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Abstract—In our previous work, it was shown that the con-
ventional approximate Bayes’ theorem based probabilistic data
association (PDA) algorithms output “nominal APPs”, which
are unsuitable for the classic architecture of iterative detection
and decoding (IDD) aided receivers. To circumvent this predica-
ment, in this paper we propose an exact Bayes’ theorem based
logarithmic domain PDA (EB-Log-PDA) method, whose output
has similar characteristics to the true APPs, and hence it is
readily applicable to the classic IDD architecture of multiple-
input multiple-output (MIMO) systems using M -ary modulation.
Furthermore, we demonstrate that introducing inner iterations
into EB-Log-PDA, which is common practice in conventional-
PDA aided uncoded MIMO systems, would actually degrade the
IDD receiver’s performance, despite significantly increasing the
overall computational complexity of the IDD receiver. Finally,
we show that the EB-Log-PDA based IDD scheme operating
without any inner PDA iterations has a similar performance to
that of the optimal maximum a posteriori (MAP) detector based
IDD receiver, while imposing a significantly lower computational
complexity in the scenarios considered.

Index Terms—Bayes’ theorem, iterative detection and decod-
ing, multiple-input multiple-output (MIMO), probabilistic data
association (PDA), M -ary modulation.

I. INTRODUCTION

The probabilistic data association (PDA) approach has been
recently invoked for low-complexity, high-performance soft-
input soft-output (SISO) detection/equalization in multiple-
input multiple-output (MIMO) fading channels [1]–[6]. In this
scenario, the probabilities of the potential candidate symbols
serve as the soft input/output information and are convention-
ally estimated using an approximate version of the Bayes’
theorem relying on a self-iterative process.

These symbol probabilities have historically been inter-
preted as a posteriori probabilities (APPs) without causing
any notable problems. This is mainly because most contribu-
tions concerning the PDA algorithm were based on uncoded
systems, where the PDA algorithm’s applicability does not
require an accurate interpretation of the rigorous mathematical
nature of its output symbol probabilities, and in particular,
the calculation of the bit-wise extrinsic log-likelihood ratios
(LLRs) is not required [1]–[6]. In our recent work [7], we
pointed out, however, that this conventional wisdom is not
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directly applicable in iterative receivers. More explicitly, we
argued that the output symbol probabilities of all approximate
Bayes’ theorem based conventional PDA detectors/equalizers
constitute “nominal APPs” rather than true APPs. Due to
this misconception, the problem of designing a powerful
PDA-based iterative detection and decoding (IDD) receiver
became challenging. As a remedy, in [7] we first answered
the question of how to generate the bit-wise extrinsic LLRs
using the symbol-wise “nominal APPs”, and then proposed
an IDD receiver employing the approximate Bayes’ theorem
based logarithmic-domain PDA (AB-Log-PDA) for M -ary
modulation aided MIMO systems.

The AB-Log-PDA based IDD receiver of [7] resulted in an
irregular IDD architecture, where the bit-wise extrinsic LLRs
output by the AB-Log-PDA detector cannot be generated by
subtracting the bit-wise a priori LLRs from the bit-wise a
posteriori LLRs. In other words, the canonical relationship of
LE = LD−LA no longer holds for conventional approximate
Bayes’ theorem based PDA detectors. On the other hand, the
classic IDD architecture has been widely recognized, whose
constituent soft detector is typically expected to satisfy LE =
LD −LA. Therefore, in contrast to the existing PDAs [1]–[7]
all of which output “nominal APPs”, it might be promising
to develop a PDA-based algorithm capable of generating the
true APPs for facilitating the employment of PDA in classic
IDD architectures.

In this paper we propose an exact Bayes’ theorem based
logarithmic-domain PDA (EB-Log-PDA) detector for the IDD
of forward error correction (FEC)-coded MIMO systems using
arbitrary M -ary modulation. As opposed to the existing PDAs
relying on an approximate version of the Bayes’ theorem
[1]–[7], the proposed EB-Log-PDA’s output exhibits similar
characteristics to the true APPs and thus LE = LD − LA
can be satisfied. As a benefit, the proposed EB-Log-PDA
approach becomes immediately applicable to the classic IDD
architecture. Furthermore, we investigate the impact of the
inner iterations within the EB-Log-PDA algorithm on the
achievable performance of the corresponding IDD scheme.
We demonstrate that, similar to the case of AB-Log-PDA, the
performance of the proposed EB-Log-PDA based IDD scheme
is consistently degraded as the number of inner iterations
within the EB-Log-PDA increases. This is in stark contrast to
PDA detectors invoked in uncoded MIMO systems. Therefore,
we conclude that as far as IDD receivers are concerned, both
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Fig. 1. FEC-coded MIMO system with PDA methods based iterative
detection and decoding receiver. The subscript “1” denotes the processing
modules associated with the “outer” FEC encoder/decoder, and the subscript
“2” denotes the processing modules that are connected with the “inner” space-
time mapper/detector. The arrow with dashed line indicates that s and LD

are the subvectors of s2 and LD2 , respectively.

the EB-Log-PDA detector and the AB-Log-PDA detector [7]
should dispense with their inner iterations. Finally, we show
that the resultant EB-Log-PDA based IDD receiver dispensing
with inner PDA iterations exhibits a performance close to
that of the optimal maximum a posteriori (MAP)-based IDD
scheme, while imposing a significantly lower computational
complexity in the scenarios considered. A more comprehensive
investigation of the relationship between the AB-Log-PDA and
the EB-Log-PDA based IDDs is provided in [8].

II. SYSTEM MODEL

Similar to [7], we consider the FEC-coded spatial multi-
plexing MIMO system of Fig. 1. At the output of the fading
channel H, the received (Nr × 1)-element complex-valued
baseband signal vector per channel use is represented by

y = Hs + n, (1)

where s = [s1, s2, · · · , sNt ]
T is normalized by the component-

wise energy constraint E(|si|2) = Es/Nt in order to ensure a
total transmit energy of Es per channel use, and s does not
contain any additional space-time coding; each symbol si is
taken from a modulation constellation A = {a1, a2, · · · , aM},
where Mb = log2M is the number of bits per symbol; n
is the (Nr × 1)-element zero-mean complex-valued circularly
symmetric Gaussian noise vector having a covariance matrix
of 2σ2INr , where INr represents an (Nr × Nr)-element
identity matrix; and H is an (Nr × Nt)-element complex-
valued matrix with entries of hji, which are perfectly known
to the receiver, j = 1, · · · , Nr, i = 1, · · · , Nt, Nr ≥ Nt.
Similar to [7], in this paper we also assume that hji is subject
to uncorrelated Nakagami-m fading.

III. THE EB-LOG-PDA ALGORITHM FOR IDD RECEIVER

In contrast to the AB-Log-PDA proposed in [7], where the
so-called non-decoupled signal model was used, below we
use the decoupled signal model in order to further reduce the
computational complexity for the scenario of Nr > Nt (see
the complexity comparison results presented in Section V-B
for more details). When relying on the zero-forcing principle

based preprocessing, the received signal model of (1) may be
rewritten as

ỹ = s + ñ = siei +
∑
k ̸=i

skek︸ ︷︷ ︸
ui

+ñ ∆= siei + ui + ñ︸ ︷︷ ︸
vi

, (2)

where we have ỹ = (HHH)−1HHy, ñ = (HHH)−1HHn,
and ei denotes an (Nt×1)-element vector, whose ith element
is equal to one and the other elements are equal to zero, i,
k = 1, 2, · · · , Nt.

For uncoded MIMO systems, where no outer source of
a priori soft information about the transmitted symbols is
available, the existing PDA methods typically use the received
signal y and the channel matrix H as input quantities, and
then generate the estimated symbol-wise nominal APPs of the
transmitted symbols {si}i=1,··· ,Nt

as its output. By contrast,
for FEC-coded MIMO systems, we have an extra input quan-
tity, which is the soft information feedback gleaned from the
outer FEC decoder. In this scenario, because the reliability of
the FEC decoder’s output is typically higher than that of the
soft MIMO detector at the previous stage, some of the key
operations of the proposed EB-Log-PDA are implemented in
the logarithmic domain in order to improve the achievable
numerical stability and accuracy.

Although the interference-plus-noise term vi obeys a multi-
modal Gaussian mixture distribution [7], initially it is plausible
to obtain a coarse estimate of si by assuming that vi obeys
a single Nt-variate Gaussian distribution. It is worth noting
that in the circumstances considered each element of vi is the
sum of only two scalar random variables for any Nt ≥ 2,
hence, according to the central limit theorem, the Gaussian
approximation of vi does not become more accurate when
Nt is increased. This trend is different from that of the non-
decoupled signal model based PDA [7]. In order to fully
characterize the complex random vector vi which is not
necessarily proper [9], [10], we specify the mean of

µi , E(vi) =
∑
k ̸=i

E(sk)ek, (3)

the covariance of

Υi , C(vi) =
∑
k ̸=i

C(sk)ekeTk + 2σ2(HHH)
−1
, (4)

and the pseudo-covariance of

Υi , Cp(vi) =
∑
k ̸=i

Cp(sk)ekeTk , (5)

where the pseudo-covariance of a complex random vector x
is defined as [9], [10]

Cp(x) , E
[
(x − E(x)) (x − E(x))T

]
. (6)

Note that (5) holds, because ñ is a circularly symmetric
complex-valued Gaussian noise vector and hence it is proper
[9], [10].

Considering the IDD architecture, we define an (Nt×M)-
element probability matrix P(z,z′), whose element P (z,z′)

n,m

represents the estimate of the APP that we have sn = am at the
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z-th/z′-th outer/inner iteration of the EB-Log-PDA approach.
More precisely, we have

P (z,z′)
n,m = P (z,z′)

m (sn|ỹ) , P (z,z′)(sn = am|ỹ), (7)

where z and z′ are nonnegative integers, n = 1, · · · , Nt and
m = 1, · · · ,M . Then we have

E(sk) =
M∑
m=1

amP
(z,z′)
m (sk|ỹ), (8)

C(sk) =
M∑
m=1

(am − E(sk))(am − E(sk))∗P (z,z′)
m (sk|ỹ),

(9)
and

Cp(sk) =
M∑
m=1

(am − E(sk))2P (z,z′)
m (sk|ỹ), (10)

for (3), (4) and (5), respectively.

Note that from Eq. (3) to Eq. (10) we effectively use (Nt−1)
probability vectors of {P(z,z′)(k, :)}k ̸=i associated with the
interference signal {sk}k ̸=i to model vi, where P(z,z′)(k, :)
represents the kth row of the matrix P(z,z′). Since we do not
have any outer a priori knowledge about the distribution of
sn|ỹ at the beginning, P (z,z′)

m (sn|ỹ) is initialized using the
uniform distribution of

P (0,0)
m (sn|ỹ) =

1
M
, (11)

for ∀n = 1, · · · , Nt and ∀m = 1, · · · ,M .

Based on the assumption that vi obeys the Gaussian distri-
bution, ỹ|si is also Gaussian distributed. We define

w , ỹ − siei −
∑
k ̸=i

E(sk)ek (12)

and

α
(z,z′+1)
i,m , −

[
ℜ(w)
ℑ(w)

]T
Λ−1
i

[
ℜ(w)
ℑ(w)

]
, (13)

where the composite covariance matrix Λi is defined as

Λi
∆=

[
ℜ (Υi + Υi) −ℑ (Υi − Υi)
ℑ (Υi + Υi) ℜ (Υi − Υi)

]
, (14)

where ℜ(·) and ℑ(·) represent the real and imaginary part of
a complex variable, respectively. Then the likelihood function
of ỹ|si = am at the (z, z′ + 1)-st iteration satisfies

p(z,z′+1)
m (ỹ|si) ∝ exp

(
α

(z,z′+1)
i,m

)
. (15)

In the next step, the existing PDA methods employed in
uncoded MIMO systems typically invoked an approximate
form of the Bayes’ theorem to estimate the symbol APPs [1]–
[7], which is

P(z,z′+1)
m (si|ỹ) ≈ p

(z,z′+1)
m (ỹ|si)

M∑
m=1

p
(z,z′+1)
m (ỹ|si)

. (16)

However, we argue that (16) does not conform to the formal

mathematical definition of the APP in Bayes’ statistics,1 which
is [11]

P (θ|X) ∝ P (θ)P (X|θ), (17)

where the probability P (θ) is an a priori belief of the random
variable θ, and P (X|θ) is the likelihood of the observation
X . Therefore, P(z,z′+1)

m (si|ỹ) calculated with the aid of (16)
does not represent the true APPs, but instead the normalized
likelihoods, which may be regarded as a type of nominal APPs.

To obtain the true APP of symbol si at the (z, z′ + 1)-st
iteration of the PDA-aided IDD receiver, we advocate to use
the exact form of the Bayes’ theorem. Hence the true APP
estimated at the output of the PDA method is given as

P (z,z′+1)
m (si|ỹ)

=
p
(z,z′+1)
m (ỹ|si)P (z,z′)

m (si)
M∑
m=1

p
(z,z′+1)
m (ỹ|si)P (z,z′)

m (si)

=
exp

(
β

(z,z′+1)
i,m − γ

)
M∑
m=1

exp
(
β

(z,z′+1)
i,m − γ

) , (18)

where P (z,z′)
m (si) is the a priori probability generated from

the extrinsic LLRs fed back by the soft FEC decoder, and
β

(z,z′+1)
i,m , α

(z,z′+1)
i,m + ln

(
P

(z,z′)
m (si)

)
. Note that γ ,

max
m=1,··· ,M

β
(z,z′+1)
i,m is introduced for further improving the

numerical stability and accuracy. For the same reason, (18)
is reformulated in the logarithmic domain as

ψ
(z,z′+1)
i,m

, ln
(
P (z,z′+1)
m (si|ỹ)

)
= β̃

(z,z′+1)
i,m − ln

(
M∑
m=1

exp
(
β̃

(z,z′+1)
i,m

))
, (19)

where we have β̃
(z,z′+1)
i,m , β

(z,z′+1)
i,m − γ, and the second

term of the right-hand-side expression may be computed by
invoking the “Jacobian logarithm’ of [12]. When invoking the
Max-log approximation, (19) may be further simplified as

ψ
(z,z′+1)
i,m ≈ β̃

(z,z′+1)
i,m − max

m=1,··· ,M
β̃

(z,z′+1)
i,m = β̃

(z,z′+1)
i,m . (20)

As a result, the estimated symbol APP of si is given by

P (z,z′+1)
m (si|ỹ) ≈ eψ

(z,z′+1)
i,m , (21)

which will be used for replacing the corresponding element
P

(z,z′)
m (si|ỹ) in the probability matrix P(z,z′). Based on these

updated symbol APPs, the procedure presented above may be
repeated either in the next inner iteration within the PDA or
in the next outer iteration exchanging extrinsic information
between the FEC-decoder and the MIMO detector to obtain
new estimates of the symbol APPs.

For the sake of clarity, the EB-Log-PDA algorithm relying

1For the sake of clarity, here we use P() to denote the symbol probabilities
estimated using the approximate Bayes’ formula given by (16), while using
P () to represent ordinary probabilities otherwise.
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TABLE I
SUMMARY OF THE EB-LOG-PDA ALGORITHM

Given the received signal y, the channel matrix H and the modulation constellation

A, make preprocessing on the received signal y to obtain ỹ = (HHH)−1HHy.

Step 1. Set the initial value of the inner iteration index to z′ = 0. If the outer

iteration index z = 0, initialize the values of the symbol APPs as

P (z,z′)
m (sn|ỹ) = 1/M , for ∀n = 1, 2, · · · , Nt and ∀m = 1, 2, · · · ,M .

Otherwise, initialize the values of P (z,z′)
m (sn|ỹ) using the a priori probabilities

generated from the feedback extrinsic LLRs of the soft FEC decoder.

Step 2. Based on the values of
n

P(z,z′)(k, :)
o

k ̸=i
, calculate P (z,z′+1)

m (si|ỹ):

for i = 1 : Nt

calculate the statistics of the interference-plus-noise term vi using (3) - (10),

as well as the inverse of Λi in (14),

for m = 1 : M

calculate P (z,z′+1)
m (si|ỹ) using (12), (13), (19) and (21).

end

end

Step 3. If |P (z,z′+1)
m (si|ỹ) − P (z,z′)

m (si|ỹ)| < ε, ∀i and ∀m, i.e. the

probability-matrix P(z,z′+1) has converged, where ε is a given small positive real

number, or the index z′ has reached a given number of iterations, terminate the

iteration and output P(z,z′+1). Otherwise, let z′ = z′ + 1 and return to Step 2.

on the a priori soft information feedback gleaned from the
outer FEC decoder is summarized in Table I.

IV. EXTRINSIC LLR CALCULATION FOR EB-LOG-PDA
For ease of exposition, in the following we will denote

the left-hand-side term of (18) as P (si = am|y). Proposi-
tion 1 of [7] demonstrated that the classic candidate-search
based approach of calculating the extrinsic LLRs [12] is not
applicable to the family of PDA algorithms. However, as a
beneficial result of replacing (16) by (18), the extrinsic LLRs
may be calculated according to the canonical relationship by
subtracting the a priori LLRs from the a posteriori LLRs that
are generated from the estimated symbol APPs of the EB-Log-
PDA detector, hence we have

LEBE (bil|y) = LD(bil|y) − LA(bil)

= ln
P (bil = +1|y)
P (bil = −1|y)

− LA(bil)

= ln

∑
∀am∈A+

l

P (si = am|y)∑
∀am∈A−

l

P (si = am|y)

− ln
P (bil = +1)
P (bil = −1)︸ ︷︷ ︸
LA(bil)

, (22)

where A±
l denotes the set of M/2 constellation points whose

lth bit is +1 or −1, respectively. It is noteworthy that com-
pared to the candidate-search based method, (22) represents
a simpler technique of generating the bit-wise extrinsic LLRs
LEBE (bil|y), as long as the true symbol APPs of P (si = am|y)
may be obtained.

Unfortunately, this approach is not applicable to the con-
ventional approximate Bayes’ theorem based PDA methods
[1]–[7]. Our study reveals that the estimated symbol-wise
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Fig. 2. BER of the AB-Log-PDA based IDD scheme, where the nominal
symbol APPs were misinterpreted as the true symbol APPs.

nominal APPs obtained from (16) are unsuitable for gener-
ating the correct bit-wise extrinsic LLRs upon invoking the
classic formula (22). This hidden fact is corroborated by the
simulation results of Fig. 2. In the scenarios where the number
of outer iterations ito was set to be higher than zero, it was
observed in Fig. 2 that the BER results of the IDD scheme
using the AB-Log-PDA and (22) became abnormally poor,
when the symbol-wise nominal APPs produced by (16) were
misinterpreted as symbol-wise true APPs. More specifically,
we can observe from Fig. 2 that except for ito = 0, the
BER of the AB-Log-PDA based IDD scheme unexpectedly
degrades upon increasing Eb/N0, and it also deteriorates
when ito increases from 1 to 4. The BER curve of the
ito = 0 scenario characterized in Fig. 2 exhibits a trend
in line with our expectations, because in this case no soft
information is fed back from the FEC decoder and hence the
term P

(z,z′)
m (si) in (18) can be eliminated. In other words,

(16) becomes equivalent to (18) in this scenario. These results
further demonstrate that (16) should be regarded as a sort of
symbol-wise nominal APP, rather than the symbol-wise true
APP, as calculated in (18). As a result, we argue that in order to
generate the correct symbol APPs, which are readily applicable
to (22), the calculation of P (z,z′+1)

m (si|ỹ) has to rely on (18)
instead of (16) in the PDA based MIMO detector.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we characterize the convergence behavior
and the achievable performance of the proposed EB-Log-
PDA based IDD scheme with the aid of both the semi-
analytical extrinsic information transfer (EXIT) charts [13]
and Monte-Carlo simulations. Furthermore, we investigate the
impact of inner PDA iterations on the attainable performance
of the EB-Log-PDA based IDD scheme. Additionally, the
complexity of the proposed EB-Log-PDA based IDD scheme
is compared with that of both the AB-Log-PDA and the
optimal MAP based IDD schemes, which demonstrates the
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attractive performance versus complexity tradeoff achieved by
the proposed EB-Log-PDA based IDD scheme.

The turbo code employed uses two constituent recursive
systematic convolutional (RSC) codes concatenated in parallel
[14]. The RSC codes have a constraint length of L = 3 and
generator polynomials of (7, 5) expressed in octal form, where
half of the parity bits generated by each of the two RSC
codes are punctured, so that the turbo code employed has a
coding rate of R = k

n = 1/2. The turbo code is decoded by
the Approximate-Log-MAP algorithm using ittc = 4 inner
iterations. The interleaver employed is a 2400-bit random
sequence interleaver. The remaining scenario-dependent sim-
ulation parameters are shown in the respective figures, where
the MIMO arrangement is represented as (Nt ×Nr).
A. Convergence and Performance of EB-Log-PDA based IDD

Fig. 3 compares the convergence behavior of both the
proposed EB-Log-PDA based IDD, as well as of the AB-Log-
PDA based IDD and of the optimal Exact-Log-MAP based
IDD schemes using EXIT chart [13] analysis. It is observed
that the EXIT curve of the EB-Log-PDA is close to that of the
Exact-Log-MAP, and almost overlaps with that of the AB-Log-
PDA. More particularly, when the a priori mutual information
(MI) is IA,inner = 0, the Exact-Log-MAP has the highest
extrinsic MI of IE,outer = 0.5596, while the EB-Log-PDA
has a higher extrinsic MI than the the AB-Log-PDA, which is
IE,outer = 0.5334 versus IE,outer = 0.5332. This indicates
that the achievable performances of the EB-Log-PDA and
of the AB-Log-PDA are similar to each other, and both of
them are close to that of the optimal Exact-Log-MAP in the
scenario considered. Additionally, the Monte-Carlo simulation
based detection/decoding trajectories indicate that all the three
IDD schemes converge after three iterations. Furthermore, the
performance improvements achieved at each iteration by the
EB-Log-PDA are more significant than those of the AB-Log-
PDA, but less significant than those of the Exact-Log-MAP.

The above EXIT chart based performance predictions and
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Fig. 5. Impact of the number of inner iterations within the EB-Log-PDA on
BER of the EB-Log-PDA based IDD scheme.

the convergence behavior of the IDD schemes considered are
also characterized in terms of the BER performance results
of Fig. 4, where the Nakagami-m fading parameter is set to
m = 1.5. Observe from Fig. 4 that the performance of the EB-
Log-PDA based IDD scheme is improved upon increasing the
number of outer iterations ito, where ito = 0 represents the
conventional receiver structure in which the MIMO detector
and the FEC decoder are serially concatenated, but operate
without exchanging soft information. However, the attainable
improvements become gradually smaller and the performance
achieved after three outer iterations in Fig. 4 becomes similar
to that of four outer iterations. This implies that the EB-Log-
PDA based IDD scheme essentially converges after three outer
iterations. A similar convergence profile is also observed in
Fig. 4 for the optimal Exact-Log-MAP based IDD, although
its performance is always marginally better than that of the
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corresponding EB-Log-PDA based IDD.
In Fig. 5, we investigate the impact of the number of inner

iterations of the EB-Log-PDA on the achievable performance
of the IDD scheme. We observe that the performance of the
IDD scheme is degraded as the number of its inner iterations
increases, despite its increased computational complexity. This
implies that the optimal number of inner iterations of the EB-
Log-PDA conceived for the IDD receiver is iti = z′ = 0.
This is because the inner PDA iterations typically fail to assist
the iterative Gaussian approximation process in finding the
global optimum [5]. Hence, when the reliability of the soft
information fed back from the FEC decoder is beyond the
reliability limit that the inner iteration aided PDA can achieve,
the better-quality feedback of the FEC decoder tends to be
degraded towards this limit. Therefore, we conclude that it is
not recommended to incorporate inner iterations into the EB-
Log-PDA algorithm, when designing the EB-Log-PDA IDD
scheme.

B. Complexity Comparison

The computational complexity of the proposed EB-Log-
PDA based IDD scheme may be evaluated by simply com-
paring its complexity to those of the AB-Log-PDA and the
Exact-Log-MAP based IDDs in a single (outer) iteration. This
is because 1) the turbo codec module is common to all the IDD
schemes considered; 2) we have shown that the EB-Log-PDA,
as well as the AB-Log-PDA and the Exact-Log-MAP based
IDD schemes all converge after three outer iterations in the
scenarios considered; 3) the PDAs’ inner iterations should not
be invoked when designing IDD schemes. As shown in Table I,
the major computational cost of the EB-Log-PDA per transmit
symbol is the calculation of Λ−1

i and the matrix multiplication
of (13). By using the Sherman-Morrison-Woodbury formula
based complexity-reduction techniques of [1], the computa-
tional cost of calculating Λ−1

i can be reduced to O(4N3
t ) real

operations per iteration. Additionally, the calculation of (13)
requires O(4MN3

t + 2MN2
t ) real operations per iteration.

In summary, in terms of real operations, the computational
complexity of the decoupled signal model based EB-Log-PDA
method is O(4MN3

t +2MN2
t ) + O(4N3

t ) per outer iteration,
which is not related to the number of receive antennas Nr,
as opposed to the IDD scheme using the non-decoupled
signal model based AB-Log-PDA, which has a computational
complexity of O(4MNtN

2
r + 2MNtNr) + O(4NtN2

r ) per
outer iteration [7]. This implies that the decoupled model
based EB-Log-PDA has a lower computational complexity
than the non-decoupled model based AB-Log-PDA in the
scenario of Nr > Nt, which is particularly important, because
Nr > Nt is a typical configuration for spatial multiplexing
based MIMO systems.

By comparison, the Exact-Log-MAP algorithm has to cal-
culate the Euclidean distance of ∥y − Hs∥2

MNt times
per bit per outer iteration [12], hence its complexity order
is O(MNtNt log2M) per outer iteration. More specifically,
the evaluation of ∥y − Hs∥2 requires O(4NrNt + 6Nr)
real operations. Therefore, the Exact-Log-MAP algorithm
has an exponentially increasing computational complexity of
O[MNtNt log2M(4NrNt + 6Nr)] real operations per outer

iteration, which is significantly higher than that of the EB-
Log-PDA, especially when Nt, Nr and M have large values.

VI. CONCLUSIONS

In contrast with the existing approximate Bayes’ theorem
based PDA algorithms, we showed in this paper that the
estimated symbol probabilities at the output of the proposed
EB-Log-PDA exhibit similar characteristics to the true APPs,
hence they are readily applicable to the classic IDD architec-
ture of M -ary modulation aided MIMO systems. Additionally,
we demonstrated that, similar to the case of the AB-Log-PDA
proposed in our previous work [7], introducing inner iterations
within the EB-Log-PDA also degrades the IDD receiver’s
performance despite significantly increasing the overall com-
putational complexity of the IDD receiver, which implies that
the optimal number of inner iterations of the EB-Log-PDA
is zero as well when it is invoked in IDD receivers. Finally,
the IDD scheme based on the proposed EB-Log-PDA using
no inner PDA iterations is shown to achieve a comparable
performance to that of the optimal MAP detector based IDD
receiver, while imposing a significantly lower computational
complexity in the scenarios considered.
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