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Efficient Experimental Designs for Hyper-parameter Estimation: 
Studying the Level-Effect in Conjoint Analysis  

 
 
 

Abstract 
Research in marketing, and business in general, involves understanding when effect-sizes are 
expected to be large and when they are expected to be small.  An example is the level-effect in 
marketing, where the effect of product attributes on utility is positively related to the number of 
levels present among choice alternatives.  Knowing when consumers are sensitive to the levels of 
attributes is an important aspect of merchandising, selling and promotion.  In this paper, we propose 
efficient methods of learning about contextual factors that influence consumer preference and 
sensitivities within the context of a hierarchical Bayes model.  A design criterion is developed for 
hierarchical linear models, and validated in a study of the "level-effect" in conjoint analysis using a 
national sample of respondents.  Extensions to other model structures are discussed. 
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Efficient Experimental Designs for Hyper-parameter Estimation: 
Studying the Level-Effect in Conjoint Analysis  

 
 

1. Introduction 

The level-effect in conjoint analysis was first observed by Currim, Weinberg and Wittink 

(1981), who reported an increase in the estimated importance of attribute-levels as the number of 

intermediate levels increased.  Since then, the level-effect has been observed across different 

measurement scales, various data collection methods and estimation techniques (see Wittink et al., 

1982, 1990, 1997; Steenkamp and Wittink, 1994; and Creyer and Ross, 1988).  The existence of the 

level-effect suggests that consumer preference varies with context. Specifically, it implies that, in the 

market place, consumer preference sensitivity to a product attribute is affected by the variety of 

attribute levels displayed, which varies from store to store.  Such a finding is consistent with a large 

body of consumer behavior literature (e.g., Huber, Payne and Puto, 1982; Lynch, Chakravarti and 

Mitra, 1991; Simonson and Tversky, 1992) describing the influence of contextual effects in choice.  

Standard conjoint analysis models in marketing research do not adjust for contextual influences in 

part-worth estimation and, consequently, cannot predict consumer buying behavior well in different 

contexts.  

The study of contextual effects is common in business research.  Examples range from 

studies within a firm (e.g., the relative effectiveness of alternative employee incentives) to studies of 

market-level behavior, such as the impact of macro-economic variables on financial markets, the role 

of consumer confidence on retail spending, and variation in the effectiveness of marketing's four P's 

(i.e., product, price, place and promotion). The study of effect-size variation has important 

implications for resource allocation, including the timing of offers, competitive effects, and any 

decision that can be implemented in a customized, non-uniform manner.   
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The accurate estimation of the level-effect, and contextual effects in general, requires models 

that describe the behavior of individual-level units of analysis, such as the customers of a firm, and 

their across-unit variation.  The units can be described in terms of unit-specific variables, such as 

demographics, those that describe the context of the choice environment, or both.  Hierarchical 

models are often used in such analysis, with the hyper-parameters in the upper-level of the model 

describing intra-unit variation in effects.  The accurate estimation of hyper-parameters is critical for 

knowing when effect-sizes are expected to be large.   

This paper investigates experimental designs for accurate hyper-parameter estimation in 

hierarchical linear models.  The accurate estimation of hyper-parameters involves the consideration 

of two aspects of design choice: i) the within-unit design specification and ii) the across-unit design 

specification.  These specifications interact in hierarchical models, and can lead to optimal designs 

that are non-orthogonal.  Thus, designs for the accurate estimation of respondent-level-effects alone 

may not be efficient for hyper-parameter estimation, as demonstrated in Section 4 through the 

comparison of the survey designs used in our study of the level-effect. 

We develop and explore a simultaneous design criterion for within- and across-unit 

specifications.  We note that our criterion also applies to simpler versions of the general model.  

When faced with a fixed population of units (e.g., respondents), the across-unit design is fixed and 

the analyst is faced with the task of selecting the best within-unit design (e.g., product concepts in a 

conjoint analysis) for hyper-parameter estimation.  Alternatively, there are situations where the 

within-unit design is fixed and the goal is to determine the best across-unit design.  An example is 

the testing a pre-determined set of product offerings, with the goal of identifying the best set of 

respondents to survey.   

We illustrate the performance of our design criterion in a study of the level-effect in conjoint 

analysis.  As noted earlier, the level-effect is a positive association between estimated effect sizes and 
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the number of attribute levels present in a conjoint study.  We propose a model for the level-effect 

that contains a functional relationship between the within-unit specification, where respondents 

evaluate products described in terms of attributes and their levels, and the across-unit specification 

described in terms of the relative locations, ranks and the number of attribute-levels studied.  We 

find evidence for the level-effect and demonstrate the usefulness of the proposed design criterion. 

This paper contributes to the literature in two ways.  First, we call attention to the 

importance of hyper-parameter estimation.  While hierarchical models have incorporated hyper-

parameters as coefficients of regressors in many marketing studies, not much attention has been 

given to methods for their accurate estimation, nor their importance in guiding business practice.  

We present a general design criterion for estimating these parameters and illustrate its use in a 

practical setting.  Second, we develop and test a structural model for the level-effect in conjoint 

analysis.  This effect can only be studied with hyper-parameters in a hierarchical model because the 

same respondent cannot be exposed practically to multiple choice contexts in a conjoint study.  

Inferences about the level-effect must therefore come from an across-unit analysis.  Our model 

parameterizes the level-effect so that counterfactual predictions can be made to new contexts, as 

opposed to employing a dummy variable coding of the contexts that does not allow for such 

predictions.  We show that our model of the level-effect fits the data better than simpler 

specifications.   

The remainder of the paper is organized as follows: section 2 describes the optimal design 

criterion for the estimation of hyper-parameters in a hierarchical linear model.  Section 3 introduces 

the theory and parameterization for studying the level-effect in conjoint analysis.  Designs are 

constructed and compared in section 4, and section 5 reports empirical results from a national web-

based survey.  Concluding remarks are offered in section 6. 
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2. Design Criterion for Hyper-parameters 

Consider a consumer survey in which respondent i (i=1, …, n) is presented with a set of mi 

profiles (stimuli).  The stimuli are constructed with information on various levels of marketing 

variables, such as price, product attributes or possibly aspects of advertisements.  The levels of the 

marketing variables are reflected in the mi × p model matrix, Xi.  The responses of consumer i to the 

set of stimuli are represented by the vector yi of length mi.  The effects of the various levels of 

marketing variables on respondent i's responses are captured by the p elements of vector βi, which 

are assumed to be random effects distributed according to a multivariate normal distribution with 

mean Ziθ and variance-covariance matrix Λ (p × p).  Zi is a matrix (p × q) of covariates, such as 

household income, age or other contextual variables that characterize the purchasing environment.  

θ  is a parameter vector of length q.  Thus, the hierarchical linear model is of the following form:   

 

  iiiiiy εβσβ +Χ=2,|                        (1) 

  iii δθθβ +Ζ=Λ,|          (2) 

 

The error vector, εi of length mi in the first level of the hierarchy captures consumer i's 

response variability to the set of stimuli, and it is assumed to have a Multivariate Normal distribution 

with mean vector 0 of length mi and variance-covariance matrix 
im

Ι2σ .  The error vector δi of 

length p in the second level of the hierarchy captures the dispersion of the individual-level-effects βi 

and is assumed to be Multivariate Normal with mean vector 0 and variance-covariance matrix Λ of 

size p x p.  When the prior knowledge is weak, the following proper but diffuse priors are usually 

assumed for θ, Λ and σ2 (see Gamerman 1997; Rossi, Allenby and McCulloch 2005). These are 

replaced by more informative priors when prior knowledge is available. 
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θ ~ Normal ( 0, 100Ip )                                                                            (3) 

Λ ~ Inverted Wishart ( ν0=p+3, V0=ν0Ip )                                               (4) 

σ2 ~ Inverse Gamma (3/2, 1/2)                                                              (5) 

Accurate estimation of hyper-parameters is important in situations when learning of 

contextual effects is of interest, or when predictions to new contexts are required.  Pragmatic 

approaches to finding efficient designs have been proposed for the estimation of hyper-parameters 

under a hierarchical nonlinear model. For example, the swapping, relabeling and cycling heuristic by 

Sándor and Wedel (2002); the linearization approach by Mentré et al. (1997); the stochastic gradient 

search by Tod et al. (1998), and the ``MCMC nested within Monte Carlo'' approach by Han and 

Chaloner (2004).  No contextual variables are included in the hierarchical models used in these 

papers, that is, Zi equals the identity matrix.  

Under a hierarchical linear model with independent, homoscedastically distributed random 

effects (i.e., Λ = λ2I ), Lenk et al. (1996) analytically investigate, in the survey setting, the tradeoff 

between the number of subjects and the number of questions per subject under a cost constraint 

and an orthogonal design structure. Contextual variables are included in the model but Zi is assumed 

given, that is, Zi is not under the control of the experimenter. In this paper, we explore efficient 

experimental designs expressed in terms of the stimuli (Xi) and contextual variables (Zi).   

 

Design Optimality Criterion for Hyper-parameter Estimation 

   We consider the situation when the primary interest is on the accurate estimation of the 

context effect vector θ, or a function g(θ) of vector θ,  while the response error variance σ2 and the 

random effects variance-covariance matrix Λ are treated as nuisance parameters. Equations (1) and 

(2) can be combined to obtain 
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( )'22 ,~,,| iimiiimi ii
y ΛΧΧ+Ι=ΣΖΧΝΛ σθσθ ,                (6) 

where
im

Ν denotes multivariate normal distribution with dimension mi, with priors (3) to (5) assumed 

for θ, Λ and σ2. 

We define an optimal design for the context effect vector θ is a design with matrices {Xi} 

and {Zi} (if Zi can be controlled by the experimenter), i=1, …, n, that maximizes the expected gain 

in Shannon information (see Chaloner and Verdinelli, 1995, page 277):  

2 2' ' 2 ' 1

1

( ) ( )log ( ) ,
i

n

i i m i i i i
i

p p d dσ σσψ −

=

Λ ΛΖ Χ Ι + Χ ΛΧ Χ Ζ
⎧ ⎫= ⎨ ⎬
⎩ ⎭

∑∫         (7) 

where p(Λ) and p(σ2) denote the probability density functions of the prior distributions of Λ and σ2.  

Details of the derivation of the ψ-criterion in (7) can be found in Liu et. al. (2007). We note that the 

ψ-criterion is essentially the Bayesian D-criterion for the estimation of hyper-parameter vector θ. 

For notational convenience, we call it the ψ-criterion to distinguish it from the Bayesian D-criterion 

for the estimation of the respondent-level effects βi, which we simply refer to as the "D-criterion" in 

this paper. Thus, D-optimal designs in this paper strictly refer to the designs for the efficient 

estimation of the respondent-level effects βi, with matrices {Xi} that maximize 

{ } 2 2'2 1 ( ) ( )log ,i i p p d dD σ σσ − − Λ ΛΧ Χ= +Λ∫                                     

Note that matrices {Zi} of contextual variables do not play a part in the identification of D-optimal 

designs. Furthermore, we demonstrate in Section 4 that efficient designs for the estimation of 

respondent-level effects may not be efficient for the estimation of hyper-parameters. 

In certain situations when all respondents receive the same stimuli (Xi = X), X can be 

determined independently of {Zi} in an optimal design under the ψ criterion. For example, in a 

survey study, when the same questionnaire is given to all respondents, the optimal construction of 

the questionnaire is often independent of the optimal sampling of the respondents on the basis of 
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demographic information such as age or income.  However, in other situations when respondents 

receive customized stimuli or when the construction of the stimuli is linked to the contextual 

variables, optimal {Xi} and {Zi} need to be determined jointly.  

In this paper, we focus on the estimation of a function g(θ) of hyper-parameter vector θ. 

Using a Taylor series expansion, it follows from the derivation of (7) that, an optimal design for the 

estimation of g(θ)  is a design with matrices {Xi} and {Zi}, i=1, …, n, that maximizes 

' 1

' ' 2 ' 1 2 2

1

( ) ( )
log ( ) ( ) ( ) ( ) ,

i

n

i i m i i i i
i

g g
p p p d d d

θ θ
σ θ σ θ σ

θ θ
ψ

−

−

=

∂ ∂
− Ζ Χ Ι + Χ ΛΧ Χ Ζ Λ Λ

∂ ∂

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭
∑∫   (8) 

where p(θ) is the probability density function of the prior distribution of θ. The matrix inverse inside 

the log determinant function is the general inverse ' ' 2 ' 1

1

( )
i

n

i i m i i i i
i

σ
−

−

=

Ζ Χ Ι + Χ ΛΧ Χ Ζ⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ for the case that 

g(θ) is uniquely identifiable but θ is not.  

 We use the ψ -criterion to select the survey designs in Section 4 in the context of the level-

effect in conjoint analysis where Xi is linked to Zi.  The next section introduces the level-effect, and 

proposes a hierarchical linear model that captures the level-effect as one of the hyper-parameters.  

 

3. Modeling the Level-effect in Conjoint Analysis 

Numerous explanations of the level-effect have been proposed in the literature. Currim, 

Weinberg and Wittink (1981) find that the ordinal properties of ranking and rating measures 

contribute to the occurrence of the level-effect.  Wittink et al. (1992), Steenkamp and Wittink (1994), 

Verlegh, Schifferstein and Wittink (2002) find that certain experimental design methods such as the 

utility-balance approach in ACA (Adaptive Conjoint Analysis), and small sampling errors seem to 

reduce the magnitude of the level-effect.  Steenkamp and Wittink (1994) also investigate the 

attention-based explanation which states that the respondents' attention to an attribute may increase 
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with the addition of attribute levels.  However, only minimal support of the attention-based 

explanation has been found in empirical studies. Most recently, Verlegh, Schifferstein and Wittink 

(2002) suggest that the level-effect is most likely due to respondents' tendencies to uniformly 

distribute their responses over the corresponding continuum of the measurement scale.  

In this section, we model the level-effect by incorporating two ideas from the psychology 

literature – the Range-Frequency theory of Parducci (1965, 1974, 1982) and Krumhansl's (1978) 

Distance-Density model.  We first specify the model for a single attribute, and then express the 

model in its general form.   

 

The Model: Single-Attribute Case 

Parducci (1965) proposes a theory on how evaluation is influenced by two factors – the range and 

frequency of levels of an attribute.  His theory posits that preferences reflect a compromise between 

these factors, where range is defined in terms of a linear mapping of attribute-levels to a measure of 

value, and frequency is defined in terms of an ordinal mapping to value.  To illustrate, suppose 

respondents are presented with five possible car prices:  

$20,000 $21,000 $26,000 $28,000 $30,000 

Evaluations based on the principle of range leads to values of:  

10 9 4 2 0 

and evaluations based on frequency result in values of:  

 10 7.5 5 2.5 0 

Cooke et al. (2004) formalize Parducci’s range-frequency theory into the following model:  

( ) ( )min max ming gR S S S S= − −      (9) 

( )( ) ( )1 1gF Rank g N= − −       (10) 
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( )1g g gJ R Fω ω= + −        (11) 

where Jg denotes a normalized value of attribute-level g as a weighted average of the range (Rg) and 

frequency (Fg) effects with 0 ≤ ω ≤ 1.  Cooke et al. (2004) transform this normalized value to an 

actual value by the equation: 

g gA b mJ= +         (12)             

where b is the respondent's perceived value of the lowest-level of the attribute, and m is the 

"perceived distance" between the lowest and highest attribute-levels. 

We extend the model proposed by Cook et al. (2004), (9) to (12), by modeling m according 

to the Distance-Density model in Krumhansl (1978) which states that "...two points in a relatively 

dense region of a stimulus space would have a smaller similarity measure than two points of equal 

interpoint distance but located in a less dense region of the space...".  Specifically, we assume m is a 

linear function of the number of attribute levels L: 

  m Lκ υ= +                                                                                         (13) 

and the final form of the model is: 

  ( ) ( ) gg g g g g g gA b F LF R F L R F δκ υ κω υω= + + + − + − +                 (14) 

where δg is an error term distributed according to a N(0,λ2) distribution that allows for respondent-

specific deviation from the assumed structure.   

The parameter υ in equation (14) measures the level-effect in conjoint analysis.  To estimate 

υ, it is required that the conjoint study contains multiple parts which have different numbers of 

attribute levels L.  The difference Rg – Fg  in equation (14) represents how far away the relative range 

is from the relative rank and provides a measure of the skewness of the distribution of the attribute 

levels. If an attribute has levels packed on the lower end, for example, (10, 15, 20, 30, 35, 40, 70, 90, 

100), then we will observe prevailingly Rg – Fg < 0. Similarly, if an attribute has levels that are packed 
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up on the higher end, we will have prevailingly Rg – Fg > 0. If an attribute has equally-spaced levels, 

or when an attribute has only 2 levels, then Rg – Fg = 0 for all g.  So, for ω in equation (14) to be 

estimable, we need to have at least one part of the study in which the attribute has more than two 

levels and the levels are not equally spaced.  

 

The Model: General Expression in Matrix Form 

We now express the model in matrix form for the general case of multiple respondents rating multi-

attribute products in a conjoint study. The model takes the form of a hierarchical linear model: 

  2 2
, , , ,| , ~ ( , ),i s i s i s i sy Normalβ σ β σΧ Ι                (15) 

where s indexes the parts of the conjoint study (s  = 1, 2, …, S) with possibly different numbers of 

attribute levels.  yi,s is the vector of profile ratings from respondent i (i = 1, …, n) in part s of the 

study,  βi,s is the vector of attribute-level part-worths, and Xi,s is the model matrix representing the 

stimuli presented to respondent i  in part s of the study.   If all respondents in part s  of the study are 

asked to rate the same set of stimuli, then the model matrix is the same across all respondents in that 

part of the study, that is, Xi,s = Xs.  Note that (15) for a given part s of the study is of the same form 

as (1), the first level of the hierarchical model introduced in Section 1. 

In the second level of the hierarchical model, the part-worths βi,s are modeled according to 

the Range-Frequency/Distance-Density theory as formalized in Equation (14). The expression of 

the second level of the hierarchical model is:  

  ( ), | , ~ , ,i s s s sNormalβ θ θΛ Ζ Λ               (16) 

The hyper-parameter vector θ  is defined as 

θ'
' = (μ, θ1

', …, θτ', …, θT
'),                         (17) 
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where τ indicates the τth attribute (τ =1, …, T).  When attribute τ is monotonic with different 

numbers of levels across the multiple parts of the study, θτ' = (κτ, υτ, κτωτ, υτωτ), where the set of 

(κτ, υτ, ωτ) corresponds to the (κ, υ, ω) in (14) for the attribute τ.  If the monotonic attribute τ has 

the same number of levels across the multiple parts of the study, υτ is not estimable and therefore θτ' 

= (κτ, κτωτ).  Similarly, if the attribute levels in attribute τ are equally-spaced or only contain the two 

extreme levels in all parts of the study, ωτ is not estimable and therefore θτ' = (κτ, υτ).  Finally, for 

non-monotonic attributes such as brand name or color, the vector θτ simply contains the means of 

the individual-level-effects over the respondents.   

The covariate matrix Zs in (16) is of a block diagonal structure:  

  

1,

,

,

1 0 0 0
0 0 0

0 0 0

0 0

s

s
s

T s

τ

⎛ ⎞
⎜ ⎟Ζ⎜ ⎟
⎜ ⎟

Ζ = ⎜ ⎟
Ζ⎜ ⎟

⎜ ⎟
⎜ ⎟⎜ ⎟Ζ⎝ ⎠

             (18) 

When attribute τ is a monotonic with different numbers of levels across the multiple parts of the 

study, Zτ,s = 1.  Zτ,s is a matrix that contains of  F,  Lτ,sF,  (R – F)  and  Lτ,s(R – F) on the various 

levels of attribute τ, as required by Equation (14),.  Zτ,s contains only F and R – F on the various 

levels of attribute τ if the monotonic attribute τ has the same number of levels across studies, and 

Zτ,s consists only of F on various levels of the attribute τ  if the attribute levels in attribute τ are 

equally-spaced or only contain the two extreme levels in all parts of the study.  

Appendix A illustrates the model matrices Xi,s and covariate matrices Zs in our hierarchical 

model (15) and (16) for an investigation of the level-effect of credit card interest rate (APR).  The 

designs were selected using the ψ -criterion in equation (8) that accounts for the dependence of Zi 
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on Xi,s due to the level-effect.  Next we illustrate the importance of accounting for this dependence 

when estimating contextual factors that influence consumer valuation of product offerings.  

4. Survey Designs for Studying the Level-effect 

A survey study was conducted through Harris Interactive, a global marketing research firm, 

to evaluate the effectiveness of the proposed model and design criterion.  Credit card products were 

used as stimuli in the survey. Measurement of the level-effect in credit-card preferences requires that 

the study contains multiple parts where the number of attribute levels varies.  The attributes used in 

the survey studies were the APR (interest rate) of the card, the card provider and the reward 

program.  Part 1 of the study involved the two extreme levels (8.99% and 17.99%) of APR in the 

study, part 2 involved four levels of APR with the addition of two intermediate levels, and part 3 

involved three levels of APR with the addition of one intermediate level.  The numbers of levels of 

the other two attributes, card provider and reward program, remained the same across the three 

parts of the study. In particular, there were two card providers -- Capital One vs. Citibank, and three 

levels of rewards – none, cash reward and travel reward. Data from parts 1 and 2 of the study were 

used to estimate the model parameters, and part 3 was reserved for holdout predictive testing.  Each 

respondent in the survey was asked to evaluate 12 credit card products on a 0 to 10 rating scale, with 

0 being least likely to apply and 10 being most likely to apply for the card.  

The vector θ of the hierarchical model in (17) is  

θ = (μ, κA, υA, κAωA, υAωA, θP, θC, θT)',                    (19) 

where the (κA, υA, ωA) reflect the (κ, υ, ω) in (14) on the APR attribute, θP is the mean contrast 

between the two card providers, θC is the mean contrast between cash reward and no reward, and  θT 

is the mean contrast between travel reward and no reward.  The vector θ is a nonlinear function of 

θ* which contains the unique parameters to be estimated in (19), that is,   

θ* = (μ, κA, υA, ωA, θP, θC, θT)'.                     (20) 
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For efficient estimation of θ* through parts 1 and 2 of the study, the construction of the 

stimuli (which determines {Xi,s}) and the physical values of APR (which determines {Zs}) for the 

two parts need to be jointly determined so that ψ  in (8) is maximized. Note that Z1 in part 1 of the 

study was fixed since the two extreme APR levels were fixed at 8.99% and 17.99%. To simplify the 

problem, the same set of stimuli was presented to the respondents in the same part of the study 

(Xi,s=Xs), and a full-factorial design with twelve profiles, as shown in Table A.1 of Appendix A, was 

used in part 1 of the survey. Therefore, X1 was fixed, and the problem was simplified to the search 

of X2 and Z2 for part 2 of the study that maximize  

12

' 2
' ' 2 ' 1

1

( ) ( )
log ( )s s s s s s s s

s

g gθ θ
σ

θ θ
ψ

−

−

=

∂ ∂
− Ζ Χ Ι + Χ Λ Χ Χ Ζ

∂ ∂

⎧ ⎫⎪ ⎪⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
∑∫    

2 2 2 2
1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ,p p p p p d d d d dθ σ σ θ σ σ× Λ Λ Λ Λ         (21) 

given an equal number of respondents in each part of the study, where 

*

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1/ 0 1/ 0 0 0( )
0 0 1/ 1/ 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

A A

A A

g ω κθ θ
ω νθ θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂ ⎜ ⎟= = ⎜ ⎟∂ ∂
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                                    (22) 

 Based on the credit card offers available on the market, there were five possible choices of 

intermediate APR levels to be included in the study -- 9.99%, 11.99%, 12.99%, 14.99%, and 15.99%. 

Therefore, for part 2 of the study, there were a total of 
5

10
2

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 possible choices of Z2. For each 

possible choice of Z2, we obtained an optimal X2 that maximizes ψ~  in (21) through computer 

search as explained below.  Then we recorded the ψ~  value for each pair of (X2, Z2), and compared 
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the ψ~  values to obtain the optimal pair of X2 and Z2. Similarly, for part 3 of the study, there were a 

total of 5 possible choices of Z3. We used the same approach to obtaining the optimal X3 and Z3 by 

replacing the index s = 2 with the index  s = 3 in (21). 

 Table 1 lists the attributes and attribute-levels in the three parts of the study. 

      _______________________________________________________________________ 

    Part 1   APR:    (8.99%, 17.99%) 
     Provider:   (Capital One, Citibank) 
     Reward:   (None, Cash, Travel) 
 
    Part 2   APR:    (8.99%, 9.99%, 15.99%, 17.99%) 
     Provider:   (Capital One, Citibank) 
     Reward:   (None, Cash, Travel) 
 
    Part 3   APR:    (8.99%, 9.99%, 17.99%) 
 (Holdout)   Provider:   (Capital One, Citibank) 
     Reward:   (None, Cash, Travel) 
      _______________________________________________________________________ 

Table 1: Web-based 12-Profile Credit Card Survey Study 

 

Table A.6 in Appendix A reports the matrices Z2 and Z3 in the optimal pairs (X2, Z2) and (X3, Z3) 

that were selected for parts 2 and 3 of the study, together with the fixed Z1 for part 1 of the study. 

Simple exchange algorithms (see Atkinson and Donev, 1992) have been used in the literature 

for the search of D-optimal designs. We modified a simple exchange algorithm to obtain an optimal 

X2 that maximizes ψ~  in (21) for given X1, Z1 and Z2, where the integral of ψ~  was calculated using 

Monte Carlo method. Based on prior knowledge, under the standardized orthogonal effects coding  

(see Kuhfeld, 2005) of the model matrices X1 and X2, the variance-covariance matrices Λ1 and Λ2 

were expected to have positive off-diagonal elements, that is, the random effects were expected to 

be positively correlated although the actual sizes of the correlations and the variances were 

unknown. Following recommendations in Liu et al. (2007), the following priors were used, 

respectively, for Λ1 and Λ2, in the computer search of an optimal X2. 
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Λ1 ~ Inverted Wishart( ν0=7,  V0=2I5 + J5 ), 

Λ2 ~ Inverted Wishart( ν0=9,  V0=2I7 + J7 ), 

where J denotes a matrix with all elements being ones.  We note that, while these values of V0 were 

used in the search of an optimal X2, alternative values lead to the same rank ordering of candidate X2 

matrices for a wide range of V0 values where V0 = aI + bJ with any positive a and b such that 

0.5 / 2a b< ≤ . For the rest of the parameters, non-informative priors were used as follows, 

2 2
1 2,σ σ  ~ Inverse Gamma (3/2, 1/2), 

ωA   ~ Uniform (0, 1), 

*
Aω

θ− ~ Normal 6(0,100 )Ι , 

where '* ),,,,,( TCPAAA
θθθνκμθ ω =− . 

For purpose of comparison, in addition to an optimal X2, three other versions of designs 

with high efficiency for the stimuli construction in part 2 of the study were selected from the same 

computer search algorithm using different starting points. Tables A.2 and A.3 in Appendix A list the 

four versions of designs and the corresponding model matrices, where Design IV denotes the 

optimal design and Design I, II, III denote the three relatively less efficient designs obtained through 

computer search. Using Design I as the baseline design, a relative ψ~ -efficiency is reported for a 

design with model matrix #
2Χ , as defined by 

                                #
2 2Relative -eff. exp{ ( ) ( )}bψ ψ ψ= Χ − Χ ,                                          (23) 

where 2
bΧ  denotes the model matrix corresponding to Design I, and #

2( )ψ Χ  and 2( )bψ Χ represent 

the values of ψ~  in (21) corresponding to the design with model matrix #
2Χ  and 2

bΧ , respectively. As 

a comparison, relative D-efficiency between the two designs is also reported, as defined by  

{ }2 # # 1 2 1 2 2
2 2 2 2Relative D-eff. exp log log ( ) ( )b b p p d dσ σ σ σ− − − −′ ′= Χ Χ + Λ − Χ Χ + Λ Λ Λ⎡ ⎤⎣ ⎦∫ ,         (24)                                
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which measures the relative efficiency of the two designs for the estimation of the respondent-level 

effects βi. 

As shown in Table 2, designs efficient for the estimation of respondent-level effects (D-

efficient) may not be efficient for the estimation of hyper-parameters (ψ~ -efficient). Specifically, 

Design IV is relatively the most ψ~ -efficient and the least D-efficient, while Design II is relatively the 

least ψ~ -efficient and the most D-efficient.  Design I and Design III are in the middle. 

Relative 
Efficiency 

Design I Design II Design III Design IV 

ψ~  100% 95.5% 98.4% 100.4% 
D 100% 105.1% 101.4% 93.1% 

Table 2: Relative Efficiencies of Designs for Stimuli Construction in Part 2 of the Study 

Similarly, three versions of designs were selected for stimuli construction in part 3 of the 

study, as reported in Appendix A. Part 3 of the study was used as holdout for prediction validation. 

Namely, data obtained from parts 1 and 2 of the study were used to estimate the θ* in (20), and the 

θ* estimates were used to predict the mean preferences (over the respondents) in the holdout study 

(see Section 5). 

In general, ψ~ -efficient designs differ from D-efficient designs in this context in three ways.  

First, standard D-efficient designs tend to be orthogonal, while ψ~ -efficient designs (for stimuli 

specification X) are only orthogonal for independent random-effects and fixed contexts Z which are 

independent of X, under non-informative priors. Departures from any of these conditions can result 

in non-orthogonal optimal designs.  When ω equals one, such that respondents depend solely on the 

range of the attribute levels, equally spaced attribute levels tend to provide a more efficient design.  

When ω equals zero, such that respondents depend solely on the relative ranks of the attribute 

levels, the values of the attribute levels do not matter.    
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5. Empirical Results 

The data were collected via a national web-based survey through Harris Interactive.  The 

following screening rules were used during the data collection: a qualified respondent needs to be 18 

years of age or older, live in U.S., and have a credit card issued under his/her own name. A total of 

1000 respondents participated in the study. Respondents were randomly assigned to the different 

parts of the study, and the presentation order of the 12 credit card profiles was also random. The 

data showed that some respondents gave the same ratings to all the 12 profiles presented to them, 

some respondents chose one product and rated the remaining eleven products 0, and some 

respondents used the scale in a reverse order (i.e., 0 was used for most likely to apply for the card, 

and 10 was used for least likely to apply). Responses from these respondents were considered invalid 

and taken out of the data. The final data contained 757 valid respondents, averaging about 95 valid 

respondents per design version of the survey.   

An MCMC method was used to obtain the estimates of θ* in (20) where a Metropolis-

Hastings (M-H) algorithm was used within a Gibbs sampler to generate the posterior draws. 

Appendix B provides the details of the algorithm.  Using the responses from part 1 and from each 

design version of part 2 of the study, the proposed hierarchical model was fit to the data and the 

posterior estimates of θ* were obtained, as reported in Table 3 with the posterior means and the 

posterior standard deviations in parenthesis.  
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θ* Design I Design II Design III Design IV 
μ 0.325 

(0.117) 
0.234 

(0.115) 
0.254 

(0.112) 
0.202 

(0.112) 
κA 3.427 

(0.499) 
3.270 

(0.512) 
3.495 

(0.506) 
3.174 

(0.520) 
νA 0.224 

(0.138) 
0.289 

(0.150) 
0.240 

(0.141) 
0.373 

(0.143) 
ωA 0.925 

(0.070) 
0.891 

(0.092) 
0.922 

(0.070) 
0.943 

(0.054) 
θP -0.048 

(0.123) 
0.061 

(0.125) 
-0.015 
(0.129) 

-0.126 
(0.120) 

θC 1.595 
(0.180) 

1.705 
(0.175) 

1.414 
(0.164) 

1.684 
(0.172) 

θT 0.529 
(0.163) 

0.508 
(0.163) 

0.681 
(0.151) 

0.631 
(0.153) 

Table 3: Posterior Estimates of θ* From Part 1 and Each Design Version of Part 2 of the Study 

 

In all four design versions, the Bayesian 95% highest probability density (HPD) regions of νA 

(the level-effect of APR) do not include 0, confirming the existence of the level-effect. That is, the 

contrast between the 8.99% and the 17.99% APR increases with the addition of the two 

intermediate APR levels. Estimation results on the other parameters are quite consistent in all 

occasions. For example, estimates on credit card provider (θP) suggest that respondents do not have 

a preference of one provider (Capital One) over another (Citibank); estimates on rewards (θC and θT) 

suggest that respondents prefer cash reward over none and travel over none.   

The parameter estimates reported in Table 3 indicate that the level-effect parameter (νA) is 

estimated to have a posterior mean of 0.28 on average, and that the range-frequency weight (ωA) in 

(20) has a posterior mean of 0.92 on average.  This implies that attribute-levels in this study map 

onto the range-frequency value Jg mostly through the relative range Rg.  Also, for each addition of an 

intermediate APR level, the mean perceived distance between the highest and lowest APR levels 

increases by 0.28.  That is, the mean contrast between the highest and lowest APR in part 2 of the 
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study is 0.28 × 2 = 0.56 units larger than in part 1 of the study due to the addition of two 

intermediate APR levels.  Thus, it is estimated to be large relative to the other effect sizes -- 

approximately as large as the mean contrast between a travel reward and no reward. 

Although earlier empirical studies on category ratings found the range-frequency weight (ωA) 

close to 0.5 (Wedell et al. 1989, page 235), Parducci and Wedell (1986) investigated situations that 

influence the magnitude of this parameter.  Results from their experiments showed that the weight 

can sometimes be as high as 91% (Table 3, Parducci and Wedell, 1986), suggesting a range-driven 

behavior rather than frequency-driven.  They suggest that the range-frequency weight is affected by 

the difficulty of recognizing frequency values by the respondents.  This occurs when respondents are 

asked to rate on 20- or 100-point scales, rather than on 5- or 7-point scales, or when the profiles 

under evaluation contain multiple attributes each with several levels as in conjoint analysis.   

 

Accuracy of Estimates 

We compare the efficacy of the four different designs using two measures of accuracy -- the 

determinant of the variance-covariance matrix (DETVAR) of the posterior estimates of θ* 

normalized by the dimension of θ*, and the average variance (AVGVAR) of the posterior estimates 

of θ* normalized by the size of θ*.  Results are displayed in Table 4.  We note that without knowledge 

of the actual values of θ*, these two measures provide direct measures of the estimation efficiency by 

assuming that the parameter estimates are unbiased.  

Both the DETVAR and the AVGVAR measures show consistency with the relative ψ~ - 

efficiencies of the designs, that is, designs with higher ψ~ -efficiency lead to smaller variances of the 

θ* estimates as measured by DETVAR and AVGVAR. Table 4 also shows that neither of the 

performance measures is consistent with the relative D-efficiencies of the designs. Note especially 

designs II and IV, where design IV is relatively the most ψ -efficient and design II is the most D-
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efficient among the four designs. The performance measures give evidence for the use of the ψ~  

criterion in designing experiments for efficient estimation of hyper-parameters, rather than the use 

of the D criterion.  

 

Performance Measure Design I 
Rel.ψ~ =100%
Rel. D=100%

Design II 
Rel.ψ~ =95.5% 
Rel. D=105.1%

Design III 
Rel.ψ~ =98.4% 
Rel. D=101.4% 

Design IV 
Rel.ψ~ =100.4%
Rel. D =93.1%

DETVAR  
Relative DETVAR Efficiency 

0.013 
100% 

0.017 
76.5% 

0.014 
92.9% 

0.013 
100% 

AVGVAR 
Relative AVGVAR Efficiency 

0.046 
100% 

 

0.054 
85.2% 

0.051 
90.2% 

0.046 
100% 

Table 4:  Performance Comparison of the Four Designs in Part 2 of the Study 
 

In-Sample Fit 

 We compare the fit of the proposed model to that of a number of alternative models.  

Model 1 estimates parameters from parts 1 and 2 of the data independently and does not attempt to 

model the level-effect: 

 Model 1:  ( ) ( ), , , ,~ , , ~ ,i s i s i s s i s s sy N X Nβ τ β β Λ                                 (25) 

In model 2, the APR attribute is treated as a continuous variable without regard to the presence of 

the level-effect: 

Model 2: ( ) ( )~ , , ~ ,i i i iy N X Nβ τ β β Λ                        (26) 

Model 3 retains the dummy-variable coding for APR, but treats the APR levels as a continuous 

variable in the hyper-parameter specification, which is essentially the same as setting the range-

frequency weight ωA= 1 in our model, i.e., 

 Model 3: ( ) ( ), , , ,~ , , ~ ,i s i s i s s i sy N X N Zβ τ β θ Λ             (27) 
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Models 2 and 3 allow for projection to new contexts, while model 1 does not.  In-sample fit statistics 

are reported in table 5, and indicate that our proposed model fits the data best in terms of log 

marginal density.  Moreover, treating APR as a continuous variable in either the lower-level (Model 

2) or the upper-level (Model 3) of the hierarchical model substantially degrade the fit, indicating that 

contextual effects are present. 

Model for Comparison Design I 
Rel.ψ~ =100%
Rel. D=100%

Design II 
Rel.ψ~ =95.5% 
Rel. D=105.1%

Design III 
Rel.ψ~ =98.4% 
Rel. D=101.4% 

Design IV 
Rel.ψ~ =100.4%
Rel. D =93.1%

 
Proposed Model 

 
-4515 

 
-4455 

 
-4414 

 
-4258 

 
Model 1: 
   

 
-4526 

 
-4491 

 
-4438 

 
-4296 

 
Model 2: 
   

 
-4583 

 
-4803 

 
-4446 

 
-4615 

 
Model 3 
   

 
-4600 

 
-4744 

 
-4483 

 
-4559 

 Table 5: In-Sample Fit Based on Log Marginal Density 

 

Predictive Performance 

Data from part 3 of the study are used as validation data to check how well the model 

predicts to a new context with a different number of APR levels. Estimates of θ* obtained in Table 3 

from each design k (k = 1,…,4) of part 2 of the study were used to predict the mean ratings of the 

12 profiles in each design version j (j = 1, 2, 3) of part 3 of the study: 

 
2 2 2 2

3 3 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2
ˆ ( , , , , |{ , }, , , , )jk j i ik ky y y d d d d dθ π θ σ σ θ σ σ= Χ Ζ × Λ Λ Χ Χ Ζ Ζ Λ Λ∫           

where X3j is the model matrix in design version j (j = 1, 2, 3) of part 3 of the study, as shown in 

Table A.5 of Appendix A.  X1 is the model matrix in part 1, and X2k is the model matrix in design k 
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(k = 1, …, 4) of part 2 of the study, as shown respectively in Table A.1 and A.3 of Appendix A. iy1  

is the vector of responses from respondent i in part 1, and iky2  is the vector of responses from 

respondent i in design k of part 2 of the study. Appendix C provides the prediction results on the 

three design versions of part 3 of the study.  For most profiles, the actual mean ratings were within 

the 95% Bayesian highest posterior density region of the predictions. Prediction accuracy is 

measured with expected squared error loss (MSE):  

)()( 333
'

333 θθ ΖΧ−ΖΧ−= ∫ jjjjjk yyMSE  

          2
2

2
121212121

2
2

2
121 ),,,},,{|,,,,( σσθσσθπ dddddyy kiki ΛΛΖΖΧΧΛΛ×     (28) 

where jy3  is the actual mean ratings of the 12 profiles in design version j (j = 1, 2, 3)  of part 3 of 

the study.  

 Table 6 displays predictive fits using (28) and parameter values from our proposed model 

and models 2 and 3 (Expressions 26 and 27).  We find that, on average, our proposed model 

predicts most accurately.  The average predictive MSE across all designs is essentially the same as 

that reported in table 6 for Design IV, the design with highest relative efficiency.  

 
Model for Comparison Design I 

Rel.ψ~ =100%
Rel. D=100%

Design II 
Rel.ψ~ =95.5% 
Rel. D=105.1%

Design III 
Rel.ψ~ =98.4% 
Rel. D=101.4% 

Design IV 
Rel.ψ~ =100.4%
Rel. D =93.1%

 
Proposed Model 

 
0.198 

 
0.209 

 
0.161 

 
0.189 

 
Model 2: 
   

 
0.199 

 
0.201 

 
0.183 

 
0.194 

 
Model 3 
   

 
0.200 

 
0.198 

 
0.180 

 
0.194 

Table 6:  MSE of Mean Rating Predictions in the Holdout Part (Part 3) of the Study 
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6. Discussion and Concluding Remarks 

The level-effect is an example of a broad class of problems in Marketing and other 

disciplines that involve the learning of effect sizes and what drives big or small effects. Learning of 

the level-effect gives us ideas on how consumer sensitivity to a product attribute varies with the 

number of attribute levels, and allows us to predict to a new context. We propose in this paper a 

hierarchical linear model that models individual consumer behavior and, by incorporating a number 

of ideas from the Psychology literature, models the level-effect as a hyper-parameter.  

We designed a credit card survey study in which the survey designs were selected according 

to the ψ~ -criterion introduced in (8) for efficient estimation of hyper-parameters.  The discussion 

and choice of design criteria for estimation of hyper-parameters is an under-developed topic in 

marketing research and, with the advent of modern Bayesian statistical methods, the estimation of 

models characterizing the variation of effect sizes across contexts and environments is likely to 

become more prevalent.  Our design criterion accommodates interactions between individual-level 

variables and contextual variables as reflected through matrices Xi and Zi in hierarchical models.  

The interactions are present when studying contextual factors that influence consumer preference 

and choice.  We demonstrate that designs efficient under our criterion lead to more accurate hyper-

parameter estimation, and that designs efficient for the estimation of respondent-level effects may 

not be efficient for the estimation of hyper-parameters.   

From our survey data, we estimate a large contextual level-effect that points to increased 

sensitivity to attribute-levels as the number of levels increases.  The level-effect has implications for 

merchandising because it implies that consumer preference for product features is dependent on the 

assortment of choice.  Our results imply that a high-assortment retailer will find that consumers 

express greater preference among attribute levels, while a low-assortment retailer will find that 

preferences are not as well defined and that consumers are more willing to switch among choice 
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alternatives.  This finding is consistent with the merchandising policies of discount retailers, such as 

WalMart, who typically offer low levels of assortment.  We note that the level-effect we examined is 

on a monotonic attribute, not one for which an ideal-point preference exists.  We have not 

examined if the level-effect exists for nominal attributes such as the color – e.g., that increasing 

choices of colors on cars makes people more sensitive to car color when making a purchase 

decision.  

Hierarchical models offer a convenient structure for pooling results across studies to 

quantify changes in effect-sizes.  In the past, these changes have typically not been associated with 

covariates, Zi, that describe aspects of the study from which the data originate.  For example, while 

researchers routinely compare responses for alternative stimuli, the comparison typically involves 

examination of simple contrasts, or, equivalently, assumes that Zi in the hierarchical model is 

dummy-variable coded.  Hierarchical models allow for a more general coding scheme that enables 

the study of covariates that are more generally associated with experiment conditions, as illustrated 

in our empirical study.  The design criterion presented here provides a means of evaluating designs 

for efficient learning about these contextual effects.  

In this paper, we focused on a design criterion for efficient hyper-parameter estimation. An 

interesting direction for future research is to investigate optimal designs under alternative design 

criteria that may be of interest. For example, if all possible new contexts are known beforehand, 

then a good criterion to use is a criterion for the predictions, such as one that minimizes the average 

variance of the predictions. Additional topics for future research include the study of incomplete 

block designs in which different respondents receive different sets of stimuli. Furthermore, a natural 

extension of the current research is to the choice designs in the setting of hierarchical non-linear 

models. 
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APPENDIX A: Survey Designs and Corresponding Model Matrices 

APR Provider Rewards   Corresponding Model Matrix X1 
17.99% Capital One Travel  1 0 1 0 1
17.99% Capital One Cash  1 0 1 1 0
17.99% Capital One None  1 0 1 0 0
17.99% Citibank Travel  1 0 0 0 1
17.99% Citibank Cash  1 0 0 1 0
17.99% Citibank None  1 0 0 0 0
8.99% Capital One Travel  1 1 1 0 1
8.99% Capital One Cash  1 1 1 1 0
8.99% Capital One None  1 1 1 0 0
8.99% Citibank Travel  1 1 0 0 1
8.99% Citibank Cash  1 1 0 1 0
8.99% Citibank None  1 1 0 0 0
         
Table A.1: Full-factorial design for stimuli construction in part 1 of the study and 
corresponding model matrix under dummy coding  

 
DESIGN I   DESIGN II 

APR Provider Rewards   APR Provider Rewards 
17.99% Capital One Cash   17.99% Capital One Travel 
17.99% Citibank Travel   17.99% Capital One Cash 
17.99% Citibank None   17.99% Citibank None 
15.99% Capital One Travel   15.99% Capital One None 
15.99% Capital One None   15.99% Citibank Travel 
15.99% Citibank Cash   15.99% Citibank Cash 
9.99% Capital One Travel   9.99% Capital One Travel 
9.99% Capital One Cash   9.99% Capital One Cash 
9.99% Citibank None   9.99% Citibank None 
8.99% Capital One None   8.99% Capital One None 
8.99% Citibank Travel   8.99% Citibank Travel 
8.99% Citibank Cash   8.99% Citibank Cash 
        

DESIGN III   DESIGN IV 
APR Provider Rewards   APR Provider Rewards 
17.99% Capital One Travel   17.99% Capital One Cash 
17.99% Citibank Cash   17.99% Citibank Travel 
17.99% Citibank None   17.99% Citibank None 
15.99% Capital One Cash   15.99% Capital One Travel 
15.99% Capital One None   15.99% Capital One None 
15.99% Citibank Travel   15.99% Citibank Cash 
9.99% Capital One Cash   9.99% Capital One Travel 
9.99% Citibank Travel   9.99% Capital One Cash 
9.99% Citibank None   9.99% Citibank None 
8.99% Capital One Travel   8.99% Capital One Cash 
8.99% Capital One None   8.99% Capital One None 
8.99% Citibank Cash   8.99% Citibank Travel 
        

Table A.2: Four versions of designs for stimuli construction in part 2 of the study  
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Design I   Design II  

1 0 0 0 1 1 0   1 0 0 0 1 0 1  
1 0 0 0 0 0 1   1 0 0 0 1 1 0  
1 0 0 0 0 0 0   1 0 0 0 0 0 0  
1 1 0 0 1 0 1   1 1 0 0 1 0 0  
1 1 0 0 1 0 0   1 1 0 0 0 0 1  
1 1 0 0 0 1 0   1 1 0 0 0 1 0  
1 0 1 0 1 0 1   1 0 1 0 1 0 1  
1 0 1 0 1 1 0   1 0 1 0 1 1 0  
1 0 1 0 0 0 0   1 0 1 0 0 0 0  
1 0 0 1 1 0 0   1 0 0 1 1 0 0  
1 0 0 1 0 0 1   1 0 0 1 0 0 1  
1 0 0 1 0 1 0   1 0 0 1 0 1 0  
                 

Design III   Design IV  
1 0 0 0 1 0 1   1 0 0 0 1 1 0  
1 0 0 0 0 1 0   1 0 0 0 0 0 1  
1 0 0 0 0 0 0   1 0 0 0 0 0 0  
1 1 0 0 1 1 0   1 1 0 0 1 0 1  
1 1 0 0 1 0 0   1 1 0 0 1 0 0  
1 1 0 0 0 0 1   1 1 0 0 0 1 0  
1 0 1 0 1 1 0   1 0 1 0 1 0 1  
1 0 1 0 0 0 1   1 0 1 0 1 1 0  
1 0 1 0 0 0 0   1 0 1 0 0 0 0  
1 0 0 1 1 0 1   1 0 0 1 1 1 0  
1 0 0 1 1 0 0   1 0 0 1 1 0 0  
1 0 0 1 0 1 0   1 0 0 1 0 0 1  
                 
Table A.3: Corresponding model matrix (X2, dummy-coded) in part 2 of the study 

 
 

DESIGN I    DESIGN II  DESIGN III 
APR Provider Rewards    APR Provider Rewards  APR Provider Rewards
17.99% CapOne Cash    17.99% CapOne Travel  17.99% CapOne Cash 
17.99% CapOne None    17.99% CapOne None  17.99% CapOne None 
17.99% Citibank Travel    17.99% Citibank Cash  17.99% Citibank Travel 
17.99% Citibank Cash    17.99% Citibank None  17.99% Citibank Cash 
9.99% CapOne Travel    9.99% CapOne Cash  17.99% Citibank None 
9.99% CapOne None    9.99% CapOne None  9.99% CapOne Travel 
9.99% Citibank Cash    9.99% Citibank Travel  9.99% CapOne None 
9.99% Citibank None    9.99% Citibank Cash  9.99% Citibank Cash 
8.99% CapOne Travel    8.99% CapOne Travel  8.99% CapOne Travel 
8.99% CapOne Cash    8.99% CapOne Cash  8.99% CapOne Cash 
8.99% Citibank Travel    8.99% Citibank Travel  8.99% Citibank Travel 
8.99% Citibank None    8.99% Citibank None  8.99% Citibank None 
            

Table A.4: Three versions of designs for stimuli construction in part 3 of the study 
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Design I    Design II    Design III 
1 0 0 1 1 0    1 0 0 1 0 1    1 0 0 1 1 0
1 0 0 1 0 0    1 0 0 1 0 0    1 0 0 1 0 0
1 0 0 0 0 1    1 0 0 0 1 0    1 0 0 0 0 1
1 0 0 0 1 0    1 0 0 0 0 0    1 0 0 0 1 0
1 1 0 1 0 1    1 1 0 1 1 0    1 0 0 0 0 0
1 1 0 1 0 0    1 1 0 1 0 0    1 1 0 1 0 1
1 1 0 0 1 0    1 1 0 0 0 1    1 1 0 1 0 0
1 1 0 0 0 0    1 1 0 0 1 0    1 1 0 0 1 0
1 0 1 1 0 1    1 0 1 1 0 1    1 0 1 1 0 1
1 0 1 1 1 0    1 0 1 1 1 0    1 0 1 1 1 0
1 0 1 0 0 1    1 0 1 0 0 1    1 0 1 0 0 1
1 0 1 0 0 0    1 0 1 0 0 0    1 0 1 0 0 0
                      
 Table A.5: Corresponding model matrix (X3, dummy-coded) in part 3 of the study

 
 
 

Study 1 Covariate Matrix Z1            
1 0 0 0 0 0 0 0            
0 1 2 0 0 0 0 0            
0 0 0 0 0 1 0 0    Study 2 Covariate Matrix Z2 
0 0 0 0 0 0 1 0    1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1    0 0.33 1.33 -0.11 -0.44 0 0 0

           0 0.67 2.67 0.22 0.88 0 0 0
Study 3 Covariate Matrix Z3    0 1 4 0 0 0 0 0

1 0 0 0 0 0 0 0    0 0 0 0 0 1 0 0
0 0.5 1.5 0.39 1.17 0 0 0    0 0 0 0 0 0 1 0
0 1 3 0 0 0 0 0    0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0            
0 0 0 0 0 0 1 0            
0 0 0 0 0 0 0 1            

                  
Table A.6: Covariate matrices for the three parts of the study 
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APPENDIX B: MCMC Algorithm for Model Fitting 

The following standard prior distribution assumptions (see, for example, Gamerman, 1997; Rossi, 

Allenby and McCulloch, 2005) are made on parameters ωA, '* ),,,,,( TCPAAA
θθθνκμθ ω =− , }{ sΛ  

and }{ 2
sσ (s =1, 2) : 

ωA   ~ Uniform (0, 1) 

*
Aω

θ− ~ Normal 1
0 0 6( 0, 100 )b D−= = Ι  

sΛ  ~ Inverted Wishart ),3( ,0,0,0 spssss p Ι=Δ+= ηη  

2
sσ ~ Inverse Gamma )

2
,

2
( ,00 sWw

 

Where p1= 5,  p2= 7, w0=3, and W0,s= w0* )1/()( 2
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= =
ss

n

i

m

j
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. Here, ms represents the 

number of profiles and ns represents the number of respondents in the study s (s=1,2). In the 12-

profile credit card survey studies 1 and 2, m1 = m2 =12. A Metropolis-Hastings (M-H) algorithm is 

used within a Gibbs sampler. The estimation algorithm proceeds by recursively generating draws 

from the following densities: 

1. Independently generate { si,β , i = 1,… ,n, s = 1, 2} from the following multivariate normal 

distribution:  

],,|][,,|[],,,,,|[ ,
2

,,,
2

,,, sssissisisissssisisi ZXyZXy Λ∝Λ θβσβσθβ  ~ Normal ),( ,, sisi Db , 
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,
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,

2
, )( −−− Λ+= ssisissi XXD σ ,         )( 1

,
'
,

2
,, θσ sssisissisi ZyXDb −− Λ+= . 

2. Generate { 2
sσ , s = 1, 2} from the following Inverted chi-squared distribution  
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]}][,,{|}[{}],,{|[ 22
,,,,,,

2
sssisisisisisis XyXy σσββσ ∝  ~ Inverted Chi-squared ),( ss Ww  

ssss nmww += ,0 ,    )()( ,,,
'

,,
1

,
1

,0
1

sisisisisi

n

i
siss XyXyWW

s

ββ −−+= ∑
=

−− . 

3. Generate *
Aω

θ−  

],][},,{|}[{]},,,{|[ *
,,

*
AA sssiAssis ZZ ωω θθβωβθ −− Λ∝Λ  

where ]},,{|}[{ , θβ sssi Z Λ  is the product of multivariate normal densities, ∏∏
= =

Λ
S

s

n

i
sssi Z

1 1
, ],,|[ θβ .  

A random-walk M-H is used to generate the draws of *
Aω

θ− . Let  

')()()()()()()*( ),,,,,( k
T

k
C

k
P

k
A

k
A

kk
A

θθθνκμθ ω =−  

be the kth draw; the next draw is given by 

,)*()1*( δθθ ωω += −
+

−
kk
AA

 

where δ is a draw from the candidate generating density Normal(0,0.052I). Let  

')()()()()()()()()( ),,,,,,,( k
T

k
C

k
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k
AA

k
A

k
A

k
A

kk θθθωνωκνκμθ = . 

The probability of accepting the new draw )1*( +
−
k
Aω

θ  is given by  

( 1) *( 1)
,

( ) *( )
,

[{ } |{ , }, ][ ]
min , 1

[{ }|{ , }, ][ ]
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k k
i s s s

k k
i s s s

Z
Z

ω

ω

β θ θ
β θ θ

+ +
−

−

⎡ ⎤Λ
⎢ ⎥

Λ⎢ ⎥⎣ ⎦
. 
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4. Generate ωA 

],][},,{|}[{}],,{|[ ,, AsssissisA ZZ ωθββω Λ∝Λ  

where ],,|}[{ , sssi Z Λθβ  is the product of multivariate normal densities, ∏∏
= =

Λ
S

s

n

i
sssi Z

1 1
, ],,|[ θβ .  

An Independent M-H algorithm is used to generate the draws of τω .  Generate draws independently 

from the Uniform(0,1) distribution. Let )(k
Aω  be the kth draw, and )1( +k

Aω  be the next draw.  Let 

')()()( ),,,,,,,( TCP
k
AA

k
AAAA

k θθθωνωκνκμθ = . 

The probability of accepting the new draw ( 1)k
τω

+  is given by  

( 1)
,

( )
,

[{ } |{ , }, ]
min , 1

[{ } |{ , }, ]

k
i s s s

k
i s s s

Z
Z

β θ
β θ

+⎡ ⎤Λ
⎢ ⎥

Λ⎢ ⎥⎣ ⎦
. 

5. Generate { sΛ , s=1, …, S} from the Inverted Wishart Distribution  

]][,,|}[{],},{|[ ,, ssssissis ZZ ΛΛ∝Λ θβθβ  ~ Inverted Wishart ),( ss Δη  

sss n+= ,0ηη ,   '
,

1
,

1
,0

1 ))(( θβθβ ssis

n

i
siss ZZ

s

−−+Δ=Δ ∑
=

−− . 

300,000 iterations are run and every 30th- iteration is kept. Posterior means and variances are 

calculated using draws after the burn-in period of the first 60,000 iterations.  
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APPENDIX C: Prediction Validation Results 

Actual      
3y  

3y from 
Design I 

3y from 
Design II 

3y from 
Design III 

3y from 
Design IV  

1.287 1.885 2.001 1.653 1.756  
  (0.224) (0.219) (0.197) (0.196)  

0.681 0.281 0.295 0.238 0.071  
  (0.146) (0.135) (0.139) (0.138)  

1.011 0.863 0.743 0.935 0.828  
  (0.177) (0.171) (0.156) (0.163)  

1.383 1.934 1.940 1.668 1.885  
  (0.193) (0.190) (0.172) (0.181)  

4.043 4.326 4.307 4.541 4.437  
  (0.227) (0.240) (0.219) (0.209)  

3.362 3.793 3.799 3.860 3.810  
  (0.197) (0.208) (0.190) (0.182)  

5.000 5.447 5.443 5.290 5.624  
  (0.220) (0.228) (0.207) (0.197)  

3.351 3.843 3.738 3.876 3.939  
  (0.192) (0.212) (0.187) (0.174)  

5.181 4.898 4.940 5.134 5.004  
  (0.214) (0.235) (0.204) (0.209)  

5.745 5.969 6.137 5.868 6.062  
  (0.214) (0.216) (0.197) (0.196)  

5.330 4.948 4.879 5.150 5.133  
  (0.218) (0.236) (0.207) (0.206)  

4.436 4.415 4.371 4.469 4.506  
  (0.187) (0.209) (0.184) (0.178)  
      
Table C.1: Predictions of mean profile ratings in holdout study version 1 
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Actual       
3y  

3y from 
Design I 

3y from 
Design II 

3y from 
Design III 

3y from 
Design IV  

0.979 0.814 0.804 0.919 0.698  
  (0.193) (0.190) (0.180) (0.180)  

0.511 0.281 0.295 0.238 0.071  
  (0.146) (0.135) (0.139) (0.138)  

1.043 1.934 1.940 1.668 1.885  
  (0.193) (0.190) (0.172) (0.181)  

0.543 0.330 0.234 0.254 0.201  
  (0.115) (0.115) (0.112) (0.113)  

5.532 5.397 5.504 5.275 5.495  
  (0.235) (0.240) (0.216) (0.203)  

3.755 3.793 3.799 3.860 3.810  
  (0.197) (0.208) (0.190) (0.182)  

4.426 4.376 4.246 4.557 4.566  
  (0.227) (0.240) (0.213) (0.204)  

5.383 5.447 5.443 5.290 5.624  
  (0.220) (0.228) (0.207) (0.197)  

5.277 4.898 4.940 5.134 5.004  
  (0.214) (0.235) (0.204) (0.209)  

6.468 5.969 6.137 5.868 6.062  
  (0.214) (0.216) (0.197) (0.196)  

5.277 4.948 4.879 5.150 5.133  
  (0.218) (0.236) (0.207) (0.206)  

4.415 4.415 4.371 4.469 4.506  
  (0.187) (0.209) (0.184) (0.178)  
      
Table C.2: Predictions of mean profile ratings in holdout study version 2 
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Actual      
3y  

3y from 
Design I 

3y from 
Design II 

3y from 
Design III 

3y from 
Design IV  

1.354 1.885 2.001 1.653 1.756  
  (0.224) (0.219) (0.197) (0.196)  

0.594 0.281 0.295 0.238 0.071  
  (0.146) (0.135) (0.139) (0.138)  

1.177 0.863 0.743 0.935 0.828  
  (0.177) (0.171) (0.156) (0.163)  

1.208 1.934 1.940 1.668 1.885  
  (0.193) (0.190) (0.172) (0.181)  

0.583 0.330 0.234 0.254 0.201  
  (0.115) (0.115) (0.112) (0.113)  

4.250 4.326 4.307 4.541 4.437  
  (0.227) (0.240) (0.219) (0.209)  

3.490 3.793 3.799 3.860 3.810  
  (0.197) (0.208) (0.190) (0.182)  

5.646 5.447 5.443 5.290 5.624  
  (0.220) (0.228) (0.207) (0.197)  

5.135 4.898 4.940 5.134 5.004  
  (0.214) (0.235) (0.204) (0.209)  

6.583 5.969 6.137 5.868 6.062  
  (0.214) (0.216) (0.197) (0.196)  

5.427 4.948 4.879 5.150 5.133  
  (0.218) (0.236) (0.207) (0.206)  

5.063 4.415 4.371 4.469 4.506  
  (0.187) (0.209) (0.184) (0.178)  
      
Table C.3: Predictions of mean profile ratings in holdout study version 3 
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