A Formal, Systematic Approach to STPA using
Event-B Refinement and Proof

John Colley and Michael Butler

Electronics and Computer Science, University of Southampton

Southampton, UK

Abstract System-Theoretic Process Analysis (STPA) from Leveson is a tech-
nique for hazard analysis developed to identify more thoroughly the causal factors
in complex safety-critical systems, including software design errors. Event-B is a
proof-based modelling language and method that enables the development of
specifications using a formal notion of refinement. We propose an approach to
hazard analysis where system requirements are captured as monitored, controlled,
mode and commanded phenomena and STPA is applied to the controlled phenom-
ena to identify systematically the safety constraints. These are then represented
formally in an Event-B specification which is amenable to formal refinement and
proof.

1 Introduction

System-Theoretic Process Analysis (STPA), described in (Leveson 2012), is a
technique for hazard analysis developed to identify more thoroughly the causal
factors in complex safety-critical systems, including software design errors. STPA
has been applied to a wide range of safety critical applications (Leveson 2012).
Event-B (Abrial 2010) is a proof-based modelling language and method that en-
ables the development of specifications using a formal notion of refinement. The
Rodin platform (Abrial et al. 2010) is the Eclipse-based IDE that provides auto-
mated support for Event-B modelling, refinement and mathematical proof. The
Event-B method has also been used in the deployment of safety critical systems
for automotive and railway applications.

We propose an approach to hazard analysis where system requirements are cap-
tured as monitored, controlled, mode and commanded phenomena and STPA is
applied to the controlled phenomena to identify systematically the safety con-
straints. These are then represented formally in an Event-B specification, which is
amenable to formal refinement and proof.

© University of Southampton 2013. Published by the Safety-Critical Systems Club. All Rights
Reserved

232 John Colley and Michael Butler

In Section 2 we provide an overview of Event-B with particular attention paid
to formal Event-B refinement.

In Section 3 we show how our proposed approach to hazard analysis can be ap-
plied, using a domestic washing machine case study, to derive systematically the
safety constraints expressed in natural language.

In Section 4 we illustrate how the natural language safety constraints can be
represented formally in Event-B.

In Section 5 we present a summary of our approach and the direction of our fu-
ture work.

2 Event-B

In Event-B, an abstract model comprises a machine that specifies the high-level
behaviour and a context, made up of sets, constants and their properties, that
represents the type environment for the high-level machine. The machine is repre-
sented as a set of state variables, v and a set of events, guarded atomic actions,
which modify the state. If more than one action is enabled, then one is chosen
non-deterministically for execution, an observable transition on the state variables
which must preserve an invariant on the variables, I(v).

A more concrete representation of the machine may then be created which re-
fines the abstract machine, and the abstract context may be extended to support the
types required by the refinement. Gluing invariants are used to verify that the
concrete machine is a correct refinement: any behaviour of the concrete machine
must satisfy the abstract behaviour. Gluing invariants give rise to proof obliga-
tions for pairs of abstract and corresponding concrete events. Events may also
have parameters, which take, non-deterministically, the values that will make the
guards in which they are referenced true.

Event-B refinement allows a model to be built gradually (Abrial and
Hallerstede 2000), starting with an abstract model and then introducing succes-
sive, more concrete refinements. Adding variables achieves spatial extension and
adding events temporal extension. Events in the abstract model may be refined by
one or more events in the concrete model. These concrete events can modify the
state of new variables introduced in the refinement, but must preserve the behav-
iour with regard to the variables declared in the abstract model. New events may
also be introduced in the refinement. These events are not allowed to assign values
to abstract variables, but can assign values to new variables introduced in the re-
finement.

A Formal, Systematic Approach to STPA using Event-B Refinement and Proof =~ 233

3 The washing machine case study

We use this case study to explore a systematic method for identifying both func-
tional and safety requirements. We start with an overview of the washing machine
system.

3.1 System overview

We are concerned with developing a master controller, which, on receiving a set
of user settings from the control panel, will control the water drum system and
agitator motor to comply with those user settings.

3.2 Discovering the functional requirements

We investigate the functional requirements using a method that identifies the sys-
tem phenomena and then structures the functional requirements according to these
phenomena (Yeganefard and Butler 2012). The phenomena that we shall explore
are the monitored phenomena, commanded phenomena, controlled phenomena
and mode phenomena.

3.3 Monitored phenomena

First we examine the phenomena that will be monitored by the washing machine
controller.
3.3.1 Drum water level

The controller will receive the current level from the water level sensor.

3.3.2 Drum water temperature

The controller will receive the current temperature from the water temperature
Sensor.

234 John Colley and Michael Butler

3.3.3 Door position

The controller will receive from the door sensor whether the door is closed or
open.

3.3.4 Vibration level

The controller will receive from the vibration sensor the level of vibration.

3.4 The commanded phenomena

These are the phenomena that are driven by the user through the washing machine
control panel.

3.4.1 Water level setting

The controller will receive the water level setting from the control panel. In this
case two settings are possible: half load and full load.

3.4.2 Cycle setting

The controller will receive the cycle setting identifier from the control panel and
decode the cycle setting. The cycle setting consists of

¢ the mode sequence, for example: idle, wash, rinse, spin, rinse, spin, idle
¢ the mode duration: how long each mode will run
o the spin speed.

3.4.3 Water temperature setting

The controller will receive the water temperature setting from the control panel:
30, 40 or 60 degrees Celsius.

3.4.4 Start signal

The controller will receive the start signal from the control panel.

A Formal, Systematic Approach to STPA using Event-B Refinement and Proof 235

3.5 The controlled phenomena

These are the phenomena that are driven by the master controller.

3.5.1 Door lock

o The controller will lock the door at the start of the cycle.
e The controller will unlock the door at the end of the cycle.
e The door will remain locked during the cycle.

3.5.2 Agitator motor

e The controller directs the speed and rotation direction of the agitator motor.
e The agitator motor will be stationary when the door is unlocked.

3.5.3 Water control valves

The controller activates and de-activates the hot and cold water valves to meet the
water level and temperature requirements.

3.5.4 Water drain pump

The controller activates the water drain pump to meet the water level require-
ments.

3.5.5 Heater

The controller activates and de-activates the heater to meet the temperature re-
quirements.

3.6 The mode phenomena

The controller modes are idle, washing, rinsing and spinning.

236 John Colley and Michael Butler

3.7 Discovering the safety requirements

The following two quotations from (Leveson 2012) encapsulate the approach to
safety analysis, developed by Leveson, which we use in the case study.

Any controller — human or automated — needs a model of the process being controlled to
control it effectively.

Accidents can occur when the controller’s process model does not match the state of the
system being controlled and the controller issues unsafe commands.

Simply trying to make components more reliable does not in itself make a system
safer. Safety is enhanced when the controller(s) respond to component failures in a
way which ensures that the resulting hazards are correctly and safely managed.

Consider a potential hazard arising from the heater sub-system of the washing
machine. The water could overheat dangerously if the controller cannot monitor
water temperature properly. If the temperature sensor is faulty, the controller
could switch off the heater if the value read from sensor is out of operating range.
If, however, the sensor reports a value within the operating range but the actual
value is out of operating range, how can the controller respond to this hazard?
Sensor redundancy, with the introduction of a voting system in the controller, can
decrease the probability that the hazard will not be detected. An alternative ap-
proach, however, is for the controller to predict the rise in water temperature and
compare it with the reported rise.

The controller needs independent verification of the sensed values to detect
failure. This can be provided by values from a different sensor or the controller
can generate predicted values in the absence of other sources of data.

3.8 System-Theoretic Process Analysis

Leveson proposes a rigorous approach, System-Theoretic Process Analysis
(STPA), which consists of the following three steps.

1. Identify potentially hazardous control actions.
2. Derive the safety constraints.
3. Determine how unsafe control actions could occur.

STPA has been used by the US Missile Defense Agency to characterize the resid-
ual safety risk of the ballistic missile defense system (Perreira et al. 2006). A
simulator of the interceptor flight computer is used to predict the expected behav-
iour and therefore to detect a failure in the system.

In our method, we perform a systematic analysis of the controlled phenomena
identified in the requirements analysis: the door lock, the heater, the water drain
pump, the water control valves and the agitator motor.

A Formal, Systematic Approach to STPA using Event-B Refinement and Proof 237

3.8.1 The door sub-system

Consider a model of the controlled door sub-system as shown in Figure 1.

Controller
Process Model
Door Position
-- Open <
-- Closed
-- Unknown
Lock Door . Door is Open
Unlock Doo Door Security Door is Closed
-- Locked
-- Unlocked
= -- Unknown
Actuator Sensor
Fy
» Door
Human Operator ,|Sub-system
Open Door
Process Model | | Close Door
Door Security
— Locked Controlled Process
-- Unlocked
-- Unknown

Fig.1. The controlled door sub-system

The main controller has a process model of the door sub-system. So also does the
human operator. The operator can open or close the door directly. The controller
uses an actuator to lock and unlock the door and a sensor to detect whether the
door is open or closed.

Step 1: identifying potentially hazardous control actions

For each of the two controller actions, Unlock Door and Lock Door, we identify
three potential causes of a hazard: not providing the action when it should, provid-
ing the action when it shouldn’t and providing the action at the wrong time or in
the wrong order. The results of the analysis are shown in Table 1.

Failing to unlock the door is inconvenient but not hazardous. Unlocking the
door when the drum is filled is hazardous because the operator will be able to
open the door inadvertently and release potentially very hot water. Unlocking the
door before the drum has been fully drained is also hazardous.

238 John Colley and Michael Butler

Table 1. Door hazards

Not providing causes Wrong timing or

Controller action Providing causes hazard

hazard order causes hazard
Operator can open door Water not fully
Unlock Door Not hazardous with drum filled drained

Operator can open Not hazardous Water starts filling

Lock Door door with drum filled before lock

Failing to lock the door when the drum is filled is hazardous, but locking the door
when the drum is empty is not. Locking the door after the drum has started filling
is hazardous.

Step 2: deriving the safety constraints

Three safety constraints can be derived from Table 1.

1. The door must always be locked when there is water in the drum.

2. An Unlock Door command must never be issued until the water is fully
drained.

3. A Lock Door command must be issued before starting to fill the drum.

The first is an invariant of the system. The second and third are guards that pre-
vent an operation occurring in an unsafe way. These natural language invariants
and guards can then be represented formally in an Event-B model, as we shall
show in detail in Section 4.

Step 3: determining how unsafe control actions could occur

We now revisit the controlled door sub-system to determine systematically the
potential causes of unsafe actions as shown in Figure 2.

The hazard is that the door is open when there is water in the drum. The poten-
tial causes of this hazard are then represented on the diagram. The controller or the
operator can have an inadequate or incorrect process model of the door sub-
system, the requirements may not be fully specified or implemented and the op-
erator may not be properly trained. The actuators and sensors may fail. These po-
tential causes of unsafe actions can be used to both improve the design and inform
the test plan.

A Formal, Systematic Approach to STPA using Event-B Refinement and Proof =~ 239

Controller

Lock Issued
but not
Received

b 4

+ Requirements .
not fully specified

+ Requirements
not Implemented

+ Process Model
Incorrect

Missing/Spurious
Data on whether
Door is Closed or not

‘ ActuatorFaiIure‘

Sensor Failure

F N
Door not Locked”| Door open;

Human Operator

+ Inadequately
Trained

* Process Model
Incorrect

_|Water in Drum Door Closed signaled

When not Properly Closed

Door not
Properly
Closed
Opens Door
When Drum
Has Water

Fig.2. Potential causes of unsafe actions

4 Representing the safety constraints formally in Event-B

4.1 The Abstract Model: the Door Sub-system

To illustrate the method, we present first an abstract model of the washing ma-
chine door sub-system. We define an Event-B context as shown in Figure 3.

axioms

end

context LOCKSC
constants OPEMN CLOSED LOCKED UNLOCKED
sets DoorPosition DoorState

@axm1 partition(DoorPosition, {OPEN}, {CLOSED})
@axmz partition(DoorState, {LOCKED}, {UNLOCKED})

Fig.3. Door sub-system context

240 John Colley and Michael Butler

The position of the door can either be OPEN or CLOSED and the state of the door
can either be LOCKED or UNLOCKED.

We then define an Event-B machine, which sees this context, as shown in Fig-
ures 4 and 5.

machine LOCKSM sees LOCKSC
variables dpos doorst

invariants
@inv1 dpos = DoorPosition
@inv2 doorst € DoorState
{@inv3 doorst = LOCKED = dpos = CLOSED

events
event INITIALISATION
then
{@act1 dpos = OPEN
@act2 doorst = UNLOCKED
end

Fig.4. Door sub-system machine initialisation

The variables dpos and doorst represent the door position, which is initialized to
OPEN, and the door state, which is initialized to LOCKED. The invariant @inv3
states that if the door is locked, then it must be closed.

The events of the machine are shown in Figure 5.

When the door is open, as indicated by the guard @grdl in the event Close-
Door, then the door can be closed. The guards of event OpenDoor indicate that
the door can only be opened if it is closed and unlocked. The event LockDoor is
only enabled if the door is closed and unlocked. The event UnlockDoor unlocks
the door if it is locked.

The proof obligations for the machine are generated and discharged automati-
cally by the Rodin tool. In particular, we have proved that the invariant @inv3 is
preserved for all possible interleavings of the events.

4.2 The refined model: introducing the drum sub-system

In the formal refinement of the abstract model, we first introduce the drum state in
the context shown in Figure 6, which extends the abstract context.

The drum is either EMPTY, FILLING, FILLED or EMPTYING. The refined
machine sees the extended context, introduces the variable drumst to represent the

A Formal, Systematic Approach to STPA using Event-B Refinement and Proof 241

state of the drum, refines the events of the abstract machine and introduces the
events shown in Figure 7.

event CloseDoar

where
{@qgrd1 dpos = OPEN
then
{@act1 dpos = CLOSED
end

event OpenDoor
where
@grd1 dpos = CLOSED
@grd2 doorst = UNLOCKED
then
@act1 dpos = OPEN
end

event LockDoor
where
@grd1 doorst = UNLOCKED
{@grdz dpos = CLOSED
then
@act1 doorst = LOCKED
end

event UnlockDoor

where
@grd1 doorst = LOCKED
then
@act1 doorst = UNLOCKED
end
end

Fig.5. Door sub-system machine events

context LOCKSE1 extends LOCKSC
constants EMPTY FILLING FILLED EMPTYING
sets DrumState

axioms

@axm1 partition(DrumState, {EMPTY}, {FILLING}, {FILLED}, {EMPTYING})
end

Fig.6. Extended context

242 John Colley and Michael Butler

event FillDrum
where
@grd1 doorst = LOCKED
@grd2 drumst = EMPTY
then
@act1 drumst = FILLING
end

event Wash

where
@grd1 drumst = FILLING
then
{@act1 drumst = FILLED
end

event EmptyDrum

where
@grd1 drumst = FILLED
then
@act1 drumst = EMPTYING
end

event Finish

where
@grd1 drumst = EMPTYING
then
@act1 drumst = EMPTY
end

Fig.7. New events in the refinement

The event FillDrum is only enabled if the door is locked (@grdl) and the drum is
empty (@grd2). The door can only be locked by the LockDoor event. These
guards therefore fulfil the requirement of the safety constraint: ‘4 lock door com-
mand must be issued before starting to fill the drum’.

To represent the safety constraint, ‘The door must always be locked when there
is water in the drum’, we introduce the invariant shown in Figure 8.

@inv2 drumst # EMPTY = doorst = LOCKED

Fig.8. Safety constraint invariant

However, when we run the automatic prover, we find that this invariant cannot be
proved for the UnlockDoor event. Inspecting the failing proof more closely, we
see that the door can be unlocked while the drum is not empty. We must therefore
strengthen the guards of the abstract event in this refinement by introducing the
extra guard, @grd2, as shown in Figure 9.

This guard represents the safety constraint: ‘An Unlock Door command must
never be issued until the water is fully drained.” When we re-run the prover, the
invariant, @inv2, is now proved automatically. All three safety constraints derived
during the safety analysis are now represented formally in the refined model.

A Formal, Systematic Approach to STPA using Event-B Refinement and Proof =~ 243

1. The door must always be locked when there is water in the drum.

2. An Unlock Door command must never be issued until the water is fully
drained.

3. A Lock Door command must be issued before starting to fill the drum.

| event UnlockDoor refines UnlockDoor
where
{@grd1 doorst = LOCKED
{@grdz drumst = EMPTY
then
{@act1 doorst = UNLOCKED
end

Fig.9. Safety constraint guard

5 Summary and future work

We have presented an approach to hazard analysis where system requirements are
captured as monitored, controlled, mode and commanded phenomena and STPA is
applied to the controlled phenomena to identify systematically the safety con-
straints. These natural language constraints are then represented formally in an
Event-B specification, which is amenable to formal refinement and proof. We
have shown how the safety constraints are represented as either invariants or
guards in the formal model. We build the model systematically using Event-B
formal refinement. The Rodin environment automatically generates the required
proof obligations, and the Rodin provers have been shown in this case study to
discharge the proof obligations automatically. Where a proof obligation cannot be
discharged, we have shown how the Rodin tool guides the user to improve the
model.

We have illustrated our approach using the door lock phenomenon. Application
of the method continues by analyzing and modelling in the same way the remain-
ing controlled phenomena: the agitator motor, water control valves, water drain
pump and water heater.

It is an important goal of our work to integrate Event-B based formal verifica-
tion techniques into the overall system development flow. In particular, it is nec-
essary to validate the specification against the original requirements. This cannot
be achieved in an ad hoc manner. It is necessary to trace elements of the specifica-
tion back to the requirements, and for this tool support is vital to ensure that there
is a measurable way of ensuring that the requirements are covered by the specifi-
cation. In future work, therefore, we shall integrate our approach with the re-
quirements capture and tracing facility, ProR (Jastram 2010) that forms part of the
Rodin platform. ProR provides a flexible and configurable environment to support

244 John Colley and Michael Butler

requirements engineering, within which we will integrate requirements analysis
and safety analysis within the Rodin toolset and workflow.

Acknowledgments The research presented in this paper is funded by the FP7 ADVANCE
(287563) project, Advanced Design and Verification Environment for Cyber-physical System
Engineering, http://www.advance-ict.eu.

References

Abrial J-R (2010) Modeling in Event-B — System and Software Engineering. Cambridge Univer-
sity Press

Abrial J-R et al (2010) Rodin: an open toolset for modelling and reasoning in Event-B. STTT,
12(6):447-466

Abrial J-R, Hallerstede S (2006) Refinement, decomposition, and instantiation of discrete mod-
els: Application to Event-B. Fundamenta Informaticae, XXI

Jastram M (2010) ProR, an open source platform for requirements engineering based on RIF.
SEISCONF

Leveson N (2012) Engineering a safer world: Systems thinking applied to safety. MIT Press
(MA)

Perreira S et al (2006) A system-theoretic hazard analysis methodology for a non-advocate safety
assessment of the ballistic missile defense system. Technical report, DTIC Document

Yeganefard S, Butler M (2012) Control systems: Phenomena and structuring functional require-
ment documents, 17th International Conference on Engineering of Complex Computer Sys-
tems (ICECCS)

