 

7 0.4 2.2% 0.3% -125 

8 0.0 -2.5% -0.2% 0 

9 -0.3 1.4% 0.3% -62 

10 0.0 2.6% 1.5% -62 

R
2 

0.23 0.16 0.18 

  

PWS Skin 

Photographic assessments of pre-treatment PWS skin demonstrated a wide range of 

mean severity scores, from 1.7 to 5.5 out of a maximum possible 7.0.  The severity 

score corresponded well with the mean reflectance determined by spectrophotometry 

and, subsequently, the number and diameter of vessels predicted by the simulation 

(Table 12).  Mean vessel depth predicted by the simulation was not found to 

correspond with PWS severity scores. 
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Table 12: Summary of pre-treatment PWS skin properties assessed by photographic analysis, 
colour measurement and Monte Carlo simulation.  R 2 refers to the coefficient of determination 
for PWS severity against each parameter.  

participant 
number 

PWS severity 
(photography) 

Mean 
reflectance 

Contrast in 
mean 

reflectance 

number of 
vessels 

vessel 
diameter 

(mm) 

mean 
vessel 
depth 
(μm) 

2 3.0 24.4% 5.4% 6 0.16 250 

3 1.9 32.2% 1.1% 4 0.01 218 

4 5.5 25.6% 13.7% 17 0.1 194 

5 1.7 39.3% 4.9% 7 0.04 222 

6 3.8 27.7% 2.9% 7 0.06 178 

7 3.2 31.2% 0.0% 4 0.07 245 

8 1.8 37.0% 4.8% 6 0.02 67 

9 3.2 37.9% 2.8% 4 0.06 396 

10 5.1 27.4% 3.5% 6 0.22 246 

 
R

2
= 0.48 0.10 0.37 0.48 0.04 

 

The change in PWS colour following treatment was assessed in terms of the change in 

PWS severity, as well as the change in pink, red and purple hues (Table 13). 

Table 13: Summary of change in PWS appearance assessed by photography, 
spectrophotometry and interpreted by the Monte Carlo Programme. R2 refers to the coefficient 
of determination. 

p'pant 
no. 

Change 
in PWS 
severity 

Change 
in Red 

hue 

Change 
in Pink 

hue 

Change in 
Purple 

hue 

Change in 
mean 

reflectance 

Change 
in 

contrast 

Change in 
number of 

vessels 

Change in 
vessel 

diameter 
(mm) 

Change in 
mean vessel 
depth (μm) 

2 0.5 0.81 0.81 0.44 -0.1% -0.4% 1 -0.02 14 

3 -0.5 -1.25 -1.19 -0.56 1.8% -1.2% 0 0.00 -1 

4 -0.8 -0.56 -0.50 0.00 0.1% 1.0% -10 0.00 -5 

5 -0.3 -0.31 -0.38 -0.13 -1.4% 1.4% 6 0.00 136 

6 -1.1 -0.88 -0.13 -1.13 4.0% -0.4% -2 0.00 47 

7 -0.3 0.31 -0.31 0.13 -0.4% 0.0% 1 0.00 206 

8 0.8 0.88 -0.06 0.19 0.5% 2.2% -2 0.03 148 

9 0.8 0.06 -0.44 -0.06 0.8% -2.0% 1 -0.01 64 

10 0.0 -1.06 -0.56 -0.44 2.1% 2.3% 3 -0.11 18 

 
R

2
 vs. severity= 0.13 0.00 0.11 0.00 0.04 

 
R

2
 vs. Red= 0.31 0.00 0.00 0.17 0.27 

 
R

2
 vs. Pink= 0.04 0.04 0.00 0.01 0.01 

 
R

2
 vs. Purple= 0.68 0.02 0.00 0.03 0.09 

   

The changes in PWS severity and pink hue assessed by analysis of photographs did 

not correspond with those determined by colour measurement, and therefore did not 
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correspond with any of the parameters predicted by the Monte Carlo simulation.  The 

change in redness determined by photographic analysis showed some correspondence 

with the measured change in the mean spectral reflectance of PWS skin.  This was 

reflected in the predicted change in mean vessel depth, which is in agreement with 

previous reports in the literature (see Section 2.1, page 19).  The change in purple hue 

correlated strongly with the measured change in reflectance, but not with any of the 

parameters predicted by the Monte Carlo programme.  Thus, the change in PWS 

severity and colour was not found to be a good predictor of changes in PWS vessel 

architecture as predicted by the new Monte Carlo programme. 

  



 



 

 
 
 
 

8.  Analysis 
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8.1 Simulating Clinically Normal Skin 

Over the 14 participant (26 datasets) assessed, spectral reflectance of adjacent skin sites 

were reproduced by the simulation with a mean of 2.4% deviation from the measured 

data.   

 

 

Figure 96: Difference between simulated and measured adjacent skin reflectance for the 10 
participants assessed by multiple spectrophotometry sessions. 

Figure 97 shows that the region below 400 nm was consistently overestimated by the 

simulation, whereas the mean difference between simulated and measured spectra was 

small between 400 nm and 450 nm.  This suggests that greater consideration of 
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wavelengths below 400 nm within the melanin minimisation procedure would have 

resulted in a net improvement in the fit between measured and simulated spectra. 

Mean simulated melanosome diameters across the epidermis predicted by the Monte 

Carlo programme ranged from 41 to 384 nm over the participants studied (mean 223 

nm, Table 14).  This range of diameters is broadly within that expected for these 

individuals, although some studies suggest that diameters of less than 160 nm may be 

most appropriate for this participant group [8, 10, 12].  The simulated outputs at 

wavelengths below 500 nm were manipulated within the programme by adjusting the 

diameters of melanosomes in the skin model.  However, this process did not take into 

account wavelengths below 400 nm.  It is likely that a closer fit between the simulated 

and measured spectra would have been obtained if the region 360-400 nm was 

considered during the manipulation of melanosome diameters.  This would likely have 

resulted in smaller predicted melanosome diameters across the participant group, 

which would have fitted more closely with the results expected for participants of 

lighter, Northern European skin types.  The predicted melanosome diameters did not 

show a correlation with skin darkness scores for the 9 participants assessed by 

photographic analysis (coefficient of determination for a linear fit, R2=0.06). 

Table 14: Summary of adjacent skin parameters predicted by the Monte Carlo simulation 
across all participants. 

participant 
number 

Pre-treatment Post-treatment 

mvol mdiam mvol mdiam 

1 1.5% 249 1.7% 252 

2 3.3% 208 3.3% 208 

3 2.2% 156 0.7% 156 

4 1.3% 291 1.4% 284 

5 0.4% 194 0.8% 318 

6 3.4% 269 2.0% 264 

7 (1) 1.3% 41 1.3% 41 

7(2) - - 1.7% 23 

8 1.4% 281 1.2% 281 

9 0.9% 331 1.2% 269 

10 1.8% 384 3.3% 322 

11 1.9% 150 - - 

12 1.4% 66 - - 

13 1.9% 274 - - 

14 1.9% 273 - - 
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Spectral reflectance of adjacent skin was consistently overestimated in the region 450-

500 nm, where a peak in the simulated reflectance (between blood absorption peaks) 

was simulated but not replicated to the same degree in the majority of measured 

spectra.  The simulation also overestimated spectral reflectance for most participants at 

wavelengths greater than 650 nm, but underestimated in the region 600-650 nm.  This 

appears to be due to the inability of the model to replicate the steep gradient in 

measured reflectance found commonly within this participant group in the region 600-

650 nm.  Introducing the capacity to adjust the relative quantity of melanin throughout 

the three epidermal layers of the skin model may have resulted in an improved fit over 

this region, although further investigation would be necessary before an appropriate 

minimisation procedure could be developed. 

The expert analysis of photographic images determined adjacent skin darkness scores 

ranging from 1.3 to 2.7 with a mean value of 2.0 and a standard deviation of 0.4 over 

the 10 participants assessed.  Thus, the participants assessed by this method were likely 

to be primarily of pale Northern European skin types.  Mean simulated epidermal 

melanin volumes varied from 0.4% to 3.3% over the entire participant group (mean 

1.7%, Table 14).  This is mainly within the ranges published for pale Northern 

European skin types, although the scientific literature suggests that epidermal melanin 

volumes less than 1% are not likely to have been observed for skin types identified in 

this participant group [6-11].  The melanin volume fractions predicted by the 

simulation were supported by the mean skin type determined by expert analysis of 

photographs (coefficient of determination for a linear fit, R2=0.41 over 20 data points).   
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8.2 Simulating PWS Skin 

PWS skin was reproduced by the simulation with a mean deviation of 2.4% reflectance 

from the measured data over 14 participants (27 datasets). 

 

 

Figure 97: Difference between simulated and measured PWS skin reflectance for the 10  
participants assessed by multiple spectrophotometry sessions . 

The simulation replicated measured PWS skin data well for the majority of participants 

at wavelengths less than 600 nm, although an overestimation of reflectance below 400 

nm appears to have been inherited from the melanin minimisation procedure as well 

as a slight overestimation between 450 nm and 500 nm.  A noticeable discrepancy 
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between measured and simulated reflectance is apparent at 610 nm.  This may have 

been partly inherited from the melanin minimisation procedure but again shows this 

simulation's inability to reproduce the steep gradient in reflectance measured for most 

of the participants in this wavelength region.  The remaining discrepancies at 

wavelengths greater than 650 nm mimic those of the melanin minimisation procedure. 

It is likley that a more accurate reproduction of PWS skin colour would result from the 

use of more realistic vessel architectures which account for vessel bends, splits and 

non-horizontal vessel directions as seen on OCT in this work and in biopsy studies 

elsewhere [231]. 

Vessel Number Density 

The predicted vessel number densities varied from 4 to 18 over a 4 mm diameter 

circular area of skin.  Of the two previous studies involving significant numbers of 

biopsies performed on PWS lesions, Barsky et al [32] reported vessel numbers over an 

equivalent area ranging from 36 to 194, whereas a figure for comparison could not be 

obtained from Fiskerstrand et al's work [42].  Barsky et al's vessel number densities are 

clearly much larger than those predicted by the Monte Carlo programme presented 

here.  However, Barsky et al considered vessels down to a depth of 1800 µm, which is 

likely to be beyond the depth at which vessels contribute to the colour of PWS skin. 

Table 15: Comparison of OCT analyses and prediction made by the Monte Carlo simulation for 
the five participants analysed by OCT.  

 

The vessel number density predicted by the simulation corresponded with the mean 

value per image for a 4 mm volume imaged by OCT with a ratio of approximately 1.0 

for the majority of regions imaged using the VivoSight (Table 15).  This ratio was 

smaller for the Thorlabs device.  The discrepancy between the two devices may have 

Participant 

Number 

OCT Simulation (ratio of OCT/Simulation) 

Number of 

Vessels/4mm 

 Diameter 

(μm) 

Depth 

(μm) 

Number of 

Vessels 

Diameter 

(μm) 

Depth 

(μm) 

Optical 

Depth (μm) 

1 8.7 70 300 18 (0.48) 110 (0.64) 220 (1.36) 117 (2.56) 

11 6.4 97 240 10 (0.64) 80 (1.21) 260 (0.92) 112 (2.14) 

12 (region 1) 8.0 43 240 8 (1.00) 40 (1.08) 175 (1.37) 57 (4.21) 

12 (region 2) 9.6 41 240 10 (0.96) 40 (1.03) 155 (1.55) 51 (4.71) 

13 11.4 86 280 14 (1.10) 80 (1.08) 180 (1.56) 98 (2.86) 

14 10.0 48 220 8 (1.25) 50 (0.96) 190 (1.16) 117 (1.88) 

14 (bleb) 10.0 195 210 10 (1.00) 180 (1.08) 220 (0.95) 125 (1.68) 
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been as a result of the apparent difference in image contrast.  However, it is likely that 

further iterations of the blood vessel procedure would have resulted in fewer vessels 

predicted by the simulation for the two participants imaged using the Thorlabs device.  

Thus, the use of more iterations of this procedure for the participants imaged using the 

VivoSight appears to have improved the accuracy of the PWS blood vessel number 

density predicted by the simulation. 

The pre-treatment vessel number predicted by the simulation showed agreement with 

the mean PWS severity determined by expert analysis of photographs (coefficient of 

determination for a linear fit, R2=0.37 over 20 data points). 

Vessel Diameters 

Barsky et al [32] determined PWS vessel diameters raging in diameter from 10 µm to 

106 µm with the majority below 25 µm from their biopsy study of 100 patients and 

Fiskerstrand et al [42] reported diameters up to 300 µm, with the majority below 120 

µm across their biopsy study of 51 patients.  The mean PWS vessel diameters predicted 

by the simulation ranged from 10 µm to 220 µm across the participants investigated, 

with the majority below 100 µm.  It can be concluded that these predictions are well 

supported by the literature. 

The vessel diameters predicted by the simulation correspond closely with those 

determined by OCT analysis (Table 15).  In particular, those participants imaged using 

the VivoSight device differed by no more than 10% from the predicted values.  For 

these participants, vessel diameters were determined with greater certainty due to the 

relative degrees of image contrast between the two imaging devices.  However, the use 

of a greater number of iterations is again likely to be the primary reason for this 

apparent improvement in the predicted values. 

The mean diameters predicted by the simulation correlated with the mean PWS 

severity determined by expert analysis of photographs (coefficient of determination for 

a linear fit, R2= 0.44 over 20 data points).   

Vessel Depths 

Mean vessel depths predicted by the simulation study ranged from 67 µm to 460 µm.  

These appear to include mean PWS vessel depths which are more superficial than 

those reported in the aforementioned biopsy studies (which ranged from 



8.  Analysis  209 

 
 

 
 
 

approximately 200 µm to 400 µm [32, 42]).  This is likely to be because the simulation 

only considered vessels which contributed to the colour of PWS skin, and not the 

deeper vessels which would also have been identified by biopsy. 

The mean depth of blood vessels, as determined by OCT analysis, was greater than 

that predicted by the simulation in the majority of regions imaged, but was not 

consistent.  This suggests that the simulation was not able to provide an accurate 

estimation of mean PWS vessel depth.  Furthermore, it is likely that the true mean 

depth of PWS blood vessels is greater than that determined by the OCT analysis, due 

to the lack of information available below 500 μm, further separating the mean PWS 

vessel depth predicted by the programme and the likely true mean PWS vessel depth. 

The mean optical depth (ρ) of the vessels in the skin model was also considered (Table 

15).  This is defined as: 

  ∑              

 

 

  [  ∑  

 

 

]              
Equation 32 

where d is the mean depth of vessels and t is the thickness, μs' is the reduced scattering 

coefficient and μa is the absorption coefficient of the layer i.  The mean optical depth (ρ) 

of simulated vessels at 740 nm (selected as the closest evaluated wavelength to the 

wavelength range used in OCT imaging) was between 1.6 and 4.7 times smaller than 

the mean vessel depth determined by OCT, and does not appear to serve as an 

adequate predictor of mean vessel depth.  

The mean depths predicted by the simulation were not found to correlate with the 

mean PWS severity determined by expert analysis of photographs (coefficient of 

determination for a linear fit, R2= 0.06 over 20 data points).   
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8.3 Predicting Treatment Effectiveness 

Melanin Content 

No direct trend was found between epidermal melanin volume fraction or 

melanosome diameter predicted by the programme and treatment effectiveness as 

determined through spectrophotometry (R2 = 0.10 and 0.01 respectively) or through 

expert analysis of photographs (R2 = 0.11 and 0.05 respectively). Adjacent skin 

darkness as determined by expert analysis of photographs was not found to be a 

strong indicator of treatment effectiveness as determined by change in measured PWS 

skin colour (R2 = 0.10) or photographic PWS severity score (R2 = 0.08).  Thus, adjacent 

skin properties were not found to be directly indicative of treatment effectiveness for 

this participant group by any of the methods applied in this study. 

Vessel Number 

The Monte Carlo programme predicted pre-treatment vessel numbers ranging from 4 

to 18 (mean 7.6) over the 3.5 mm diameter region allocated at the centre of the model.  

Post-treatment simulations involved fewer vessels on average (6.5).  Although at first 

appearance this difference appears to be caused primarily by the influence of 

participants 1 and 4 (Figure 99), a two-tailed Wilcoxon signed-rank test concluded that 

there was a significant difference (reduction) in the number of vessels between the 

'before treatment' and 'after treatment' groups at the α=0.05 (95% confidence) level.  

This suggests that laser treatment was effective in reducing the number of PWS vessels.  

This conclusion is supported by experimental work published elsewhere [42, 262]. 

 

Figure 98: Histogram showing simulated PWS vessel numbers for participants analysed by 
skin colour measurements before and after treatment.  
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No correlation was found between the number of vessels predicted in pre-treatment 

PWS skin and the change in relative reflectance between PWS and adjacent skin as 

measured using spectrophotometry or the change in PWS properties assessed by 

photography.  Thus, it appears that the predicted vessel number from this simulation is 

not a useful indicator of likely treatment response. 

Vessel Diameter 

The mean diameters of pre-treatment PWS vessels predicted by the simulation ranged 

from 10 µm to 220 µm for this participant group.  A two-tailed Wilcoxon signed rank 

analysis showed a significant change in vessel diameter between treatment sessions 

over this group (at the α=0.05 level), with the mean diameter being reduced in 5 

participants but increased in one.  This suggests that laser treatment was generally 

more effective at treating larger PWS vessels.  Again, this conclusion is supported by 

experimental work published elsewhere [42, 77, 262]. 

 

Figure 99: Histogram showing simulated PWS vessel diameters for participants analysed by 
skin colour measurements before and after treatment.  

The effectiveness of laser treatment is determined partly by how well matched the 

pulse length is to the diameter of PWS vessels, which may be assessed using the 

thermal relaxation time.  The pulse lengths of the laser used to deliver treatments to 

these participants was determined through measurements carried out using a 

photodiode (Appendix G).  As discussed in Section 2.2 (page 26), the ratio of thermal 

relaxation time (τ) to the change in the difference in spectral reflection between PWS 

and adjacent skin over the wavelength range assessed was considered (Figure 101); 

where: 
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 Equation 33, 

and R is the mean vessel radius predicted by the simulation. 

 

Figure 100: Comparison between predicted the difference in spectral reflection between 
normal and PWS skin following laser treatment and the ratio of predicted thermal relaxation 
times and estimates of the pulse lengths delivered. 

Figure 101 suggests that treatments are more effective when pulse lengths delivered 

are less than the mean thermal relaxation time of the target vessels (τ, derived from the 

predicted vessel diameter).  There is not, as expected, a stronger response at τ = pulse 

length.  This limited dataset cannot provide an accurate relationship between treatment 

response, pulse length and predicted vessel diameters but suggests that further 

investigation would be of interest.  This relationship is not supported by the treatment 

response determined by expert analysis of photographs (Figure 102).   
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Figure 101: Comparison between ratio of predicted mean thermal relaxation time of PWS 
vessels to estimated pulse lengths delivered and the mean change in PWS severity following 
laser treatment assessed by photographic analysis.  

Vessel Depth 

The predicted individual mean PWS vessel depths of pre-treatment lesion ranged from 

70 µm to 460 µm, varying substantially between participants.  This is within the range 

expected from the literature survey (Section 2.1, page 17), with most participants 

having simulated vessel depths close to the 240 µm mean depth reported by 

Fiskerstrand et al [42].  Mean predicted vessel depths increased after treatment for the 

majority of participants, with a two-tailed Wilcoxon signed-rank analysis showing a 

significant difference between the two groups at the α=0.05 (95% confidence) level.  

This suggests that laser treatment was generally most effective at treating the most 

superficial vessels from each PWS lesion.  This again is supported by published 

experimental findings [42, 262]. 
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Figure 102: Histogram showing simulated PWS vessel depths for participants analysed by 
skin colour measurements before and after treatment.  

It was expected that deeper vessels would receive a smaller proportion of the radiant 

exposure incident at the surface of the skin and therefore a PWS consisting of deeper 

vessels would respond less well to laser treatment.  However, there appeared to be no 

direct relationship between the predicted mean PWS vessel depths and the change in 

the difference in measured reflection between PWS and adjacent skin (Figure 104). 

 

Figure 103: Comparison between predicted mean PWS vessel depths and the change in the 
difference in spectral reflection between normal and PWS skin following laser treatment.  

The Monte Carlo programme provided estimates of absorption and scattering 

coefficients of the layers represented in the skin model.  Thus, through a simple Beer-
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where L0 is the beam energy incident at the surface of the skin; i represents the layer 

(layers 1-3 are of the epidermis, layer 4 is the region of dermis superficial to the PWS 

lesion and layer 5 contains the simulated lesion), t is the thickness of the layer and d is 

the mean depth of simulated PWS vessels.  When compared to the change in the 

difference in measured reflection between PWS and adjacent skin, the estimated 

fluence at the predicted mean vessel depth shows a strong correlation with treatment 

response for this group of participants (exponential relationship, Figure 105).  

 

Figure 104: Comparison between predicted fluence at mean PWS vessel depths and the 
measured change in the difference in spectral reflection between normal and PWS skin 
following laser treatment.  

When compared to assessments of treatment response determined by participant 

photographs, the predicted PWS vessel depth was not found to correlate with 

treatment effectiveness (R2=0.01), or the estimated fluence at the mean depth of 

simulated PWS vessels (R2=0.03).  

Summary 

Overall, the melanin and PWS vessel characteristics predicted by the new Monte Carlo 

programme appear to be realistic for the participant group considered.  These results 

are supported by a thorough analysis of the literature coupled with expert analysis of 

participant photographs and, for PWS skin, measurements made through OCT.  

Furthermore, PWS vessel characteristics predicted by the simulated have been shown 

to correlate with the results of laser treatment, suggesting that they may serve as 

predictors for the effectiveness of laser therapy of an individual lesion. 
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9.1 Conclusions from the Work Presented 

Literature Survey 

The colour of PWS skin is determined primarily by the quantity and distribution of 

melanins and haemoglobins.  The epidermis of pale skin types typically contains 

melanin volume fractions between 1% and 3%, with melanosomes ranging from 30 nm 

to 200 nm in diameter.  Dermal blood volume fractions are typically between 0.2% and 

0.6% in normal skin, but may be twenty times this in PWS skin.  This increase is 

caused by a widening of the vessels from 6-30 μm diameter in normal skin to a typical 

range of 25-280 μm diameter in PWS skin, with larger vessels and 'vascular lakes' also 

forming in some cases, particularly in mature PWS.  The principal result of this 

increase in dermal blood volume is a pink, red or purple lesion whose severity and 

hue varies with the number, depth and diameter of affected vessels. 

Laser therapy is the treatment of choice for reducing the contrast in colour between 

PWS and adjacent, clinically normal skin.  This is achieved by selective heating of 

haemoglobin.  Current theoretical and case studies have established a wavelength of 

595 nm to be most effective for treating a range of PWS lesions, although around half 

of participants are thought to respond poorly or not at all to treatment.  Further 

selectivity of ectatic PWS vessels can be attained through selection of appropriate 

pulse lengths and energy per pulse.  This can be achieved only with knowledge of the 

depth and diameter of vessels in an individual PWS. However, this information is not 

currently available for the vast majority of participants receiving laser treatment. 

Development of the Simulation 

An approach involving skin colour measurements and the inverse application of a 

skin model has been developed in this study, in an attempt to determine estimates of 

PWS vessel numbers, sizes and depths on an individual basis, such that these could be 

used to estimate the likely response of an individual lesion to laser treatment and 

subsequently inform appropriate laser treatment settings.  

A Konica-Minolta CM2600d spectrophotometer was selected to perform colour 

measurements on 14 individuals immediately before treatment.  On 10 participants, a 

second measurement was made at least 12 weeks after, ensuring that the healing 

process following treatment had been completed.  In accordance with studies 
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published elsewhere in the literature, this device was found to provide excellent 

repeatability (mean SD per wavelength range of 0.5% reflection across 50 measured 

datasets) and reproducibility (SD of 0.9% across summer and winter datasets) of skin 

colour measurements under the protocol developed for this study.  These colour 

measurement data were interpreted using a Monte Carlo simulation. 

The Monte Carlo programme developed for this study employed a ray tracing 

algorithm to simulate light transport through an 8 layer skin model.  A new 

minimisation procedure was developed with the aim of adjusting the quantity of 

melanin and the diameter of melanosomes in the skin model such that the simulation 

could reproduce adjacent skin colour.  This reproduction was achieved with a mean 

discrepancy of 1.9% reflection from the measured data across the 14 participants (24 

datasets).  This is approximately double the expected variation between individual 

measurements of skin colour (SD=0.9%), demonstrating a consistently good fit across 

the participant group. 

Resultant melanin parameters were considered realistic on the whole when compared 

to the literature. Melanin concentration (mean 1.7%, range 0.4% to 3.3%) corresponded 

well with participant skin types identified through expert analysis of photographs 

(types 1-3), although a review of the scientific literature suggests that epidermal 

melanin volumes less than 1% are not likely to have been observed for skin types 

identified in this participant group.  The predicted mean melanosome diameters 

across the participant group (overall mean 223 nm, range 41 nm to 384 nm) was 

generally greater than expected for individuals of skin types 1-3.  It is thought that a 

higher weighted consideration of shorter wavelengths within the melanin 

minimisation procedure is likely to have resulted in closer fits between simulated and 

measured spectra and smaller (more realistic) melanosome diameters within the skin 

models. 

For those participants assessed before and after treatment, there was no significant 

difference in the melanin volume fraction determined by the simulation between 

measurement sessions.  This is in agreement with the expert photographic analysis, 

which showed no significant change in skin type between sessions.  The predicted 

melanosome diameters were found to vary significantly between the pre-treatment 

and post-treatment groups, further suggesting inaccuracies in this parameter. 
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A second minimisation procedure was developed with the aim of reproducing PWS 

skin colour.  This involved the introduction of horizontal, pseudo-cylindrical vessels 

into the skin model whose number, diameters and range of depths could be 

manipulated in response to differences between measured and simulated spectra.  

PWS skin was reproduced with a mean deviation from the measured data of 2.4% 

reflection across the 14 participants (25 datasets).  This is a value of 1.5% greater than 

the 0.9% expected variation between measured datasets, and 0.6% greater than the 

results from the melanin minimisation procedure.  This again shows a close fit across 

the participant group, although particular wavelength regions were identified where 

the simulated reflectance consistently varied from the measured data.  The use of three 

variables in the minimisation procedure rather than two limited the rate at which 

convergence could be obtained.  This slower convergence along with the 

computational expense of the simulations (mean 8 days per procedure involving 14 

iterations) was considered to be the primary cause for the increase in discrepancy of 

the PWS vessel minimisation procedure relative to the melanin minimisation 

procedure. 

Predicting the Properties of Normal and PWS Skin 

Photographic analysis suggested that the participants studied were primarily of pale 

Northern European skin types.  Mean simulated epidermal melanin volumes were 

consistent with this, although two participants were predicted to have melanin 

concentration below the minimum of 1% expected from analysis of the literature.   

When comparing the melanin volume fractions predicted by the simulation directly 

with the mean skin type determined by expert analysis of photographs, participants 

with assessments of darker skin types were generally found to have higher predictions 

of epidermal melanin volume fraction (coefficient of determination for a linear fit, 

R2=0.41 over 20 data points).  

Mean melanosome diameters predicted by the simulation were generally larger than 

expected for primarily Northern European skin types.  It is likely that a higher 

weighted consideration of wavelengths less than 420 nm within the relevant phases of 

the melanin minimisation procedure would have both improved the fit between 

measured and simulated spectra in this region and reduced the predictions of mean 

melanosome diameters for the majority of participants.  The predicted melanosome 
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diameters were found to correlate with skin darkness scores for the 9 participants 

assessed by photographic analysis (coefficient of determination for a linear fit, R2=0.40). 

When compared to the results of the literature analysis, the characteristics of PWS 

vessels predicted by the simulation were realistic on the whole, although the overall 

mean vessel number density is lower and the mean depth less than the results of skin 

biopsy studies suggest.  This may be due to the increased influence of superficial 

vessels and the minimal contribution of the deepest PWS vessels upon skin colour.  

Further investigation would be necessary to determine whether changes in the PWS 

vessel minimisation procedure, such as a weighting towards the introduction of deeper 

vessels, could provide more realistic results. 

Vessel number densities and mean diameters predicted by the simulation 

corresponded well with the results of OCT analyses from the 5 participants included in 

this part of the study, although predicted mean vessel depths were again generally 

less. 

Vessel numbers and mean diameters predicted by the simulation showed agreement 

with the mean PWS severity determined by expert analysis of photographs.  Once 

again, the predicted mean vessel depths were not supported by this assessment. 

Predicting Treatment Effectiveness 

Treatment response, as determined through spectrophotometry measurements, was 

not found to correlate directly with either the pre-treatment melanin volume fraction 

or mean melanosome diameter predicted by the simulation.  This is supported by 

photographic analysis, which also showed no direct correlation between pre-treatment 

adjacent skin darkness scores and treatment effectiveness for this participant group. 

The fluence of laser light reaching the depth of vessels was considered as a factor in 

determining the effectiveness of treatment.  Using the predicted values of both mean 

vessel depth and the light absorption and scattering coefficients of overlying skin, 

estimates of the mean fluences reaching PWS vessels were made.  These were found to 

correspond strongly (R2>0.75) with treatment response assessed by spectrophotometry 

but did not correspond with treatment response determined by photographic 

assessment.  
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Laser treatment is widely believed to be more effective when pulse lengths match the 

thermal relaxation times of target vessels.  The thermal relaxation time is a function of 

the vessel diameter.  The pre-treatment vessel diameters (and therefore the ratio of 

thermal relaxation times to pulse lengths) predicted by the simulation were found to 

correlate with the treatment results determined both by spectrophotometry and 

photographic assessment (linear relationship, R2>0.25).   

Although comparison with OCT analysis and expert photographic analysis suggest 

that the simulation provided a reasonable approximation of PWS vessel number 

density, this parameter was not found to be a useful predictor of treatment response. 

It can be concluded that the information contained within the colour of an individual 

PWS lesion may be extracted through the inverse application of a skin model.  

Furthermore, the results from this study suggest that the PWS parameters predicted 

by the new Monte Carlo model may be used to inform the likely efficacy of individual 

laser treatments and therefore to inform appropriate laser settings on an individual 

basis. 

  



222  9.2  Future Work 

9.2  Future Work 

The primary shortcoming within the current Monte Carlo programme is the accuracy 

with which adjacent skin is reproduced.  Although the discrepancies between 

simulated and measured spectra are small on average, wavelength regions have been 

identified where consistent deviation are found.  It has been considered within the 

analysis of this work that the adjustment of melanosome diameters should consider, 

with a greater weighting, the shortest wavelengths available.  Furthermore, greater 

flexibility in the melanin minimisation procedure may be obtained from independent 

adjustment of melanin parameters from each epidermal layer within the skin model.  

As many of the discrepancies from the melanin minimisation procedure appear to 

have been translated to discrepancies following the PWS vessel minimisation 

procedure, such advances in the Monte Carlo programme are likely to result in better 

reproduction of skin colour measurements and greater confidence in the parameters 

derived. 

This study was designed as a proof of principle, to determine whether the inverse 

application of a skin model could be used to determine PWS vessel parameters which 

may be used to inform laser treatment.  As a result, the direct application of the 

technique within a clinical setting was not considered a priority.  In order to improve 

the usability of this method within the clinic, processing times need to be improved.  

This may be achieved with greater consideration of expensive processes within the 

programme.  Further to this, techniques involving programming onto computing 

graphic cards have been shown to vastly reduce processing times in Monte Carlo 

simulations of skin optics [263, 264].  An increase in processing speed may also allow 

for the use of more beams initiated per reflectance data point, further improving the 

accuracy of the colour reproduction by reducing stochastic 'noise'. 

Further to this, greater confidence in the correlations between predicted parameters 

and the results of laser treatment would be obtained with a larger participant group.  

In particular, the inclusion of participants with darker skin types, as well as suitable 

skin lesions other than PWS, would serve to test the extent of the capabilities of the 

Monte Carlo programme developed in this study.  With greater confidence in the 

relationship between the predicted parameters and the results of laser treatment, it 

may be possible for the programme to recommend treatment parameters and predict 
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likely degrees of fading from a session of laser treatment.  From the results presented 

so far, the recommendation of appropriate pulse widths is likely to possible. 

Further improvements to the current Monte Carlo programme may include the 

consideration of skin lipids and other constituents or chromophores within the skin 

model, with the ability to adjust these within the minimisation procedure.  Such a 

technique would be of particular value for the adjacent skin minimisation procedure, 

but may also contribute to the PWS minimisation procedure when considering, for 

example, localised tissue oedema.  The thickness of vessel walls as a proportion of the 

total vessel diameters is a further parameter that could be adjusted.  This would 

provide a means of estimating the effect of this parameter upon PWS colour for the 

first time.  Beyond these considerations, the consideration of more complex vessel 

architecture, involving bends, splits and directions other than horizontal for example, 

may be used to better represent PWS skin. 

Greater coupling between the simulated and measured colour data may be achieved 

through consideration of the angular distribution of the illumination source.  A direct 

measurement of this for a particular device could be translated directly into the 

illumination source within the Monte Carlo programme.  This would provide a more 

accurate simulation than the uniform distribution applied at present.  In addition, a 

skin surface scattering model beyond that of the Fresnel relations, such as those used 

in the computer graphics industry, may be considered [169]. 
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Appendix A 

A summary of the work presented at the BMLA Annual Conference 2011[19] 

Based upon a literature survey and backed up by theoretical modelling, this work 

considered the optimal laser treatment parameters for vascular lesions such as PWS.  

In particular, it focussed upon the choice of wavelength and pulsewidth. 

Wavelength 

A previous version of the Monte Carlo method presented in this thesis was used to 

simulate the transport of light through a 7 layered skin model.  Initially, the simulation 

was used to determine the absorption and scattering coefficients of the author's left 

volar forearm.  The model assumed a 1% volume fraction of melanin in the living 

epidermis (Caucasian skin) and assigned blood volume fractions to the dermal layers 

according to Meglinski and Matcher's work [153].  The simulation consisted 100,000 

photon packets at each wavelength and 10 iterations of a minimisation procedure 

which considered the absorption and scattering coefficients of the dermis and 

epidermis were carried out. 

 

Figure 105: Comparison of mean reflectance data of the author's left volar forearm 
taken from 10 consecutive measurements using the Konica-Minolta CM2600d 
spectrophotometer.  

Figure 106 shows good agreement between the skin model and the colour 

measurements performed on the author's left volar forearm. 
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Subsequently, a 500 µm thick homogeneous layer with a blood volume fraction of 20% 

was added to the skin model to simulate a vascular lesion.  The layer was placed 

successively at depths of 100 µm, 600 µm and 1100 µm in the skin, to simulate a 

superficial, mid-dermal and deep dermal lesion respectively.  The simulation was 

performed over 100,000 photon packets at each wavelength for each scenario (Figure 

107). 

 

Figure 106: Proportion of laser light energy absorbed for blood layers at three depths 
(superficial dermis, mid dermis and deep dermis).   

The simulation predicts green light (~500 nm) would be most suitable for superficial 

lesions but wavelengths similar to those in current routine practice (~595 nm) are best 

suited to deeper lesions.  Infra-red wavelengths are considered to penetrate further 

and therefore may be more suitable for the deepest lesions [265-268], although a 

comparison could not be made during this study. 

Pulse length 

Equation 35, as described by Anderson and Parrish [56] was used to consider the 

optimal pulse length for targeting ectatic vessels: 

  
  

  
 Equation 35 

where τ is the thermal relaxation time, the time required for significant cooling of a 

small target structure, R is the radius and χ is the thermal diffusivity.  It has been 
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suggested that the optimal pulse length for a vascular laser treatment is equal to the 

thermal relaxation time of the target vessels [56]. 

The literature survey concluded that vessel diameters in normal skin varied from 6-30 

µm [17, 20] whereas PWS skin contained vessels up to around 300 µm [20].  Table 16 

summarises the thermal relaxation times for a range of vessel diameters found in PWS 

skin:  

Vessel Diameter (2R) Optimal Pulse/Sequence Time 

Anderson & Parrish [56] 

30 µm 0.3 ms 

50 µm 1.1 ms 

100 µm 4.5 ms 

200 µm 18 ms 

300 µm 41 ms 
 

Table 16: Summary of thermal relaxation times for various vessel sizes, calculated 
from Equation 35 [56] using a fixed value of             [72] 

A review of the literature concluded that more contemporary works considering the 

optimal pulse lengths for vascular lesions [1, 231, 269] were in agreement with the 

above tabulated values. 

Conclusions 

The study concluded that information regarding the depth and size of affected vessels 

is required to choose optimal settings for the laser treatment of vascular lesions such 

as PWS. 
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Appendix B 

A description of the Logarithm of the Inverse Reflectance (LIR)  

In dermatological studies, it is most often the absorption of light that is of interest, 

rather than the reflection or backscatter.  This has been approximated using the 

following relationship [101]: 

           

 

     
 Equation 36 

where λ represents a wavelength within the visible spectrum, ρa(λ) is the light 

absorption coefficient and ρr(λ) is the light reflectance coefficient.  This approximation, 

known as the LIR (Logarithm of the Inverse Reflectance), assumes that the skin can be 

described optically as consisting of layers, each of which homogeneously transmits 

and scatters light.  The interface between these layers is assumed to have no effect.  

 

Figure 107: Demonstration of the LIR assumption, where I0 is the intensity of 
incident light, RN is the reflection from the Nth layer and TN is the transmission 
through layer N. 

From Figure 108, we can see that this model provides us with a reflected light 

intensity: 

           
      

   
      

   
   

     
Equation 37 

 

this gives the total reflectance: 

       ⁄       
      

   
      

   
   

    Equation 38 
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one further assumption of this model is that negligible reflection takes place from 

within the top layers of the skin and thus the vast majority of reflection occurs within 

the deepest layer, thus: 

     
   

   
    Equation 39 

or 

     (
 

  
)                                                

Equation 40 

If we define the absorption coefficient using the Beer-Lambert relationship:        , 

where µt is the attenuation coefficient and d is the optical path length, then 

substituting: 

     (
 

  
)            

                
               

                 
 

 

Equation 41 

 

substituting            
       for    

, the light absorption coefficient for layer i: 

     (
 

  
)     

    
    

          Equation 42 

or  

      
  

 

 
  where        

     
    

 Equation 43 
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Appendix C 
A description of CIEL*a*b* Colour Space 9 

Colour space is a way of describing a given colour using a predetermined set of 

characteristics, or dimensions.  Perhaps the most widely known colour space is the 

Commission Internationale de l’Eclairage (CIE) RGB colour space.  This describes any 

perceptible colour using a mixture of three primary colours at 700 nm (red), 546.1 nm 

(green) and 435.8 nm (blue).  In 1931, the CIE recognised that perceptible colours 

required negative values of these primary colours to describe them.  To remedy this, 

they released the CIExyz tristimulus values whose imaginary colour matching 

functions  ̅(λ),  ̅(λ) and  ̅(λ) are capable of describing all perceptible colours without 

the need for negative values.  

 

Figure 108: Chromaticity diagram in Yxy colour space comparing those colours 
described the xyz tristimulus values and those described by RGB values (black 
triangle).  © Colour Graphs: Courtesy of Konica Minolta Sensing Europe B.V.  

                                                      

 

9 from the publication: 27. Lister TS, Wright PA and Chappell PH. Spectrophotometers for 
the clinical assessment of port wine stain skin lesions: A review. Lasers in Medical Science, 2010, 
25(3): 449. 
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Although CIExyz has found use in dermatological studies, its successor, the CIEL*a*b* 

(1976) model, has been given the most attention over the last two decades (66).  

Designed as a perceptually uniform colour space, it has the advantages of being 

conceptually simple and inherently meaningful in clinical assessment, in particular 

from a cosmetic perspective. 

CIEL*a*b* defines colours in terms of three-dimensional co-ordinates in colour space.  

L* represents luminance, or lightness, where 0 corresponds to black and 100, a perfect 

white with intermediate values covering a greyscale which varies in a perceptually 

uniform manner.  Similarly, a* represents colour in the red (+60) to green (-60) 

dimension and b* represents yellow (+60) to blue (-60).  a* and b* co-ordinates may be 

conceptually related to Hering’s opponent colour theory (67), based upon the 

proposition that the human retina contains opponent colour channels that distinguish 

colour according to their red vs. green and blue vs. yellow attributes.  

Colour differences can be described in a number of ways, by evaluating the distance 

between two points in the defined three dimensional colour space.  Koster et al (20) are 

amongst those who used ∆E as a colour difference descriptor when comparing normal 

and PWS skin: 

   [                    ]
 

 ⁄  Equation 44 

∆E represents the Euclidean distance between two points in CIEL*a*b* colour space 

and describes the overall change in colour.  This is both conceptually simple and 

meaningful, as it can be used to describe the overall perceived contrast between PWS 

and normal adjacent skin. 

More recently, recognised deviations of CIEL*a*b* space from perceptual uniformity 

have resulted in new colour appearance models such as CIECAM02 (2002) used in 

Windows Vista’s Windows Color System for example.  However, the loss of 

conceptual simplicity from CIEL*a*b* has limited the popularity of these models to 

date in the field of dermatology. 
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Appendix D 

Specifications of the Konica-Minolta CM2600d Spectrophotometer  

The spectrophotometer used for this study is a commercially available device from 

Konica-Minolta (Tokyo, Japan).  The device is designed to perform large numbers of 

measurements and is primarily used in the industrial sector, to determine the colour 

consistency of products in a manufacturing line for example.  The fundamental setup 

of this device is much the same as other devices used for this purpose.  However, 

rather than a single lamp, the CM2600d has three separate lamps for determining the 

UV and spectral contributions to the measured spectra and a further bulb to calculate 

specular contributions.  The principal setup of the device is detailed in Figure 110.  

Unfortunately, for commercial reasons, Konica-Minolta are limited in the information 

they are willing to provide about the device and its components. 

 

Figure 109: Schematic diagram showing the basic setup of the Konica-Minolta CM-
2600d.  Double lines represent the edges of the 52 mm diameter integrating sphere 
(BaSO4 coated).  The aperture at the bottom of the right diagram (dotted centre of 
left diagram) is placed at the skin surface.  The letters 's' and 'd' refer to the xenon 
flashlamps used for spectral and diffuse measurements respectively.  One of the 'd' 
illuminants has an optical filter to cut out UV components (below 400 nm).  
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Illumination 

The device has three separate xenon flashlamps.  Correction for the variation in 

intensity across the visible spectrum of each xenon lamp is achieved through 

calibration.  Calibration is carried out by taking an average of three measurements 

from a standard white tile when starting the device, followed by an average of three 

'black' measurements where the aperture is placed in free space.  Corrections are made 

automatically to the subsequent measurements.  During this study, calibration was 

performed before each set of measurements, i.e. between each participant. 

Each of the three lamps has a specific function.  The first (marked d but without a filter 

in Figure 110) is used to determine the diffuse reflectance (referred to as specular 

excluded).  This is achieved by setting the lamp back from the integrating sphere and 

thus only illuminating the aperture indirectly, via the integrating sphere.  Light 

returning from the aperture is deflected towards a diffraction grating and the intensity 

across the wavelength range is measured using a silicone photodiode array.  A 

reference beam is also directed to the diffraction grating and to an adjacent silicone 

photodiode array to be measured simultaneously, such that an automated algorithm 

may be performed which accounts for variations between pulses for this lamp.   

An equivalent process is used for the filtered lamp marked d in Figure 110.  When a 

measurement of the spectral reflectance exclusive of contributions below 400 nm is 

required, both this lamp and the previously described d lamp are used successively.  

The data returned includes near zero values for wavelengths of 400 nm and below.   

The third lamp, marked s in Figure 110, is used to determine the specular contribution 

to the measured spectrum.  The light enters the integrating sphere through two lenses.  

The first focuses the beam onto the upper wall of the integrating sphere and 

illuminates the aperture directly from here.  The second is focused on the laterally 

opposing wall and forms a reference beam as depicted in Figure 110.  When taking a 

measurement, this lamp is triggered immediately after the d lamp(s).  The specular 

component is internally calculated and added to the diffuse measurement. The specular 

included data is returned. 

Up to two datasets can be returned during each measurement with the 

spectrophotometer.  The choice was made for this study to return both the specular 
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included and specular excluded reflectance measurements including all light below 400 

nm (unfiltered option). Specular included data were used as the primary input into the 

Monte Carlo programme. 

There is a further LED which is used along with a viewing port (accessible by folding 

the mirror shown in Figure 110 down), but is not used for taking measurements.  

Integrating Sphere 

The integrating sphere is coated with BaSO4 which is highly reflective at all 

wavelengths in the visible spectrum and forms a rough (diffusing) surface.  It is not 

entirely spherical in shape but instead meets a conical surface near the aperture.  It is 

also impregnated with various windows and indentations to accommodate the light 

sources and measurement optics.  Furthermore, there is a thin horizontal ridge around 

the entire inner circumference of the integrating sphere approximately half way up.  

This appears to be where the two halves of the integrating sphere meet.  Despite these 

imperfections, it was assumed that the light incident upon the aperture is perfectly 

diffuse. 

Further Optics 

Light is separated into its spectral components using a diffraction grating, the precise 

details of which are not available from the manufacturer.  Measurements are made 

using a dual silicone photodiode array with a half bandwidth of 10 nm.  According to 

the manufacturer's specifications, the half bandwidth for this array is equal to the 

measurement pitch (see Figure 111).  This suggests that there will be some (minor) 

overlap in the measured contributions from neighbouring wavelength ranges.   

 

Figure 110: Demonstration of half bandwidth and wavelength pitch.  
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Appendix E 

This appendix provides the values used for the analysis of absorption (Table A1) and 

reduced scattering coefficients (Table A2) reported in the literature. * denotes values 

obtained from graphical presentations. The remaining data was extracted directly 

from the text or tables of the publications unless otherwise stated below. 

Absorption Coefficients 

Meglinski and Matcher's calculated absorption coefficients were presented separately 

for the dermis and epidermis.  Epidermal absorption coefficients were calculated 

using Meglinski and Matcher's equation 14 [153] with the following inputs: Cmelanin = 

2.0%, CH20 = 20%,   
   

                   (equation 10 in their paper and from [107]) 

,   
                      and   

    taken from [149].  The dermal absorption 

coefficients were calculated separately for the papillary layer, upper and lower blood 

net layers and the reticular dermis using the concentration and blood and water 

presented in their Table 2, value of   
    taken from [149], and values of   

   and   
     

also taken from [149]. 

Svaasand et al's epidermal and dermal absorption coefficients were calculated from 

their equation 6, with values of µab calculated using their equation 2.  Values of µan 

were calculated from [107], and a value of µam,694 = 0.3 mm-1 corresponding to 

Caucasian skin (see their Figure 3).  Epidermal and dermal blood volume fractions of 

0.2% and 2% were applied to the epidermal and dermal layers respectively. 

Zonios et al's absorption coefficients were calculated from their equation 18 using 

parameters of melanin and absorption concentrations, as well as blood oxygen 

saturation, presented in their Table 2.  The paper by Zonios et al did not describe the 

origin of the haemoglobin and oxyhaemoglobin extinction coefficients applied in their 

study, thus it was assumed that values taken from [270] were used, as was the case in 

a previous paper by Zonios et al [186]. 

The blood absorption coefficients used in these three studies are presented in Figure 

A1 for comparison. 
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Figure 111: Blood absorption coefficients used in three of the studies analysed here.  

Reduced Scattering Coefficients 

Torricelli et al's study presented separate datasets for the arm, head and abdomen 

from 3 participants.  The mean of these 9 values for each wavelength, determined from 

graphical data, is presented here.  Equation 3 from Svaasand et al's work and Equation 

19 from Zonios et al's work were used to calculate the values presented in the 

Appendix.  Zonios et al's equation 19 required inputs of d0, ds and µs' which were 

selected as normal skin values from Zonois et al's paper as 0.0625 µm, 0.49 µm and 2.1 

mm-1 respectively.  
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Table 17: Absorption coefficients (mm -1) available from the literature.  Precision of recorded value is dependent upon the nature of the original values presented.  

  in vitro absorption coefficients (mm
-1

) in vivo absorption coefficients (mm
-1

)  

wavelength 
(nm) 

Jacques 
87 

Prahl 
1988* 

Chan 
1996* 

Salomatina 
2006 

epidermis* 

Salomatina 
2006 

dermis* 

Graaf 
1993 

Simpson 
1998* 

Dognitz 
1998* 

Torricelli 
2001* 

(mean) 

Meglinski 
2002 

epidermis† 

Meglinski 
2002 

dermis†* 

Graaf 
1993 

Doornbos 
1999† arm 

Doornbos 
1999† 

forehead 

Svaasand 
1995 

epidermis 

Svaasand 
1995 

dermis 

Zonios 
2006 

Bosschaart 
2011 

360 
         

0.60 0.79 
   

1.50 0.41 
 

 

370 
         

0.55 0.78 
   

1.56 0.41 
 

 

380 
         

0.50 0.89 
   

1.84 0.52 
 

 

390 
         

0.46 1.20 
   

3.07 1.02 1.22  

400 
  

1.4 1.5 0.9 
  

0.6 
 

0.42 1.78 
   

5.83 2.13 1.61  

410 
         

0.39 2.88 
   

8.68 3.27 2.42  

420 
         

0.36 3.23 
   

8.68 3.28 2.92  

430 
         

0.33 2.57 
   

5.84 2.15 2.93  

440 
         

0.31 1.62 
   

3.05 1.04 1.44  

450 
 

5.1 1 1 0.6 
    

0.29 0.566 
   

1.77 0.53 0.40 0.72 

460 
 

4.7 
       

0.27 0.258 
   

1.40 0.39 0.19 0.66 

470 
 

4.9 
       

0.25 0.189 
   

1.28 0.35 
 

0.58 

480 
 

4.3 
       

0.23 0.156 
   

1.19 0.31 0.12 0.54 

490 
 

3.9 
       

0.22 0.149 
   

1.10 0.28 
 

0.43 

500 
 

3.6 0.6 0.7 0.35 
  

0.24 
 

0.20 0.150 
   

1.03 0.26 0.11 0.34 

510 
 

3.1 
       

0.19 0.160 
   

1.01 0.26 
 

0.29 

520 
 

2.7 
       

0.18 0.194 
   

1.11 0.30 0.16 0.27 

530 
 

2.6 
       

0.17 0.283 
   

1.31 0.38 
 

0.33 

540 
 

2.5 
       

0.16 0.362 
   

1.47 0.45 0.30 0.37 

550 
 

2.2 0.4 0.45 0.25 
    

0.15 0.338 
   

1.44 0.44 
 

0.34 

560 
 

2.1 
       

0.14 0.294 
   

1.32 0.40 
 

0.31 

570 
 

2.0 
       

0.13 0.320 
   

1.37 0.42 
 

0.33 

580 
 

2.0 
       

0.13 0.321 
   

1.29 0.39 0.27 0.29 

590 
 

1.8 
       

0.12 0.143 
   

0.86 0.22 
 

0.18 

600 
 

1.9 0.3 0.3 0.2 
    

0.11 0.056 
   

0.59 0.12 0.06 0.08 

610 
 

1.6 
      

0.027 0.11 0.034 
   

0.51 0.09 
 

 

620 
 

1.5 
      

0.023 0.10 0.023 
   

0.47 0.08 0.02  

630 2.7 1.3 0.3 0.25 0.15 0.12 0.035 0.06 0.019 0.10 0.018 0.003 0.017 0.009 0.45 0.07 
 

 

640 
 

1.3 
    

0.032 
 

0.017 0.09 0.015 
   

0.42 0.06 0.02  

650 
 

1.4 0.3 0.25 0.15 
 

0.029 
 

0.016 0.09 0.013 
   

0.41 0.06 
 

 

660 
 

1.4 
    

0.026 
 

0.015 0.08 0.011 
 

0.013 0.005 0.40 0.06 0.01  

670 
 

1.3 
    

0.024 
 

0.014 0.08 0.010 
   

0.38 0.05 
 

 

680 
 

1.3 
    

0.022 
 

0.013 0.08 0.008 
   

0.37 0.05 0.01  

690 
 

1.3 
    

0.02 
 

0.012 0.07 0.007 
   

0.36 0.05 
 

 

700 
 

1.1 0.2 0.25 0.15 
 

0.01 0.04 0.012 0.07 0.007 
 

0.009 0.002 0.35 0.05 0.01  

710 
 

1.2 
    

0.018 
 

0.012 0.07 0.006 
   

0.34 0.05 
 

 

720 
 

1.1 
    

0.017 
 

0.012 0.06 0.006 
   

0.33 0.04 0.01  

730 
 

1.1 
    

0.017 
 

0.012 0.06 0.006 
   

0.32 0.04 
 

 

740 
 

1.1 0.2 0.2 0.15 
 

0.017 
 

0.013 0.06 0.006 
   

0.31 0.04 0.01  
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Table 18: Reduced scattering coefficients (mm -1) available from the literature.  Precision of recorded value is dependent upon the nature of the original values 
presented. 

  in vitro reduced scattering coefficients (mm
-1

) in vivo reduced scattering coefficients (mm
-1

) 

Wavelength 
(nm) 

Jacques 87 
Prahl 
1988* 

Chan 
1996* 

Salomatina 2006 
epidermis* 

Salomatina 
2006 dermis* 

Graaf 
1993 

Simpson 
1998* 

Dognitz 
1998* 

Torricelli 
2001* 

(mean) 

Graaf 
1993 

Doornbos 
1999 arm 

Doornbos 1999 
forehead 

Svaasand 
1995 

Zonios 
2006 

Bosschaart 
2011 

360 
       

  
    

80.6 2.25  

370 
       

  
    

78.4 2.23  

380 
       

  
    

76.3 2.22  

390 
       

  
    

74.4 2.20  

400 
  

3.4 10 7.5 
  

4.2 
    

72.5 2.18  

410 
       

  
    

70.7 2.17  

420 
       

  
    

69.0 2.15  

430 
       

  
    

67.4 2.13  

440 
       

  
    

65.9 2.12  

450 
 

14.0 2.9 9 6 
  

  
    

64.4 2.10 2.08 

460 
 

14.0 
     

  
    

63.0 2.08 2.03 

470 
 

13.0 
     

  
    

61.7 2.07 2.00 

480 
 

13.0 
     

  
    

60.4 2.05 1.96 

490 
 

12.0 
     

  
    

59.2 2.03 1.93 

500 
 

12.0 2.4 7 4.5 
  

4.1 
    

58.0 2.02 1.90 

510 
 

12.0 
     

  
    

56.9 2.00 1.87 

520 
 

12.0 
     

  
    

55.8 1.98 1.83 

530 
 

11.0 
     

  
    

54.7 1.97 1.80 

540 
 

11.0 
     

  
    

53.7 1.95 1.77 

550 
 

10.5 2.1 6 3.5 
  

  
    

52.7 1.93 1.74 

560 
 

10.5 
     

  
    

51.8 1.92 1.71 

570 
 

10.0 
     

  
    

50.9 1.90 1.68 

580 
 

10.0 
     

  
    

50.0 1.88 1.65 

590 
 

10.0 
     

  
    

49.2 1.87 1.62 

600 
 

9.5 1.8 5 3 
  

  
    

48.3 1.85 1.60 

610 
 

9.0 
     

  1.52 
   

47.5 1.83  

620 
 

9.0 
     

  1.48 
   

46.8 1.82  

630/633 18.73 9.0 1.7 5 3 5.25 2.8 3.2 1.44 1.45 0.91 1.67 46.0 1.80  

640 
 

9.0 
    

2.7   1.39 
   

45.3 1.78  

650 
 

9.0 1.6 4.5 3 
 

2.6   1.38 
   

44.6 1.77  

660 
 

8.5 
    

2.5   1.35 
 

0.87 1.62 43.9 1.75  

670 
 

8.5 
    

2.5   1.33 
   

43.3 1.73  

680 
 

8.0 
    

2.4   1.31 
   

42.6 1.72  

690 
 

8.0 
    

2.3   1.29 
   

42.0 1.70  

700 
 

8.0 1.4 1.3 2.5 
 

2.3 2.9 1.29 
 

0.81 1.54 41.4 1.68  

710 
 

8.0 
    

2.2   1.28 
   

40.8 1.67  

720 
 

7.5 
    

2.2   1.27 
   

40.3 1.65  

730 
 

7.5 
    

2.2   1.25 
   

39.7 1.63  

740 
 

7.5 1.3 1.3 2.5 
 

2.1   1.21 
   

39.2 1.62  
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Appendix F 

Included here is an example page from the document used to record the expert 

analyses of participant photographs. 
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Appendix G 

This Appendix provides a summary of the work carried out to determine appropriate 

temporal pulse lengths to be used in the analysis of results. 

The temporal pulse profile of the Cynosure Cynergy Pulsed Dye Laser used for the 

treatment of participants enrolled into this study was determined using a simple 

photodiode and oscilloscope, setup as depicted in Figure 113. 

 

 

Figure 112: Experimental setup of temporal pulse profile recordings . 

The photodiode was offset from the beam output to avoid damage from direct 

irradiation.  Thus, recordings were made of the room illumination caused by diffuse 

reflection of the laser beam. 

Data was recorded directly onto a PC and pulse lengths determined at the 10% level 

(Figure 114).  Where a pulse consisted of more than one distinct peak, or 'pulselet', a 

weighted mean of the recorded pulsewidths (Ω) was used in the analysis as follows: 
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where k is the number of pulselets, S

i and F

i  are the start and finish times of pulselet 

i, and E is the relative energy density recorded by the photodiode. 
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Figure 113: Example temporal pulse profile recording of a nominal 2 ms pulse . 
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