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Abstract: Two Bayesian optimal design criteria for hierarchical linear models are discussed –

the ψβ criterion for the estimation of individual-level parameters β, and the ψθ criterion for

the estimation of hyperparameters θ. While the ψβ criterion involves only the specification

of the treatments, the ψθ criterion involves the specification of both the treatments and the

covariates. We focus on a specific case in which all subjects receive the same set of treat-

ments and the covariates are independent of treatments. We obtain the explicit structure of

ψβ- and ψθ- optimal continuous (approximate) designs for both the situation of independent

random effects and some special situations of correlated random effects. Through examples

and simulations we then compare ψβ- and ψθ-optimal designs under more general scenarios

of correlated random effects. While orthogonal designs are often ψβ-optimal even when the

random effects are correlated, ψθ-optimal designs tend to be nonorthogonal and unbalanced.

In our study of the robustness of ψβ- and ψθ-optimal designs, both types of designs are found

to be insensitive to various specifications of the response errors and the variances of the ran-

dom effects. However, they are sensitive to the specifications of the signs of the correlations

of the random effects, especially the ψθ-optimal designs. Resulting implications for practical

applications are discussed.

Key words and phrases: Bayesian Design, D-optimality, Design Robustness, Random Effects

Model, Hierarchical Linear Model, Hyperparameter.

1 Introduction

Over the past two decades, various forms of hierarchical models have been used in a wide

variety of fields such as the social and behavioral sciences, agriculture, education, medicine,

healthcare studies, and marketing. These models have been used under the terminology

of “multi-level models”, “mixed-effects models”, “random-effects models”, “population

models”, “random-coefficient regression models” and “covariance components models”

(see a review by Raudenbush and Bryk, 2002).
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Hierarchical models consist of at least two levels by definition. In a two-level hierar-

chical model commonly seen in the literature, parameters in the first level of the hierarchy

capture individual-level effects, which are assumed to be random and the probability dis-

tribution of the random effects is characterized by the hyperparameters in the second-level

of the hierarchy (see Section 2). Hyperparameters may reflect population characteristics

(“population parameters”), for example, the mean and dispersion of the effects of a new

drug on patients in a certain population (see Yuh et al., 1994); or may reflect the effects

of various covariates which drive the individual-level effects, such as the effect of exposure

to language on vocabulary growth of a child (Huttenlocher et al., 1991), and the effects of

consumer demographics on consumer sensitivity to the product feature change (Allenby

and Ginter, 1995).

In situations such as direct marketing, which focuses on individual customization of

products, it is important to have accurate information on individual-level effects. In other

situations, such as those in pharmacokinetics where population parameters are of interest,

or in situations where predictions of consumer preferences in a new target population

are required, accurate estimation of hyperparameters is important as these capture the

population characteristics, and enable predictions to new contexts.

Extant research on efficient designs under hierarchical linear models has focused

mainly on non-Bayesian (local) designs that assume fixed values for the variance and

covariance parameters. For example, for the estimation of hyperparameters, Giovagnoli

and Sebastiani (1989) used a local design criterion that allows for different emphasis on

the estimation of the mean and variance for a special case of the hierarchical linear model

– the one-way random effects model with one single factor or predictor variable. Lenk

et al. (1996) investigated the tradeoff between the number of subjects in a survey set-

ting and the number of questions per subject under a cost constraint and an orthogonal

design structure, assuming independent, identically distributed random effects. Fedorov

and Hackl (1997, pg. 78) derived a necessary and sufficient condition for a design to be

optimal under a hierarchical linear model with random effects that may be correlated.

Some examples of optimal one-factor designs were given by Entholzner et al. (2005) in

the correlated setting and some optimal two-factor designs in the uncorrelated setting.

Bayesian designs for hierarchical linear models that take into account of the uncer-

tainty of the model parameters were investigated by Smith and Verdinelli (1980) for the

estimation of individual-level effects under the one-way random effects model. Using the
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same model, Lohr (1995) derived optimal Bayesian designs for the estimation of the ratio

of the variance components. Liu, Dean and Allenby (2007) investigated Bayesian designs

for the joint estimation of the mean and covariance matrix of the random effects for the

general form of the hierarchical linear model with multiple predictor variables.

In this paper, we treat the covariance matrix of the random effects as nuisance pa-

rameters and focus our attention on two types of Bayesian designs under the general form

of the hierarchical linear model – one for the estimation of the individual-level effects for

each respondent, and the other for the estimation of the effects of the covariates. When

there are no covariates, the latter criterion becomes the criterion for estimating the mean

of the random effects (i.e., population mean). Comparisons between the two types of

Bayesian designs suggest that they are quite different from each other when the random

effects are correlated (see Sections 6 and 7). For the designs investigated in this paper,

a fixed number of observations per subject is assumed, as seen in survey studies where

survey questions are designed given a fixed length of the questionnaire.

The paper is organized as follows. In Section 2, we describe the hierarchical linear

model used in this paper. In Section 3, we specify the two Bayesian design criteria

investigated — the ψβ criterion for the estimation of individual-level parameters βi for

respondent i, and the ψθ criterion for the estimation of the hyperparameter vector θ.

We discuss the issue of experimenter-controlled covariates briefly in Section 4. Then, in

Section 5 and later, we focus our attention on the special scenario when all subjects receive

the same treatments and the covariates are independent of the treatments. In Section 6,

we derive forms of optimal continuous (approximate) designs under the ψβ and the ψθ
criteria for both the situation of independent random effects and some specific situations

of correlated random effects. For more general situations, ψβ- and ψθ-optimal exact designs

are examined through examples in Section 7. Design robustness is investigated in Section 8

under different specifications of the response errors and of the covariance matrix of the

random effects. We end the paper with conclusion and discussion in Section 9.

2 The Model

We take a hierarchical linear model of the following form:

yi|βi, σ2
i ∼ Nmi(Xiβi, σ

2
i Imi), (2.1)

βi|θ,Λ ∼ Np(Ziθ,Λ), (2.2)
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where responses of subject i (i = 1, . . . n) are represented by the vector yi of length mi,

corresponding to the mi × p model matrix Xi, which depends upon the treatments (or

stimuli) allocated to the subjects. The effects of the stimuli on respondent i are captured

by the p elements in vector βi, which are assumed to be random effects that are distributed

according to a multivariate normal distribution with p× p covariance matrix Λ and mean

Ziθ where Zi is a p× q matrix of covariates, such as household income and age, and θ is

the corresponding parameter vector of length q.

The following diffuse conjugate priors are often assumed for θ and σ2
i , corresponding

to weak prior knowledge in data analysis (see, for example, Rossi et al., 2005):

θ ∼ Normal(0q, 100Iq), σ2
i ∼ Inverse Gamma(1.5, 0.5). (2.3)

These are replaced by more informative priors when information is available. There have

been some discussions on the appropriate diffuse prior to use for Λ. The standard Jef-

ferey’s prior is not recommended due to the inadequacies of the Jefferey’s prior in higher

dimensions (see Yang and Berger, Section 2.2, 1994, for more details and references). The

Inverted Wishart prior has also been criticized for being inadequate because it only allows

one degree-of-freedom or shape parameter for all components of the covariance matrix

(see, for example, Daniels and Kass, 1999). More flexible priors have been proposed based

on various decompositions of the covariance matrix, such as the reference prior by Yang

and Berger (1994) based on the spectral decomposition of the covariance matrix, or pri-

ors based on the cholesky decomposition of the covariance matrix (Pinheiro and Bates,

1996) or of the inverse of the covariance matrix (Pourahmadi, 1999, 2000). In this paper,

we follow Barnard, McCulloch and Meng (2000) and break the covariance matrix down

to components of variances vii and correlations rij = rji, corresponding to covariances

vij = rij
√
viivjj for i < j, i, j ∈ {1, 2, . . . , p}. We assume Inverse Gamma distributions

on the variance components vii and allow for different degrees of freedom. Correlation

components rij are assumed to follow a jointly Uniform prior, where the support regions

of the components are sequentially determined to ensure a positive-definite covariance

matrix Λ (see Barnard et al., 2000, for details). Let R = {rij} and let f(R) denote the

probability density function of R. The priors we are using for components of Λ can then

be expressed as

vii ∼ Inverse Gamma(ai, bi), f(R) ∝ 1. (2.4)
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3 Bayesian Design Criteria

We consider two Bayesian design criteria for the hierarchical linear model specified in

(2.1) and (2.2). In Section 3.1, we define the Bayesian D-criterion for the estimation

of individual-level effects βi for subject i. In Section 3.2, we define the Bayesian D-

criterion for the estimation of the hyperparameter vector θ where the covariates Zi can

be controlled by the experimenter. To distinguish between the two criteria and from the

traditional non-Bayesian D-criteria, we call the criterion in Section 3.1 the ψβ criterion,

and call the criterion in Section 3.2 the ψθ criterion.

Following Chaloner (1984, page 284), we define each design criterion as the minimiza-

tion of the pre-posterior risk (see Berger, 1985) where the posterior loss is defined based

on the posterior conditional distribution of the corresponding parameter of interest given

nuisance parameters, as shown in (3.1) and (3.6), respectively. While the ψβ criterion

only involves the specification of the treatments which determines the model matrix Xi,

the ψθ criterion involves the specification of both the treatments and the covariates which

may or may not be independent of each other.

3.1 ψβ criterion for estimation of βi

In this section, we consider the situation where interest is in the accurate estimation of

individual-level effects βi for subject i, while all other parameters are considered to be

nuisance parameters. This occurs when there is a focus on the individual customization

of products, such as direct marketing. We define the ψβ criterion as follows. Let di be

the design allocated to subject i, with corresponding mi × p model matrix Xi. We seek a

design for subject i that minimizes the pre-posterior risk

Eθ,Λ,σ2
i
Eβi|θ,Λ,σ2

i

{
log
∣∣IGFIM (βi|Xi,Zi,θ,Λ, σ2

i )
∣∣−1/p

}
, (3.1)

where the expectation is taken over the prior distributions of θ, Λ, and σ2
i . The IGFIM is

the generalized Fisher Information matrix (see Ferreira, 1981) which, under the assump-

tions of normality, is obtained by taking the negative expectation of the second derivative

of the logarithm of the posterior density function, that is,

IGFIM (βi|Xi,Zi,θ,Λ, σ2
i ) = −E

[
∂2 log f(βi|yi,Xi,Zi,θ,Λ, σ2

i )
∂βiβ

′
i

]
, (3.2)

where β′i is the transpose of βi. Since the posterior f(βi|yi,Xi,Zi,θ,Λ, σ2
i ) is a nor-

mal density function with covariance matrix (σ−2
i X′iXi + Λ−1)−1 and mean (σ−2

i X′iXi +
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Λ−1)−1(σ−2
i X′iyi + Λ−1Ziθ) (see, for example, Chapter 2, Rossi et al., 2005), we have

IGFIM (βi|Xi,Zi,θ,Λ, σ2
i ) = σ−2

i X′iXi + Λ−1,

which does not depend on θ. Therefore, (3.1) simplifies to∫ {
log
∣∣σ−2
i X′iXi + Λ−1

∣∣−1/p
}
f(Λ)f(σ2

i )dΛdσ
2
i , (3.3)

where f(Λ) and f(σ2
i ) are the prior probability density functions of Λ and σ2

i , respectively.

An optimal ψβ design is a design that minimizes (3.3). Equivalently, since the number of

parameters p in vector βi is fixed for any given experiment in this paper, an optimal ψβ
design is a design that maximizes∫

log
∣∣σ−2
i X′iXi + Λ−1

∣∣ f(Λ)f(σ2
i )dΛdσ

2
i , (3.4)

for each i = 1, . . . , n. Note that the ψβ criterion function (3.4) only involves the model

matrix Xi and does not depend on the covariates matrix Zi.

3.2 ψθ criterion for estimation of hyperparameter θ

In this section, we consider the situation where interest is in the effects θ, of covariates,

with the dispersion parameters Λ and σ2
i regarded as nuisance parameters. When there

are no covariates, i.e., when Zi = I, θ simply captures the mean of the random effects βi.

In this setting, the two layers (2.1) and (2.2) of the hierarchical model can be combined

to obtain

yi|θ,Λ, σ2
i ∼ Nmi(XiZiθ, Σi = σ2

i Imi + XiΛX′i) , (3.5)

(see Lenk et al., 1996, pg 187). Diffuse priors (2.3) and (2.4) are used in this paper for θ,

σ2
i , and Λ, i = 1, . . . , n.

Let D(m1, . . . ,mn) be a class of designs d̃ = (d1, . . . , dn), where di is the mi-point

sub-design allocated to subject i. When m1 = m2 = . . . = mn, we write D(m). For a

given d̃ = (d1, . . . , dn), define X̃′ = (X′1, . . . ,X
′
n) and Z̃′ = (Z′1, . . . ,Z

′
n), where Xi is the

mi × p model matrix corresponding to di and Zi is the corresponding p × q matrix of

covariates. Under the ψθ criterion, we seek a design d̃∗ in D(m1, . . . ,mn) that minimizes

the pre-posterior risk

Eθ,Λ,ς

{
log
∣∣∣IGFIM (θ|X̃, Z̃,Λ, ς)

∣∣∣−1/q
}
, (3.6)
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where ς = (σ2
1, . . . , σ

2
n)′. Since the posterior distribution of θ given Λ and ς is normal

with mean vector

(
n∑
i=1

Z′iX
′
iΣ
−1
i XiZi + D−1

0 )−1(
n∑
i=1

Z′iX
′
iΣ
−1
i yi + D−1

0 θ0),

and covariance matrix

(
n∑
i=1

Z′iX
′
iΣ
−1
i XiZi + D−1

0 )−1, where Σi = σ2
i Imi + XiΛX′i

(see Chapter 2, Rossi et al., 2005), we have

IGFIM (θ|X̃, Z̃,Λ, ς) =
n∑
i=1

Z′iX
′
iΣ
−1
i XiZi + D−1

0 ,

where θ0 and D0 are the prior mean and covariance matrix of the hyperparameter vector

θ. Therefore, (3.6) simplifies to

∫ log

∣∣∣∣∣
n∑
i=1

Z′iX
′
iΣ
−1
i XiZi + D−1

0

∣∣∣∣∣
−1/q

 f(Λ)f(ς)dΛdς. (3.7)

Since for a given experiment we assume that the number of parameters q in vector θ is

fixed so that the dimension of the covariates Zi is fixed for each subject i, an optimal ψθ
design is a design that maximizes∫

log

∣∣∣∣∣
n∑
i=1

Z′iX
′
iΣ
−1
i XiZi + D−1

0

∣∣∣∣∣ f(Λ)f(ς)dΛdς. (3.8)

In this paper, we assume the diffuse prior in (2.3) for θ where D−1
0 = (100Iq)−1. When

the diffuse prior is used, or when the number of subjects n is large, the influence of the

prior information becomes negligible, an approximation to (3.8) is∫
log

∣∣∣∣∣
n∑
i=1

Z′iX
′
iΣ
−1
i XiZi

∣∣∣∣∣ f(Λ)f(ς)dΛdς. (3.9)

An optimal ψθ design is a design that maximizes (3.8) or (3.9) depending on how infor-

mative and influential the prior is. In this paper, we use (3.9).
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4 Controlled Covariates Zi

The ψβ criterion in (3.4) requires the search for optimal design di which involves the

specification of the model matrix Xi. This search is done separately for each i = 1, . . . , n.

However, the ψθ criterion in (3.9) requires the search for optimal design d̃ = (d1, . . . , dn)

which involves the specifications of both the set of model matrices {Xi} and the set of

matrices of covariates {Zi}, i = 1, . . . , n.

When experimenters do not have control over the sampling of the subjects which

determines the set of matrices of covariates, such as when subjects are pre-designated or

scarce, the covariates need to be taken as given in the ψθ criterion. However, as often in

survey studies, experimenters do have control over the sampling of the subjects on the

basis of the covariates such as gender and age, in addition to the control over the treatment

allocation which determines the model matrices.

In this section, we consider this situation in which both the treatment allocation and

the selection of covariates can be controlled. First, consider the situation in which Xi

and Zi can be determined independently of each other. For example, if the covariates

consist of the age ai and household income hi for each respondent i, these values remain

constant for all responses from respondent i and do not depend on the survey questions

asked. Therefore, Zi can be expressed as z′i ⊗ Ip, where ⊗ denotes Kronecker product,

and z′i = [1, ai, hi]. So,

Zi = [Ip, aiIp, hiIp] = z′i ⊗ Ip. (4.1)

The hyperparameter vector θ in (2.2) is then of length q = 3p. Here, the first set of p

hyperparameters corresponds to the first p columns of Zi in (4.1), that is, the p columns

of Ip, and captures the general mean of the random effects βi; the second set of p hy-

perparameters corresponds to the p columns of aiIp in (4.1) and captures the influence

of respondent age ai on βi; the third set of p hyperparameters in θ corresponds to the

p columns of hiIp and captures the influence of household income hi on βi. Using (4.1),

and noting that X′iΣ
−1
i Xi is a p× p matrix, the integrand of (3.9) becomes

log
∣∣∣ n∑
i=1

[
(z′i ⊗ Ip)′X′iΣ

−1
i Xi(z′i ⊗ Ip)

]∣∣∣ = log
∣∣∣ n∑
i=1

[
(ziz′i)⊗ (X′iΣ

−1
i Xi)

]∣∣∣, (4.2)

where Σi = σ2
i Imi + XiΛX′i.

When Xi and Zi cannot be determined independently but are linked, Zi cannot be
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written in the form of (4.1) and computer search algorithms need to be used to find the

optimal combination of Xi and Zi. An example of this situation is studied in Liu et al.

(2009) in the modeling of the level-effect in marketing research.

5 Special Case of Xi = X, σ2
i = σ2 and Zi Independent of X

In the remainder of this paper, we focus on the special case where

(i) every subject receives the same design so that Xi = X, and mi = m

(ii) the response errors are homoscedastic so that σ2
i = σ2, and

(iii) Zi independent of X.

Note that when p = q and Zi = Ip, the hyperparameter vector θ captures the population

characteristics.

ψβ criterion In the special case of (i), (ii), (iii), the ψβ criterion involves the search of

an m-point design in D(m) with model matrix X that maximizes the integral (3.4) which

becomes ∫
log
∣∣σ−2X′X + Λ−1

∣∣ f(Λ)f(σ2)dΛdσ2. (5.1)

ψθ criterion In the special case of (i), (ii), (iii), the covariates matrix Z̃′ = (Z′1, . . . ,Z
′
n)

is determined independently of X. Equation (4.2) simplifies to

log
∣∣∣[ n∑
i=1

(ziz′i)⊗ (X′Σ−1X)
]∣∣∣ = log

{∣∣∣X′Σ−1X
∣∣∣q/p∣∣∣ n∑

i=1

(ziz′i)
∣∣∣p}

= q
p log

∣∣∣X′Σ−1X
∣∣∣+ p log

∣∣∣ n∑
i=1

(ziz′i)
∣∣∣, (5.2)

where the second equality follows from Graybill (1983, Theorem 8.8.10). By (5.2), with

the independence of zi and X, and given the number of parameters p and q, the max-

imization of the ψθ design criterion function in (3.9) is achieved through the individual

maximization of log|
∑n

i=1(ziz′i)| and
∫

log|X′Σ−1X|f(Λ)f(ς)dΛdς. For the maximiza-

tion of log|
∑n

i=1(ziz′i)|, the classical fixed-effects D-optimal design theory applies (see, for

example, Chapter 10 and 11, Atkinson and Donev, 1992). We will therefore focus on the

maximization of
∫

log|X′Σ−1X|f(Λ)f(ς)dΛdς for the ψθ criterion. So, the ψθ criterion

in this special case involves the search of a design in D(m) with model matrix X that
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maximizes ∫ {
log
∣∣∣X′(σ2Im + XΛX′)−1X

∣∣∣} f(Λ)f(σ2)dΛdσ2, (5.3)

due to (4.2), (5.2), and Σ = σ2Im + XΛX′. We restrict our search to those designs with

nonsingular X′X so that the data inform the entire posterior distribution of θ under vague

prior assumptions. Lemma 1 gives an alternative form of (5.3) which is more convenient

to use in a search for a ψθ optimal design. The proof follows from Morrison (1990, page

69) by letting A = σ2Im, B = X, C = Λ and noting that Ip = (Λ−1 +σ−2X′X)−1(Λ−1 +

σ−2X′X).

Lemma 1. Under (i), (ii), (iii), the ψθ optimal design maximizes∫
log
(

1
|σ2(X′X)−1 + Λ|

)
f(Λ)f(σ2)dΛdσ2. (5.4)

Note that our Bayesian design criteria ψβ and ψθ nest the corresponding non-Bayesian

criteria which can be considered as special cases when the prior distributions of Λ and

σ2 are degenerate. For example, when Λ and σ2 are fixed, our ψθ criterion is equivalent

to the minimization of
∣∣(X′X)−1 + (Λ/σ2)Ip

∣∣, which is the non-Bayesian criterion used

by Fedorov and Hackl (1997, Equation 5.2.6), who obtained the necessary and sufficient

condition for optimal designs under this criterion. It is also the “mixed-effects model D-

criterion” used by Entholzner et al. (2005) who examined optimal designs for the special

cases of one or two-factor designs.

6 Theoretical Results on ψβ- and ψθ-Optimal Designs

In this section we identify ψβ-optimal designs and ψθ-optimal designs, respectively, for

both the case of independent random effects and some special cases of correlated random

effects under assumptions (i) to (iii) in Section 5. It is difficult to obtain theoretical

results on optimal designs in a space of discrete design points. Consequently, we follow

the strategy of Silvey (1980), Pukelsheim (1993, page 26), and others and first obtain

results in a continuous space where fractions of an observation are allowed at any given

design point.

6.1 ψβ and ψθ criteria

Let η be a continuous design measure in the class of probability distributions H on the

Borel sets of X , a compact subset of Euclidean p-space (Rp) that contains all possible
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design points. In this continuous space, we have X′X = m
∫

xx′dη(x), η ∈ H,x ∈ X .

Define the set M to be

M = {M(η) : M(η) =
∫

xx′dη(x), η ∈ H,x ∈ X}. (6.1)

By Silvey (1980), the set M is a closed convex hull of {xx′ : x ∈ X}, and a ψβ-optimal

continuous design η∗ under assumptions (i), (ii) and (iii) is such that η∗ ∈ H maximizes

the continuous analog of (5.1), namely,

ψβ(M(η)) =


∫ {

log |m
σ2 M(η) + Λ−1|

}
f(Λ)f(σ2)dΛdσ2 for M(η) nonsingular,

−∞ for M(η) singular.
(6.2)

Similarly, a ψθ-optimal continuous design η� under assumptions (i), (ii) and (iii) is such

that η� ∈ H maximizes the continuous analog of (5.4), namely,

ψθ(M(η)) =


∫ {
− log |σ2

mM(η)−1 + Λ|
}
f(Λ)f(σ2)dΛdσ2 for M(η) nonsingular,

−∞ for M(η) singular.
(6.3)

Lemma 2. Functions ψβ(M(η)) in (6.2) and ψθ(M(η) in (6.3) are each concave and

monotone in M where M is defined in (6.1).

The proof of Lemma 2 follows from the fact that both integrands in (6.2) and (6.3)

are monotone and concave (see Chaloner 1984; Fedorov and Hackl 1997, page 31), and

that integration is a linear operation. The following two theorems give necessary and

sufficient conditions, respectively, for a ψβ-optimal continuous design η∗ and a ψθ-optimal

continuous design η� .

Theorem 1. Let η be a design measure in the class of probability distributions H on the

Borel sets of a compact design space X ⊆ Rp. A design η∗ is ψβ-optimal if and only if∫ {
x′
[
m
σ2 M(η∗) + Λ−1

]−1 x
}
f(Λ)f(σ2)dΛdσ2

≤
∫ {

Tr
[
m
σ2 Ip + M(η∗)−1Λ−1

]−1
}
f(Λ)f(σ2)dΛdσ2, (6.4)

for all x ∈ X .
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Theorem 2. Let η be a design measure in the class of probability distributions H on the

Borel sets of a compact design space X ⊆ Rp. A design η� is ψθ-optimal if and only if∫ {
x′M(η�)−1[σ

2

m Ip + M(η�)Λ]−1x
}
f(Λ)f(σ2)dΛdσ2

≤
∫ {

Tr[(σ
2

m Ip + M(η�)Λ)−1]
}
f(Λ)f(σ2)dΛdσ2, (6.5)

for all x ∈ X .

Since the integration (over Λ and σ2) in the ψβ and ψθ criteria is a linear operation,

by (2.6.11), Fedorov and Hackl (1997), the proofs of Theorem 1 and Theorem 2 can be

obtained by taking integrals (over Λ and σ2) of the necessary and sufficient conditions

for optimal ψβ and ψθ designs when Λ and σ2 are known, the latter of which follow from

Lemma 2 above, and Theorem 3.7 in Silvey (1980) or Theorem 2.3.2 in Fedorov and Hackl

(1997).

6.2 Model matrix X

In the model matrix X we employ the “standardized orthogonal effects coding” (see Kuh-

feld, 2005) so that for a treatment factor, each column of the standardized coefficients has

squared length equal to the number of levels of the corresponding factor. For example,

for a three-level factor let

H =

(
2 0

−1 1

−1 −1

)
S,

where the two columns correspond to two orthogonal contrasts in the three levels of the

factor, and S is a diagonal matrix with standardization coefficients
√

3/
√

6 and
√

3/
√

2

on the diagonal so that the sum of squares in each column of H equals the number of

levels of the factor which is 3 in this example. With this coding, the pair of values (2
√

3√
6
, 0)

in the first row represents the lowest level, (−
√

3√
6
,
√

3√
2
) represents the middle level, and

(−
√

3√
6
, −
√

3√
2

) represents the highest level of the three-level factor.

For an arbitrary treatment factor with h levels, the matrix Hh of the standardized

coefficients is:

Hh =


h− 1 0 · · · 0 0

−1 h− 2 · · · 0 0

...
...

...
...

...

−1 −1 · · · 2 0

−1 −1 · · · −1 1

−1 −1 · · · −1 −1

Sh, (6.6)
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where Sh = Diag(s1, s2, . . . , sh−1) where sj =
√
h/[(h− j)2 + h− j] for j = 1, . . . , h− 1.

In addition, this standardization ensures that the sum of squares for each row of Hh

equals the number of levels of the factor minus one. This can be seen by first noting that

the matrix H∗h = [1h Hh] is orthogonal, and so H∗′hH∗h = H∗hH
∗′
h = hIh, and

H∗hH
∗′
h = [1h Hh]

[
1′h
H′h

]
= Jh + HhH′h, (6.7)

where 1h is an h × 1 vector of all 1’s and Jh = 1h1′h. Consequently, HhH′h = hIh − Jh
which has each diagonal element equal to h−1, and each diagonal element of HhH′h equals

the sum of the squares of the elements in each row of Hh.

The model matrix X contains m rows selected from

[1m, Hh1 ⊗ 1h2 ⊗ · · · ⊗ 1hf , . . . , 1h1 ⊗ · · · ⊗ 1hf−1
⊗Hhf ],

corresponding to the factor combinations in the design plus a column of ones in the first

column for the general mean, where hi is the number of levels of factor i (i = 1, . . . , f).

For example, if there are two factors with 2 and 3 levels respectively and each treatment

combination occurs once in the design, then we have

X =


1 −1 2 0

1 −1 −1 1

1 −1 −1 −1

1 1 2 0

1 1 −1 1

1 1 −1 −1

S, (6.8)

where S is the diagonal standardization matrix such that S = Diag{1,
√

2√
2
,
√

3√
6
,
√

3√
2
}. If

some of the six combinations are not presented, then the corresponding rows of X are

removed. The sum of squares for each row of X then equals 1+(2−1)+(3−1) = 4 which

equals the total number of parameters or the number of columns of X. Thus for every

row x′ = [x0, x1, . . . , xp−1] of X, we have
∑p−1

k=0 x
2
k = p. With these points as the border

points, we create a continuous induced design space X , expressed as

X =
{

x = [x0, x1, . . . , xp−1]′ such that x0 = 1 and
p−1∑
k=0

x2
k ≤ p

}
. (6.9)

Note that with the above definition, a design with an equal number of occurrences of every

treatment combination, called a level-balanced orthogonal design, such as the design with

the model matrix (6.8), has X′X = mI, and so M(η) = I.
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6.3 Independent random effects

Our first result identifies a continuous design that is both ψβ-optimal and ψθ-optimal

when the random effects βi in (2.1) are independent and there is weak prior knowledge on

the variances of the random effects. The proof of Theorem 3 is provided in the appendix.

Theorem 3. Let η be a design measure in the class of probability distributions H on the

Borel sets of X where X is a compact subspace of Rp defined in (6.9). Let the random

individual-level effects βi in (2.1) be independent such that Λ is

Λ = Diag
(
λ2

0, λ
2
2, . . . , λ

2
p−1

)
, (6.10)

where the prior distributions of λ2
k, k = 0, . . . , p− 1 are identical. Given such a situation,

any design η∗ that satisfies M(η∗) = I is both ψβ- and ψθ-optimal.

The following corollary follows directly from Theorem 3 by noting that, for a level-

balanced orthogonal design, the corresponding model matrix satisfies M(η) = I.

Corollary 1. Under the conditions of Theorem 3, if a level-balanced orthogonal design

exists, it is both ψβ- and ψθ-optimal.

6.4 Special cases of correlated random effects

When the random individual-level effects βi in (2.1) are equally correlated and with equal

variances, Λ is of the form ãI+d̃J, where ã and d̃ are scalars, and J is the p×p matrix with

all elements equal to 1. Note that for Λ to be positive definite, ã and d̃ are constrained

such that ã > 0 and ã+pd̃ > 0. The prior distribution of Λ in this special case reduces to

the prior distributions of ã and d̃. Specifically, as in (2.4), the diffuse prior of the variance

term (ã + d̃) is assumed to be Inverse Gamma (1.5,0.5), and the prior of the correlation

term d̃/(ã+ d̃) is uniform (1/(1− p), 1) to ensure that Λ is positive definite. When prior

knowledge is available, more informative priors can be used on the variance term ã + d̃

and the correlation term d̃/(ã+ d̃). For example, if there is knowledge that the correlation

is low and positive the prior distribution of d̃/(ã+ d̃) may be taken as a Uniform (0, 0.2)

distribution. Note that through variable transformation, we can obtain the corresponding

priors for ã and d̃.

Theorems 4 and 5 give the forms of the matrix M(η∗) and M(η�), respectively, of

a ψβ-optimal design η∗ and a ψθ-optimal design η�. These optimal continuous designs
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provide efficiency bounds, respectively, for ψβ-optimal and ψθ-optimal exact designs (see

Section 7). Proofs of Theorems 4 and 5 are provided in the appendix.

Theorem 4. Let η be a design measure in the class of probability distributions H on the

Borel sets of X where X is a compact subspace of Rp defined in (6.9). Given Λ of the

form ãI + d̃J such that ã > 0 and ã+ pd̃ > 0, a design η∗ with M(η∗) = (1 + κ)I− κJ is

ψβ-optimal, if

Eã,d̃,σ2

{(
ãσ2

mã(1 + κ) + σ2

)(
κmã(ã+ pd̃) + d̃σ2

mã(ã+ pd̃)[1− (p− 1)κ] + ãσ2

)}
= 0, (6.11)

and the condition κ ∈ (−1, 1
p−1) is satisfied.

Theorem 5. Let η be a design measure in the class of probability distributions H on the

Borel sets of X where X is a compact subspace of Rp defined in (6.9). Given Λ of the

form ãI + d̃J such that ã > 0 and ã+ pd̃ > 0, a design η� with M(η�) = (1 + ε)I− εJ is

ψθ-optimal, if

Eã,d̃,σ2

{
ε2[m(ã+ pd̃)(p− 2) +md̃]− ε[2m(ã+ pd̃) + σ2 − 2md̃] +md̃

[mã(1 + ε) + σ2][σ2 +m(ã+ pd̃)(1− (p− 1)ε)]

}
= 0, (6.12)

and the condition ε ∈ (−1, 1
p−1) is satisfied.

Note that although there are no closed-form solutions for κ and ε in Equations (6.11)

and (6.12), we can use a grid search within the interval (−1, 1
p−1) to find the approximate

solutions, as in our examples in Section 6.5.

Theorems 4 and 5 can easily be extended to more general settings where the random

effects are interchangeable within groups and independent between groups, as described

in the following corollary.

Corollary 2. Given Λ of the block diagonal form

Λ =

λ0 0 0 . . . 0

0 Λ1 0 . . . 0

0 0 Λ2 . . . 0

0 0 0 . . . ΛG

, (6.13)

where λ0 > 0, Λg = ãgIpg + d̃gJpg such that ãg > 0, ãg + pgd̃g > 0, and the prior

distributions for (ãg, d̃g, σ2) are identical for g = 1, . . . , G. The following conclusions hold
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for a design η (η = η∗ or η�) with

M(η) =

1 0 0 . . . 0

0 M1 0 . . . 0

0 0 M2 . . . 0

0 0 0 . . . MG

. (6.14)

(i)The design is ψβ-optimal if Mg = (1 + κg)Ipg − κgJpg , where

Eãg ,d̃g ,σ2

{(
ãgσ

2

mãg(1 + κg) + σ2

)(
κgmãg(ãg + pgd̃g) + d̃gσ

2

mãg(ãg + pgd̃g)[1− (pg − 1)κg] + ãgσ2

)}
= 0,

and the condition κg ∈ (−1, 1
pg−1) is satisfied for g = 1, . . . , G.

(ii)The design is ψθ-optimal if Mg = (1 + εg)Ipg − εgJpg , where

Eãg ,d̃g ,σ2

{
ε2g[m(ãg + pgd̃g)(pg − 2) +md̃g]− εg[2m(ãg + pgd̃g) + σ2 − 2md̃g] +md̃g

[mãg(1 + εg) + σ2][σ2 +m(ãg + pgd̃g)(1− (pg − 1)εg)]

}
= 0,

and the condition εg ∈ (−1, 1
pg−1) is satisfied for g = 1, . . . , G.

Theorems 3, 4 and 5, together with Corollary 2, suggest that the matrix M(η∗)

(M(η�)) of a ψβ-optimal (ψθ-optimal) design will often have a structure similar to the

covariance matrix, Λ, of the random effects. Some examples of ψβ- and ψθ- optimal

continuous designs are provided in Section 6.5 according to Theorems 4 and 5, respectively,

for the special case of equi-correlated random effects with Λ = ãI + d̃J.

6.5 ψβ- and ψθ- optimal continuous design examples

Consider an experiment with two treatment factors each with two levels under a hierarchi-

cal linear model. Under assumptions (i), (ii) and (iii) from Section 5, each subject i (i=1,

. . . , n) receives the same treatment allocation (Xi = X), response errors are homoscedas-

tic (σ2
i = σ2), and the covariates Zi are independent of X. For ease of exposition, we let

Zi = I. For subject i, the individual-level random effects βi in (2.1) include the general

mean, the main effects of factors 1 and 2, and thus p = 3. βi is assumed to be randomly

distributed according to a multivariate normal distribution with mean θ and covariance

matrix Λ as in (2.2).

The prior distribution for σ2 and the equal variances ã+ d̃ of the random effects are

assumed to be Inverse Gamma (1.5,0.5). The correlation of the random effects d̃/(ã+ d̃)
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is constrained to be in (−0.5, 1) to ensure a positive definite Λ = ãI + d̃J. In addition to

the situation when the correlation d̃/(ã+ d̃) is assumed to be from Uniform (−0.5, 1), we

also examine three separate situations when the correlation is negative, low positive, and

high positive, with Uniform (−0.5, 0), (0, 0.5) and (0.5, 1) priors, respectively.

Let the number of observations per subject be m = 12. Table 6.1 shows for different

scenarios the κ and ε values corresponding to the ψβ- and ψθ- optimal continuous designs

by Theorems 4 and 5, respectively. We used a grid search to find the κ and ε values that

satisfy equations (6.11) and (6.12). Under given values of κ and ε, Monte Carlo method

was used to obtain the expectation over (ã, d̃, σ2). Fixing the support points to be the four

level combinations of the two treatment factors, that is, x1 = (1,−1,−1), x2 = (1,−1, 1),

x3 = (1, 1,−1) and x4 = (1, 1, 1), we also report in Table 6.1 the weights on these four

support points that give rise to the corresponding optimal continuous designs, denoted as

m11,m12,m21, and m22, respectively.

The results in Table 6.1 show that ψβ- and ψθ- optimal continuous designs, M(η∗)

and M(η�), have opposite signs on the off-diagonal for the special scenarios considered in

Theorems 4 and 5, with Λ = ãI + d̃J. In addition, the magnitudes of ε are higher than

the corresponding κ’s. The weights on the support points also suggest that ψθ- optimal

continuous designs tend to be less balanced than ψβ- optimal continuous designs.

m = 12, p = 3, σ2 ∼ IG(1.5, 0.5)

Covariance ψβ-optimal ψθ-optimal

Λ = ãI + d̃J M(η∗) = (1 + κ)I− κJ M(η�) = (1 + ε)I− εJ
Prior (m11,m12,m21,m22) (m11,m12,m21,m22)

(ã+ d̃) ∼ IG(1.5, 0.5) κ = −0.04 ε = 0.09

d̃/(ã+ d̃) ∼ U(−0.5, 1) (2.88, 2.88, 2.88, 3.36) (3.27, 3.27, 3.27, 2.19)

(ã+ d̃) ∼ IG(1.5, 0.5) κ = 0.08 ε = −0.28

d̃/(ã+ d̃) ∼ U(−0.5, 0) (3.24, 3.24, 3.24, 2.28) (2.16, 2.16, 2.16, 5.52)

(ã+ d̃) ∼ IG(1.5, 0.5) κ = −0.04 ε = 0.10

d̃/(ã+ d̃) ∼ U(0, 0.5) (2.88, 2.88, 2.88, 3.36) (3.30, 3.30, 3.30, 2.10)

(ã+ d̃) ∼ IG(1.5, 0.5) κ = −0.20 ε = 0.30

d̃/(ã+ d̃) ∼ U(0.5, 1) (2.40, 2.40, 2.40, 4.80) (3.90, 3.90, 3.90, 0.30)

Table 6.1: κ and ε values as in Theorems 4 and 5, respectively, for ψβ- and ψθ-optimal designs under different

prior assumptions, together with corresponding weights on the four level combinations of the two treatment factors.
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7 ψβ- and ψθ- Optimal Exact Designs

The theoretical results on optimal continuous designs of Theorems 3, 4, 5, and Corollary 2

of Section 6, hold for some special forms of the random effects covariance matrix Λ. In

general, optimal continuous designs may not give rise to integer numbers of observations

at the design points in the design space X , as seen in Table 6.1. In this section, we obtain

through computer search optimal exact designs that have integer numbers of observations

at the design points. We examine through examples ψβ-optimal and ψθ-optimal exact

designs respectively, for both the special forms and some general forms of the random

effects covariance matrix Λ.

The same design setting as described in Section 6.5 is used here, and this incorporates

assumptions (i), (ii) and (iii) from Section 5. Simple-exchange algorithms (see Atkinson

and Donev, 1992, Chapter 15) are used to obtain the ψβ- and ψθ-optimal exact designs.

Monte Carlo method is used for the integration over the prior distributions of Λ and σ2

in the evaluation of the design criteria.

7.1 Efficiencies

Efficiency relative to an optimal continuous design For the special cases in Theorems 3,

4, 5 and Corollary 2, we know the explicit forms of M(η∗) and M(η�) for ψβ- and ψθ-

optimal continuous designs η∗ and η� respectively. These optimal continuous designs can

be used to provide efficiency bounds for exact designs when the optimal exact design is

unknown. For an exact design with model matrix X, we define its efficiency relative to a

ψβ-optimal continuous design η∗ as

∫ ( ∣∣σ−2X′X + Λ−1
∣∣∣∣σ−2mM(η∗) + Λ−1
∣∣
)1/p

f(Λ)f(σ2)dΛdσ2. (7.1)

Similarly, we define its efficiency relative to a ψθ-optimal continuous design η� as∫ (∣∣σ2(mM(η�))−1 + Λ
∣∣

|σ2(X′X)−1 + Λ|

)1/p

f(Λ)f(σ2)dΛdσ2. (7.2)

Efficiency relative to an orthogonal design For the general cases when the structures

of the ψβ and ψθ-optimal continuous designs are unknown, we use an orthogonal design η∗

as the base design and calculate the relative ψβ-efficiency of a design with model matrix
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X as

rel. ψβ-eff =
∫ (∣∣σ−2X′X + Λ−1

∣∣∣∣σ−2mI + Λ−1
∣∣
)1/p

f(Λ)f(σ2)dΛdσ2, (7.3)

where (7.3) is obtained by replacing M(η∗) of the orthogonal design with I. Similarly, we

define the relative ψθ-efficiency with model matrix X relative to the orthogonal design as

rel. ψθ-eff =
∫ ( ∣∣σ2m−1I + Λ

∣∣
|σ2(X′X)−1 + Λ|

)1/p

f(Λ)f(σ2)dΛdσ2. (7.4)

7.2 Special forms of Λ

Table 7.1 provides the ψβ-optimal and ψθ-optimal exact designs as found through com-

puter search under both the situation of independent random effects (as seen in Theo-

rem 3) and the situation of equally correlated random effects with equal variances (as

seen in Theorems 4 and 5). The designs are expressed as (m11,m12,m21,m22), where mij

is the number of times level i of factor 1 and level j of factor 2 occur together in the same

design. The resulting matrices X′X of the designs are also reported. The last column of

Table 7.1 shows that all the optimal exact designs obtained through computer search have

efficiencies over 99% relative to their continuous counterparts. Note that these optimal

exact designs obtained through computer search are the same as or very close to designs

obtained by rounding the weights of the continuous designs in Table 6.1 to the nearest

integers.

Table 7.1 shows that the ψβ-optimal designs are often orthogonal even when the

random effects are correlated. However, ψθ-optimal designs tend to be nonorthogonal and

unbalanced, and the degree of imbalance increases as the random effects become more

highly correlated. For example, when the correlation of the random effects is high and

follows a uniform (0.5, 1) distribution (last section of Table 7.1), the ψθ-optimal design

does not contain observations on the combination of the second levels of the two factors,

that is, m22 = 0. Nevertheless, the main effects of the two factors are still estimable

and observations on the combination 22 will add little or no information on the main

effect parameters due to their high correlation. The ψβ-optimal design in this case is also

nonorthogonal and unbalanced, but to a lesser degree than the corresponding ψθ-optimal

design. In addition, the signs of the off-diagonal elements of the X′X matrix of the ψβ-

optimal design are the opposite of the signs of the off-diagonal elements of the X′X matrix
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of the corresponding ψθ-optimal design. This is consistent with our findings on ψβ- and

ψθ-optimal continuous designs in Table 6.1.

Covariance matrix ψβ- and ψθ- Matrix Eff. rel. to

optimal design optimal

Λ (m11, m12, m21, m22) X′X continuous

Λ = Diag(λ2
1, . . . , λ

2
p)

λ2
k ∼ IG(1.5, 0.5), (3,3,3,3) 12I3 100%

k = 1, . . . , p

Λ = ãI + d̃J ψβ-optimal:

(ã+ d̃) ∼ IG(1.5, 0.5) (3,3,3,3) 12I3 99.94%

d̃/(ã+ d̃) ∼ U(−0.5, 1) ψθ-optimal:

(3, 3, 3, 3) 12I3 99.83%

Λ = ãI + d̃J ψβ-optimal:

(ã+ d̃) ∼ IG(1.5, 0.5) (3,3,3,3) 12I3 99.66%

d̃/(ã+ d̃) ∼ U(−0.5, 0) ψθ-optimal:

(3,2,2,5)


12 2 2

2 12 4

2 4 12

 99.96%

Λ = ãI + d̃J ψβ-optimal:

(ã+ d̃) ∼ IG(1.5, 0.5) (3,3,3,3) 12I3 99.96%

d̃/(ã+ d̃) ∼ U(0, 0.5) ψθ-optimal:

(4,3,3,2)


12 −2 −2

−2 12 0

−2 0 12

 99.86%

Λ = ãI + d̃J ψβ-optimal:

(ã+ d̃) ∼ IG(1.5, 0.5) (3,3,2,4)


12 0 2

0 12 2

2 2 12

 99.66%

d̃/(ã+ d̃) ∼ U(0.5, 1) ψθ-optimal:

(4,4,4,0)


12 −4 −4

−4 12 −4

−4 −4 12

 99.70%

Table 7.1: ψβ- and ψθ-optimal 12-run exact designs when the random effects covariance matrix Λ is diagonal or

has equal diagonal and off-diagonal elements. The prior distributions of σ2 and the variance component ã + d̃ of

Λ are assumed to be Inverse Gamma (1.5,0.5) and the prior distribution of the correlation component d̃/(ã+ d̃) is

assumed to be Uniform (-0.5, 1), (-0.5, 0), (0, 0.5), and (0.5, 1), respectively. Efficiencies are calculated through

(7.1) and (7.2)

7.3 General forms of Λ

Now we consider the general case when the covariance matrix Λ is not restricted to be of

the form Λ = ãI+ d̃J with equal variances and covariances of the random effects. Instead,

the variance and correlation components of Λ follow the prior distributions as specified in

(2.4) with ai = 1.5 and bi = 0.5; that is, each of the three variances in Λ is assumed to
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be independently distributed according to an Inverse Gamma (1.5, 0.5) distribution. For

the three correlation components, we examine three scenarios. In the first scenario, there

is no restriction on the signs of the three correlation components so that the correlations

can be positive or negative. In the second scenario, all three correlations are positive, and

in the third scenario, all three correlations are negative. We do not know the forms of

optimal continuous designs for these general forms of Λ, and therefore the optimal exact

designs obtained through computer search are compared with an orthogonal design by

using the relative efficiencies (7.3) and (7.4). Results in Table 7.2 show that, when there

is prior knowledge on the signs of the correlations of the random effects (e.g., all three

correlations positive, or all negative), both ψβ- and ψθ-optimal designs are nonorthogonal

and unbalanced. Consistent with our findings in Table 7.1, ψβ-optimal designs are very

different from ψθ-optimal designs with opposite signs on the off-diagonals of the X′X

matrix.

Signs of ψβ- and ψθ- Matrix Eff. Rel. to

random effects optimal design orthogonal design

correlations (m11, m12, m21, m22) X′X ψβ ψθ

No restrictions (3,3,3,3) 12I3 1.000 1.000

All positive ψβ-optimal:

(3,2,3,4)


12 2 0

2 12 2

0 2 12

 1.002 0.979

ψθ-optimal:

(3,4,3,2)


12 −2 0

−2 12 −2

0 −2 12

 0.973 1.009

All negative ψβ-optimal:

(4,4,3,1)


12 −4 −2

−4 12 −2

−2 −2 12

 1.023 0.915

ψθ-optimal:

(2,2,3,5)


12 4 2

4 12 2

2 2 12

 0.923 1.027

Table 7.2: ψβ- and ψθ-optimal 12-run exact designs under general forms of the random effects covariance matrix Λ.

The prior distributions of σ2 and the three variance components of Λ are assumed to be independently distributed

Inverse Gamma (1.5,0.5) and the prior distributions of the three correlation components are assumed to be Uniform

of which the support regions are sequentially determined according to Barnard et al. (2000). Three scenarios of

the support region are considered: no restrictions on the signs of the three correlations, all three correlations are

positive and all three correlations are negative. Efficiencies are calculated through (7.3) and (7.4)
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8 Design Robustness

We examine in this section the robustness of designs when the true distributions of σ2 and

Λ deviate from the assumed prior distributions used in the design construction. Specifi-

cally, for each design criterion, we take the ψβ and the ψθ-optimal exact designs for each

of eight assumed prior distributions, evaluate these designs under different true σ2 and

Λ distributions. The designs and the assumed prior distributions of σ2 and Λ are sum-

marized in Section 8.1, the true distributions of σ2 and Λ are summarized in Section 8.2,

and our simulation results are reported in Section 8.3.

8.1 The assumed and the true distribution scenarios

Table 8.1 lists the ψβ and the ψθ-optimal designs for the eight assumed prior distributions.

For each design criterion, the first listed design is an orthogonal design obtained without

search, the next three designs are the optimal exact designs obtained for the special forms

of Λ where Λ = ãI + d̃J under the assumed priors in Table 7.1; the next two designs are

the optimal exact designs obtained for the general forms of Λ in Table 7.2; the last two

designs are local optimal exact designs obtained under fixed values of σ2 and Λ.

The local ψβ-optimal exact designs D7β and D8β, obtained under assumed fixed values

of σ2 and Λ, are orthogonal, as are designs D2β and D3β, obtained under special forms

of Λ with assumed prior correlation distributions (see Table 7.1). These designs will all

be listed together with the orthogonal design in our simulation study in Section 8.3 (as

in the first row of Table 8.3). Similarly, D3θ and D7θ have the same form and are listed

together in Table 8.4 of our simulation study.

Design Type Designs Prior for σ2 Prior for Λ

Orthogonal D1β D1θ − −
D2β D2θ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), Cor.∼ U(−0.5, 0)

Optimal under Λ = ãI + d̃J D3β D3θ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), Cor.∼ U(0, 0.5)

D4β D4θ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), Cor.∼ U(0.5, 1)

D5β D5θ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), Cor. all +
Optimal under general Λ

D6β D6θ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), Cor. all −
D7β D7θ σ2 = 1 Λ = I + 0.5J

Local optimal under fixed σ2,Λ
D8β D8θ σ2 = 1 Λ = I− 0.2J

Table 8.1: Summary of the designs and assumed prior distributions used in the robustness study.
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8.2 True σ2 and Λ distribution Scenarios

We evaluated the designs D1β-D8β and D1θ-D8θ under eight different true σ2 and Λ

distribution scenarios S1-S8 listed in Table 8.2. There are two distribution scenarios for

σ2, namely the Inverse Gamma (1.5, 0.5) and the Inverse Gamma (3, 1). While the former

distribution has a mean equal to 1 and an undefined variance, the latter distribution has

a mean equal to 0.5 and variance 0.25. Therefore the σ2’s from the former distribution

are much more dispersed than those from the latter distribution and with a different

central location. Two distribution scenarios are taken for the variance components of

Λ, namely (i) all three variances come from Inverse Gamma (1.5, 0.5); (ii) the three

variances respectively come from Inverse Gamma (1.5, 0.5), (3, 1) and (2.5, 1.5) with

different means and dispersions. Finally, two distribution assumptions are taken for the

correlation components of Λ, namely “all positive” and “all negative”. This gives a total

of eight scenarios of true σ2 and Λ distributions.

Scenario True dist. for σ2 True dist. for Λ

S1 σ2 ∼ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), Cor. all +

S2 σ2 ∼ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), Cor. all −
S3 σ2 ∼ IG(1.5, 0.5) Var. ∼ IG(1.5, 0.5), IG(3, 1), IG(2.5, 1.5), Cor. all +

S4 σ2 ∼ IG(1.5, 0.5) Var.∼ IG(1.5, 0.5), IG(3, 1), IG(2.5, 1.5), Cor. all −
S5 σ2 ∼ IG(3, 1) Var. ∼ IG(1.5, 0.5), Cor. all +

S6 σ2 ∼ IG(3, 1) Var. ∼ IG(1.5, 0.5), Cor. all −
S7 σ2 ∼ IG(3, 1) Var. ∼ IG(1.5, 0.5), IG(3, 1), IG(2.5, 1.5), Cor. all +

S8 σ2 ∼ IG(3, 1) Var. ∼ IG(1.5, 0.5), IG(3, 1), IG(2.5, 1.5), Cor. all −

Table 8.2: Summary of the eight true σ2 and Λ distribution scenarios in the robustness study.

8.3 Simulation results

Tables 8.3 and 8.4 report the performances of D1β-D8β and D1θ-D8θ under the eight

true distribution scenarios S1-S8. The ψβ-efficiency of each of D1β-D8β under each true

distribution scenario S1-S8 is obtained by replacing the mM(η∗) in the denominator of

(7.1) with X∗′X∗ where X∗ is the model matrix of the ψβ-optimal exact design obtained

through computer search under the true distribution. Similarly, ψθ-efficiency of each of

D1θ-D8θ under each true distribution scenario S1-S8 is obtained by replacing the mM(η�)

with X�′X� where X� is the model matrix of the ψθ-optimal exact design obtained through

computer search under the true distribution.
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Designs S1 S2 S3 S4 S5 S6 S7 S8
D1β , D2β ,

D3β , D7β , D8β
0.998 0.979 1.000 0.986 0.994 0.967 0.998 0.975

D4β 0.996 0.949 0.993 0.959 0.995 0.936 0.994 0.946

D5β 1.000 0.946 0.998 0.954 1.000 0.933 1.000 0.941

D6β 0.925 1.000 0.928 0.999 0.920 1.000 0.925 1.000

Table 8.3: ψβ-efficiency of the designs D1β-D8β relative to ψβ-optimal exact designs under the eight true σ2 and

Λ distribution scenarios S1-S8.

Designs S1 S2 S3 S4 S5 S6 S7 S8
D1θ 0.991 0.974 0.992 0.976 0.990 0.972 0.991 0.973

D2θ 0.952 0.995 0.962 0.995 0.942 0.994 0.953 0.994

D3θ, D7θ 0.998 0.941 0.998 0.945 0.998 0.933 0.998 0.937

D4θ 0.981 0.815 0.986 0.834 0.975 0.792 0.983 0.810

D5θ 1.000 0.943 0.9996 0.948 1.000 0.989 1.000 0.940

D6θ 0.950 1.000 0.956 1.000 0.939 1.000 0.946 1.000

D8θ 0.975 0.987 0.980 0.985 0.970 0.985 0.976 0.983

Table 8.4: ψθ-efficiency of the designs D1θ-D8θ relative to ψθ-optimal exact designs under the eight true σ2 and

Λ distribution scenarios S1-S8.

While the orthogonal design tends to be efficient especially under the ψβ criterion,

Tables 8.3 and 8.4 show that more efficient designs can be obtained when the assumed

prior distributions used in the design construction correctly reflect the true signs of the

correlations of the random effects. For example, in Table 8.4, when all pairs of ran-

dom effects are negatively correlated as in the true distribution scenarios S2, S4, S6 and

S8, designs D2θ, D6θ, and D8θ, obtained under the prior assumptions of negative cor-

relations are more efficient than the orthogonal design. Note that the designs D2θ and

D8θ are almost as ψθ-efficient in these four true distribution scenarios as the design D6θ.

However, the computer search of the designs D2θ and D8θ, especially the locally-optimal

design D8θ, requires much less time than the search of the design D6θ. Similarly, when

all pairs of random effects are positively correlated as in scenarios S1, S3, S5 and S7,

designs D3θ, D5θ, and D7θ obtained under the prior distribution assumptions of positive

correlations of moderate size are more efficient than the orthogonal design. In addition,

the less computation-intensive designs D3θ and D7θ are almost as efficient as the more

computation-intensive design D5θ. These findings suggest that while orthogonal design is

a good design to use when the random effects are not correlated or there is no knowledge
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on the possible signs of the correlations, more efficient designs can be obtained when there

is knowledge on the signs of the correlations.

9 Conclusion and Discussion

In this paper, we have investigated Bayesian optimal designs for hierarchical linear models.

We examined two design criteria – the ψβ criterion for the estimation of the individual-level

parameters βi for subject i, and the ψθ criterion for the estimation of the hyperparameter

vector θ.We focused on a special case in which (i) all subjects receive the same treatments

so that Xi = X, (ii) the response errors are homoscedastic so that σ2
i = σ2 and, (iii) the

covariates Zi are independent of X.

Findings from our comparisons between the two types of designs imply that (i) de-

signs that are ψβ-optimal for the estimation of the individual-level parameters βi are not

necessarily ψθ-optimal for the estimation of the hyperparameter vector θ; (ii) orthogonal

designs may not be a good choice when the interest is in the estimation of the hyper-

parameter vector θ and the random effects are expected to be correlated; (iii) for the

construction of both ψβ-optimal and ψθ-optimal designs, and especially the ψθ-optimal

designs, it is important to have the prior of the covariance matrix Λ of the random effects

reflect the expected algebraic signs of the covariance elements. Designs obtained under

moderate sized correlations with the anticipated signs are more likely to be efficient under

the corresponding design criterion and also robust to varying distributions of response

errors and variances of the random effects; (iv) locally-optimal designs, obtained by fixing

σ2 = 1 and Λ = ãI + d̃J with moderate sized correlations in accordance with the antici-

pated signs, can be used as good surrogates, especially when the numbers of runs, factors

and factor levels are large.

There are a few limitations in this paper that we discuss next. First, in our definition of

each design criterion, we have used the pre-posterior risk based on the posterior conditional

distribution of the parameter of interest given all nuisance parameters. For example, the

ψβ criterion is defined based on the posterior conditional distribution of βi given nuisance

parameters θ,Λ and σ2
i . As a result, the ψβ criterion is independent of the covariates in Zi.

If the full posterior distribution of βi is used where all nuisance parameters θ,Λ and σ2
i are

integrated out, or if the marginal posterior distribution of βi is used where θ is integrated

out given Λ and σ2
i , then the resulting design criterion would depend on the covariates in
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Zi, with a much higher level of complexity than the ψβ criterion used in this paper. In

particular, the design criteria based on the full posterior or marginal posterior distributions

are not in closed forms and can only be approximated through simulations. Although Han

and Chaloner (2004) have shown that MCMC within Monte Carlo simulation can be used

to compare a pre-determined set of candidate designs, and Clyde, Muller, and Parmigiani

(1996) used MCMC within MCMC to find optimal sample size a simple design problem

with only one variable, the computation becomes prohibitive for the search of an optimal

design over a large design space that involves multiple variables. Nevertheless, with new

computational advancements and more computational power, we believe that it will be an

interesting future research direction to explore the design criteria based on full or marginal

posterior distributions.

Next, related to the first point, it would also be interesting to explore other Bayesian

design criteria such as the Bayesian A-criterion where the pre-posterior risk is the expected

squared error loss. Chaloner and Verdinelli (1995) provide some excellent examples of

utility/loss functions that lead to different Bayesian design criteria with different focus

of interest. Designs obtained under these alternative criteria may be quite different from

what we have investigated in this paper. However, for the design criterion that involves

the maximization of the expected gain in Shannon information (Lindley, 1956) based on

the posterior conditional distribution of βi or θ, we note that it can be approximated by

the ψβ criterion as the maximization of (3.4) or the ψθ criterion as the maximization of

(3.9). This can be seen by following the same approach taken in Liu et al. (2007).

Last, in this paper we restricted to a special case where each respondent gets the

same design (homogeneous), response errors are homoscedastic, and the covariates are

determined independently of the treatments . A natural extension is to the general case

of heterogeneous designs where different respondents with heteroscedastic response errors

are given different designs and the specification of the treatment allocation may or may

not be independent from that of the covariates. While a jointly optimal allocation of the

treatments (Xi) and the covariates (Zi) may be elusive due to a large number of possible

combinations, it is possible to find through computer search optimal treatment allocations

for different subjects given the knowledge of the covariates associated with the subjects

(Xi|Zi) or vice versa (Zi|Xi, see an example in Liu et al. 2009).
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Appendix

A: Proof of Theorem 3

Proof. For Λ given in (6.10) and M(η∗) = I, the left hand side of (6.4) is∫ {p−1∑
k=0

x2
k(

m
σ2 + λ−2

k )−1

}
f(Λ)f(σ2)dΛdσ2

=
p−1∑
k=0

x2
k

∫
(m
σ2 + λ−2

k )−1f(Λ)f(σ2)dΛdσ2

=E
[
(m
σ2 + λ−2

0 )−1
]
×

p−1∑
k=0

x2
k since λ2

0, . . . , λ
2
p−1 are identically distributed,

≤E
[
(m
σ2 + λ−2

0 )−1
]
× p by (6.9)

=E
{
Tr
[
(m
σ2 + λ−2

0 )−1)Ip
]}

=
∫ {

Tr[m
σ2 I +M(η∗)−1Λ−1]−1

}
f(Λ)f(σ2)dΛdσ2,

which is the right hand side of (6.4). Therefore η∗ is ψβ-optimal from Theorem 1. Similarly,

expression (6.5) holds for η∗ and therefore it is also ψθ-optimal from Theorem 2.

B: Proof of Theorem 4

Proof. Let M(η∗) be as defined in the statement of the theorem. For M(η∗) to be positive

definite, κ needs to satisfy the condition that −1 < κ < 1
p−1 . The inverse of M(η∗) is

M(η∗)−1 =
1

1 + κ

[
I +

κ

1− (p− 1)κ
J
]
.
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In addition, with Λ = ãI + d̃J, we have

M(η∗)−1Λ−1 =
1

ã(1 + κ)

[
I +

κ

1− (p− 1)κ
J
](

I− d̃

ã+ pd̃
J

)
,

=
1

ã(1 + κ)

[
I +

(ã+ pd̃)κ− d̃(1 + κ)
(ã+ pd̃) [1− (p− 1)κ]

J

]
.

[m
σ2

I + M(η∗)−1Λ−1
]−1

=
ã(1 + κ)σ2

mã(1 + κ) + σ2{
I +

(
1

1 + κ

)(
σ2d̃(1 + κ)− σ2(ã+ pd̃)κ

mã(ã+ pd̃)[1− (p− 1)κ] + ãσ2

)
J

}
.

The right hand side of (6.4) is

Eã,d̃,σ2

{
Tr
[
m
σ2 I + M(η∗)−1Λ−1

]−1
}

= Eã,d̃,σ2

{
pãσ2

mã(1 + κ) + σ2

[
1 +

κ2mã(ã+ pd̃)(1− p) + κ[mã(ã+ pd̃) + d̃(1− p)σ2] + dσ2

mã(ã+ pd̃)[1− (p− 1)κ] + ãσ2

]}
.

= Eã,d̃,σ2

{
pãσ2

mã(1 + κ) + σ2
+
(
p [(1− p)κ+ 1] ãσ2

mã(1 + κ) + σ2

)(
κmã(ã+ pd̃) + d̃σ2

mã(ã+ pd̃)[1− (p− 1)κ] + ãσ2

)}
.

Using (6.11), the expectation (over ã, d̃, and σ2) of the second item inside the curly

bracket of the last equation becomes 0 and we obtain

Eã,d̃,σ2

{
Tr[m

σ2 I + M(η∗)−1Λ−1]−1
}

= Eã,σ2

{
pãσ2

mã(1 + κ) + σ2

}
.

On the left-hand side,

[
m
σ2 M(η∗) + Λ−1

]−1 =
ãσ2

mã(1 + κ) + σ2
I

+
(

ãσ2

mã(1 + κ) + σ2

)(
κmã(ã+ pd̃) + d̃σ2

mã(ã+ pd̃)[1− (p− 1)κ] + ãσ2

)
J.

Using (6.11), the expectation of the second item in the last equation becomes 0 and the

left hand side of (6.4) becomes

Eã,d̃,σ2

{
x′
[
m
σ2 M(η∗) + Λ−1

]−1 x
}

= Eã,σ2

{
ãσ2

mã(1 + κ) + σ2

}
x′x.
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Since x′x ≤ p from (6.9), the theorem follows from Theorem 1.

C: Proof of Theorem 5

Proof. Let M(η�) be as defined in the statement of the theorem. For M(η�) to be positive

definite, ε needs to satisfy the condition that −1 < ε < 1
p−1 . The inverse of M(η�) is

M(η�)−1 =
1

1 + ε

[
I +

ε

1− (p− 1)ε
J
]
.

In addition, with Λ = ãI + d̃J, we have

σ2

m I + M(η�)Λ =
mã(1 + ε) + σ2

m
I +

[
d̃(1 + ε)− (ã+ pd̃)ε

]
J,

[
σ2

m I + M(η�)Λ
]−1 =

m

mã(1 + ε) + σ2

[
I− md̃(1 + ε)−m(ã+ pd̃)ε

σ2 +m(ã+ pd̃)(1− (p− 1)ε)
J

]
,

M(η�)−1
[
σ2

m I + M(η�)Λ
]−1 =

m

(1 + ε)[mã(1 + ε) + σ2]{
I− ε2[m(ã+ pd̃)(p− 2) +md̃]− ε[2m(ã+ pd̃) + σ2 − 2md̃] +md̃

[1− (p− 1)ε][σ2 +m(ã+ pd̃)(1− (p− 1)ε)]
J

}
.

Using (6.12), the expectation (over ã, d̃ and σ2) of the coefficient of J in the last equation

becomes 0 and the left hand side of (6.5) becomes

Eã,d̃,σ2

{
x′M(η�)−1[I + M(η�)Λ]−1x

}
= Eã,σ2

{
m

(1 + ε)[mã(1 + ε) + σ2]

}
x′x.

The right hand side of (6.5) is

Eã,d̃,σ2

{
Tr[σ

2

m I + M(η�)Λ]−1
}

= Eã,d̃,σ2

{
pm

(1 + ε)[mã(1 + ε) + σ2]

}

− Eã,d̃,σ2


(
pm

1 + ε

)ε2[m(ã+ pd̃)(p− 2) +md̃]− ε[2m(ã+ pd̃) + σ2 − 2md̃] +md̃

[mã(1 + ε) + σ2]
[
σ2 +m(ã+ pd̃)(1− (p− 1)ε)

]
 .

Using (6.12), the expectation of the second item in the last equation becomes 0 and we

obtain

Eã,d̃,σ2

{
Tr[σ

2

m I + M(η�)Λ]−1
}

= Eã,σ2

{
pm

(1 + ε)[mã(1 + ε) + σ2]

}
.

Since x′x ≤ p from (6.9), the theorem follows from Theorem 2.
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